JP2015229940A - Inlet duct - Google Patents

Inlet duct Download PDF

Info

Publication number
JP2015229940A
JP2015229940A JP2014115359A JP2014115359A JP2015229940A JP 2015229940 A JP2015229940 A JP 2015229940A JP 2014115359 A JP2014115359 A JP 2014115359A JP 2014115359 A JP2014115359 A JP 2014115359A JP 2015229940 A JP2015229940 A JP 2015229940A
Authority
JP
Japan
Prior art keywords
cross
section
intake duct
bend
bent part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014115359A
Other languages
Japanese (ja)
Inventor
正一 米澤
Shoichi Yonezawa
正一 米澤
隆文 柴田
Takafumi Shibata
隆文 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Filter Systems Japan Corp
Original Assignee
Mahle Filter Systems Japan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle Filter Systems Japan Corp filed Critical Mahle Filter Systems Japan Corp
Priority to JP2014115359A priority Critical patent/JP2015229940A/en
Publication of JP2015229940A publication Critical patent/JP2015229940A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inlet duct in which a ventilation resistance at an inside part of a bent part is reduced.SOLUTION: An inlet duct 11 has an inlet, an outlet and a bent part. A distance (an inner diameter L) between points 18, 19 where a virtual plane P including a flow passage central line of the inlet duct 11 having the bent part and a section M acting as a section of the bent part is equal to a diameter of a circular section N acting as a section other than that of the bent part. A pair of areas 20, 21 becoming inside of the bent part protrude more outward in a radial direction than that of the circular section N. An inner wall part 16 forms a curved surface with a lower curvature factor than that of an arc of the circular section N. A pair of areas 22, 23 becoming an outer side of the bent part are placed more inside in a radial direction than from the circular section N. A size of the inner diameter L and a flow passage sectional area along the virtual plane P are kept constant over the entire inlet duct 11 and in turn, as a distribution of the passage sectional area at the section M, it is enlarged more in an inside area of the bent part and it is shrunk more at the outside area of the bent part as compared with that of the circular section N.

Description

本発明は、自動車のエンジンに用いられる吸気ダクトに関する。   The present invention relates to an intake duct used in an automobile engine.

自動車用エンジンの吸気部品に用いられる吸気ダクトは、外部から取り入れた外気をエンジンに供給するために用いられる。エンジンルームは空間の制約があるため、吸気ダクトは、空間を有効に活用すべく、通常は曲がり部を有している。このような吸気ダクトでは、最短距離を通る流体の性質により曲がり部の曲がりの内側に吸入空気の流れが集中する。このため、曲がり部の曲がり角度が大きくなるほど、曲がり部の下流において吸入空気の流れが剥離しやすくなり、これによりダクト内を通流する吸入空気の圧力損失が増大することとなる。   An intake duct used for an intake part of an automobile engine is used to supply outside air taken from the outside to the engine. Since the engine room is limited in space, the intake duct usually has a bent portion in order to effectively use the space. In such an intake duct, the flow of intake air is concentrated inside the bend of the bend due to the nature of the fluid passing through the shortest distance. For this reason, as the bending angle of the bent portion increases, the flow of the intake air is more easily separated downstream of the bent portion, thereby increasing the pressure loss of the intake air flowing through the duct.

吸気ダクトで生じる圧力損失を低減させる方法としては、例えば、特許文献1に記載されているように、曲がり部の下流側に位置する部分の内壁面を内側に窪ませて、当該部分におけるダクトの断面積を減少させたものがある。   As a method for reducing the pressure loss generated in the intake duct, for example, as described in Patent Document 1, the inner wall surface of the portion located on the downstream side of the bent portion is recessed inward, and the duct in the portion is Some have a reduced cross-sectional area.

特開2008−88834号公報JP 2008-88834 A

しかし、前述の吸気ダクトは、流れが集中する曲がり部そのものに対応したものではないため、曲がり部における抵抗を低減させることはできず、ダクト内を通流する吸入空気の圧力損失を効果的に低減させるためにはなお改善の余地があった。   However, since the above-described intake duct does not correspond to the bent portion where the flow is concentrated, the resistance at the bent portion cannot be reduced, and the pressure loss of the intake air flowing through the duct is effectively reduced. There was still room for improvement in order to reduce it.

この発明に係る吸気ダクトは、断面円形の基本断面形状を有し、かつ第1の直線状部分と第2の直線状部分とが曲がり部を介して接続されてなる。曲がり部は、第1の直線状部分及び第2の直線状部分の通路断面積と等しい通路断面積を有し、かつ、曲がりの内側となる領域の断面積が曲がりの外側となる領域の断面積よりも大きい異形断面形状を有している。   The intake duct according to the present invention has a basic cross-sectional shape with a circular cross section, and the first straight portion and the second straight portion are connected via a bent portion. The bent portion has a passage cross-sectional area equal to the passage cross-sectional area of the first linear portion and the second linear portion, and the cross-sectional area of the region inside the bend is a section of the region that is outside the bend. It has an irregular cross-sectional shape larger than the area.

このように、曲がり部が、直線状部分の通路断面積と等しい通路断面積を有しつつ、曲がりの内側となる領域の断面積を曲がりの外側となる領域の断面積よりも大きくしたことにより、吸気ダクト全体の断面積を大きくすることなく、曲がり部における抵抗を効果的に低減させることができる。   In this way, the bending portion has a passage cross-sectional area equal to the passage cross-sectional area of the linear portion, and the cross-sectional area of the region that is inside the bend is made larger than the cross-sectional area of the region that is outside the bend. The resistance at the bent portion can be effectively reduced without increasing the cross-sectional area of the entire intake duct.

一つの好ましい態様では、曲がり部は、曲がりの外側に頂角が向いた三角形に近似した断面形状を有する。   In one preferred embodiment, the bent portion has a cross-sectional shape that approximates a triangle whose apex angle is directed to the outside of the bend.

より具体的には、曲がり部の断面形状は、第1の直線状部分及び第2の直線状部分の円形断面に比べて、曲がりの方向に沿った内径が円形断面の直径に等しく、かつ曲がりの内側となる一対の部分が円形断面から半径方向外側へ張り出しているとともに、曲がりの外側となる一対の部分が円形断面から半径方向内側に入り込んでいる。   More specifically, the cross-sectional shape of the bent portion is such that the inner diameter along the direction of the bend is equal to the diameter of the circular cross-section as compared to the circular cross-sections of the first linear portion and the second linear portion. A pair of portions that are on the inside protrude from the circular cross section to the outside in the radial direction, and a pair of portions that are outside the bend enter the inside in the radial direction from the circular cross section.

また、本発明では、吸気ダクトは複数の曲がり部を備えていてもよい。   In the present invention, the intake duct may include a plurality of bent portions.

本発明によれば、吸気ダクト全体の断面積を大きくすることなく、曲がり部における抵抗を効果的に低減させ、吸入空気の圧力損失を低減させることができるので、エンジンルームを有効に活用することができるとともに、ダクト径を拡大させることに起因するノイズの発生を抑制することができる。   According to the present invention, it is possible to effectively reduce the resistance at the bent portion and reduce the pressure loss of the intake air without increasing the cross-sectional area of the entire intake duct. In addition, it is possible to suppress the generation of noise caused by enlarging the duct diameter.

本発明に係る吸気ダクトの斜視図。The perspective view of the air intake duct which concerns on this invention. 本発明に係る吸気ダクトの曲がり部の断面を示す図。The figure which shows the cross section of the bending part of the intake duct which concerns on this invention. 断面A〜Eの位置を示す、本発明に係る吸気ダクトの側面図。The side view of the air intake duct which concerns on this invention which shows the position of cross section AE. 円形断面と本発明に係る曲がり部の断面形状との比較図。The comparison figure of a circular cross section and the cross-sectional shape of the bending part which concerns on this invention. 断面Aにおける吸入空気の流速を示す断面図。Sectional drawing which shows the flow velocity of the intake air in the cross section A. 断面Bにおける吸入空気の流速を示す断面図。Sectional drawing which shows the flow velocity of the intake air in the cross section B. 断面Cにおける吸入空気の流速を示す断面図。Sectional drawing which shows the flow velocity of the intake air in the cross section. 断面Dにおける吸入空気の流速を示す断面図。Sectional drawing which shows the flow velocity of the intake air in the cross section. 断面Eにおける吸入空気の流速を示す断面図。Sectional drawing which shows the flow velocity of the intake air in the cross section. 本発明に係る吸気ダクトを自動車用エアクリーナに適用した例を示す図。The figure which shows the example which applied the air intake duct which concerns on this invention to the air cleaner for motor vehicles. 従来の吸気ダクトの斜視図。The perspective view of the conventional intake duct. 図11の吸気ダクトの曲がり部の断面を示す図。The figure which shows the cross section of the bending part of the air intake duct of FIG. 断面a〜eの位置を示す、図11の吸気ダクトの側面図。The side view of the air intake duct of FIG. 11 which shows the position of cross section ae. 断面aにおける吸入空気の流速を示す断面図。Sectional drawing which shows the flow velocity of the intake air in the cross section a. 断面bにおける吸入空気の流速を示す断面図。Sectional drawing which shows the flow velocity of the intake air in the cross section b. 断面cにおける吸入空気の流速を示す断面図。Sectional drawing which shows the flow velocity of the intake air in the cross section c. 断面dにおける吸入空気の流速を示す断面図。Sectional drawing which shows the flow velocity of the intake air in the cross section d. 断面eにおける吸入空気の流速を示す断面図。Sectional drawing which shows the flow velocity of the intake air in the cross section e.

初めに、図11,12に基づいて、従来の吸気ダクト1を説明する。吸気ダクト1は、第1の直線状部分2と、第2の直線状部分3と、所定の角度をなして屈曲している曲がり部4と、を有しており、第1の直線状部分2と第2の直線状部分3とが曲がり部4を介して接続されている。第1の直線状部分2の一方の開口端部は、吸気ダクト1の入口2aとなり、第2の直線状部分3の一方の開口端部は、吸気ダクト1の出口3aとなる。曲がり部4の曲がり角度は90度である。吸気ダクト1は、断面円形の管状をなしており、入口2aから出口3aに亘って同一の断面形状を有している。図12に示すように、吸気ダクト1は、円形断面の中で、曲がり部4の曲がりの内側に沿った内側壁部6と、曲がり部4の曲がりの外側に沿った外側壁部7と、を備える。   First, a conventional intake duct 1 will be described with reference to FIGS. The intake duct 1 has a first straight portion 2, a second straight portion 3, and a bent portion 4 bent at a predetermined angle, and the first straight portion 2 and the second linear portion 3 are connected via a bent portion 4. One open end of the first linear portion 2 serves as the inlet 2 a of the intake duct 1, and one open end of the second straight portion 3 serves as the outlet 3 a of the intake duct 1. The bending angle of the bending portion 4 is 90 degrees. The intake duct 1 has a tubular shape with a circular cross section, and has the same cross-sectional shape from the inlet 2a to the outlet 3a. As shown in FIG. 12, the air intake duct 1 includes, in a circular cross section, an inner wall portion 6 along the inside of the bent portion 4, an outer wall portion 7 along the outside of the bent portion 4, and Is provided.

図13に示すように、従来の吸気ダクト1について、流れ方向に沿って、入口2aの断面を断面a、その下流に位置する部分の断面を断面b、曲がり部4の断面を断面c、その下流に位置する部分の断面を断面d、出口3aの断面を断面eとし、断面a〜断面eにおける吸入空気の流速分布を図14〜図18に示す。なお、図14〜図18では、図の左側が吸気ダクト1の曲がり部4の内側に沿った内側壁部6であり、図の右側が曲がり部4の外側に沿った外側壁部7である。これらの図では、最も流速の速い領域をS1とし、最も流速の遅い領域をS9として、各断面における吸入空気の流速の領域をS1〜S9までの9段階(図14参照)に区分して示している。   As shown in FIG. 13, in the conventional intake duct 1, along the flow direction, the cross section of the inlet 2a is the cross section a, the cross section of the portion located downstream thereof is the cross section b, the cross section of the bent portion 4 is the cross section c, The cross section of the portion located downstream is the cross section d, the cross section of the outlet 3a is the cross section e, and the flow velocity distribution of the intake air in the cross sections a to e is shown in FIGS. 14 to 18, the left side of the figure is the inner wall part 6 along the inside of the bent part 4 of the intake duct 1, and the right side of the figure is the outer wall part 7 along the outside of the bent part 4. . In these figures, the region with the fastest flow rate is designated as S1, the region with the slowest flow rate is designated as S9, and the region of the flow velocity of intake air in each cross section is divided into nine stages from S1 to S9 (see FIG. 14). ing.

図14に示す断面aでは、吸入空気の流速は、吸気ダクト1の中央部分が最も速く、外周に向かうにつれて減少し、外周部が最も遅くなっている。つまり、断面aでは、吸入空気の流量は、吸気ダクト1の中央部分に集中している。   In the cross section a shown in FIG. 14, the flow velocity of the intake air is the fastest at the central portion of the intake duct 1, decreases toward the outer periphery, and is the slowest at the outer peripheral portion. That is, in the cross section a, the flow rate of the intake air is concentrated in the central portion of the intake duct 1.

これに対し、図15に示すように、曲がり部4の入口部となる断面bでは、吸気ダクト1の内側壁部6に近い部分での流速が上昇しており、逆に外側壁部7に近い部分での流速が減少している。   On the other hand, as shown in FIG. 15, in the cross section b serving as the inlet portion of the bent portion 4, the flow velocity in the portion near the inner wall portion 6 of the intake duct 1 increases, and conversely, the outer wall portion 7 The flow velocity in the near part is decreasing.

図16に示す断面cでは、断面bと比べて、曲がり部4の内側壁部6に近接した領域において流速がさらに上昇しており、曲がりの外側となる部分では、特に曲がり部4の外側壁部7に近接した領域において流速が減少している。つまり、断面cでは、吸入空気の流量は、吸気ダクト1の内側部分に集中しており、外側部分では大きく減少している。   In the cross section c shown in FIG. 16, the flow velocity is further increased in a region close to the inner wall portion 6 of the bent portion 4 as compared with the cross section b, and the outer wall of the bent portion 4 particularly in the portion outside the bend. The flow velocity decreases in the area close to the portion 7. That is, in the cross section c, the flow rate of the intake air is concentrated on the inner part of the intake duct 1 and is greatly reduced in the outer part.

図17に示す断面dでは、吸入空気の流速は、吸気ダクト1の内側部分において僅かに遅く、かつ中央部分で速くなっている。また、図18に示す断面eでは、吸入空気の流速は、吸気ダクト1の曲がりの内側となる部分に比べて、曲がりの外側となる部分で逆に速くなる。   In the cross section d shown in FIG. 17, the flow velocity of the intake air is slightly slower in the inner portion of the intake duct 1 and faster in the central portion. Further, in the cross section e shown in FIG. 18, the flow velocity of the intake air is faster at the portion outside the bend than the portion inside the bend of the intake duct 1.

このように、従来の円形断面の吸気ダクト1では、入口2aから出口3aへと流れが最短距離で流れようとするので、曲がり部4において流れが曲がりの内側に集中する。その結果、この曲がり部4において吸気ダクト1全体の流量が制限されている。   Thus, in the conventional air intake duct 1 having a circular cross section, the flow tends to flow from the inlet 2a to the outlet 3a at the shortest distance, so that the flow is concentrated inside the bend at the bent portion 4. As a result, the flow rate of the entire intake duct 1 is limited at the bent portion 4.

次に、図1,2に基づいて、本発明に係る吸気ダクトの一実施例について説明する。吸気ダクト11は、第1の直線状部分12と、第2の直線状部分13と、所定の角度をなして屈曲している曲がり部14と、を有しており、第1の直線状部分12と第2の直線状部分13とが曲がり部14を介して接続されている。第1の直線状部分12の一方の開口端部は、吸気ダクト11の入口12aとなり、第2の直線状部分13の一方の開口端部は、吸気ダクト11の出口13aとなる。本実施例では、曲がり部14の曲がり角度は90度である。図示するように、吸気ダクト11の断面は、入口12a及び出口13aにおいて円形であるが、曲がり部14は、図2に示すように、曲がりの外側に頂角が向いた三角形に近似した断面形状を有している。このように、曲がり部14と入口12a及び出口13aとでは断面形状が異なっているが、曲がり部14の断面積は、入口12a及び出口13aの断面積と同一である。   Next, an embodiment of an intake duct according to the present invention will be described with reference to FIGS. The intake duct 11 includes a first linear portion 12, a second linear portion 13, and a bent portion 14 bent at a predetermined angle, and the first linear portion 12 and the second linear portion 13 are connected via a bent portion 14. One open end of the first linear portion 12 serves as the inlet 12 a of the intake duct 11, and one open end of the second linear portion 13 serves as the outlet 13 a of the intake duct 11. In this embodiment, the bending angle of the bending portion 14 is 90 degrees. As shown in the drawing, the cross section of the intake duct 11 is circular at the inlet 12a and the outlet 13a, but the bent portion 14 is a cross sectional shape approximated to a triangle whose apex angle is directed to the outside of the bent as shown in FIG. have. Thus, although the cross-sectional shape is different between the bent portion 14 and the inlet 12a and the outlet 13a, the cross-sectional areas of the bent portion 14 are the same as the cross-sectional areas of the inlet 12a and the outlet 13a.

図3に示すように、吸気ダクト11について、流れ方向に沿って、入口12aの断面を断面A、その下流に位置する部分の断面を断面B、曲がり部14の中央部の断面を断面C、その下流に位置する部分の断面を断面D、出口13aの断面を断面Eとし、以下、断面A〜断面Eについて説明する。なお、断面B及び断面Dは、90°に曲がる曲がり部14と直線状部分12,13との入口側及び出口側の境界にそれぞれ相当する。   As shown in FIG. 3, with respect to the intake duct 11, along the flow direction, the cross section of the inlet 12a is the cross section A, the cross section of the portion located downstream thereof is the cross section B, the cross section of the central portion of the bent portion 14 is the cross section C, A cross section of a portion located downstream thereof is referred to as a cross section D, and a cross section of the outlet 13a is referred to as a cross section E. Hereinafter, cross sections A to E will be described. In addition, the cross section B and the cross section D correspond to the boundary on the inlet side and the outlet side of the bent portion 14 and the linear portions 12 and 13 that are bent at 90 °, respectively.

図4は、実施例の曲がり部14の中央断面(断面C)と、円形断面(断面A等)とを対比させた図であり、実施例の曲がり部14の通路断面形状を実線Mで示し、曲がり部14以外の円形の通路断面形状を破線Nで示している。図において、平面Pは、曲がり部14を有する吸気ダクト11の流路中心線を含む仮想の平面を示している。つまり、吸気ダクト11は、この平面Pに沿って湾曲しつつ延びている。図示するように、略三角形の断面Mが平面Pと交差する2つの点18,19は、円形断面Nに合致する。換言すれば、断面Mの平面Pに沿った内径L(曲がりの方向に沿った2つの点18,19の間の距離L)は、円形断面Nの直径に等しい。   FIG. 4 is a diagram in which the central cross section (cross section C) of the bent portion 14 of the embodiment is compared with the circular cross section (cross section A and the like), and the cross-sectional shape of the passage of the bent portion 14 of the embodiment is indicated by a solid line M. The cross-sectional shape of a circular passage other than the bent portion 14 is indicated by a broken line N. In the figure, the plane P shows a virtual plane including the flow path center line of the intake duct 11 having the bent portion 14. That is, the intake duct 11 extends while being curved along the plane P. As shown in the figure, the two points 18 and 19 where the substantially triangular cross section M intersects the plane P coincide with the circular cross section N. In other words, the inner diameter L (the distance L between the two points 18 and 19 along the direction of bending) along the plane P of the cross section M is equal to the diameter of the circular cross section N.

そして、曲がり部14における曲がりの内側となる一対の領域20,21(点18を挟む両側の領域)は、円形断面Nよりも半径方向外側へ張り出しており、点18近傍の曲がりの内側に沿った内側壁部16は、円形断面Nの円弧よりも緩い曲率の平面に近い湾曲面をなしている。また、逆に、曲がりの外側となる一対の領域22,23(点19を挟む両側の領域)は、円形断面Nよりも半径方向内側へ入り込んでおり、曲がりの外側に沿った外側壁部17全体としては、点19を頂点とする山型に近い形状をなしている。つまり、曲がり部14は、曲がりの内側となる領域の断面積が曲がりの外側となる領域の断面積よりも大きい異形断面形状を有している。   A pair of regions 20 and 21 (regions on both sides sandwiching the point 18) inside the bend at the bent portion 14 protrude outward in the radial direction from the circular cross section N, and extend along the inside of the bend in the vicinity of the point 18. The inner wall portion 16 has a curved surface close to a flat surface having a gentler curvature than the circular arc of the circular cross section N. On the other hand, the pair of regions 22 and 23 (regions on both sides sandwiching the point 19) that are outside the bend enter the inside in the radial direction from the circular cross section N, and the outer wall portion 17 along the outside of the bend. As a whole, it has a shape close to a mountain shape with the point 19 as a vertex. In other words, the bent portion 14 has an irregular cross-sectional shape in which the cross-sectional area of the region that is inside the bend is larger than the cross-sectional area of the region that is outside the bend.

このように、一対の領域20,21が半径方向外側へ張り出し、かつ一対の領域22,23が半径方向内側へ入り込んでいる結果、断面Mの通路断面積の分布としては、円形断面に比較して、曲がりの内側の領域で拡大し、かつ曲がりの外側の領域で縮小したものとなっている。   As described above, as a result of the pair of regions 20 and 21 projecting outward in the radial direction and the pair of regions 22 and 23 entering inward in the radial direction, the passage cross-sectional area distribution of the cross section M is compared with the circular cross section. Thus, it is enlarged in the area inside the bend and reduced in the area outside the bend.

断面Cと断面B,Dとの間においては、点18,19間の内径Lを一定に保ちつつ上記の領域20,21,22,23が徐々に変形しており、断面Cから断面B,Dへと滑らかに遷移している。   Between the cross-section C and the cross-sections B and D, the above-described regions 20, 21, 22, and 23 are gradually deformed while keeping the inner diameter L between the points 18 and 19 constant. Transitioning smoothly to D.

このように、上記実施例の吸気ダクト11においては、平面Pに沿った内径Lの寸法並びに通路断面積は、直線状部分12,13及び曲がり部14を含め吸気ダクト全体に亘って一定であり、かつ曲がり部14における通路断面積の分布が、曲がりの内側で拡大したものとなっている。前述したように、入口12aから出口13aへ向かって流れる吸入空気の流れは、最短距離を流れようとして曲がり部14では曲がりの内側に片寄るので、曲がり部14の通路断面形状を上記のような略三角形の形状とすることで、通路抵抗が低減し、より大きな流量を得ることができる。   As described above, in the intake duct 11 of the above embodiment, the dimension of the inner diameter L along the plane P and the cross-sectional area of the passage are constant over the entire intake duct including the linear portions 12 and 13 and the bent portion 14. In addition, the distribution of the passage cross-sectional area in the bent portion 14 is enlarged inside the bend. As described above, the flow of the intake air flowing from the inlet 12a toward the outlet 13a is offset toward the inner side of the bend in the bent portion 14 so as to flow through the shortest distance. Therefore, the cross-sectional shape of the passage of the bent portion 14 is substantially the same as described above. By adopting a triangular shape, the passage resistance is reduced and a larger flow rate can be obtained.

図5〜図9は、本発明に係る吸気ダクト11の断面A〜断面Dにおける吸入空気の流速分布を示している。なお、図5〜図9では、図の左側が吸気ダクト11の曲がり部14の曲がりの内側に沿った内側壁部16であり、図の右側が曲がり部14の曲がりの外側に沿った外側壁部17である。これらの図では、最も流速の速い領域をS1とし、最も流速の遅い領域をS9として、各断面における吸入空気の流速の領域をS1〜S9までの9段階(図5参照)に区分して示している。   5 to 9 show the flow velocity distribution of the intake air in the cross section A to the cross section D of the intake duct 11 according to the present invention. 5 to 9, the left side of the figure is the inner wall part 16 along the inside of the bent part 14 of the intake duct 11, and the right side of the figure is the outer wall along the outside of the bent part 14. Part 17. In these figures, the region where the flow velocity is the fastest is S1, the region where the flow velocity is the slowest is S9, and the flow velocity region of the intake air in each cross section is divided into nine stages from S1 to S9 (see FIG. 5). ing.

図5に示す断面Aでは、吸入空気の流速は、吸気ダクト11の中央部分が最も速く、外周部が最も遅くなっている。これに対し、図6に示すように、曲がり部14の入口部となる断面Bでは、吸気ダクト11の内側壁部16に近い部分での流速が上昇しており、逆に外側壁部17に近い部分での流速が減少している。   In the cross section A shown in FIG. 5, the flow velocity of the intake air is the fastest at the central portion of the intake duct 11 and the slowest at the outer peripheral portion. On the other hand, as shown in FIG. 6, in the cross section B serving as the inlet portion of the bent portion 14, the flow velocity in the portion near the inner wall portion 16 of the intake duct 11 increases, and conversely, the outer wall portion 17 The flow velocity in the near part is decreasing.

図7に示すように、断面Cでは、円形断面Bと比較して、曲がり部14の内側壁部16に近接した領域において流速がさらに上昇している。しかし、この流速の最も速い領域(S1)は、曲がりの内側となる部分の断面積を拡大したことにより、図16に示す曲がり部4の円形断面cにおける流速の最も速い領域(S1)と比べて大幅に減少している。他方、曲がり部14の曲がりの外側となる部分では、円形断面Bと比較して、外側壁部17に近接した領域において流速が減少している。この流速の遅い領域は、曲がりの外側となる部分の断面積を縮小したことにより、図16に示す曲がり部4の円形断面cと比べて範囲が狭くなっている。   As shown in FIG. 7, in the cross section C, compared with the circular cross section B, the flow velocity further increases in a region close to the inner wall portion 16 of the bent portion 14. However, the region (S1) having the fastest flow velocity is compared with the region (S1) having the fastest flow velocity in the circular cross section c of the bent portion 4 shown in FIG. 16 by enlarging the cross-sectional area of the portion inside the bend. It has decreased significantly. On the other hand, in the portion that is outside the bend of the bent portion 14, the flow velocity is reduced in a region close to the outer wall portion 17 as compared with the circular cross section B. The region where the flow velocity is low is narrower than the circular cross section c of the bent portion 4 shown in FIG. 16 due to the reduced cross-sectional area of the portion outside the bend.

図8に示す断面Dでは、吸入空気の流速は、吸気ダクト11の内側壁部16の側において僅かに遅く、かつ中央部分で速くなっている。また、図9に示す断面Eでは、吸入空気の流速は、吸気ダクト11の内側壁部16の側に比べて、外側壁部17の側で逆に速くなっている。   In the cross section D shown in FIG. 8, the flow velocity of the intake air is slightly slow on the inner wall portion 16 side of the intake duct 11 and is fast at the central portion. Further, in the cross section E shown in FIG. 9, the flow velocity of the intake air is faster on the outer wall 17 side than on the inner wall 16 side of the intake duct 11.

このように、上記実施例では、曲がり部14における曲がりの内側領域の流速が低下し、通気抵抗の上昇が抑制されるため、流量の増大が図れる。上記実施例によれば、図7に示す断面形状の曲がり部14と円形断面を有する従来の曲がり部4との断面積が同一である場合に、通気抵抗が10%程度低減する効果が得られた。   Thus, in the said Example, since the flow velocity of the inner area | region of the bending in the bending part 14 falls and the raise of ventilation resistance is suppressed, the increase in flow volume can be aimed at. According to the above embodiment, when the cross-sectional area of the bent portion 14 having the cross-sectional shape shown in FIG. 7 is the same as that of the conventional bent portion 4 having a circular cross section, the effect of reducing the airflow resistance by about 10% is obtained. It was.

次に、図10に基づき、本発明に係る吸気ダクト11を自動車用のエアクリーナ20に適用したより具体的な構成例について説明する。エアクリーナ20は、ケース本体22と、フィルタエレメント24と、カバー26と、を備える。ケース本体22の一側壁に設けられた吸気取入口には外気導入ダクト25の一端が接続されている。一方、カバー26の一側壁に設けられた吸気出口には吸気ダクト11が接続されている。吸気ダクト11は、複数の曲がり部14を有し、細長い略S字状をなすように湾曲している。   Next, a more specific configuration example in which the air intake duct 11 according to the present invention is applied to an automobile air cleaner 20 will be described with reference to FIG. The air cleaner 20 includes a case main body 22, a filter element 24, and a cover 26. One end of an outside air introduction duct 25 is connected to an intake port provided on one side wall of the case body 22. On the other hand, the intake duct 11 is connected to an intake outlet provided on one side wall of the cover 26. The intake duct 11 has a plurality of bent portions 14 and is curved so as to form an elongated substantially S shape.

本実施例では、吸気ダクト11は、3つの曲がり部14a〜14cを有している。最も上流に位置する第1の曲がり部14a及びその下流に位置する第2の曲がり部14bは、約60度の曲がり角度を有している。さらに下流に位置する第3の曲がり部14cは、約180度の曲がり角度を有しており、略U字状をなしている。これらの曲がり部14a〜14cの中央断面は、いずれも、各々の曲がりの方向に対応して図4,7に示すような略三角形をなしている。   In the present embodiment, the intake duct 11 has three bent portions 14a to 14c. The first bent portion 14a located on the most upstream side and the second bent portion 14b located on the downstream side thereof have a bend angle of about 60 degrees. Further, the third bent portion 14c located downstream has a bend angle of about 180 degrees and is substantially U-shaped. The central cross sections of these bent portions 14a to 14c are all substantially triangular as shown in FIGS. 4 and 7 corresponding to the direction of each bend.

エンジンの運転時に、空気は、外気導入ダクト25及び吸気取入口を通ってエアクリーナ20内に流入し、フィルタエレメント24を通過してダストが除去される。ダストが除去された空気は、吸気出口を通ってエアクリーナ20から流出して吸気ダクト11内に流れ込み、第1の曲がり部14a、第2の曲がり部14b及び第3の曲がり部14cを順次通過して、吸気ダクト11から図外のエンジンへと流れる。このとき、各々の曲がり部14a〜14cが通気抵抗となるが、前述したように曲がり部14a〜14cの曲がりの内側となる部分の断面積を拡大することにより通路抵抗が低減するため、単純な円形断面のものに比べて、より大きな流量を得ることができる。   During operation of the engine, air flows into the air cleaner 20 through the outside air introduction duct 25 and the intake port, and passes through the filter element 24 to remove dust. The air from which the dust has been removed flows out of the air cleaner 20 through the intake outlet and flows into the intake duct 11, and sequentially passes through the first bent portion 14a, the second bent portion 14b, and the third bent portion 14c. Thus, the air flows from the intake duct 11 to an engine outside the figure. At this time, each of the bent portions 14a to 14c has a ventilation resistance. However, as described above, the passage resistance is reduced by enlarging the cross-sectional area of the bent portions 14a to 14c, so that it is simple. A larger flow rate can be obtained compared to a circular cross section.

したがって、吸気ダクト全体の断面積を大きくすることなく、曲がり部における抵抗を効果的に低減させて、流量の増大を図ることができる。   Therefore, the flow rate can be increased by effectively reducing the resistance at the bent portion without increasing the cross-sectional area of the entire intake duct.

さらに、上記実施例によれば、吸気ダクト全体の断面積を大きくすることなく、曲がり部14における抵抗を低減させることができるため、ダクト径を拡大させることに起因するノイズの発生を抑制することができる。   Furthermore, according to the above-described embodiment, since the resistance in the bent portion 14 can be reduced without increasing the cross-sectional area of the entire intake duct, it is possible to suppress the generation of noise caused by increasing the duct diameter. Can do.

以上、この発明の一実施例を説明したが、本発明は上記実施例に限られず、種々の変更が可能である。   As mentioned above, although one Example of this invention was described, this invention is not restricted to the said Example, A various change is possible.

図示の実施例では、曲がり部14の断面形状を略三角形としているが、本発明は必ずしも図4のような具体的な形状に限定されるものではない。また、曲がり部14の曲がり角度は上記実施例に限定されず、他の角度としてもよい。   In the illustrated embodiment, the cross-sectional shape of the bent portion 14 is substantially triangular, but the present invention is not necessarily limited to a specific shape as shown in FIG. Moreover, the bending angle of the bending part 14 is not limited to the said Example, It is good also as another angle.

11 吸気ダクト
12 第1の直線状部分
12a 入口
13 第2の直線状部分
13a 出口
14 曲がり部
16 内側壁部
17 外側壁部
DESCRIPTION OF SYMBOLS 11 Intake duct 12 1st linear part 12a Inlet 13 2nd linear part 13a Outlet 14 Bending part 16 Inner side wall part 17 Outer side wall part

Claims (4)

断面円形の基本断面形状を有し、かつ第1の直線状部分と第2の直線状部分とが曲がり部を介して接続されてなるエンジンの吸気ダクトにおいて、
上記曲がり部は、
上記第1の直線状部分及び上記第2の直線状部分の通路断面積と等しい通路断面積を有し、
かつ、曲がりの内側となる領域の断面積が曲がりの外側となる領域の断面積よりも大きい異形断面形状を有している、吸気ダクト。
In an intake duct of an engine having a basic cross-sectional shape having a circular cross section and having a first linear portion and a second linear portion connected via a bent portion,
The bend is
A passage cross-sectional area equal to the passage cross-sectional area of the first linear portion and the second linear portion;
An intake duct having an irregular cross-sectional shape in which a cross-sectional area of a region on the inside of the bend is larger than a cross-sectional area of a region on the outside of the bend.
上記曲がり部が、曲がりの外側に頂角が向いた三角形に近似した断面形状を有することを特徴とする請求項1に記載の吸気ダクト。   The intake duct according to claim 1, wherein the bent portion has a cross-sectional shape that approximates a triangle whose apex angle is directed to the outside of the bend. 上記曲がり部の断面形状は、第1の直線状部分及び第2の直線状部分の円形断面に比べて、曲がりの方向に沿った内径が上記円形断面の直径に等しく、かつ曲がりの内側となる一対の部分が円形断面から半径方向外側へ張り出しているとともに、曲がりの外側となる一対の部分が円形断面から半径方向内側に入り込んでいることを特徴とする請求項2に記載の吸気ダクト。   The cross-sectional shape of the bent portion is equal to the inner diameter of the circular cross section, and the inner diameter along the direction of the bend is equal to the circular cross section of the first linear portion and the second linear portion. 3. The air intake duct according to claim 2, wherein the pair of portions protrudes radially outward from the circular cross section, and the pair of portions that are outside of the bending enter the radial inner side from the circular cross section. 上記吸気ダクトは複数の曲がり部を備えていることを特徴とする請求項3に記載の吸気ダクト。   The intake duct according to claim 3, wherein the intake duct includes a plurality of bent portions.
JP2014115359A 2014-06-04 2014-06-04 Inlet duct Pending JP2015229940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014115359A JP2015229940A (en) 2014-06-04 2014-06-04 Inlet duct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014115359A JP2015229940A (en) 2014-06-04 2014-06-04 Inlet duct

Publications (1)

Publication Number Publication Date
JP2015229940A true JP2015229940A (en) 2015-12-21

Family

ID=54886862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014115359A Pending JP2015229940A (en) 2014-06-04 2014-06-04 Inlet duct

Country Status (1)

Country Link
JP (1) JP2015229940A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112555071A (en) * 2020-12-11 2021-03-26 安徽江淮汽车集团股份有限公司 Gasoline engine air inlet channel
CN115163957A (en) * 2022-05-26 2022-10-11 中国航空工业集团公司沈阳飞机设计研究所 Low-resistance aviation pipeline steering gear
CN117436209A (en) * 2023-12-18 2024-01-23 潍柴动力股份有限公司 Air bent pipe, air bent pipe design method and device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307304A (en) * 1993-04-28 1994-11-01 Mitsubishi Motors Corp Intake path structure
JPH08210207A (en) * 1995-02-02 1996-08-20 Toyoda Gosei Co Ltd Muffling device
US5596961A (en) * 1995-10-02 1997-01-28 Detroit Diesel Corporation Intake manifold assembly for four-cycle internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307304A (en) * 1993-04-28 1994-11-01 Mitsubishi Motors Corp Intake path structure
JPH08210207A (en) * 1995-02-02 1996-08-20 Toyoda Gosei Co Ltd Muffling device
US5596961A (en) * 1995-10-02 1997-01-28 Detroit Diesel Corporation Intake manifold assembly for four-cycle internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112555071A (en) * 2020-12-11 2021-03-26 安徽江淮汽车集团股份有限公司 Gasoline engine air inlet channel
CN112555071B (en) * 2020-12-11 2021-09-28 安徽江淮汽车集团股份有限公司 Gasoline engine air inlet channel
CN115163957A (en) * 2022-05-26 2022-10-11 中国航空工业集团公司沈阳飞机设计研究所 Low-resistance aviation pipeline steering gear
CN117436209A (en) * 2023-12-18 2024-01-23 潍柴动力股份有限公司 Air bent pipe, air bent pipe design method and device
CN117436209B (en) * 2023-12-18 2024-04-16 潍柴动力股份有限公司 Air bent pipe, air bent pipe design method and device

Similar Documents

Publication Publication Date Title
JP5985315B2 (en) Ventilation duct
JP4952006B2 (en) Centrifugal blower
JP5228069B2 (en) Air pipe and supercharger
JP6470853B2 (en) Centrifugal compressor and turbocharger
JP2017538886A (en) Centrifugal blower with flow separator
JP2015229940A (en) Inlet duct
EP3101280B1 (en) Centrifugal fan and air conditioning device
JP6405529B2 (en) Blower
JP2016033338A (en) Centrifugal blower
JP6444528B2 (en) Axial flow fan and air conditioner having the axial flow fan
JP7275303B2 (en) Outdoor unit of air conditioner
CN108138802B (en) Air inlet structure of compressor
JP6224952B2 (en) Blower
JP2016203917A5 (en)
JP6468416B2 (en) Cross flow fan and air conditioner indoor unit equipped with the same
JP2006275488A (en) Air-conditioner
WO2016181463A1 (en) Axial-flow blower
JP5905059B2 (en) Centrifugal pump
JP6109700B2 (en) Blower
JP5855495B2 (en) Intake manifold
JP5648521B2 (en) Intake duct connection structure and air cleaner device
JP6860331B2 (en) Diffuser, discharge channel, and centrifugal turbomachinery
EP3315786A1 (en) Turbofan and air conditioner in which same is used
JP2016145661A (en) Air conditioner
JP4590167B2 (en) Centrifugal blower

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180814