JP2013019551A - Air conditioning duct - Google Patents

Air conditioning duct Download PDF

Info

Publication number
JP2013019551A
JP2013019551A JP2011150678A JP2011150678A JP2013019551A JP 2013019551 A JP2013019551 A JP 2013019551A JP 2011150678 A JP2011150678 A JP 2011150678A JP 2011150678 A JP2011150678 A JP 2011150678A JP 2013019551 A JP2013019551 A JP 2013019551A
Authority
JP
Japan
Prior art keywords
duct
air
conditioning duct
radius
corner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011150678A
Other languages
Japanese (ja)
Inventor
Naohide Kamikawa
直英 神川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sharyo Ltd
Original Assignee
Nippon Sharyo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sharyo Ltd filed Critical Nippon Sharyo Ltd
Priority to JP2011150678A priority Critical patent/JP2013019551A/en
Publication of JP2013019551A publication Critical patent/JP2013019551A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Duct Arrangements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioning duct having a reduced pressure loss.SOLUTION: The air conditioning duct 10 includes a corner 15 at a direction changing part where the direction of flow of air delivered from an air conditioner changes. The corner 15 located on the flow inner peripheral side of the direction changing part is formed into a curved surface according to an elliptic arc where a short axis a is set along an upstream side duct 11 located upstream of the corner 15 and a long axis b is set along a downstream side duct 12 located downstream of the corner 15.

Description

本発明は、流れる空気の方向変換部分における圧力損失を低減させる空調ダクトに関する。   The present invention relates to an air conditioning duct that reduces pressure loss in a direction change portion of flowing air.

ビルなどの建物や鉄道車両などの輸送用機器には空調設備が設けられているが、その空調ダクトを流れる空気は、分岐部分などの流れが変わる方向変換部分での剥離によって圧力損失が生じている。そのため、空調ダクトについては、吹出し口において所定の風速が得られるように、方向変換部分の形状について設計が行われている。図6は、T字形に分岐した空調ダクトの方向変換部分を示した図である。この空調ダクト50の分岐部分は、縦ダクト51に不図示の空調機が接続され、T字形に分岐した横ダクト52,53に調整空気が矢印で示すように方向を変えて流れる。そして、縦ダクト51から横ダクト52,53に変化する角部55は、直角ではなく円弧の曲面で形成され、流れる空気が剥離流れとならないようにしている。   Buildings such as buildings and transportation equipment such as railway vehicles are equipped with air conditioning equipment, but the air flowing through the air conditioning ducts is subject to pressure loss due to separation at the direction change parts where the flow changes such as branch parts. Yes. Therefore, the air-conditioning duct is designed with respect to the shape of the direction changing portion so that a predetermined wind speed can be obtained at the outlet. FIG. 6 is a view showing a direction changing portion of the air-conditioning duct branched into a T-shape. In the branch portion of the air conditioning duct 50, an air conditioner (not shown) is connected to the vertical duct 51, and the adjustment air flows through the horizontal ducts 52 and 53 branched in a T shape in different directions as indicated by arrows. And the corner | angular part 55 which changes from the vertical duct 51 to the horizontal ducts 52 and 53 is formed not by a right angle but by the curved surface of a circular arc, so that the flowing air does not become a separation flow.

特開平07−133953号公報Japanese Patent Application Laid-Open No. 07-133953 特開2005−207642号公報Japanese Patent Laid-Open No. 2005-207642

従来の空調ダクトは、角部55の曲面が正円の円弧で形成されたものである。しかし、この形状が直角よりも圧力損失の低減について効果は得られるものの、流れる空気には剥離が生じており、それが十分な効果を発揮していることの立証ができていかなかった。従って、従来の空調ダクトは、圧力損失の低減などについて効果が十分なものであるか否かが明らかではなかった。   In the conventional air conditioning duct, the curved surface of the corner portion 55 is formed by a circular arc. However, although this shape is more effective than the right angle in reducing the pressure loss, separation has occurred in the flowing air, and it has not been proved that the shape is sufficiently effective. Therefore, it has not been clear whether the conventional air-conditioning duct is sufficiently effective in reducing pressure loss.

本発明は、圧力損失を低減させる空調ダクトを提供することを目的とする。   An object of this invention is to provide the air-conditioning duct which reduces pressure loss.

本発明に係る空調ダクトは、空調機から送り出された空気の流れの方向が変わる方向変換部分に角部を有するものであり、前記方向変換部分の流れの内周側に位置する前記角部は、当該角部の上流側に位置する上流側ダクトに沿って短軸をとり、当該角部の下流側に位置する下流側ダクトに沿って長軸をとった楕円の円弧に従い形成された曲面であることを特徴とする。
また、本発明に係る空調ダクトは、前記楕円における短半径の長さに対する長半径の長さの比が1.5乃至2.5の間であることが好ましい。
また、本発明に係る空調ダクトは、前記楕円における短半径の長さに対する長半径の長さの比が略2であることが好ましい。
また、本発明に係る空調ダクトは、前記楕円の短半径の長さが、前記下流側ダクトの前記短軸方向に沿った幅寸法の1/2から1/1の間の値であることが好ましい。
また、本発明に係る空調ダクトは、前記楕円の短半径の長さが、前記下流側ダクトの前記短軸方向に沿った幅寸法の略1/2であることが好ましい。
The air conditioning duct according to the present invention has a corner portion in a direction changing portion where the flow direction of the air sent from the air conditioner changes, and the corner portion located on the inner peripheral side of the flow of the direction changing portion is A curved surface formed along an elliptical arc that takes a minor axis along the upstream duct located upstream of the corner and takes a major axis along the downstream duct located downstream of the corner. It is characterized by being.
In the air conditioning duct according to the present invention, the ratio of the length of the long radius to the length of the short radius in the ellipse is preferably between 1.5 and 2.5.
In the air conditioning duct according to the present invention, it is preferable that the ratio of the length of the long radius to the length of the short radius in the ellipse is approximately 2.
Further, in the air conditioning duct according to the present invention, the length of the short radius of the ellipse is a value between 1/2 and 1/1 of the width dimension along the short axis direction of the downstream duct. preferable.
In the air conditioning duct according to the present invention, it is preferable that the length of the short radius of the ellipse is approximately ½ of the width dimension along the short axis direction of the downstream duct.

本発明の空調ダクトによれば、角部の曲面を楕円の円弧とし、その楕円が、上流側ダクトに沿った方向に短軸を、下流側ダクトに沿った方向に長軸をとったものとすることにより、従来の正円の円弧によって形成された角部の空調ダクトに比べ、本発明の角部が存在する方向変換部分を流れる空気の圧力損失をより低減させることができる。   According to the air conditioning duct of the present invention, the curved surface of the corner is an elliptical arc, and the ellipse has a minor axis in the direction along the upstream duct and a major axis in the direction along the downstream duct. By doing so, the pressure loss of the air flowing in the direction change portion where the corner portion of the present invention exists can be further reduced as compared with the corner air-conditioning duct formed by a conventional circular arc.

実施形態の空調ダクトのミュレーション結果を図示した図である。It is the figure which illustrated the simulation result of the air-conditioning duct of embodiment. 従来の空調ダクトのシミュレーション結果を図示した図である。It is the figure which illustrated the simulation result of the conventional air conditioning duct. 図1に示す角部の半径a,bを変化させた場合のシミュレーション結果をグラフにして示した図である。It is the figure which showed the simulation result at the time of changing the radius a and b of the corner | angular part shown in FIG. 1 in the graph. 短半径を変化させた場合のシミュレーション結果をグラフにして示した図である。It is the figure which showed the simulation result at the time of changing a short radius as a graph. 短半径が異なる長さの角部の形状を重ねて示した図である。It is the figure which accumulated and showed the shape of the corner | angular part of the length from which a short radius differs. T字形に分岐した従来の空調ダクトの方向変換部分を示した図である。It is the figure which showed the direction change part of the conventional air-conditioning duct branched in T shape.

次に、本発明に係る空調ダクトについて図面を参照しながら以下に説明する。本実施形態は、空調ダクトの角部に特徴を有するものである。例えば、図6に示す空調ダクト50と同様であって、縦ダクト51に空調機が接続され、T字形になるように分岐した横ダクト52,53に調整空気が矢印で示すように流れるものについて説明する。すなわち、本実施形態でも、図6に示す空調ダクトと同じT字形の方向変換部分を構成する角部について説明する。   Next, the air conditioning duct according to the present invention will be described below with reference to the drawings. This embodiment is characterized by the corners of the air conditioning duct. For example, the air-conditioning duct 50 shown in FIG. 6 is the same as the air-conditioning duct 50, in which an air conditioner is connected to the vertical duct 51, and the adjusted air flows in the horizontal ducts 52 and 53 branched in a T-shape as indicated by arrows. explain. That is, also in this embodiment, the corner | angular part which comprises the same T-shaped direction change part as the air-conditioning duct shown in FIG. 6 is demonstrated.

本実施形態の空調ダクトは、従来と同様に角部が曲面で形成されているが、正円ではなく楕円の円弧によって形成されている。そして、どのような楕円が最適なものとなるかを数値シミュレーションを行って検討した。図1は、シミュレーション結果の一つを図示したものである。ここでは、T字形ダクトは左右対称であるため、片側(左側)の空気の流れについてのみ求め、図面には剥離によって生じた逆流領域を示している。空調ダクト10は、縦ダクト11の流入部110から所定の流速(8.3m/s)で風が送り込まれ、横ダクト12に方向を変えて流出部120から流れ出る。その際、空調ダクト10の壁面での流速を0m/s、流出部120での圧力を0Paとして求めた。   The air-conditioning duct of this embodiment is formed with curved surfaces at the corners as in the conventional case, but is formed with an elliptical arc instead of a perfect circle. Then, what kind of ellipse is optimal was examined by numerical simulation. FIG. 1 illustrates one of the simulation results. Here, since the T-shaped duct is bilaterally symmetric, only the air flow on one side (left side) is obtained, and the drawing shows a backflow region caused by separation. The air conditioning duct 10 is supplied with wind at a predetermined flow velocity (8.3 m / s) from the inflow portion 110 of the vertical duct 11, changes direction to the horizontal duct 12, and flows out from the outflow portion 120. At that time, the flow velocity at the wall surface of the air conditioning duct 10 was determined as 0 m / s, and the pressure at the outflow portion 120 was determined as 0 Pa.

空調ダクト10では、縦ダクト11から横ダクト12へ変化する角部15を楕円の円弧とし、縦ダクト11に沿って短軸をとり、横ダクト12に沿って長軸をとっている。このとき楕円の短半径aは横ダクト12の幅hの約半分であり、長半径bが横ダクト12の幅hとほぼ同じ値に設定されている。すなわち、短半径aと長半径bとの比a:bは1:2である。こうした空調ダクト10では、流入部110から空気が送られると、横ダクト12内には角部15によって剥離が起こり、図1に示すような逆流領域1が生じる。   In the air conditioning duct 10, the corner 15 that changes from the vertical duct 11 to the horizontal duct 12 is an elliptical arc, takes a short axis along the vertical duct 11, and takes a long axis along the horizontal duct 12. At this time, the short radius a of the ellipse is about half of the width h of the horizontal duct 12, and the long radius b is set to be substantially the same value as the width h of the horizontal duct 12. That is, the ratio a: b between the short radius a and the long radius b is 1: 2. In such an air conditioning duct 10, when air is sent from the inflow portion 110, separation occurs in the horizontal duct 12 by the corner portion 15, and a backflow region 1 as shown in FIG. 1 is generated.

一方、図2は、従来の空調ダクト50についてシミュレーション結果を示した図である。縦ダクト51と横ダクト52の寸法は空調ダクト10と同じであり、正円の円弧によって曲面が形成された角部55は、その半径cが横ダクト52の幅hの約半分である。そして、空調ダクト10と同じ条件で空気が流れた場合には、横ダクト52内に角部55による剥離が起こり、図2に示すような逆流領域5が生じる。   On the other hand, FIG. 2 is a diagram showing simulation results for the conventional air conditioning duct 50. The dimensions of the vertical duct 51 and the horizontal duct 52 are the same as those of the air-conditioning duct 10, and the corner 55 formed with a curved surface by a circular arc has a radius c that is approximately half the width h of the horizontal duct 52. And when air flows on the same conditions as the air-conditioning duct 10, peeling by the corner | angular part 55 occurs in the horizontal duct 52, and the backflow area | region 5 as shown in FIG. 2 arises.

空調ダクト10,50の逆流領域1,5は、図1及び図2を比較して分かるように、空調ダクト10の逆流領域1の方が小さかった。すなわち、空調ダクト10の方が圧力損失が小さい。ここで、図3は、図1に示す角部の半径a,bを変化させた場合のシミュレーション結果を示したグラフである。具体的には、縦ダクト11に沿った半径aの長さに対する横ダクト12に沿った半径bの長さの比b/aを様々に変化させた場合の圧力損失を示している。そのため、縦軸には圧力損失係数をとり、横軸には半径の比b/aをとっている。また、縦ダクト11の流入部110から流入する空気を、流速5m/s、8.3m/s、10m/sと変化させた場合について示している。   The reverse flow regions 1 and 5 of the air conditioning ducts 10 and 50 are smaller in the reverse flow region 1 of the air conditioning duct 10 as can be seen by comparing FIGS. 1 and 2. That is, the pressure loss of the air conditioning duct 10 is smaller. Here, FIG. 3 is a graph showing a simulation result when the radii a and b of the corners shown in FIG. 1 are changed. Specifically, the pressure loss is shown when the ratio b / a of the length of the radius b along the horizontal duct 12 to the length of the radius a along the vertical duct 11 is varied. Therefore, the vertical axis represents the pressure loss coefficient, and the horizontal axis represents the radius ratio b / a. Moreover, it has shown about the case where the air which flows in from the inflow part 110 of the vertical duct 11 is changed with the flow velocity of 5 m / s, 8.3 m / s, and 10 m / s.

半径の比b/a=1は図2に示す正円の円弧であり、b/a=2が図1に示す楕円の円弧である。その他、縦ダクト11側の半径aが長いb/a=0.5や、図1に示すものと同様に横ダクト12側の半径bが長いb/a=1.5,2.5,3.0について求めた。なお、b/a=0は、縦ダクト11から横ダクト12を斜めに直線で傾斜させた傾斜面であり、角部を無くした場合を示している。   The radius ratio b / a = 1 is a perfect circular arc shown in FIG. 2, and b / a = 2 is an elliptical arc shown in FIG. In addition, b / a = 0.5 with a long radius a on the vertical duct 11 side, or b / a = 1.5, 2.5, 3 with a long radius b on the horizontal duct 12 side as shown in FIG. Was determined for. Note that b / a = 0 is an inclined surface obtained by inclining the horizontal duct 12 from the vertical duct 11 diagonally in a straight line, and shows a case where the corner portion is eliminated.

こうしたシミュレーション結果を示したグラフからは、楕円の円弧の方が正円の円弧(b/a=1)よりも圧力損失係数が小さいことが分かった。その中でも特にb/a=2が最も小さい値を示した。また、楕円の円弧であっても、縦ダクト11側の半径aが長い場合よりも、下流側の横ダクト12側の半径bが長い場合の方が圧力損失係数が小さかった。ただし、横ダクト12側の半径bを縦ダクト11側の半径aの3倍にまで大きくしたb/a=3の場合は、逆にb/a=0.5よりも圧力損失係数が大きくなってしまった。従って、空調ダクト10の角部15は、半径a,bの比がおよそb/a=1.5〜2.5であることが好ましい。その中でも特にb/a=2の場合が最適であった。   From the graph showing the simulation results, it was found that the elliptical arc has a smaller pressure loss coefficient than the circular arc (b / a = 1). Especially, b / a = 2 showed the smallest value. Even in the case of an elliptical arc, the pressure loss coefficient is smaller when the radius b on the downstream side duct 12 side is longer than when the radius a on the side of the vertical duct 11 is long. However, when b / a = 3 in which the radius b on the side duct 12 side is increased to three times the radius a on the side of the longitudinal duct 11, the pressure loss coefficient is larger than b / a = 0.5. I have. Therefore, it is preferable that the corner 15 of the air conditioning duct 10 has a ratio of radii a and b of approximately b / a = 1.5 to 2.5. Among them, the case where b / a = 2 was particularly optimal.

ところで、図3に示したシミュレーション結果は、図1に示す短半径aを横ダクト12の幅hの約半分にして行ったものである。そこで、次に図3に示す結果の最も良かったb/a=2について短半径aと横ダクト12の幅hとの関係について数値シミュレーションを行った。図4は、その結果をグラフにして示した図であり、縦軸には圧力損失係数を示し、横軸には流速を示している。そして、横ダクト12の幅hに対する短半径aの長さの比a/hを様々に変化させた場合について求めた。   Incidentally, the simulation result shown in FIG. 3 is obtained by setting the short radius a shown in FIG. 1 to about half of the width h of the lateral duct 12. Therefore, a numerical simulation was performed on the relationship between the minor radius a and the width h of the lateral duct 12 for b / a = 2, the best result shown in FIG. FIG. 4 is a graph showing the results. The vertical axis represents the pressure loss coefficient, and the horizontal axis represents the flow velocity. And it calculated | required about the case where the ratio a / h of the length of the short radius a with respect to the width h of the horizontal duct 12 was changed variously.

横ダクト12の幅hに対する短半径aの長さの比を次の場合、すなわちa/h=1/8,1/4,3/8,1/2,5/8,3/4,7/8,1/1の場合について行った。その結果、図4に示すように、短半径aの値が大きくなり、横ダクト12の幅hに近づくにつれて圧力損失係数の値が小さくなった。従って、図1に示す角部15は、その曲面形状を特定する円弧の楕円が大きくなるほど圧力損失を低減させることができ、横ダクト12の幅hに対して短半径aの長さが小さいa/h=1/8,1/4,3/8は十分な圧力損失係数を得ることができなかった。   The ratio of the length of the minor radius a to the width h of the lateral duct 12 is as follows: a / h = 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7 / 8 and 1/1 were performed. As a result, as shown in FIG. 4, the value of the minor radius “a” was increased, and the value of the pressure loss coefficient was decreased as the width h of the lateral duct 12 was approached. Therefore, the corner 15 shown in FIG. 1 can reduce the pressure loss as the arc ellipse that specifies the curved surface shape becomes larger, and the length of the minor radius a is smaller than the width h of the lateral duct 12 a. When / h = 1/8, 1/4, and 3/8, a sufficient pressure loss coefficient could not be obtained.

そこで、短半径aの大きさは、横ダクト12の幅hの半分であるh/2以上であることが好ましい。しかし、圧力損失のみを考慮すれば短半径aを横ダクト12の幅hと一致することが好ましいが、短半径aが大きくなればなるほど角部15内の空間が大きくなってしまう。そのため、空調ダクト10の外側にあって、角部15の近傍に位置する装置や部材などの配置に必要な空間を狭くしてしまう。例えば、屋根上に空調機を設置する鉄道車両では、屋根上の空調機から縦ダクト11及び屋根構体内を通る横ダクト12が接続されている。   Therefore, the size of the minor radius a is preferably equal to or greater than h / 2, which is half the width h of the lateral duct 12. However, considering only the pressure loss, it is preferable to match the short radius a with the width h of the lateral duct 12, but as the short radius a increases, the space in the corner 15 increases. Therefore, the space required for the arrangement of devices and members located near the corner 15 on the outside of the air conditioning duct 10 is narrowed. For example, in a railway vehicle in which an air conditioner is installed on a roof, a vertical duct 11 and a horizontal duct 12 passing through the roof structure are connected from the air conditioner on the roof.

車体の屋根部分は空間が非常に狭く、そこに所定の装置を艤装したり或いは骨部材が通っている場合があり、空調ダクトの外側の空間を狭くしてしまった場合、装置などの配置スペースが奪われてしまう問題が生じる。ここで図5は、横ダクト12の幅hに対する短半径aの長さの比a/hを1/2,5/8,3/4,7/8,1/1にした場合の角部の形状を重ねて示した図である。この図から分かるように、a/h=1/2の角部が最もダクト内側に入り込んでおり、a/h=5/8,3/4,7/8,1/1の順に、ダクトの外側へと張り出してしまっている。従って、角部を構成する楕円が大きくなれば圧力損失を低減させることはできるものの、空調ダクト外側の空間を狭くしてしまう。   The space on the roof of the car body is very narrow, and there may be a case where a predetermined device is installed or a bone member passes through it. If the space outside the air conditioning duct is narrowed, the space for arranging the device etc. The problem that will be taken away. Here, FIG. 5 shows corner portions when the ratio a / h of the length of the minor radius a to the width h of the lateral duct 12 is 1/2, 5/8, 3/4, 7/8, 1/1. FIG. As can be seen from this figure, the corners of a / h = 1/2 are deepest inside the duct, and in the order of a / h = 5/8, 3/4, 7/8, 1/1, It protrudes to the outside. Therefore, although the pressure loss can be reduced if the ellipse constituting the corner portion becomes large, the space outside the air conditioning duct is narrowed.

図4のシミュレーション結果からは、a/hが1/2〜1/1の圧力損失係数についてそれぞれの値の差が小さい。そこで、圧力損失係数と空調ダクト外側の空間の両方を考慮した場合には、短半径aの長さがダクト12の幅hの半分であるa/h=1/2が適切である。ただし、空調ダクト外側の空間に装置などの配置による制約がない場合には、短半径aの長さをより大きくするようにしてもよい。   From the simulation results of FIG. 4, the difference between the values of the pressure loss coefficients having a / h of 1/2 to 1/1 is small. Therefore, when considering both the pressure loss coefficient and the space outside the air conditioning duct, a / h = 1/2, in which the length of the minor radius a is half the width h of the duct 12, is appropriate. However, when the space outside the air conditioning duct is not restricted by the arrangement of the device or the like, the length of the minor radius a may be increased.

よって、図1に示す本実施形態の空調ダクト10は、角部15の曲面が楕円の円弧で構成されたものであり、その楕円は、縦ダクト11に沿った方向に短軸をとり、横ダクト12に沿った方向に長軸をとったものである。そして、短半径aと長半径bの比がおよそb/a=1.5〜2.5の幅をもつがb/a=2が最適である。また、短半径aは、横ダクト12の幅hに対して約半分以上の値であることが好ましいが、空調ダクト外側の空間を考慮するとおよそh/2が適切である。   Therefore, the air-conditioning duct 10 of this embodiment shown in FIG. 1 is configured such that the curved surface of the corner portion 15 is an elliptical arc, and the ellipse takes a short axis in the direction along the vertical duct 11 and The long axis is taken in the direction along the duct 12. The ratio of the short radius a to the long radius b has a width of about b / a = 1.5 to 2.5, but b / a = 2 is optimal. The short radius a is preferably about half or more of the width h of the horizontal duct 12, but h / 2 is appropriate in consideration of the space outside the air conditioning duct.

こうして楕円の円弧によって曲面を構成した角部15では、図2に示す従来の角部55によって生じる逆流領域5より、図1に示す逆流領域1を小さくすることができた。そのため圧力損失係数は、流速が8.3m/sの場合に、従来の角部55では0.71程度であるのに対して本実施形態の角部15では0.69程度にまで低減させることができる。そして、逆流領域1を小さくすることは空調ダクト10を流れる空気の騒音低減にもなる。   Thus, in the corner portion 15 having a curved surface formed by an elliptical arc, the backflow region 1 shown in FIG. 1 can be made smaller than the backflow region 5 generated by the conventional corner portion 55 shown in FIG. Therefore, when the flow velocity is 8.3 m / s, the pressure loss coefficient is reduced to about 0.69 in the corner portion 15 of the present embodiment while it is about 0.71 in the conventional corner portion 55. Can do. And reducing the backflow region 1 also reduces noise in the air flowing through the air conditioning duct 10.

以上、本発明に係る空調ダクトの実施形態について説明したが、本発明はこれに限定されることなく、その趣旨を逸脱しない範囲で様々な変更が可能である。
前記実施形態では、空調機に接続された縦ダクト11から横ダクト12に変化する角部15について説明したが、流路が分岐する角部の存在する箇所であれば空調ダクトの場所を特定するものではない。
前記空調ダクト10は、T字形部分の角部について説明したが、L字形部分の内周側角部について適用するようにしたものであってもよい。
As mentioned above, although embodiment of the air-conditioning duct based on this invention was described, this invention is not limited to this, A various change is possible in the range which does not deviate from the meaning.
In the above embodiment, the corner portion 15 that changes from the vertical duct 11 connected to the air conditioner to the horizontal duct 12 has been described. However, if the corner portion where the flow path branches exists, the location of the air conditioning duct is specified. It is not a thing.
Although the said air-conditioning duct 10 demonstrated the corner | angular part of the T-shaped part, you may make it apply about the inner peripheral side corner | angular part of an L-shaped part.

1 逆流領域
10 空調ダクト
11 縦ダクト
12 横ダクト
15 角部
1 Backflow area 10 Air-conditioning duct 11 Vertical duct 12 Horizontal duct 15 Corner

Claims (5)

空調機から送り出された空気の流れの方向が変わる方向変換部分に角部を有する空調ダクトにおいて、
前記方向変換部分の流れの内周側に位置する前記角部は、当該角部の上流側に位置する上流側ダクトに沿って短軸をとり、当該角部の下流側に位置する下流側ダクトに沿って長軸をとった楕円の円弧に従い形成された曲面であることを特徴とする空調ダクト。
In the air conditioning duct having a corner portion in the direction changing portion where the flow direction of the air sent from the air conditioner changes,
The corner portion located on the inner peripheral side of the flow of the direction changing portion has a short axis along the upstream duct located on the upstream side of the corner portion, and the downstream duct located on the downstream side of the corner portion. An air conditioning duct characterized by being a curved surface formed according to an elliptical arc having a major axis along the axis.
請求項1に記載する空調ダクトにおいて、
前記楕円は、短半径の長さに対する長半径の長さの比が1.5乃至2.5の間であることを特徴とする空調ダクト。
In the air-conditioning duct according to claim 1,
An air conditioning duct characterized in that the ellipse has a ratio of the length of the major radius to the length of the minor radius between 1.5 and 2.5.
請求項1に記載する空調ダクトにおいて、
前記楕円は、短半径の長さに対する長半径の長さの比が略2であることを特徴とする空調ダクト。
In the air-conditioning duct according to claim 1,
The elliptical air-conditioning duct is characterized in that the ratio of the length of the major radius to the length of the minor radius is approximately 2.
請求項1乃至請求項3のいずれかに記載する空調ダクトにおいて、
前記楕円は、短半径の長さが、前記下流側ダクトの前記短軸方向に沿った幅寸法の1/2から1/1の間の値であることを特徴とする空調ダクト。
In the air-conditioning duct according to any one of claims 1 to 3,
The ellipse is characterized in that the length of the short radius is a value between 1/2 and 1/1 of the width dimension along the short axis direction of the downstream duct.
請求項4に記載する空調ダクトにおいて、
前記楕円は、短半径の長さが、前記下流側ダクトの前記短軸方向に沿った幅寸法の略1/2であることを特徴とする空調ダクト。
In the air-conditioning duct according to claim 4,
The ellipse is characterized in that the length of the short radius is approximately ½ of the width dimension along the short axis direction of the downstream duct.
JP2011150678A 2011-07-07 2011-07-07 Air conditioning duct Pending JP2013019551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011150678A JP2013019551A (en) 2011-07-07 2011-07-07 Air conditioning duct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011150678A JP2013019551A (en) 2011-07-07 2011-07-07 Air conditioning duct

Publications (1)

Publication Number Publication Date
JP2013019551A true JP2013019551A (en) 2013-01-31

Family

ID=47691162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011150678A Pending JP2013019551A (en) 2011-07-07 2011-07-07 Air conditioning duct

Country Status (1)

Country Link
JP (1) JP2013019551A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005059807A (en) * 2003-08-20 2005-03-10 Denso Corp Air conditioner for vehicle
JP2010270662A (en) * 2009-05-21 2010-12-02 Tigers Polymer Corp Ventilation duct

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005059807A (en) * 2003-08-20 2005-03-10 Denso Corp Air conditioner for vehicle
JP2010270662A (en) * 2009-05-21 2010-12-02 Tigers Polymer Corp Ventilation duct

Similar Documents

Publication Publication Date Title
KR101745217B1 (en) Cooling air interface in a blower housing
US11066084B2 (en) Railcar air-conditioning duct
WO2003010017A1 (en) Air conditioning duct for automobile
US20150276246A1 (en) Air conditioning apparatus
EP1630486A2 (en) Flap valve arrangement
US20140251721A1 (en) Hvac blower with noise suppression features
JP2016150694A5 (en)
JP5074852B2 (en) Air conditioning duct
JP2021024454A (en) Air-conditioning register
JP2013019551A (en) Air conditioning duct
JP2009248866A (en) Intake duct for vehicle air conditioning and air conditioner for vehicle
JP2007331743A (en) Air-blowing duct for defroster
JP2009023572A (en) Moving vehicle
JP2015229940A (en) Inlet duct
US11597259B2 (en) Ionized air delivery system
JP7176887B2 (en) air hose
US20200139791A1 (en) Wind direction adjusting apparatus
JP2009056870A (en) Air-conditioning duct structure for automobile
JP2014004947A (en) Air blowing device
JP2019081410A (en) register
US11378305B2 (en) Noise reducing air duct
JP6781290B2 (en) Thin register for air conditioning
JP2016088310A (en) Outdoor equipment of air conditioner for railway vehicle
JP2004276792A (en) Air blowoff duct
FR3041570A1 (en) AIR CONDITIONING DEVICE FOR A DRIVING CABIN, IN PARTICULAR A RAILWAY VEHICLE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150901