JP5239193B2 - Abnormality diagnosis method for oil-filled electrical equipment - Google Patents

Abnormality diagnosis method for oil-filled electrical equipment Download PDF

Info

Publication number
JP5239193B2
JP5239193B2 JP2007093782A JP2007093782A JP5239193B2 JP 5239193 B2 JP5239193 B2 JP 5239193B2 JP 2007093782 A JP2007093782 A JP 2007093782A JP 2007093782 A JP2007093782 A JP 2007093782A JP 5239193 B2 JP5239193 B2 JP 5239193B2
Authority
JP
Japan
Prior art keywords
oil
gas
transformer body
filled electrical
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007093782A
Other languages
Japanese (ja)
Other versions
JP2008249616A (en
Inventor
貴之 平野
尚弘 大塚
博明 加川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2007093782A priority Critical patent/JP5239193B2/en
Publication of JP2008249616A publication Critical patent/JP2008249616A/en
Application granted granted Critical
Publication of JP5239193B2 publication Critical patent/JP5239193B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Housings And Mounting Of Transformers (AREA)

Description

本発明は、油入電気機器の内部、特にコンサベータを使用している変圧器本体の異常診断方法に関するものである。   The present invention relates to an abnormality diagnosis method for an interior of an oil-filled electrical device, particularly a transformer main body using a conservator.

油入電気機器に使用されているコンサベータは、大別して、変圧器本体絶縁油と切換開閉器室油が隔壁ゴム状膜で区画されたタイプと、変圧器本体絶縁油と切換開閉器室油がゴム状膜以外の隔壁で区画されたタイプがある。前者のコンサベータは、例えば図1に示すように、変圧器本体上部に設置され、負荷変動により変圧器内の本体絶縁油11が膨張、収縮する際にコンサベータ10の内部の隔壁ゴム状膜12が応動することにより絶縁油の体積増減を吸収し、かつ外気と本体絶縁油11の接触による劣化を防止する。また、隔壁ゴム状膜12は、変圧器本体絶縁油11と切換開閉器室油13とを区画する隔壁の役割を果たしている。このため、隔壁ゴム状膜12には、膨張収縮に応動する伸縮性、切換開閉器室油13からガスの透過を防止して本体絶縁油11の清浄性を保つガス不透過性及び耐油性に優れる材料のものが使用されている。   Conservators used in oil-filled electrical equipment can be broadly classified into the types in which transformer body insulating oil and switching switch chamber oil are partitioned by a partition rubber film, transformer body insulating oil and switching switch chamber oil. There is a type that is partitioned by partition walls other than the rubber-like film. For example, as shown in FIG. 1, the former conservator is installed in the upper part of the transformer main body, and when the main body insulating oil 11 in the transformer expands and contracts due to load fluctuation, the partition rubber film inside the conservator 10 The movement of 12 absorbs the volume increase / decrease of the insulating oil and prevents deterioration due to contact between the outside air and the main body insulating oil 11. The partition rubber-like film 12 serves as a partition that partitions the transformer body insulating oil 11 and the switching switch chamber oil 13. For this reason, the partition rubber-like film 12 has stretchability that responds to expansion and contraction, gas impermeability and oil resistance that prevents gas permeation from the switching switch chamber oil 13 and maintains the cleanliness of the main body insulating oil 11. Excellent material is used.

後者のコンサベータは、例えば図2に示すように、変圧器本体上部に設置され、負荷変動により変圧器内の本体絶縁油21が膨張、収縮する際にコンサベータ20内にある外気に連通したゴムセル22が応動することにより絶縁油の体積増減を吸収し、かつ外気と本体絶縁油21の接触による劣化を防止する。   For example, as shown in FIG. 2, the latter conservator is installed in the upper part of the transformer main body, and communicates with the outside air in the conservator 20 when the main body insulating oil 21 in the transformer expands and contracts due to load fluctuations. The rubber cell 22 reacts to absorb the volume increase / decrease of the insulating oil and prevent deterioration due to contact between the outside air and the main body insulating oil 21.

いずれのコンサベータ10、20においても、切換開閉器室油13、23はタップ切換時に発生するアーク放電のため、使用中に徐々に汚損して絶縁性が低下すると共に、アセチレン、メチルビニルアセチレン、2−メチル−1,3ブタジエンなどのガス成分が増加してくる。一方、変圧器本体絶縁油は、変圧器本体内部において放電又は過熱等の異常が起きた場合、アセチレン、メチルビニルアセチレン、2−メチル−1,3ブタジエンなどのガス成分が増加してくる。また、コンサベータ10、20は、変圧器本体側において、変圧器本体絶縁油11、21内にタップ切換開閉器室が液密に配置されているため、シール不良が生じると、切換開閉器室油13、23に含まれるガス成分が変圧器本体絶縁油21側に移動してくることがある。   In any of the conservators 10 and 20, the switching switch chamber oils 13 and 23 are arced when the taps are switched, so that they are gradually fouled during use, resulting in a decrease in insulation, acetylene, methylvinylacetylene, Gas components such as 2-methyl-1,3-butadiene increase. On the other hand, when an abnormality such as discharge or overheating occurs in the transformer body insulating oil, gas components such as acetylene, methylvinylacetylene, 2-methyl-1,3-butadiene increase. Further, the conservators 10 and 20 are arranged in the transformer body insulating oil 11 and 21 in a liquid-tight manner in the transformer body insulating oil 11 and 21 on the transformer body side. Gas components contained in the oils 13 and 23 may move to the transformer body insulating oil 21 side.

油入電気機器の保守管理に関する効果的な一手法として、油中ガス分析による保守管理が電力会社他多数のユーザーで採用され、事故防止に役立っている(例えば、非特許文献1)。油中ガス分析による異常診断は、機器を停止することなく絶縁油を採取し、油中に溶存しているガス成分を抽出、分析してガスの量及び種類から放電や過熱などの異常を早期に発見する技術である。   As an effective method for maintenance management of oil-filled electrical equipment, maintenance management based on oil-in-gas analysis has been adopted by many electric power companies and other users and is useful for preventing accidents (for example, Non-Patent Document 1). Abnormality diagnosis by gas analysis in oil collects insulating oil without stopping the equipment, extracts and analyzes the gas components dissolved in the oil, and early detects abnormalities such as discharge and overheating from the amount and type of gas It is a technology to discover.

油入電気機器の内部異常診断は、当初、絶縁油中に溶存しているエチレンガス、アセチレンガスなど数種類の低沸点ガスを、電気協同研究、第54巻、第5号(1999)に報告されている分析方法(以下、電協研法と称する)を用いて行なっていた。近年では、分析技術の進歩に伴い、メチルビニルアセチレン、2−メチル−1,3ブタジエン等多種類の高沸点微量ガスを高感度で分析する新しい油中分析方法(以下、「高感度油中ガス分析方法」と言う。)が提案されている(特許文献1)。この高感度油中ガス分析方法により油入電気機器の内部異常診断を行なえば、各種絶縁材料の損傷に伴い特徴的に検出される成分及び本体絶縁油の放電、過熱分解時に検出される成分を同定し、損傷材料、損傷部位、異常様相の的確な識別、更には運転継続可否の的確な判定をすることができる(例えば、特許文献2)。
電気協同研究、第54巻、第5号(1999) 特開平9−72892号公報 特開2002−350426号公報
Internal abnormality diagnosis of oil-filled electrical equipment was initially reported in Electrical Cooperative Research, Vol. 54, No. 5 (1999) on several types of low-boiling gases such as ethylene gas and acetylene gas dissolved in insulating oil. Analysis method (hereinafter referred to as “Denki Kyoken method”). In recent years, with the advancement of analytical technology, a new analysis method in oil (hereinafter referred to as “high-sensitivity oil-in-gas”) that analyzes high-boiling trace gases such as methylvinylacetylene and 2-methyl-1,3-butadiene with high sensitivity. "Analysis method" is proposed (Patent Document 1). If the internal abnormality diagnosis of oil-filled electrical equipment is performed by this high-sensitivity oil-in-gas analysis method, components that are characteristically detected due to damage to various insulating materials and components that are detected during the discharge of main body insulating oil and overheat decomposition are detected. It is possible to identify and accurately identify a damaged material, a damaged site, and an abnormal aspect, and further accurately determine whether or not to continue operation (for example, Patent Document 2).
Electric Cooperative Research, Vol. 54, No. 5 (1999) JP-A-9-72892 JP 2002-350426 A

しかしながら、電協研法による油中ガス分析によりアセチレンガスなどの低沸点ガスを検出し、内部異常の疑いがある場合でも、多面的な追跡調査の結果、機器内部には異常が確認されない場合があった。また、電協研法による油中ガス分析によりアセチレンガスを検出しないにもかかわらず、機器内部に異常が確認される場合があった。また、異常個所は特定できなくとも、継続使用ができるか否かを簡易な方法で判断できる異常診断方法の開示が望まれていた。   However, even if low boiling point gases such as acetylene gas are detected by gas analysis in oil by the electric cooperative research method, and there is a suspicion of internal abnormality, abnormalities may not be confirmed inside the equipment as a result of multifaceted follow-up investigation. there were. In addition, there were cases where abnormalities were confirmed inside the equipment even though acetylene gas was not detected by gas analysis in oil by the electric cooperative research method. In addition, it has been desired to disclose an abnormality diagnosis method that can determine whether or not an abnormal part can be continuously used even if it cannot be identified.

従って、本発明の目的は、変圧器本体絶縁油と切換開閉器室油が隔壁で区画される油入電気機器の変圧器本体の異常及び継続使用ができるか否かを簡易な方法で診断することができる油入電気機器の異常診断方法を提供することにある。   Therefore, the object of the present invention is to diagnose whether or not the transformer body of the oil-filled electrical equipment in which the transformer body insulating oil and the switching switch chamber oil are partitioned by the partition wall can be used continuously and in a simple manner. An object of the present invention is to provide an abnormality diagnosis method for oil-filled electrical equipment.

かかる実情において、本発明者等は鋭意検討を行った結果、(1)変圧器本体絶縁油と切換開閉器室油とを区画する隔壁ゴム状膜は、ガス不透過性であるにも拘わらず、アセチレンガスを透過すること、しかしメチルビニルアセチレンガスは透過しないこと、(2)電協研法による油中ガス分析から本体絶縁油中にアセチレンガスが検出された場合、変圧器本体内部から発生した場合と切換開閉器室油からゴム状膜を透過してくる場合の2通りがあり、一概にその発生源が決定できないこと、(3)しかしながら、該アセチレンガスは変圧器本体の銅コイルと反応して銅アセチリドとなるため、アセチレンガスの有無は、変圧器本体内部の放電や過熱などの異常診断の指標には使用できないこと、(4)一方、メチルビニルアセチレンガスは、変圧器本体の銅コイルと反応しないため、メチルビニルアセチレンガスの有無は、変圧器本体内部の放電や過熱などの異常診断の指標に使用できることなどを見出し、本発明を完成するに至った。   Under such circumstances, the present inventors have conducted intensive studies, and as a result, (1) the partition rubber-like film that partitions the transformer main body insulating oil and the switching switch chamber oil is gas-impermeable. Permeates acetylene gas, but does not permeate methyl vinyl acetylene gas. (2) When acetylene gas is detected in the main body insulating oil from the gas analysis in oil by the electric cooperative research method, it is generated inside the transformer body. There are two cases: the case where the oil is passed through the rubber film from the switching switch chamber oil, and the generation source cannot be determined in general. (3) However, the acetylene gas is separated from the copper coil of the transformer body. Because it reacts to become copper acetylide, the presence or absence of acetylene gas cannot be used as an indicator for abnormality diagnosis such as discharge or overheating inside the transformer body. (4) On the other hand, methylvinylacetylene gas It does not react with copper coil of the transformer body, presence or absence of methylvinyl acetylene gas finds and can be used as an index of the abnormality diagnosis of the transformer body inside the discharge or overheating, thereby completing the present invention.

すなわち、本発明は、変圧器本体絶縁油と切換開閉器室油がメチルビニルアセチレンガスを透過しないゴム状膜である隔壁で区画されたコンサベータを備える油入電気機器の異常診断方法であって、油入電気機器から変圧器本体絶縁油の試料を採取し、該試料油中のメチルビニルアセチレンの有無を分析することにより、油入電気機器の変圧器本体の異常を判定する油入電気機器の異常診断方法を提供するものである。 That is, the present invention is an abnormality diagnosis method for an oil-filled electrical device including a conservator partitioned by a partition wall which is a rubber-like film in which transformer body insulating oil and switching switch chamber oil do not permeate methylvinylacetylene gas. Oil-filled electrical equipment that determines the abnormality of the transformer body of oil-filled electrical equipment by collecting a sample of transformer body insulation oil from the oil-filled electrical equipment and analyzing the presence or absence of methyl vinyl acetylene in the sample oil An abnormality diagnosis method is provided.

本発明によれば、メチルビニルアセチレンを放電や隔壁シール不良の指標とすることができる。このため、機器の解体調査を行なうことなく、簡易な方法で変圧器本体絶縁油と切換開閉器室油を隔壁で区画するコンサベータを有する油入電気機器の変圧器本体の異常及び継続使用の可否を診断することができる。従来は、変圧器本体絶縁油中に溶存するエチレンガス、アセチレンガス、メチルビニルアセチレンガス及び2−メチル−1,3ブタジエンなど数種類のガス分析を行なっていたが、メチルビニルアセチレンのみの分析でよく、分析の負担とコストを大幅に抑制することができる。   According to the present invention, methyl vinyl acetylene can be used as an indicator of discharge or barrier seal failure. For this reason, the transformer body of oil-filled electrical equipment having a conservator that partitions the transformer body insulating oil and the switchgear switch chamber oil with a partition wall by a simple method, without disassembling the equipment, can be used. Whether it is possible or not can be diagnosed. Conventionally, several types of gas analysis such as ethylene gas, acetylene gas, methyl vinyl acetylene gas and 2-methyl-1,3 butadiene dissolved in transformer body insulation oil have been performed. However, analysis of only methyl vinyl acetylene is sufficient. , Analysis burden and cost can be greatly reduced.

本発明の油入電気機器の異常診断方法(以下、単に「異常診断方法」とも言う。)において、変圧器本体絶縁油と切換開閉器室油を区画する隔壁とは、変圧器本体の上方に位置するコンサベータ内における変圧器本体絶縁油と切換開閉器室油を区画する隔壁ゴム状膜(以下、単に「ゴム膜」とも言う。)であるか、あるいは、コンサベータの下方に位置する変圧器本体内における変圧器本体絶縁油と切換開閉器室油を区画するシール部を有する隔壁を言う。シール部で用いられるシール部材としては、例えばNBRなどが挙げられる。   In the abnormality diagnosis method for oil-filled electrical equipment according to the present invention (hereinafter, also simply referred to as “abnormality diagnosis method”), the partition wall separating the transformer body insulating oil and the switching switch chamber oil is located above the transformer body. A partition rubber-like film (hereinafter also simply referred to as “rubber film”) that partitions the transformer body insulating oil and the switching switch chamber oil in the located conservator, or a transformer located below the conservator The partition which has the seal | sticker part which divides the transformer main body insulating oil and the switching switch room oil in a transformer main body is said. Examples of the seal member used in the seal portion include NBR.

変圧器本体絶縁油と切換開閉器室油をゴム状膜で区画するコンサベータの構造の一例を図1を参照して説明する。図1は油入電気機器のコンサベータの構造を示す簡略図である。図1中、コンサベータ10は、銅コイルを有する変圧器本体上部に設置され、外箱14内には、変圧器本体絶縁油11が充填されたゴムセル121と、負荷時タップ切換器を収容する切換開閉器室油13が充填された切換開閉器室131とを有する。変圧器本体絶縁油11と切換開閉器室油13はゴム膜12で区画され、変圧器本体とゴムセル121は連結管15で連結されている。なお外箱内であって、ゴムセル121外には、水溜め部18に溜まった水を抜く水抜き弁17と、フロート124の位置から液面を表示するダイヤル油面計19とを有している。なお、符号123はブリーザ連結管、16は仕切り板、122は空気抜栓である。このようなコンサベータ10の切換開閉器室油13は、タップ切換時に発生するアーク放電のため、使用中に徐々に汚損して絶縁性が低下すると共に、アセチレン、メチルビニルアセチレン、2−メチル−1,3ブタジエンなどのガス成分が増加してくる。このため、切換開閉器室油13中のガス成分のゴム膜12に対するガス透過現象が生じるか否かが問題となり、また、ゴム膜12に生じたピンホールからの漏洩が問題となる。なお、変圧器本体側(図1では不図示のコンサベータ10の下方部分)において、切換開閉器室23は変圧器本体絶縁油11内にNBRなどのシール部材で液密に配置されており、当該シール部分のシール不良に伴う切換開閉器室油13中のガス成分の変圧器本体絶縁油11への拡散が問題となる。   An example of the structure of a conservator that partitions the transformer body insulating oil and the switching switch chamber oil with a rubber film will be described with reference to FIG. FIG. 1 is a simplified diagram showing the structure of a conservator for oil-filled electrical equipment. In FIG. 1, a conservator 10 is installed on an upper part of a transformer main body having a copper coil, and a rubber cell 121 filled with the transformer main body insulating oil 11 and an on-load tap changer are accommodated in the outer box 14. And a switching switch chamber 131 filled with switching switch chamber oil 13. The transformer body insulating oil 11 and the switching switch chamber oil 13 are partitioned by a rubber film 12, and the transformer body and the rubber cell 121 are connected by a connecting pipe 15. In the outer box, outside the rubber cell 121, there are a drain valve 17 for draining water accumulated in the water reservoir 18, and a dial oil level gauge 19 for displaying the liquid level from the position of the float 124. Yes. In addition, the code | symbol 123 is a breather connection pipe, 16 is a partition plate, 122 is an air vent plug. The switchgear chamber oil 13 of such a conservator 10 is gradually fouled during use due to arc discharge generated at the time of tap switching, resulting in a decrease in insulation, and acetylene, methylvinylacetylene, 2-methyl- Gas components such as 1,3 butadiene increase. For this reason, it becomes a problem whether the gas permeation phenomenon with respect to the rubber film 12 of the gas component in the switching switch chamber oil 13 arises, and the leak from the pinhole produced in the rubber film 12 becomes a problem. Note that, on the transformer main body side (the lower portion of the conservator 10 not shown in FIG. 1), the switching switch chamber 23 is liquid-tightly arranged in the transformer main body insulating oil 11 with a seal member such as NBR, Diffusion of the gas component in the switching switch chamber oil 13 due to the sealing failure of the seal portion into the transformer body insulating oil 11 becomes a problem.

変圧器本体絶縁油と切換開閉器室油をゴム状膜ではない隔壁で区画するコンサベータの構造の一例を図2を参照して説明する。図2は油入電気機器のコンサベータの他の構造を示す簡略図である。図2中、コンサベータ20は、銅コイルを有する変圧器本体上部に設置され、外箱32内には、変圧器本体絶縁油21が充填された絶縁油封入室33と、負荷時タップ切換器を収容する切換開閉器室油23が充填された切換開閉器室34とを有する。絶縁油封入室33には、ブリーザー30を通した外気が出入りするゴムセル22が設置され、変圧器本体絶縁油21と切換開閉器室油23は隔壁24で区画され、変圧器本体と絶縁油封入室33は連結管25で連結されている。なお、絶縁油封入室33及び切換開閉器室34は、それぞれ、フロートの位置から液面を表示するダイヤル油面計31を有している。なお、符号26は排油弁、27は注油弁である。なお、変圧器本体側(図2では不図示のコンサベータ20の下方部分)において、切換開閉器室34は変圧器本体絶縁油21内にNBRなどのシール部材で液密に配置されており、当該シール部分のシール不良に伴う切換開閉器室油23中のガス成分の変圧器本体絶縁油21への拡散が問題となる。   An example of the structure of the conservator that partitions the transformer main body insulating oil and the switching switch chamber oil with partition walls that are not rubber-like films will be described with reference to FIG. FIG. 2 is a simplified diagram showing another structure of the oil-filled electrical equipment conservator. In FIG. 2, the conservator 20 is installed on the upper part of the transformer main body having a copper coil, and the outer box 32 includes an insulating oil sealing chamber 33 filled with the transformer main body insulating oil 21 and a load tap changer. And a switching switch chamber 34 filled with switching switch chamber oil 23 to be accommodated. A rubber cell 22 through which outside air enters and exits through the breather 30 is installed in the insulating oil sealing chamber 33. The transformer body insulating oil 21 and the switching switch chamber oil 23 are partitioned by a partition wall 24, and the transformer body and the insulating oil sealing chamber 33 are separated. Are connected by a connecting pipe 25. Each of the insulating oil sealing chamber 33 and the switching switch chamber 34 has a dial oil level gauge 31 for displaying the liquid level from the position of the float. Reference numeral 26 is an oil discharge valve, and 27 is an oil supply valve. Note that, on the transformer main body side (the lower portion of the conservator 20 (not shown in FIG. 2)), the switching switch chamber 34 is liquid-tightly arranged in the transformer main body insulating oil 21 with a seal member such as NBR, Diffusion of the gas component in the switching switch chamber oil 23 due to the sealing failure of the seal portion into the transformer body insulating oil 21 becomes a problem.

このようなコンサベータ10、20の切換開閉器室油13、23は、タップ切換時に発生するアーク放電のため、使用中に徐々に汚損して絶縁性が低下すると共に、アセチレン、メチルビニルアセチレン、2−メチル−1,3ブタジエンなどのガス成分が増加してくる。このため、コンサベータ10においては、切換開閉器室油13中のガス成分のゴム膜12に対するガス透過現象が生じるか否かが問題となる。また、ゴム膜12にピンホールが生じた場合、切換開閉器室油13中のガス成分が変圧器本体絶縁油11に拡散してくる。また、コンサベータ10、20においては、変圧器本体側のNBRなどのシール部材が不良になると、切換開閉器室油13中のガス成分が変圧器本体絶縁油11に移動してくる。   The switchgear chamber oils 13 and 23 of such conservators 10 and 20 are gradually damaged during use due to arc discharge generated at the time of tap switching, resulting in a decrease in insulation, and acetylene, methylvinylacetylene, Gas components such as 2-methyl-1,3-butadiene increase. For this reason, in the conservator 10, it becomes a problem whether the gas permeation phenomenon with respect to the rubber film 12 of the gas component in the switching switch chamber oil 13 arises. Further, when a pinhole is generated in the rubber film 12, the gas component in the switching switch chamber oil 13 diffuses into the transformer body insulating oil 11. In the conservators 10 and 20, when a seal member such as NBR on the transformer main body side becomes defective, the gas component in the switching switch chamber oil 13 moves to the transformer main body insulating oil 11.

隔壁ゴム状膜としては、特に制限されず、例えば、図3に示すように、ポリビニルアルコール(PVA)フィルム341を芯材とし、該芯材から両外側に向けて、接着層331、ポリアミド繊維321及びニトリルゴム311をそれぞれ積層した7層構造の膜が挙げられる。また、上記7層構造の膜に対して、芯材と接着層部分をニトリルゴム(NBR)で置き換えた5層構造の膜もある。   The partition rubber-like film is not particularly limited. For example, as shown in FIG. 3, a polyvinyl alcohol (PVA) film 341 is used as a core, and an adhesive layer 331 and polyamide fibers 321 are formed from the core toward both outer sides. And a seven-layer film in which nitrile rubber 311 is laminated. There is also a five-layered film in which the core material and the adhesive layer are replaced with nitrile rubber (NBR) in contrast to the seven-layered film.

油入電気機器から変圧器本体絶縁油の試料を採取する方法は、従来と同様の方法で行えばよい。また、油入電気機器から採取された変圧器本体絶縁油の試料油中のメチルビニルアセチレンの分析は、高感度油中ガス分析方法に準拠して行なえばよい。メチルビニルアセチレンはアーク放電により、あるいは絶縁油中の700℃以上の過熱により油中に検出されるガス成分であることは公知であり、変圧器内部の異常を診断する上で有効な指標となるものである。また、高感度分析方法は特開平9−72892号公報に詳細に報告されている。高感度分析方法は、公知ではあっても周知とまでは言わないため、以下に説明する。   A method for collecting a sample of the transformer body insulating oil from the oil-filled electrical device may be performed in the same manner as in the past. Moreover, the analysis of methyl vinyl acetylene in the sample oil of the transformer body insulating oil collected from the oil-filled electrical device may be performed in accordance with a highly sensitive gas analysis method in oil. Methyl vinyl acetylene is known to be a gas component detected in oil by arc discharge or by overheating of 700 ° C. or higher in insulating oil, and is an effective index for diagnosing abnormalities inside transformers. Is. A high-sensitivity analysis method is reported in detail in JP-A-9-72892. Although a high-sensitivity analysis method is well-known but not well-known, it will be described below.

高感度油中ガス分析方法で用いる装置の構成を図4に示す。図4において、51は試料油を収納する試料油容器、52は試料油容器51の注入口、53は試料油容器51の排出口、54は排出バルブ、55は試料油、56は不活性ガスをキャリアガスとしてバブリングするキャリアガス給気管、57は試料油を加熱するためのヒータ、58はキャリアガスを注入するキャリアガス注入管、59はキャリアガスの流量調節弁、60は二方コック、61はキャリアガス送気管、62はバブリングにより抽出された抽出ガスを取出すガス抽出管、63は抽出ガスをキャリアガスとともに通気する抽出ガス通気管、64は三方コック、65はコールドトラップ容器、65a、65bはコールドトラップ容器65の液体窒素等の冷却媒体の供給口および排出口、66は−130℃程度に冷却することにより分解成分を凝縮捕獲するコールドトラップ、67はコールドトラップ66を加熱するヒータ、68は三方コック、69はキャリアガスを供給するガス給気管、70はヘリウムガス等のキャリアガスが充填されたガスボンベ、71は流量調節弁、72は三方コック、73はガスクロマトグラフ分析器であり、カラム73aと検出器73bとで構成されている。27は冷却媒体容器、75は冷却媒体、76は冷却媒体75を供給するために冷却媒体容器74に圧力を加える加圧管、77は冷却媒体供給管、78は流量調節弁である。   FIG. 4 shows the configuration of an apparatus used in the high sensitivity gas analysis method. In FIG. 4, 51 is a sample oil container for storing sample oil, 52 is an inlet of the sample oil container 51, 53 is an outlet of the sample oil container 51, 54 is a discharge valve, 55 is sample oil, and 56 is an inert gas. Is a carrier gas supply pipe for bubbling as a carrier gas, 57 is a heater for heating sample oil, 58 is a carrier gas injection pipe for injecting carrier gas, 59 is a carrier gas flow control valve, 60 is a two-way cock, 61 Is a carrier gas supply pipe, 62 is a gas extraction pipe for extracting the extraction gas extracted by bubbling, 63 is an extraction gas ventilation pipe for ventilating the extraction gas together with the carrier gas, 64 is a three-way cock, 65 is a cold trap container, 65a, 65b Is a supply port and a discharge port of a cooling medium such as liquid nitrogen in the cold trap container 65, and 66 is decomposed by cooling to about -130 ° C. A cold trap for condensing and trapping 67, a heater for heating the cold trap 66, 68 for a three-way cock, 69 for a gas supply pipe for supplying a carrier gas, 70 for a gas cylinder filled with a carrier gas such as helium gas, and 71 for a flow rate A control valve, 72 is a three-way cock, 73 is a gas chromatograph analyzer, and is composed of a column 73a and a detector 73b. Reference numeral 27 denotes a cooling medium container, 75 denotes a cooling medium, 76 denotes a pressurizing pipe for applying pressure to the cooling medium container 74 to supply the cooling medium 75, 77 denotes a cooling medium supply pipe, and 78 denotes a flow rate adjusting valve.

次ぎに、この分析装置50を用いた油中ガス分析方法ついて説明する。先ず、二方コック60及び排出バルブ54を開き、キャリアガス送気管61からキャリアガスを流量調節弁59により流量調節して試料油容器51側の流路に流して当該流路の空気をブローアウトする。次ぎに三方コック64及び72をガスクロマトグラフ分析器73側に開いてコールドトラップ66及びガスクロマトグラフ分析器73の部分の空気をブローアウトする。冷却媒体容器74の加圧管76から圧力を加えて冷却媒体(液体窒素)75をコールドトラップ容器65に導き約−130℃に冷却する。注射器等により試料油を数ミリリットル採取し、試料油容器51の注入口52より試料油容器51内に注入する。三方コック64を試料油容器51側に切換え、試料油容器51をヒータ57により、蒸気圧が53Paになる温度で加熱し、二方コック60を開いて圧力調節弁59により流量調節し、バブリング管56にキャリアガスを供給し、数分間バブリングして試料油中に溶解しているガス成分を抽出する。抽出されたガス成分をキャリアガスとともにコールドトラップ容器65内のコールドトラップ66の内径部に導入し、ガス成分をコールドトラップ66に凝縮捕獲する。コールドトラップ66をヒータ67により200℃以上に急速加熱し、凝縮捕獲したガス成分を気化させてキャリアガスを流しながらガスクロマトグラフ分析器73bに導入して分析する。   Next, a method for analyzing gas in oil using the analyzer 50 will be described. First, the two-way cock 60 and the discharge valve 54 are opened, the carrier gas is adjusted from the carrier gas supply pipe 61 by the flow rate adjusting valve 59, and the flow is made to flow through the flow channel on the sample oil container 51 side, and the air in the flow channel is blown out. To do. Next, the three-way cocks 64 and 72 are opened to the gas chromatograph analyzer 73 side, and the air in the cold trap 66 and the gas chromatograph analyzer 73 is blown out. Pressure is applied from the pressurizing pipe 76 of the cooling medium container 74 to guide the cooling medium (liquid nitrogen) 75 to the cold trap container 65 and cool to about −130 ° C. Several milliliters of sample oil is collected with a syringe or the like and injected into the sample oil container 51 from the injection port 52 of the sample oil container 51. The three-way cock 64 is switched to the sample oil container 51 side, the sample oil container 51 is heated by the heater 57 at a temperature at which the vapor pressure becomes 53 Pa, the two-way cock 60 is opened, the flow rate is adjusted by the pressure control valve 59, and the bubbling pipe A carrier gas is supplied to 56, and a gas component dissolved in the sample oil is extracted by bubbling for several minutes. The extracted gas component is introduced into the inner diameter portion of the cold trap 66 in the cold trap container 65 together with the carrier gas, and the gas component is condensed and captured in the cold trap 66. The cold trap 66 is rapidly heated to 200 ° C. or more by the heater 67, the condensed and trapped gas component is vaporized, and the carrier gas is introduced into the gas chromatograph analyzer 73b for analysis.

油入電気機器から採取した試料油を上記の分析法で分析すると、抽出されたガス成分はコールドトラップ66で凝縮して捕獲され、200℃以上に急速加熱することにより、蒸発して瞬時にガスクロマトグラフ分析器73に導入されるため、精度よく分析できる。   When the sample oil collected from the oil-filled electrical equipment is analyzed by the above analysis method, the extracted gas component is condensed and captured by the cold trap 66 and rapidly heated to 200 ° C. or more to evaporate and instantly gas chroma. Since it is introduced into the graph analyzer 73, it can be analyzed with high accuracy.

本発明において、油入電気機器から採取された変圧器本体絶縁油の試料油のガス分析を、メチルビニルアセチレンガスだけについて行なってよく、アセチレンガスの分析は不要である。この理由は以下の通りである。変圧器本体内で放電や過熱など異常が発生すると、変圧器本体絶縁油中にアセチレン、メチルビニルアセチレンなどが生成する。そこで、変圧器本体絶縁油中のこれらのガスが変圧器本体内の異常を診断する一指標となり得る。しかし、油入電気機器において、変圧器本体絶縁油は銅コイルと接触しており、アセチレンは銅と反応して消失することから、アセチレンは異常を診断する一指標とはなり得ない。一方、メチルビニルアセチレンは、ゴム膜を透過しないため、タップ切換開閉器室からの混入はあり得ないため、メチルビニルアセチレンは異常を診断する一指標となり得る。また、ゴム膜のピンホール及びシール不良により、タップ切換開閉器室油中のメチルビニルアセチレンは変圧器本体絶縁油中へ拡散するため、メチルビニルアセチレンはゴム膜のピンホール及びシール不良などの異常を診断する一指標となり得る。   In the present invention, the gas analysis of the sample oil of the transformer body insulating oil collected from the oil-filled electrical device may be performed only for the methyl vinyl acetylene gas, and the analysis of the acetylene gas is unnecessary. The reason is as follows. When an abnormality such as discharge or overheating occurs in the transformer body, acetylene, methylvinylacetylene, etc. are generated in the transformer body insulating oil. Thus, these gases in the transformer body insulating oil can be an index for diagnosing abnormalities in the transformer body. However, in oil-filled electrical equipment, the transformer body insulating oil is in contact with the copper coil, and acetylene reacts with copper and disappears. Therefore, acetylene cannot be an index for diagnosing abnormalities. On the other hand, since methyl vinyl acetylene does not permeate the rubber film and therefore cannot be mixed from the tap switching switch chamber, methyl vinyl acetylene can be an index for diagnosing abnormalities. In addition, because of the pinhole and seal failure of the rubber film, methyl vinyl acetylene in the tap switchgear chamber oil diffuses into the insulation oil of the transformer body. Can be an index for diagnosing.

上記ガス成分の分析において、メチルビニルアセチレンが未検出の場合、油入電気機器の本体内部は正常と判定される。   In the analysis of the gas component, if methyl vinyl acetylene is not detected, the inside of the main body of the oil-filled electrical device is determined to be normal.

本発明において、油入電気機器の変圧器本体の異常とは、変圧器本体内で起こる放電現象や過熱現象、コンサベータのゴム膜のピンホールの発生、変圧器本体側における変圧器本体絶縁油中のタップ切換開閉器室の液密のシール不良である。従って、本発明の異常診断方法において、上記ガス成分の分析の結果、メチルビニルアセチレンが検出された場合、上記列挙したいずれかの異常であることが判る。なお、異常であれば、継続使用を中止し、更に油入電気機器の分解など多面的な検査により異常個所の特定ができる。また、正常であれば、継続使用が可能である旨の決定ができる。   In the present invention, the abnormality of the transformer body of the oil-filled electrical equipment means the discharge phenomenon or overheating phenomenon that occurs in the transformer body, the occurrence of pinholes in the rubber film of the conservator, the transformer body insulation oil on the transformer body side The liquid-tight seal of the inside tap switchgear chamber is poor. Therefore, in the abnormality diagnosis method of the present invention, when methyl vinyl acetylene is detected as a result of the analysis of the gas component, it is found that any of the abnormalities listed above is present. If there is an abnormality, it is possible to stop the continuous use and further identify the abnormal part by multifaceted inspection such as disassembly of the oil-filled electrical equipment. Moreover, if it is normal, it can be determined that continuous use is possible.

次ぎに、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。   Next, the present invention will be described more specifically with reference to examples. However, this is merely an example and does not limit the present invention.

参考例1
(各種ガスと銅の反応実験)
図5に示す緩衝用ベローズ43を備えた気密構造の容器40を作製し、下記試験条件下で各種ガスと銅の反応の有無を調べた。容器40は、試料供給配管42と試料採取配管44を備えるものである。符号45は試料油、46は銅板又は紙巻銅板である。その結果を図6に示す。
Reference example 1
(Reaction experiments between various gases and copper)
An airtight container 40 provided with the buffer bellows 43 shown in FIG. 5 was prepared, and the presence or absence of reaction between various gases and copper was examined under the following test conditions. The container 40 includes a sample supply pipe 42 and a sample collection pipe 44. Reference numeral 45 is sample oil, and 46 is a copper plate or a cigarette copper plate. The result is shown in FIG.

<試験条件>
絶縁破壊電圧試験法(JIS C 2101)に準じて絶縁破壊させたエチレンガス、アセチレンガス、メチルビニルアセチレンガスなどのガスを高濃度で含む絶縁油の中に、変圧器内の巻銅線に見立てた銅板を封入し、所定油温における各種ガスの油中濃度の経時変化を確認した。なお、銅は、裸銅板と紙巻銅板の2種類を使用し、それぞれ行なった。
<Test conditions>
Insulated oil containing high concentrations of gases such as ethylene gas, acetylene gas, and methyl vinyl acetylene gas that have been subjected to dielectric breakdown in accordance with the dielectric breakdown voltage test method (JIS C 2101). A copper plate was sealed, and changes with time in the concentrations of various gases in oil at a predetermined oil temperature were confirmed. Copper was used by using two types, a bare copper plate and a cigarette copper plate.

試験開始前の高濃度ガス含有絶縁油中のアセチレン濃度を電協研法で、メチルビニルアセチレン濃度を高感度油中ガス分析方法で測定した。その結果、アセチレン濃度は45ppm、メチルビニルアセチレン濃度は152,000カウント(ピーク面積値)であった。   The acetylene concentration in the high-concentration gas-containing insulating oil before the start of the test was measured by the electric cooperative research method, and the methylvinylacetylene concentration was measured by the highly sensitive gas analysis method in the oil. As a result, the acetylene concentration was 45 ppm, and the methylvinylacetylene concentration was 152,000 counts (peak area value).

<試験条件>
・ 試験温度;80℃、試験日数;60日
・ 油量;2.2リットル
・ 試料採取間隔;20日毎
・ 最小検出感度;アセチレン0.1ppm、メチルビニルアセチレン100カウント
・ 裸銅板;6.5mm×2.4mm×140mmの銅板を重ね合せて銅板表面積が1060cmとしたものを使用した。
・ 紙巻銅板;上記裸銅に厚さ50μmの紙を2枚素線巻きし、更にその上から厚さ80μmの紙を3枚共通巻きし、更にその上から厚さ85μmの接着紙を最外層として2枚巻きし、合計厚みが425μmのものを使用した。なお、紙は実際変圧器に使用されているものと同じ素材のものを使用した。
<Test conditions>
Test temperature: 80 ° C., test days: 60 days Oil amount: 2.2 liters Sampling interval: Every 20 days Minimum detection sensitivity: 0.1 ppm of acetylene, 100 counts of methylvinylacetylene Bare copper plate: 6.5 mm × A copper plate having a surface area of 1060 cm 2 by superimposing 2.4 mm × 140 mm copper plates was used.
・ Copper copper sheet: Two sheets of 50μm thick paper are wound on the bare copper, and three sheets of 80μm thick paper are wound on top of each other, and an adhesive paper of 85μm in thickness is coated on the outermost layer. 2 were used, and a total thickness of 425 μm was used. The paper used was the same material that was actually used for the transformer.

図6から明かなように、時間が経過するに従い、アセチレンの油中濃度が著しく低下していることが判る。これに対して、メチルビニルアセチレンは60日経過後であっても初期濃度とほぼ同量の油中ガス濃度を示していることが判る。このことから、油温80℃の過酷な条件下においても、メチルビニルアセチレンは銅と反応することなく、油中に残存することが判明した。   As is clear from FIG. 6, it can be seen that the concentration of acetylene in the oil is remarkably lowered as time passes. On the other hand, it can be seen that methyl vinyl acetylene exhibits a gas concentration in oil almost equal to the initial concentration even after 60 days. From this, it was found that methyl vinyl acetylene remains in the oil without reacting with copper even under severe conditions of an oil temperature of 80 ° C.

図1に示す変圧器本体絶縁油と切換開閉器室油がゴム膜で区画された構造のコンサベータを有する稼動中の変圧器、及び図2に示す変圧器本体絶縁油と切換開閉器室油が隔壁で区画された構造のコンサベータを有する稼動中の変圧器について、それぞれ正常な変圧器1台の変圧器本体絶縁油の試料(A、B)を採取した。また、それぞれ異常と判断された変圧器1台の変圧器本体絶縁油の試料(C、D)を採取した。次いで、試料油A〜Dについて、アセチレン及びメチルビニルアセチレンの溶存の有無を調べた。アセチレンは電協研法により、メチルビニルアセチレンは、高感度油中ガス分析方法により分析した。その結果、対象となった変圧器の中、正常な変圧器の絶縁油には、アセチレン、メチルビニルアセチレンのいずれも検出されなかった。また、対象となった変圧器の中、異常な変圧器の絶縁油には、メチルビニルアセチレンが検出されたが、アセチレンは検出されなかった。   An operating transformer having a conservator having a structure in which the transformer body insulating oil and the switching switch chamber oil shown in FIG. 1 are partitioned by a rubber film, and the transformer body insulating oil and the switching switch chamber oil shown in FIG. Samples (A, B) of the transformer body insulating oil of one normal transformer were sampled for each of the transformers in operation having a conservator with a structure in which each was partitioned by a partition wall. Moreover, the sample (C, D) of the transformer main body insulating oil of one transformer each judged to be abnormal was collected. Subsequently, the sample oils A to D were examined for the presence or absence of dissolution of acetylene and methylvinylacetylene. Acetylene was analyzed by the electric cooperative research method, and methylvinylacetylene was analyzed by a highly sensitive gas analysis method in oil. As a result, neither acetylene nor methylvinylacetylene was detected in the insulation oil of normal transformers among the targeted transformers. Moreover, methyl vinyl acetylene was detected in the insulating oil of the abnormal transformer among the targeted transformers, but acetylene was not detected.

本発明によれば、メチルビニルアセチレンを放電や隔壁シール不良などの異常の指標とすることができる。このため、機器の解体調査を行なうことなく、継続使用の有無を決定することができる。従来は、変圧器本体絶縁油中に溶存するエチレンガス、アセチレンガス、メチルビニルアセチレンガス及び2−メチル−1,3ブタジエンなど数種類のガス分析を行なっていたため、分析の負担とコストを大幅に抑制することができる。   According to the present invention, methyl vinyl acetylene can be used as an indicator of abnormalities such as discharge and partition seal failure. For this reason, the presence or absence of continuous use can be determined without performing disassembly investigation of the equipment. Previously, several types of gas analysis such as ethylene gas, acetylene gas, methyl vinyl acetylene gas and 2-methyl-1,3-butadiene dissolved in insulation oil in the transformer body were performed, greatly reducing the burden and cost of analysis. can do.

油入電気機器のコンサベータの構造を示す簡略図である。It is a simplified diagram showing the structure of a conservator for oil-filled electrical equipment. 油入電気機器の他のコンサベータの構造を示す簡略図である。It is a simplified diagram showing the structure of another conservator of oil-filled electrical equipment. 変圧器本体絶縁油と切換開閉器室油を区画する隔壁ゴム状膜の構造を示す模式的断面図である。It is typical sectional drawing which shows the structure of the partition rubber-like film | membrane which divides transformer main body insulating oil and switching switch chamber oil. 高感度ガス分析方法で使用する分析装置のフロー図である。It is a flowchart of the analyzer used with a highly sensitive gas analysis method. 各種ガスと銅の反応実験で使用した装置の概略図である。It is the schematic of the apparatus used in the reaction experiment of various gas and copper. 各種ガスと銅の反応実験結果を示す図である。It is a figure which shows the reaction experiment result of various gas and copper.

符号の説明Explanation of symbols

10、20 コンサベータ
11、21 変圧器本体絶縁油
12 隔壁ゴム状膜
13、23 切換開閉器室油
14 外箱
15 連結管
16 仕切り板
19 ダイヤル油面計
24 隔壁
40 容器
50 分析装置
311 ニトリルゴム
321 ポリアミド繊維
331 接着層
341 ポリビニルアルコール(PVA)フィルム
10, 20 Conservator 11, 21 Transformer body insulating oil 12 Bulkhead rubber-like film 13, 23 Switching switch chamber oil 14 Outer box 15 Connection pipe 16 Partition plate 19 Dial oil level gauge 24 Bulkhead 40 Container 50 Analytical device 311 Nitrile rubber 321 Polyamide fiber 331 Adhesive layer 341 Polyvinyl alcohol (PVA) film

Claims (3)

変圧器本体絶縁油と切換開閉器室油がメチルビニルアセチレンガスを透過しないゴム状膜である隔壁で区画されたコンサベータを備える油入電気機器の異常診断方法であって、油入電気機器から変圧器本体絶縁油の試料を採取し、該試料油中のメチルビニルアセチレンの有無を分析することにより、油入電気機器の変圧器本体の異常を判定することを特徴とする油入電気機器の異常診断方法。 A method for diagnosing an abnormality in an oil-filled electrical device comprising a conservator partitioned by a partition wall made of a rubber-like film in which transformer body insulating oil and switching switch chamber oil do not transmit methyl vinyl acetylene gas. A sample of an oil-filled electrical device is characterized by taking a sample of the transformer body insulating oil and determining the abnormality of the transformer body of the oil-filled electrical device by analyzing the presence or absence of methyl vinyl acetylene in the sample oil. Abnormal diagnosis method. メチルビニルアセチレンが未検出の場合、油入電気機器の変圧器本体は正常と判定されることを特徴とする請求項1記載の油入電気機器の異常診断方法。   2. The method for diagnosing an abnormality in an oil-filled electrical device according to claim 1, wherein when the methyl vinyl acetylene is not detected, the transformer body of the oil-filled electrical device is determined to be normal. メチルビニルアセチレンが検出された場合、油入電気機器の変圧器本体に異常があると判定されることを特徴とする請求項1記載の油入電気機器の異常診断方法。   The method for diagnosing an abnormality in an oil-filled electrical device according to claim 1, wherein when methyl vinyl acetylene is detected, it is determined that the transformer body of the oil-filled electrical device is malfunctioning.
JP2007093782A 2007-03-30 2007-03-30 Abnormality diagnosis method for oil-filled electrical equipment Active JP5239193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007093782A JP5239193B2 (en) 2007-03-30 2007-03-30 Abnormality diagnosis method for oil-filled electrical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007093782A JP5239193B2 (en) 2007-03-30 2007-03-30 Abnormality diagnosis method for oil-filled electrical equipment

Publications (2)

Publication Number Publication Date
JP2008249616A JP2008249616A (en) 2008-10-16
JP5239193B2 true JP5239193B2 (en) 2013-07-17

Family

ID=39974727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007093782A Active JP5239193B2 (en) 2007-03-30 2007-03-30 Abnormality diagnosis method for oil-filled electrical equipment

Country Status (1)

Country Link
JP (1) JP5239193B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010102805A (en) 2008-10-27 2010-05-06 Hitachi Global Storage Technologies Netherlands Bv Tunnel junction type magneto-resistive effect head
JP5648608B2 (en) * 2011-09-06 2015-01-07 株式会社島津製作所 Sample introduction device
CN103063771B (en) * 2012-12-26 2014-02-12 河南中分仪器股份有限公司 Process of one-sample introduction dual-detector gas chromatography and transformer oil analysis gas chromatography
CN103116089B (en) * 2013-01-16 2015-02-04 湖北省电力公司电力科学研究院 Converter transformer state judgment method capable of eliminating factors of conversion selector
CN110428718A (en) * 2019-08-16 2019-11-08 广东电网有限责任公司 Oil-filled equipment simulates the gas sample device that draws oil sample
CN115201388A (en) * 2022-08-01 2022-10-18 哈尔滨理工大学 Intelligent sampling analysis system and sampling analysis method for methanol in transformer oil

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3171225B2 (en) * 1995-09-07 2001-05-28 三菱電機株式会社 Diagnosis method for abnormalities inside oil-filled electrical equipment
JP2002350426A (en) * 2001-05-23 2002-12-04 Mitsubishi Electric Corp Internal abnormality diagnostic method of oil-filled electric apparatus
JP4280040B2 (en) * 2002-08-22 2009-06-17 株式会社ダイヘン On-load tap change transformer
JP2007043026A (en) * 2005-07-29 2007-02-15 Fuji Denki Chiba Tech Kk Gas-in-oil alarm relay
JP2007082288A (en) * 2005-09-12 2007-03-29 Toshiba Corp High-voltage transforming facility
JP2007234687A (en) * 2006-02-28 2007-09-13 Tokyo Electric Power Co Inc:The Method of detecting crack and pinhole of rubber cell in transformer using b-type conservator
JP4872519B2 (en) * 2006-08-10 2012-02-08 東京電力株式会社 Internal abnormality diagnosis method for oil-filled electrical equipment
JP2008249617A (en) * 2007-03-30 2008-10-16 Tokyo Electric Power Co Inc:The Abnormality diagnostic method for oil-immersed electric equipment

Also Published As

Publication number Publication date
JP2008249616A (en) 2008-10-16

Similar Documents

Publication Publication Date Title
JP5239193B2 (en) Abnormality diagnosis method for oil-filled electrical equipment
JP4872519B2 (en) Internal abnormality diagnosis method for oil-filled electrical equipment
JP2008249617A (en) Abnormality diagnostic method for oil-immersed electric equipment
US8142547B1 (en) Method for extracting gas from liquid
EP0988543B1 (en) Method for monitoring gas(es) in a dielectric fluid
JP2010141019A (en) Oil-immersed transformer with diaphragm type conservator
WO2021189623A1 (en) On-line diagnosis method and apparatus for internal fault of sulfur hexafluoride electrical device
US20140245814A1 (en) Device for measuring the concentration of a gas dissolved in an electrical insulation oil
US6968728B2 (en) Test tap adapter for extracting dissolved gases from insulating oil and measuring electrical parameters of a transformer bushing
JP2007234687A (en) Method of detecting crack and pinhole of rubber cell in transformer using b-type conservator
JP4602454B2 (en) Radioiodine sampler and radioiodine monitor having the same
JP2008227268A (en) Diaphragm type conservator and oil-immersed transformer
JP6440501B2 (en) Oil-filled electrical device diagnostic method, oil-filled electrical device diagnostic device, and oil-filled electrical device including the same
KR20070070346A (en) Sensor device for detection of extensive range dissolved hydrogen gas in oil using combined hydrogen gas sensor and membrane
JP2002350426A (en) Internal abnormality diagnostic method of oil-filled electric apparatus
CN105223297A (en) The degasser that a kind of novel transformer oil chromatography on-Line Monitor Device is special
JP2009224579A (en) Deterioration diagnosis method of oil electrical apparatus
JP2017204512A (en) Abnormality diagnosis auxiliary apparatus of oil-filled electrical apparatus
KR100342421B1 (en) Device for monitoring fault of transformer
KR20010039446A (en) Apparatus for detecting abnormality in transformer
JP4488195B2 (en) Radioiodine sampler and radioiodine monitor having the same
JPS59111044A (en) Apparatus for measuring gas in oil of oil contained insulating electric device
CN116930383A (en) Hydrogen flame ionization detection device
JP3170774B2 (en) Oil-dissolved gas extractor, abnormality diagnosis device, and oil-filled electrical equipment
JPH1019879A (en) Diagnosis of oil-filled electric machinery and portable diagnostic device therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5239193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350