JP5240857B2 - Ventilation duct - Google Patents

Ventilation duct Download PDF

Info

Publication number
JP5240857B2
JP5240857B2 JP2009122787A JP2009122787A JP5240857B2 JP 5240857 B2 JP5240857 B2 JP 5240857B2 JP 2009122787 A JP2009122787 A JP 2009122787A JP 2009122787 A JP2009122787 A JP 2009122787A JP 5240857 B2 JP5240857 B2 JP 5240857B2
Authority
JP
Japan
Prior art keywords
duct
hole
flow
ventilation
protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009122787A
Other languages
Japanese (ja)
Other versions
JP2010270662A (en
Inventor
寛 今泉
紀子 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tigers Polymer Corp
Original Assignee
Tigers Polymer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tigers Polymer Corp filed Critical Tigers Polymer Corp
Priority to JP2009122787A priority Critical patent/JP5240857B2/en
Publication of JP2010270662A publication Critical patent/JP2010270662A/en
Application granted granted Critical
Publication of JP5240857B2 publication Critical patent/JP5240857B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ダクトの内部に空気を通流する通気ダクトに関する。特にダクト壁にダクト壁の内外を連通する貫通穴が設けられた通気ダクトに関する。 The present invention relates to a ventilation duct that allows air to flow inside a duct. In particular, the present invention relates to a ventilation duct in which a through-hole communicating with the inside and outside of the duct wall is provided in the duct wall.

通気ダクトは、特に自動車用内燃機関の吸気システムや、燃料電池の吸気システムや、二次電池などを冷却するための冷却風送風システムや空調システムなどにおいて一連の通気ダクト系を構成する部材として使用されている。このようなダクト系においては、一般にダクト壁が合成樹脂や金属板・管などの非通気性素材からなるダクトが使用され、そのために、エンジンやファンやモータなどを騒音源とする騒音がダクト内を伝播したり、ダクト系に生ずる気柱共鳴が発生したりして、かねてから騒音の低減が望まれていた。 Ventilation ducts are used as members that form a series of ventilation duct systems, particularly in the intake systems of internal combustion engines for automobiles, intake systems of fuel cells, cooling air blowing systems and air conditioning systems for cooling secondary batteries, etc. Has been. In such a duct system, a duct made of a non-breathable material such as a synthetic resin, a metal plate, or a pipe is generally used for the duct wall. For some time, it has been desired to reduce noise by propagating air or by air column resonance occurring in the duct system.

そのため、これら通気ダクトにおいては、特にダクト系に発生する気柱共鳴を予防・抑制するために、あるいは、ダクト内を伝播する騒音をダクト外部に放散させ減衰させるために、チューニングホールと呼ばれるダクト壁を貫通する貫通穴を設けることが行われることがある。 Therefore, in these ventilation ducts, a duct wall called a tuning hole is used to prevent / suppress the air column resonance generated in the duct system, or to dissipate and attenuate the noise propagating in the duct to the outside of the duct. There may be a case where a through-hole penetrating is provided.

チューニングホールを設ける形態は、通気ダクトのダクト壁に単に貫通穴を設けるだけのことも多いが、チューニングホールを設けるその他の形態としては、例えば、特許文献1に開示されるように、チューニングホールを覆うようなプロテクター部材を、チューニングホールに対向させて、かつプロテクター部材とダクトの間に隙間が設けられるように取り付ける吸気ダクトの形態が知られている。 In many cases, the tuning hole is simply provided with a through hole in the duct wall of the ventilation duct. However, as another mode in which the tuning hole is provided, for example, as disclosed in Patent Document 1, the tuning hole is provided. 2. Description of the Related Art There is known an intake duct configuration in which a protector member to be covered is attached to face a tuning hole so that a gap is provided between the protector member and the duct.

特開2001−41122号公報JP 2001-41122 A

一方、これら通気ダクトには、上記音響性能だけではなく、その強度や耐久性といった通気ダクトの強度的側面の性能や、内部を通流する空気流の通気抵抗を低減するという性能も重視されるに至っており、特に、通気抵抗の低減は、吸気システムを通じて大量の吸気を内燃機関や燃料電池に供給するための吸気ダクトにおいて特に重要度が高く、空調ダクトや冷却風送風ダクトにおいても重要である。 On the other hand, not only the above-mentioned acoustic performance but also the performance of the strength side of the ventilation duct such as its strength and durability, and the performance of reducing the ventilation resistance of the airflow flowing through the inside are emphasized for these ventilation ducts. In particular, the reduction of ventilation resistance is particularly important in the intake duct for supplying a large amount of intake air to the internal combustion engine and the fuel cell through the intake system, and is also important in the air conditioning duct and the cooling air blowing duct. .

しかしながら、通気ダクトにチューニングホールのような貫通穴を設けた場合には、貫通穴からも空気が吸い込まれるために、吸気ダクト内部の気流が乱されて、通気抵抗が増加することが判明した。 However, it has been found that when a through hole such as a tuning hole is provided in the ventilation duct, air is sucked from the through hole, so that the airflow inside the intake duct is disturbed and the ventilation resistance increases.

したがって、本発明の目的は、ダクト壁に貫通穴が設けられたダクトにおいて、通気ダクト内を通流する空気の通気抵抗を低減することにある。
Accordingly, an object of the present invention is to reduce the ventilation resistance of air flowing through the ventilation duct in a duct having a through hole provided in the duct wall.

発明者は、鋭意検討の結果、通気ダクトに設けられた貫通穴の下流直下位置にダクト内部に向けて突出する突出部を形成すると、貫通穴を設けたことによる通気抵抗悪化を抑制できることを知見し、本発明を完成させた。 As a result of intensive studies, the inventor has found that if a protruding portion protruding toward the inside of the duct is formed immediately downstream of the through hole provided in the ventilation duct, deterioration of the ventilation resistance due to the provision of the through hole can be suppressed. The present invention has been completed.

本発明は、空気を吸引する通気経路を構成するための直管状の通気ダクトであって、通気ダクトにはダクト壁を貫通してダクト外部からダクト内部に空気が通流可能なように貫通穴が設けられ、ダクト周方向で貫通穴と同じ位置かつ貫通穴の吸気経路下流側となる位置には、ダクト壁内周面がダクト内側に向かって突出するように突出部が形成されたことを特徴とする通気ダクトである。
The present invention is a straight tubular ventilation duct for constituting a ventilation path for sucking air, and the ventilation duct penetrates the duct wall so that air can flow from the outside of the duct to the inside of the duct. In the circumferential direction of the duct, at the same position as the through hole and on the downstream side of the intake passage of the through hole, a protrusion is formed so that the inner peripheral surface of the duct wall protrudes toward the inside of the duct. This is a featured ventilation duct.

本発明においては、突出部の上流側部分が、ダクト壁の非突出部から立ち上がるように貫通穴の下流側端部に隣接して設けられることが好ましく(請求項2)、また、突出部の下流側部分が、下流側に向かうにつれて突出部の突出量が徐々に少なくなるような形状に設けられることが好ましい(請求項3)。 In the present invention, it is preferable that the upstream portion of the protruding portion is provided adjacent to the downstream end portion of the through hole so as to rise from the non-projecting portion of the duct wall (Claim 2). It is preferable that the downstream portion is provided in a shape such that the protruding amount of the protruding portion gradually decreases toward the downstream side (Claim 3).

本発明によれば、ダクト壁に貫通穴が設けられた直管状の通気ダクトにおいて、貫通穴からの流れによってダクト内部の流れが乱されて通気抵抗が悪化することを抑制して、通気ダクト内を通流する空気の通気抵抗を低減することができる。
According to the present invention, in a straight tubular ventilation duct having a through-hole formed in the duct wall, the flow inside the duct is prevented from being disturbed by the flow from the through-hole and the ventilation resistance is deteriorated. The airflow resistance of the air flowing through can be reduced.

また、突出部の上流側部分をダクト壁の非突出部から立ち上がるように貫通穴の下流側端部に隣接して設けたり、突出部の下流側部分を下流側に向かうにつれて突出部の突出量が徐々に少なくなるような形状に設けたりすることによって、より効果的に通気抵抗を低減することができる。
In addition, the upstream portion of the protruding portion is provided adjacent to the downstream end portion of the through hole so as to rise from the non-projecting portion of the duct wall, or the protruding amount of the protruding portion as the downstream portion of the protruding portion goes downstream. Ventilation resistance can be more effectively reduced by providing it in a shape that gradually reduces.

本発明の実施形態である吸気ダクトの斜視図である。It is a perspective view of an air intake duct which is an embodiment of the present invention. 本発明の実施形態の吸気ダクトの貫通穴付近の拡大断面図である。It is an expanded sectional view near the penetration hole of the air intake duct of the embodiment of the present invention. 本発明の実施形態の吸気ダクトの貫通穴と突出部の詳細な形状を示す図である。It is a figure which shows the detailed shape of the through-hole and protrusion part of the intake duct of embodiment of this invention. 突出部がない場合の貫通穴付近の流れを示す模式図である。It is a schematic diagram which shows the flow of the through-hole vicinity when there is no protrusion part. 突出部がある場合の貫通穴付近の流れを示す模式図である。It is a schematic diagram which shows the flow of the through-hole vicinity when there exists a protrusion part. 本発明の実施形態の吸気ダクトにおける貫通穴下流側位置における断面の流速分布を示す図である。It is a figure which shows the flow-velocity distribution of the cross section in the through-hole downstream position in the intake duct of embodiment of this invention. 比較例の吸気ダクトにおける貫通穴下流側位置における断面の流速分布を示す図である。It is a figure which shows the flow-velocity distribution of the cross section in the through-hole downstream position in the intake duct of a comparative example. 図6および図7の流速分布図における流速のスケールを示す図である。It is a figure which shows the scale of the flow velocity in the flow-velocity distribution map of FIG. 6 and FIG. 本発明の実施形態の吸気ダクトの貫通穴と突出部の他の形状を示す図である。It is a figure which shows the other shape of the through-hole and protrusion part of the intake duct of embodiment of this invention. 本発明の他の実施形態の吸気ダクトを示す図である。It is a figure which shows the intake duct of other embodiment of this invention. 本発明のさらに他の実施形態の吸気ダクトを示す図である。It is a figure which shows the intake duct of other embodiment of this invention. 本発明の実施形態の貫通穴からの流れの流線を示す図である。It is a figure which shows the streamline of the flow from the through-hole of embodiment of this invention. 本発明の実施形態の貫通穴からの流れの流線を他の視点から示す図である。It is a figure which shows the flow line of the flow from the through-hole of embodiment of this invention from another viewpoint.

以下、図面に基づいて、本発明の実施形態を説明する。図1は本発明の吸気ダクト1の外観を示す斜視図である。図2には、本発明の吸気ダクト1の貫通穴3付近のダクト軸方向に沿った断面を拡大して示す。本発明の通気ダクトは、自動車のエンジン(内燃機関)に空気を供給するための吸気システムの吸気ダクトの一部や、燃料電池に空気を供給するための吸気システムの一部や、電池などを冷却するための送風ダクトの一部として使用される。本実施形態においては、吸気ダクト1は内燃機関に空気を供給するための吸気システムの一部をなす吸気ダクトであり、吸気ダクト1は、他のダクト部材やエアクリーナの上流側に接続されて使用されるダクト部材である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing the appearance of an intake duct 1 of the present invention. In FIG. 2, the cross section along the duct axial direction of the through-hole 3 vicinity of the intake duct 1 of this invention is expanded and shown. The ventilation duct of the present invention includes a part of an intake system for supplying air to an automobile engine (internal combustion engine), a part of an intake system for supplying air to a fuel cell, a battery, and the like. Used as part of the air duct for cooling. In the present embodiment, the intake duct 1 is an intake duct that forms part of an intake system for supplying air to the internal combustion engine, and the intake duct 1 is connected to the upstream side of another duct member or an air cleaner. It is a duct member.

吸気ダクト1は、合成樹脂(本実施形態ではポリプロピレン樹脂)により形成された中空円筒状のダクト壁を有するダクト本体2に、ダクト壁を貫通する貫通穴3を設け、さらに、吸気ダクト内を通流する空気の流れ方向で、貫通穴3の下流側(下流直下)となる位置に突出部4がダクト内部に突出するように形成されたダクト部材である。ダクト本体2は、その内部に空気を通流する中空の部材であり、本実施形態においては、その上流側端部には、開放大気からダクト内に空気を吸い込むためのファンネル部21が形成され、その下流側端部には、後続する他のダクト部品やコネクタ部材などと接続して、他部材と共に一連の空気の流通経路を形成するための円筒状ダクト部(口元部)22が設けられている。吸気ダクト1には、必要に応じて取付け部材(図示せず)が設けられてもよい。 The intake duct 1 is provided with a through hole 3 penetrating the duct wall 2 in the duct body 2 having a hollow cylindrical duct wall formed of a synthetic resin (polypropylene resin in the present embodiment), and further passes through the intake duct. It is a duct member formed so that the protruding portion 4 protrudes into the duct at a position on the downstream side (directly downstream) of the through hole 3 in the flowing direction of the flowing air. The duct body 2 is a hollow member through which air flows, and in this embodiment, a funnel portion 21 for sucking air from the open atmosphere into the duct is formed at the upstream end portion thereof. At the downstream end thereof, a cylindrical duct portion (mouth portion) 22 is provided for connecting with other subsequent duct components, connector members, etc. and forming a series of air flow paths together with the other members. ing. The intake duct 1 may be provided with a mounting member (not shown) as necessary.

ダクト壁を貫通するように設けられた貫通穴3は本実施形態では円形の貫通穴であり、貫通穴3によって、ダクト本体2の内部空間と外部の空間とが互いに連通している。貫通穴3が設けられることによって、一連のダクトを接続した吸気システムに発生する気柱共鳴を予防あるいは抑制することができ、貫通穴3は気柱共鳴の予防、抑制に効果的なダクト軸方向位置および大きさ(好ましくは3mm〜12mm程度)に設けられ、いわゆるチューニングホールとしての機能を果たす。 The through hole 3 provided so as to penetrate the duct wall is a circular through hole in the present embodiment, and the internal space and the external space of the duct body 2 communicate with each other through the through hole 3. By providing the through hole 3, air column resonance generated in an intake system connected with a series of ducts can be prevented or suppressed. The through hole 3 is effective in the axial direction of the duct for preventing and suppressing air column resonance. It is provided at a position and size (preferably about 3 mm to 12 mm) and functions as a so-called tuning hole.

また、吸気ダクト1を通じて吸気が行われる際には、主たる空気流路として、空気はファンネル部21から吸い込まれてダクト内部空間を通って、ダクト口元部22を通じて下流側へと流れていく。本発明において、吸気ダクト1はダクト外部の大気圧に対してダクト内部の静圧が負圧となるようにされて、即ち、空気を吸引するような形態で使用される。吸気ダクト1の主たる流路から吸気システムに空気を吸入するのにともなって、副次的に、貫通穴3からも空気が吸い込まれて、ファンネル21から吸い込まれた主たる流れと合流して下流側に空気が流れていく。 When intake is performed through the intake duct 1, as a main air flow path, air is sucked from the funnel portion 21, flows through the duct internal space, and flows downstream through the duct mouth portion 22. In the present invention, the intake duct 1 is used in such a manner that the static pressure inside the duct becomes negative with respect to the atmospheric pressure outside the duct, that is, the air is sucked. As air is sucked into the intake system from the main flow path of the intake duct 1, the air is secondarily sucked from the through hole 3, and merges with the main flow sucked from the funnel 21 to be downstream. Air will flow through.

本発明の吸気ダクト1においては、管通穴3の流れ下流側に突出部4を設けた点に特徴がある。突出部4は、ダクト内部空間を画定するダクト内周面のうちの非突出部23に比べて、ダクト内周側に突出するように形成された部分である。 The intake duct 1 according to the present invention is characterized in that a protrusion 4 is provided on the downstream side of the flow of the pipe through hole 3. The protruding portion 4 is a portion formed so as to protrude toward the duct inner peripheral side as compared with the non-projecting portion 23 in the duct inner peripheral surface that defines the duct internal space.

突出部4は、貫通穴3の下流側に貫通穴に近接して、かつ、貫通穴3とダクト周方向の位置が略一致する位置に設けられている。突出部が貫通穴から大きく離間していたり周方向位置がずれていたりすると、通気抵抗低減効果が減少する。本実施形態においては、貫通穴3の下流側縁部に隣接するように突出部4の最上流部が設けられている。 The protruding portion 4 is provided on the downstream side of the through hole 3 in the vicinity of the through hole and at a position where the through hole 3 and the circumferential position of the duct substantially coincide with each other. If the protruding part is greatly separated from the through hole or the circumferential position is shifted, the ventilation resistance reduction effect is reduced. In the present embodiment, the most upstream part of the protruding part 4 is provided so as to be adjacent to the downstream edge part of the through hole 3.

本実施形態では、突出部4は、以下のような内周面形状を有するようにダクト本体2に一体に形成されている。すなわち、図3に示すように、ダクト半径方向から見て(図3(a)参照)、上流側(貫通穴側)が丸く、下流側が紡錘状にとがった滑らかな涙型の形状であり、流れ方向に沿う突出部4の長さLが貫通穴直径d1の4倍程度、流れ方向に直角な方向の突出部4の幅Wが貫通穴3の直径d1と同じ程度とされ、ダクトの周方向に沿って見て(図3(b)参照)突出部4の突出高さHは貫通穴3の直径d1と同じ程度とされている。また、吸気の主たる流れ方向に沿う方向から見た突出部の断面形状は、半円状となっている(図3(c)参照)。すなわち、突出部4の立体的な形状は、突出高さが最大となる部分よりも上流側では球面状とされ、突出部4が貫通穴3下流側縁に隣接するように立ち上がる一方、下流側ではその軸線が流れ方向に沿うような紡錘形状(又は円錐形状)とされて、下流側に向かうに従って、突出部の突出高さや幅が徐々に少なくなる形状とされている。 In this embodiment, the protrusion 4 is integrally formed with the duct body 2 so as to have the following inner peripheral surface shape. That is, as shown in FIG. 3, when viewed from the radial direction of the duct (see FIG. 3 (a)), the upstream side (through hole side) is round, and the downstream side has a smooth tear-shaped shape with a spindle shape, The length L of the protrusion 4 along the flow direction is about four times the through-hole diameter d1, and the width W of the protrusion 4 in the direction perpendicular to the flow direction is the same as the diameter d1 of the through-hole 3, When viewed along the direction (see FIG. 3B), the protrusion height H of the protrusion 4 is set to be approximately the same as the diameter d1 of the through hole 3. Moreover, the cross-sectional shape of the protrusion seen from the direction along the main flow direction of the intake air is a semicircular shape (see FIG. 3C). That is, the three-dimensional shape of the protrusion 4 is spherical on the upstream side of the portion where the protrusion height is maximum, and the protrusion 4 rises so as to be adjacent to the downstream edge of the through hole 3, while on the downstream side Then, the spindle has a spindle shape (or conical shape) along the flow direction, and the protruding height and width of the protruding portion gradually decrease toward the downstream side.

吸気ダクト1を構成する材料としては、特に制限がなく、こうしたダクトを形成できる種々の材料が使用できる。例えば、ポリプロピレン樹脂やポリアミド樹脂、ポリエチレン樹脂などの熱可塑性合成樹脂や、熱硬化性合成樹脂といった比較的硬質な合成樹脂や、ゴムや熱可塑性エラストマーなどの比較的軟質なエラストマーや、アルミニウムや鉄などの金属材料が例示できる。中でも、ブロー成形法や射出成形法により効率的にダクト部材を成形できることから、熱可塑性樹脂やゴムや熱可塑性エラストマーなどの合成樹脂材料が好ましく使用できる。 There is no restriction | limiting in particular as a material which comprises the intake duct 1, The various material which can form such a duct can be used. For example, thermoplastic synthetic resins such as polypropylene resin, polyamide resin, and polyethylene resin, relatively hard synthetic resins such as thermosetting synthetic resins, relatively soft elastomers such as rubber and thermoplastic elastomers, aluminum and iron, etc. The metal material can be illustrated. Especially, since a duct member can be efficiently shape | molded by the blow molding method or the injection molding method, synthetic resin materials, such as a thermoplastic resin, rubber | gum, and a thermoplastic elastomer, can be used preferably.

吸気ダクト1は公知の方法により製造することができる。例えば、本実施形態の吸気ダクト1であれば、公知のブロー成形法によって、突出部4が一体に形成されたダクト本体2を成形し、ファンネル部21、口元部22、開口穴3をそれぞれ開口させて吸気ダクト1を得ることができる。 The intake duct 1 can be manufactured by a known method. For example, in the case of the intake duct 1 of the present embodiment, the duct body 2 in which the projecting portions 4 are integrally formed is formed by a known blow molding method, and the funnel portion 21, the mouth portion 22, and the opening hole 3 are opened. Thus, the intake duct 1 can be obtained.

また、吸気ダクト1の製造方法はブロー成形法に限定されるものではなく、射出成形法によって行うこともでき、特にダクト内周面形状の正確さが求められる場合には射出成形法によることが好ましい。また、突出部4はダクト本体部2と必ずしも同時に一体成形される必要はなく、後述する第2実施形態のようにダクト本体部2と突出部4とを別々に製造して、後で接着一体化させてもよい。
In addition, the method of manufacturing the intake duct 1 is not limited to the blow molding method, and can be performed by an injection molding method. In particular, when the accuracy of the inner peripheral surface shape of the duct is required, the injection molding method may be used. preferable. Further, the protrusion 4 does not necessarily have to be integrally formed with the duct body 2 at the same time, and the duct body 2 and the protrusion 4 are manufactured separately as in a second embodiment to be described later, and are bonded and integrated later. You may make it.

本発明の通気ダクトの作用効果を説明する。
本発明において管通穴3の下流側に設けられる突出部4は貫通穴そのものの機能を妨げるものではないので、貫通穴は当初期待された効果を発揮し、本実施形態であれば、いわゆるチューニングホールとしてダクトシステムの音響特性を改善する効果が発揮されて、ダクトシステムの気柱共鳴を予防・抑制し、ダクト内部を伝播する音を外部に放散してファンネル側に伝播する騒音を低減することができる。
The effect of the ventilation duct of this invention is demonstrated.
In the present invention, since the protrusion 4 provided on the downstream side of the tube passage hole 3 does not hinder the function of the through hole itself, the through hole exhibits the effect that was initially expected. The effect of improving the acoustic characteristics of the duct system is demonstrated as a hall, preventing and suppressing air column resonance of the duct system, and radiating sound propagating inside the duct to the outside to reduce noise propagating to the funnel side Can do.

さらに、本発明の吸気ダクト1においては、突出部4を設けたことによって、吸気システムにより空気を吸い込む際の通気抵抗を低減できる。
まず、突出部4が設けられていない従来の吸気ダクトにおけるダクト内部の空気流れを説明すると、図4に示すように、図の左側から流れる主たる流れに対し、貫通穴からの流れが合流するが、貫通穴の下流側の領域には、流れがよどむ領域や渦が発生し、こうした渦やよどみや貫通穴からの流れによって、ダクト内の主たる流れの流路が圧迫されて、通気抵抗が高まってしまう。
Furthermore, in the intake duct 1 of the present invention, the provision of the protrusion 4 can reduce the ventilation resistance when air is sucked by the intake system.
First, the air flow inside the duct in the conventional intake duct not provided with the protrusion 4 will be described. As shown in FIG. 4, the flow from the through hole merges with the main flow flowing from the left side of the drawing. In the downstream area of the through hole, a stagnation region or vortex is generated, and the flow from the vortex, stagnation, or through hole compresses the main flow path in the duct, increasing the airflow resistance. End up.

本発明の吸気ダクト1においては、貫通穴3の下流直下に突出部4が設けられることにより、図5に示すように、貫通穴4からの流れによる渦やよどみ領域の発生が予防ないしは抑制されて、貫通穴の下流側領域で、貫通穴からの流れがダクト内部に大きく入り込んでしまうことが予防されて、ダクト壁に沿うように流れるようになる。そのため、貫通穴からの流れによってダクト内の主たる流れの流路が圧迫される程度が緩和され、通気抵抗の悪化が抑制される。 In the intake duct 1 of the present invention, the protrusion 4 is provided immediately downstream of the through hole 3, thereby preventing or suppressing the generation of vortices and stagnation areas due to the flow from the through hole 4 as shown in FIG. 5. Thus, in the downstream region of the through hole, the flow from the through hole is prevented from greatly entering the inside of the duct, and flows along the duct wall. Therefore, the degree to which the flow path of the main flow in the duct is compressed by the flow from the through hole is alleviated, and the deterioration of the ventilation resistance is suppressed.

このような通気抵抗低減効果を得るために特に好ましい突出部形状について以下に説明するが、突出部4が小さすぎると通気抵抗の改善効果が小さくなる傾向があり、一方突出部が大きすぎるとダクト断面積を減少させてかえって通気抵抗改善を妨げることがあるため、突出部の大きさは以下に示す程度とすることが好ましい。 In order to obtain such a ventilation resistance reducing effect, a particularly preferable protruding portion shape will be described below. However, if the protruding portion 4 is too small, the improvement effect of the ventilation resistance tends to be reduced, while if the protruding portion is too large, a duct is formed. Since the cross-sectional area may be reduced and the improvement of the ventilation resistance may be hindered, the size of the protrusion is preferably set to the following level.

突出部の突出高さは、貫通穴の流れ方向の長さd1(本実施形態では直径)がダクト直径Dに対し十分に小さい場合には(例えばd1<D/3の場合)、突出部高さHを貫通穴流れ方向長さd1と同程度、すなわち0.5*d1<H<2.0*d1,より好ましくは0.7*d1<H<1.5*d1程度とすることが好ましい。
また、貫通穴がダクト径に対し大きい、すなわち貫通穴の流れ方向の長さd1(本実施形態では直径)がダクト直径Dに対し十分に小さいとはいえない場合には(例えばd1>D/2の場合)、突出部の高さHは、ダクト直径Dに対して、H<D/3程度、より好ましくはH<D/4程度となるようにすることが好ましい。
When the length d1 (the diameter in this embodiment) of the through hole in the flow direction of the through hole is sufficiently smaller than the duct diameter D (for example, in the case of d1 <D / 3), the protrusion height of the protrusion is as follows. The length H is about the same as the length d1 of the through-hole flow direction, that is, 0.5 * d1 <H <2.0 * d1, more preferably about 0.7 * d1 <H <1.5 * d1. preferable.
Further, when the through hole is larger than the duct diameter, that is, when the length d1 (the diameter in the present embodiment) of the through hole in the flow direction is not sufficiently small with respect to the duct diameter D (for example, d1> D / 2), the height H of the protrusion is preferably about H <D / 3, more preferably about H <D / 4, with respect to the duct diameter D.

突出部の幅Wは、貫通穴の直径をd1として0.5*d1<W<2.0*d1、より好ましくは0.7*d1<W<1.5*d1程度とすることが好ましい。本発明においては、貫通穴からの流れが突出部4の上面から側面にかけて広がって突出部表面に沿うように流れて、貫通穴からの流れが分散し弱くなることで、貫通穴の下流に渦やよどみが発生することを防止する効果もあり、突出部の幅が貫通穴よりも大きすぎるとこの効果が弱まって、通気抵抗の低減効果が低下する。また、突出部の流れ方向の長さLは、貫通穴直径d1の1〜10倍程度、好ましくは2〜7倍程度とすることが好ましい。長さが短すぎたり長すぎたりすると、通気抵抗低減効果が低下する。 The width W of the protrusion is preferably about 0.5 * d1 <W <2.0 * d1, more preferably about 0.7 * d1 <W <1.5 * d1, where the diameter of the through hole is d1. . In the present invention, the flow from the through hole spreads from the upper surface to the side surface of the protruding portion 4 and flows along the surface of the protruding portion, and the flow from the through hole is dispersed and weakened. There is also an effect of preventing stagnation, and if the width of the protruding portion is too larger than the through hole, this effect is weakened and the effect of reducing the ventilation resistance is lowered. Further, the length L in the flow direction of the protrusion is preferably about 1 to 10 times, preferably about 2 to 7 times the through-hole diameter d1. If the length is too short or too long, the airflow resistance reduction effect is reduced.

また、貫通穴からの流れが突出部表面に沿って剥離しないで流れるように、突出部は球面や楕円面のような滑らかな曲面を滑らかに連続させたような滑らかな表面を有するように形成することが好ましい。 Also, so that the flow from the through hole flows without peeling along the surface of the protrusion, the protrusion is formed to have a smooth surface such as a smooth curved surface such as a spherical surface or an elliptical surface. It is preferable to do.

突出部4の上流側部分41において、突出部4がダクト本体の非突出部23から立ち上がる位置は、貫通穴3の下流側縁部に可能な限り近接して隣接するように設けられることが通気抵抗を低減する上で好ましいが、突出部の上流側立上り部と貫通穴下流縁部は互いに離間していてもよい。離間させる場合の離間距離は突出部の突出高さHと同程度以下とすることが、通気抵抗を低減する上で好ましい。 In the upstream portion 41 of the protruding portion 4, the position where the protruding portion 4 rises from the non-projecting portion 23 of the duct body is provided so as to be adjacent to the downstream edge of the through hole 3 as close as possible. Although it is preferable to reduce the resistance, the upstream rising portion of the protrusion and the downstream edge of the through hole may be separated from each other. In order to reduce the ventilation resistance, it is preferable that the separation distance in the case of the separation be equal to or less than the protrusion height H of the protrusion.

また、突出部4の上流側部分41においては、突出部がダクト本体の非突出部から所定の角度で立ち上がるように突出部を設けることが好ましく、突出部が立ち上がる角度は、非突出部と突出部の境界部の角度αが45度〜90度、より好ましくは60度〜90度となるようにすることが好ましい。 In addition, in the upstream portion 41 of the protrusion 4, it is preferable to provide a protrusion so that the protrusion rises at a predetermined angle from the non-protrusion of the duct body. It is preferable that the angle α of the boundary between the portions is 45 degrees to 90 degrees, more preferably 60 degrees to 90 degrees.

突出部の上流側部分41をダクト壁の非突出部から立ち上がるように貫通穴の下流側端部に隣接して設けることによって、貫通穴から流れ込む空気流が突出部表面に沿って流れるようになり、貫通穴から流れ込む空気流の剥離が防止されて、貫通穴下流に発生するよどみや渦の領域を小さくし、効果的に通気抵抗を低減することができる。 By providing the upstream portion 41 of the protruding portion adjacent to the downstream end of the through hole so as to rise from the non-projecting portion of the duct wall, the air flow flowing from the through hole flows along the surface of the protruding portion. The separation of the airflow flowing from the through hole is prevented, the stagnation and vortex area generated downstream of the through hole is reduced, and the ventilation resistance can be effectively reduced.

また、突出部4の下流側部分42において、突出部の突出量が下流側に向けて徐々に減少していく程度は、突出部下流側部分のダクト壁非突出部に対する勾配が1/2以下となるように、より好ましくは1/3以下となるようにすることが通気抵抗を低減する上で好ましい。 Further, in the downstream portion 42 of the protruding portion 4, the gradient of the protruding portion downstream side portion with respect to the non-projecting portion of the duct wall is ½ or less to the extent that the protruding amount of the protruding portion gradually decreases toward the downstream side. In order to reduce the ventilation resistance, it is more preferable to set it to 1/3 or less.

突出部の下流側部分42を下流側に向かうにつれて突出部の突出量が徐々に少なくなるような形状にすることにより、貫通穴下流に発生するよどみや渦の領域を小さくし、効果的に通気抵抗を低減することができる。
By forming the downstream portion 42 of the protruding portion into a shape in which the protruding amount of the protruding portion gradually decreases toward the downstream side, the area of stagnation and vortex generated downstream of the through hole is reduced, and effective ventilation is achieved. Resistance can be reduced.

数値流体シミュレーションによって、本発明の通気抵抗抑制効果を検証した結果を説明する。数値流体シミュレーションは、図1に示す吸気ダクト1に準ずるダクト形状について行った。吸気ダクトの具体的寸法は、ダクト全長450mm、ダクト本体部断面形状は長径45mm短径26mmの長円形状(断面積で直径36mmの円断面相当)であり、ファンネル部の形状は長径65mm短径46mmの長円形状(断面積で直径54mmの円断面相当)であり、ダクトの下流端部付近の150mmの区間で、ダクト断面形状が長径45mm短径26mmの長円形状から直径45mm円形断面にテーパ状に拡管しながら徐変した吸気ダクトである。また、吸気ダクトの全体形状はほぼ直線状のダクトに近いが、上記徐変区間において緩やかな曲げ(ベンド)が与えられている。貫通穴3はダクトの下流端部から207mmの位置に直径10mmで設けられている。突出部形状の具体的寸法は、突出高さ10mm、幅10mm、長さ30mmで、貫通穴の下流側縁部に隣接して立ち上がるように滑らかな涙型形状で設けた。また、ダクトの形状や貫通穴の形状は同じであるものの、突出部が設けられていない吸気ダクトを比較形状とした。 The result of verifying the ventilation resistance suppressing effect of the present invention by numerical fluid simulation will be described. The numerical fluid simulation was performed for a duct shape similar to the intake duct 1 shown in FIG. The specific dimensions of the intake duct are an overall length of 450 mm, a cross section of the duct body is an ellipse with a major axis of 45 mm and a minor axis of 26 mm (corresponding to a circular section with a sectional area of 36 mm in diameter), and the funnel part has a major axis of 65 mm and a minor axis. It is an ellipse of 46 mm (equivalent to a circular cross section with a diameter of 54 mm in cross-sectional area), and in a 150 mm section near the downstream end of the duct, the duct cross section is changed from an ellipse with a major axis of 45 mm and a minor axis of 26 mm to a circular cross section with a diameter of 45 mm. It is an intake duct that gradually changes while expanding in a tapered shape. Further, the overall shape of the intake duct is close to a substantially straight duct, but a gentle bend is given in the gradual change section. The through hole 3 is provided with a diameter of 10 mm at a position 207 mm from the downstream end of the duct. The specific dimensions of the protrusion shape were a protrusion height of 10 mm, a width of 10 mm, and a length of 30 mm, and were provided in a smooth teardrop shape so as to stand up adjacent to the downstream edge of the through hole. Moreover, although the shape of a duct and the shape of a through-hole are the same, the intake duct which is not provided with the protrusion part was made into the comparison shape.

上記形状の本発明実施例及び比較例の吸気ダクトについて、ダクトの下流端部から吸引される空気量が48リットル/秒となるように数値流体シミュレーションを行い、ダクトの下流端部のダクト中心部での静圧(大気圧との差圧)を求め、通気抵抗の評価を行った。解析結果によれば、突出部を設けた本発明実施形態の吸気ダクトでは、通気抵抗が948.2Paであり、突出部のない比較例の吸気ダクトでは通気抵抗が1086.5Paであって、突出部4を設けることにより12.7%の通気抵抗低減がなされた。また、ファンネル部21から流れ込む流量は、全流量の92.7%を占め、ファンネル部21からの流れがダクト内部の主たる流れとなっている。 For the intake ducts of the present embodiment and comparative example of the above-described shape, a numerical fluid simulation was performed so that the amount of air sucked from the downstream end of the duct was 48 liters / second, and the center of the duct at the downstream end of the duct The static pressure (differential pressure with respect to atmospheric pressure) was obtained and the ventilation resistance was evaluated. According to the analysis result, in the intake duct of the embodiment of the present invention provided with the protrusion, the airflow resistance is 948.2 Pa, and in the comparative intake duct without the protrusion, the airflow resistance is 1086.5 Pa. By providing the portion 4, the ventilation resistance was reduced by 12.7%. The flow rate flowing from the funnel portion 21 accounts for 92.7% of the total flow rate, and the flow from the funnel portion 21 is the main flow inside the duct.

数値流体シミュレーションで計算されたダクト内流れを可視化したものを図6、図7に示す。図6、図7は吸気ダクト1の下流側端部から50mm上流側の位置におけるダクト断面での流速分布を示す図であり、図6には本発明実施形態の吸気ダクトでの流速分布を、図7には比較例の吸気ダクトでの流速分布を示す。いずれの図においても、貫通穴(図6においては貫通穴と突出部)が設けられたダクト周方向位置は、図の左側の位置(アナログ時計でいえば8時〜9時の位置)である。また、これらの流速分布図での流速のスケールを図8に示し、図6や図7では色が薄くなるほど流速が高いことを示している。 FIGS. 6 and 7 show visualization of the flow in the duct calculated by the numerical fluid simulation. 6 and 7 are diagrams showing the flow velocity distribution in the duct cross section at a position 50 mm upstream from the downstream end of the intake duct 1, and FIG. 6 shows the flow velocity distribution in the intake duct of the embodiment of the present invention. FIG. 7 shows the flow velocity distribution in the intake duct of the comparative example. In any of the drawings, the position in the circumferential direction of the duct provided with the through hole (in FIG. 6, the through hole and the protruding portion) is the position on the left side of the drawing (the position from 8 o'clock to 9 o'clock in the case of an analog clock) . Moreover, the scale of the flow velocity in these flow velocity distribution diagrams is shown in FIG. 8, and FIG. 6 and FIG. 7 indicate that the flow velocity is higher as the color becomes lighter.

図6と図7を比較して明らかなように、図6に示した本発明実施形態においては、貫通穴の下流部分の流速の低い領域が小さく、主たる流れの領域が広くなっており、かつ、主たる流れの領域での最大流速が抑えられており、流速分布の勾配も緩やかである。一方、比較例の図7においては、貫通穴の下流部分に流速が非常に遅い領域が生じており、その結果流速が低い領域が大きく、主たる流れの流れる領域が狭くなってしまい、その狭い領域に最大流速が大きな流れが流れていて、流速分布の勾配が急になっていることがわかる。このような流れの場の違いが通気抵抗の差になって現れているものと推察される。 As is clear by comparing FIG. 6 and FIG. 7, in the embodiment of the present invention shown in FIG. 6, the region where the flow velocity is low in the downstream portion of the through hole is small, the region of the main flow is wide, and The maximum flow velocity in the main flow region is suppressed, and the gradient of the flow velocity distribution is gentle. On the other hand, in FIG. 7 of the comparative example, a region where the flow velocity is very slow is generated in the downstream portion of the through hole, and as a result, the region where the flow velocity is low is large and the region where the main flow flows is narrowed. It can be seen that there is a flow with a large maximum flow velocity, and the gradient of the flow velocity distribution is steep. It is assumed that such a difference in flow field appears as a difference in ventilation resistance.

図12と図13には、本発明の実施例における貫通穴からの流れの流線を示す。図12は貫通穴と突出部を含むような断面で見た流線であり、図13は貫通穴の貫通方向から見た流線である。図12に示されるように、貫通穴から吸引された流れが、突出部の表面に沿うようにして流れ、流れの剥離が抑制されて、図の下側に向けて流れの方向が変わり、ファンネルから流れてくる主たる流れの流路を狭くしていない様子が観察される。また、図13に示されるように、貫通穴から吸引された流れは、突出部の上面から側面にかけての表面に沿うようにして、幅方向にやや広がるように流れていることが観察される。
12 and 13 show flow lines of flow from the through hole in the embodiment of the present invention. FIG. 12 is a streamline viewed in a cross section including a through hole and a protrusion, and FIG. 13 is a streamline viewed from the through direction of the through hole. As shown in FIG. 12, the flow sucked from the through hole flows along the surface of the protrusion, the separation of the flow is suppressed, the flow direction changes toward the lower side of the figure, and the funnel It is observed that the main flow path flowing from the center is not narrowed. Further, as shown in FIG. 13, it is observed that the flow sucked from the through hole flows so as to spread slightly in the width direction along the surface from the upper surface to the side surface of the protrusion.

本発明は、上記実施形態に限定されるものではなく、種々の改変をして実施することができる。以下に本発明の他の実施形態について説明するが、以下の説明においては、上記実施形態と異なる部分を中心に説明し、同様である部分については図に同じ番号を付すると共にその説明を省略する。 The present invention is not limited to the above embodiment, and can be implemented with various modifications. Other embodiments of the present invention will be described below. However, in the following description, portions different from the above embodiment will be mainly described, and the same portions will be denoted by the same reference numerals and description thereof will be omitted. To do.

図9には、貫通穴と突出部の別の実施形態を示す。本実施形態においては、貫通穴5は略正方形状の角穴とされ、突出部6は、ダクト本体2とは別体に形成された突出部材61がダクト内周面に接着一体化されて形成されている。突出部6の上流部の形状はダクト半径方向に伸びる中心軸を有する円錐状とされてダクト壁の非突出部に対し約60度の角度で立ち上がっており、突出部5の中間部は、突出高さが一定となるように流れ方向に沿う三角柱状とされ、突出部の下流部は、下流に向かって突出量が漸減する三角錐状とされている。 FIG. 9 shows another embodiment of the through hole and the protrusion. In the present embodiment, the through-hole 5 is a square hole having a substantially square shape, and the protruding portion 6 is formed by bonding and integrating a protruding member 61 formed separately from the duct body 2 to the inner peripheral surface of the duct. Has been. The shape of the upstream portion of the projecting portion 6 is a conical shape having a central axis extending in the radial direction of the duct, and rises at an angle of about 60 degrees with respect to the non-projecting portion of the duct wall. The shape is a triangular prism shape along the flow direction so that the height is constant, and the downstream portion of the protruding portion is a triangular pyramid shape whose protruding amount gradually decreases toward the downstream.

本実施形態においても、貫通穴5から流れ込む流れによってダクト内部の気流が乱されて通気抵抗が増加することが予防・抑制される。すなわち、本発明は、貫通穴の形状や突出部の形状を変更しても実施することができ、製造上の効率性や、通気抵抗の低減を目的として、あるいは他の目的のために、貫通穴や突出部の形状を変化させて実施することができる。 Also in this embodiment, it is prevented / suppressed that the airflow inside the duct is disturbed by the flow flowing from the through hole 5 and the ventilation resistance is increased. That is, the present invention can be implemented even if the shape of the through hole or the shape of the protruding portion is changed, and the through hole is used for the purpose of reducing the manufacturing efficiency, the airflow resistance, or for other purposes. It can be carried out by changing the shape of the hole or the protrusion.

また、上記実施形態の説明では、ダクト本体2のダクト断面形状が円形であって、ダクトがほぼ直線状である吸気ダクト1について説明したが、本発明はそれに限定されず、ダクトの断面形状は、楕円、長円、四角形、多角形などの形状とでき、さらにダクトは長さ方向で曲がった形状であってもよい。 Further, in the description of the above embodiment, the duct cross-sectional shape of the duct main body 2 is circular and the intake duct 1 in which the duct is substantially linear has been described. However, the present invention is not limited thereto, and the cross-sectional shape of the duct is The shape may be an ellipse, an ellipse, a quadrangle, a polygon, or the like, and the duct may be bent in the length direction.

また、上記実施形態の説明では、貫通穴3や貫通穴5は吸気ダクトの外部に対し解放された貫通穴である形態について説明をしたが、ダクトの消音性能をより高める目的や他の目的で、貫通穴の外部の構造に改変を加えるようにして実施することもできる。 In the description of the above embodiment, the through hole 3 and the through hole 5 are described as being through holes opened to the outside of the air intake duct. However, for the purpose of further improving the duct silencing performance and other purposes. It is also possible to carry out by modifying the structure outside the through hole.

例えば、図10には、ダクト本体2に設けられた貫通穴3を覆うように通気性多孔質材(例えば、織布や不織布などの繊維集合体や発泡樹脂スポンジなど)を取り付けて、貫通穴3を利用して、いわゆるポーラスダクトを構成した例を示す。 For example, in FIG. 10, a breathable porous material (for example, a fiber aggregate such as a woven fabric or a nonwoven fabric or a foamed resin sponge) is attached so as to cover the through hole 3 provided in the duct body 2, 3 shows an example in which a so-called porous duct is configured.

また、図11には、ダクト本体2に設けられた貫通穴3に連続するようにサブダクト8を設けた例を示す。本実施形態は、サブダクト8を通じてより温度の低い空気を吸引したり、サブダクト8を利用して所定の部位にダクト内部の音を伝達させたりするのに、特に好ましい実施形態である。さらに、サブダクト8に弁体を設けた場合には、サブダクトを流れる空気の量や音の伝播の程度を調整することも可能である。 FIG. 11 shows an example in which the sub duct 8 is provided so as to be continuous with the through hole 3 provided in the duct body 2. This embodiment is a particularly preferable embodiment for sucking air having a lower temperature through the sub duct 8 or transmitting the sound inside the duct to a predetermined portion using the sub duct 8. Furthermore, when a valve body is provided in the sub duct 8, it is possible to adjust the amount of air flowing through the sub duct and the degree of sound propagation.

図10や図11に示したような実施形態においても、貫通穴3の下流側に突起部4を設けることでダクトの通気抵抗が低減されることは同様である。即ち、本発明の実施において、貫通穴をダクト壁に設ける目的は、いわゆるチューニングホールのようなダクトの音響特性の改善目的に限定されるものではなく、種々の目的とすることができる。 Also in the embodiment as shown in FIG. 10 and FIG. 11, it is the same that the ventilation resistance of the duct is reduced by providing the protrusion 4 on the downstream side of the through hole 3. That is, in the practice of the present invention, the purpose of providing the through hole in the duct wall is not limited to the purpose of improving the acoustic characteristics of the duct such as a so-called tuning hole, but can be various purposes.

また、上記実施形態の説明においては、自動車用の内燃機関の吸気システムに使用される吸気ダクトに本発明を適用した形態について説明したが、これまでの説明より明らかなように、本発明の実施はこれに限定されるものではなく、ダクトシステムによって空気を吸引する形態で使用されるダクトシステム一般に使用される通気ダクトにおいて実施可能である。すなわち、家庭用燃料電池などに供給する空気を吸引するためのダクトや、電気自動車の二次電池を冷却する冷却風を導くための通気ダクトや、エアコンなどの空調機器が吸引する空気を導く空調ダクトなどに、本発明の通気ダクトが使用できる。
In the description of the above embodiment, the embodiment in which the present invention is applied to the intake duct used in the intake system of the internal combustion engine for automobiles has been described. However, as is clear from the above description, the implementation of the present invention has been described. However, the present invention is not limited to this, and can be implemented in a ventilation duct generally used in a duct system used in a form in which air is sucked by the duct system. That is, a duct for sucking air supplied to a household fuel cell, a ventilation duct for guiding cooling air for cooling a secondary battery of an electric vehicle, and an air conditioner for guiding air sucked by an air conditioner such as an air conditioner. The ventilation duct of this invention can be used for a duct etc.

本発明の通気ダクトは、内燃機関や燃料電池の吸気システムや、電池冷却システムや空調システムなどのダクトシステムに使用できる。本発明の通気ダクトは、ダクト壁に貫通穴を設けた際の通気抵抗の増加を抑制することができ、産業上の利用価値が高い。 The ventilation duct of the present invention can be used for an intake system of an internal combustion engine or a fuel cell, a duct system such as a battery cooling system or an air conditioning system. The ventilation duct of the present invention can suppress an increase in ventilation resistance when a through hole is provided in the duct wall, and has high industrial utility value.

1 吸気(通気)ダクト
2 ダクト本体
3 貫通穴
4 突出部
5 貫通穴
6 突出部
7 通気性多孔質材
8 サブダクト
1 Intake (ventilation) duct 2 Duct body 3 Through hole 4 Protruding part 5 Through hole 6 Protruding part 7 Breathable porous material 8 Sub duct

Claims (3)

空気を吸引する通気経路を構成するための直管状の通気ダクトであって、
通気ダクトにはダクト壁を貫通してダクト外部からダクト内部に空気が通流可能なように貫通穴が設けられ、
ダクト周方向で貫通穴と同じ位置かつ貫通穴の吸気経路下流側となる位置には、ダクト壁内周面がダクト内側に向かって突出するように突出部が形成されたことを特徴とする通気ダクト。
A straight tubular ventilation duct for configuring a ventilation path for sucking air,
The ventilation duct is provided with a through hole so that air can flow from the outside of the duct to the inside of the duct through the duct wall.
Ventilation characterized in that a protrusion is formed so that the inner peripheral surface of the duct wall protrudes toward the inside of the duct at the same position as the through hole in the circumferential direction of the duct and on the downstream side of the intake passage of the through hole. duct.
突出部の上流側部分が、ダクト壁の非突出部から立ち上がるように貫通穴の下流側端部に隣接して設けられたことを特徴とする請求項1に記載の通気ダクト。 The ventilation duct according to claim 1, wherein the upstream portion of the projecting portion is provided adjacent to the downstream end portion of the through hole so as to rise from the non-projecting portion of the duct wall. 突出部の下流側部分が、下流側に向かうにつれて突出部の突出量が徐々に少なくなるような形状に設けられたことを特徴とする請求項1または請求項2に記載の通気ダクト。 The ventilation duct according to claim 1 or 2, wherein the downstream portion of the protruding portion is provided in a shape such that the protruding amount of the protruding portion gradually decreases toward the downstream side.
JP2009122787A 2009-05-21 2009-05-21 Ventilation duct Expired - Fee Related JP5240857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009122787A JP5240857B2 (en) 2009-05-21 2009-05-21 Ventilation duct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009122787A JP5240857B2 (en) 2009-05-21 2009-05-21 Ventilation duct

Publications (2)

Publication Number Publication Date
JP2010270662A JP2010270662A (en) 2010-12-02
JP5240857B2 true JP5240857B2 (en) 2013-07-17

Family

ID=43418888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009122787A Expired - Fee Related JP5240857B2 (en) 2009-05-21 2009-05-21 Ventilation duct

Country Status (1)

Country Link
JP (1) JP5240857B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5872536B2 (en) * 2011-02-25 2016-03-01 株式会社Roki Air intake duct
JP2013019551A (en) * 2011-07-07 2013-01-31 Nippon Sharyo Seizo Kaisha Ltd Air conditioning duct
JP6408343B2 (en) * 2014-06-16 2018-10-17 川崎重工業株式会社 Intake duct for motorcycle engine
JP6816655B2 (en) * 2017-06-02 2021-01-20 トヨタ自動車株式会社 Air cleaner and manufacturing method of air cleaner
JP6777015B2 (en) * 2017-06-02 2020-10-28 トヨタ自動車株式会社 Air cleaner and manufacturing method of air cleaner

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674037A (en) * 1991-10-15 1994-03-15 Toyoda Spinning & Weaving Co Ltd Muffler device
JPH0842417A (en) * 1994-07-29 1996-02-13 Tsuchiya Mfg Co Ltd Air cleaner
JP2000073877A (en) * 1998-08-26 2000-03-07 Nissan Motor Co Ltd Exhaust gas reflux device for engine
JP2001041122A (en) * 1999-07-26 2001-02-13 Inoac Corp Air intake duct
JP3679991B2 (en) * 2000-11-22 2005-08-03 三菱重工業株式会社 Silencer

Also Published As

Publication number Publication date
JP2010270662A (en) 2010-12-02

Similar Documents

Publication Publication Date Title
US8944110B2 (en) Vent duct
JP5240857B2 (en) Ventilation duct
JP5340816B2 (en) Ventilation duct
CN109469569B (en) Intake system component for internal combustion engine
BRPI1105353A2 (en) exhaust duct for an internal combustion engine and off-road machine
JP2009202682A (en) Duct device for air conditioning
EP3628202B1 (en) Vacuum cleaner and motor module thereof
US20070266989A1 (en) Intake accelerator for an engine
CN106110787B (en) Air cleaner
JP6777015B2 (en) Air cleaner and manufacturing method of air cleaner
JP5222006B2 (en) Intake duct for internal combustion engine
JP6659441B2 (en) Ventilation duct with silencer
JP7140644B2 (en) rectifier structure
JP5949809B2 (en) Intake pipe and method of forming intake pipe
JP2012180760A (en) Intake resonator of internal combustion engine
JP4420567B2 (en) Air passage
JP5859371B2 (en) Air intake duct with silencer
JP7227850B2 (en) rectifier structure
JP2006335125A (en) Duct of air-conditioner
CN209195532U (en) A kind of unmanned plane exhaust pipe and unmanned plane
US9945390B2 (en) Centrifugal blower and method of assembling the same
JP4951544B2 (en) Intake device for internal combustion engine
JP4535005B2 (en) Intake device
JP2020084816A (en) Air cleaner
WO2022196100A1 (en) Air intake duct for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130328

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20190412

Year of fee payment: 6

R150 Certificate of patent or registration of utility model

Ref document number: 5240857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees