JPS59111044A - Apparatus for measuring gas in oil of oil contained insulating electric device - Google Patents

Apparatus for measuring gas in oil of oil contained insulating electric device

Info

Publication number
JPS59111044A
JPS59111044A JP57221164A JP22116482A JPS59111044A JP S59111044 A JPS59111044 A JP S59111044A JP 57221164 A JP57221164 A JP 57221164A JP 22116482 A JP22116482 A JP 22116482A JP S59111044 A JPS59111044 A JP S59111044A
Authority
JP
Japan
Prior art keywords
gas
oil
chamber
permeable membrane
infrared light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57221164A
Other languages
Japanese (ja)
Inventor
Katsuhiko Masuda
増田 雄彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP57221164A priority Critical patent/JPS59111044A/en
Publication of JPS59111044A publication Critical patent/JPS59111044A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/37Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using pneumatic detection

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To make it possible to measure a desired kind of gas, by analyzing gas permeated through a high-molecular permeable membrane by an infrared type gas analyser. CONSTITUTION:As a permeable membrane 6, one which is impervious to insulating oil but pervious to only gas dissolved in said oil may be used. In addition, because a certain time is required before the gas dissolved in the oil is permeated into a gas chamber through the permeable membrane 6 to reach equilibrium, the area of the opening part of the gas chamber 7 is made large and the volume of the gas chamber 7 is reduced as possible so as to shorten a time before the gas reaches equilibrium. Gas belonged to a kind to be measured is sealed in light receiving chambers 11a, 11b and, when the same kind of gas is present in the gas chamber 7, infrared rays having a wavelength range peculiar to said gas emitted from a light source 9 is partially absorbed in the gas chamber 7 and, therefore, infrared rays having said wavelength range incident to a light receiving chamber 11 is reduced. By this phenomenon, pressure difference is generated in the light receiving chambers 11a, 11b by the change of absorbed energy and a gas stream is generated in the conduit connecting the light receiving chambers 11a, 11b. This minute amount of the gas steam is converted to an electric signal by a detector 12 and the gas concn. in the gas chamber can be determined from the signal amount thereof.

Description

【発明の詳細な説明】 本発明は変圧器のような油入絶縁電器におい)て、何ら
かの熱的または電気的異常により発生した油中ガスの種
類と量を測定することにより、電器内部の異常の種類と
程度を検出する油入絶縁電器の内部異常検出装置に関す
る。
Detailed Description of the Invention The present invention detects abnormalities inside the electrical appliance by measuring the type and amount of gas in the oil generated due to some thermal or electrical abnormality in oil-filled insulated electrical equipment such as transformers. This invention relates to an internal abnormality detection device for oil-filled insulated electrical appliances that detects the type and degree of.

従来、変圧器など全保守管理する技術としては、絶縁抵
抗、誘電正接の測定あるいはコロナ試験などの電気的試
験による方法もあるが、これらの方法では電器を運転し
たままでは測定できず、電器の運転を停止して測定しな
ければならない。それに対し、電器を運転したまま保守
管理する方法として、油中ガス分析による方法が広く用
いられている。この方法は、変圧器内部で異常が発生し
た場合、絶縁油あるいは絶縁物の熱分解ガスカ″−7山
中に溶解することを利用したもので、油入絶縁電器を運
転したまま絶縁油を採取し、油中に溶存しているガスを
抽出し、その中の水素、C2(時にはC4以下の炭化水
素、炭酸ガス、−酸化炭素をガスクロマトクラフィで分
析することにより、ガスの1類と割合から内部異常の種
類と程度を診断するものである。この方法は永い実績が
あり、信頼性C高い診断方法と認められているので、特
に高電圧大容量変圧器の管理には主としてこの方法が採
井されている。しかし診断には約21の採油を必要とし
、更にガス抽出、分析の工程が必要で、これらは専門業
者に依頼する場合が多く、頻繁に行うことが困難なため
年1回ないし2回の診断にとどまるのが普通である。
Conventionally, as a technology for complete maintenance management of transformers, etc., there are methods using electrical tests such as measuring insulation resistance and dielectric loss tangent, or corona tests, but these methods cannot be measured while the appliance is in operation, and the Operation must be stopped before measurement. On the other hand, a method based on gas-in-oil analysis is widely used as a method for maintaining and managing electrical appliances while they are in operation. This method utilizes the fact that when an abnormality occurs inside a transformer, the insulating oil or thermal decomposition gas of the insulating material dissolves into the pile, and the insulating oil is collected while the oil-filled insulator is in operation. By extracting the gas dissolved in the oil and analyzing it using gas chromatography for hydrogen, C2 (sometimes C4 or lower hydrocarbons, carbon dioxide gas, and carbon oxide), it is possible to determine the type of gas and its proportion. This method diagnoses the type and degree of internal abnormalities.This method has a long track record and is recognized as a highly reliable diagnostic method, so it is mainly used for the management of high-voltage, large-capacity transformers. However, the diagnosis requires approximately 21 oil extractions, as well as gas extraction and analysis steps, which are often outsourced to specialized companies and are difficult to perform frequently, so they are only carried out once a year. It is normal to be diagnosed only one or two times.

従って、内部異常が発生しても、場合によっては半年あ
るいは1年近くたたないと発見されない可能性もある。
Therefore, even if an internal abnormality occurs, it may not be discovered until half a year or nearly a year, depending on the case.

また統計的にみれは、90%以上C変圧器は何の故障も
なく運転されているから、イの都度かなりの費用を要す
るガス分析を行うことは無駄であるといえる。
Moreover, statistically speaking, more than 90% of C transformers are operated without any failures, so it can be said that it is wasteful to conduct gas analysis, which requires a considerable amount of money, every time.

これに対し、油中ガスの測定を頻繁にあるいは常時行う
方法として、変圧器の絶縁油に高分子膜を透過してくる
ガスを測定し、透過平衡の関係から油中ガス濃度を求め
るものもある。透過してきたガスを測定する方法として
は、これまで次の4つの方法が考案されている。即ち、
(1)燃料電池方式のもの、(2)半導体ガスセンサー
を使用するもの(特開昭52−322号公報参照) 、
f31ガス電極電極分測定するものおよび(4)ガスク
ロマド方式のものである。このうち前王者は透過ガスの
うち水素のみを測定するものであるが、後者は水素だけ
でなく多成分のガスを測定することができる。また試料
ガスの消費から見ると、(1) 、(2) 、(4)の
方法はガス消費型であるが、(3)の方法はガス非消費
型である。ガス消費型の場合、特に全量消費型の場合は
、1回の測定の後次の測定を行うまでには、高分子膜の
種類や厚さにもよるが普通は透過平衡に達する時間とし
て約100時間が必要である。その点ガス非消費型の場
合は、測定間隔に特別な制約はない。上記方法(3)は
ガス非消費型であるが、これは水素を測定するものであ
υ、他の炭化水素系のガスやco 、 co2などを測
定することができないのが欠点でちる。変圧器の内部異
常の多くの場合水素の発生を伴うが、内部異常のすべて
を水素の分析だけで検出することはできず、他のガス例
えばCH4、C2H4、C0、002などの分析によっ
て内部異常が検出される場合もある。このように水素だ
けでなく、その他のガスの分析によって、内部異常の検
出率が向上すると共に、各成分ガスの割合から内部異常
の種類や程度を推定することもできる。従って、水素以
外のガスの検出は変圧器の内部異常を診断する上で非常
に有効な方法であるが、従来はガス非消費型で水素以外
のガスを検出する方法がなかった。
On the other hand, as a method of frequently or constantly measuring gas in oil, there is a method that measures the gas that permeates through a polymer membrane in the insulating oil of a transformer, and determines the gas concentration in oil from the relationship of permeation equilibrium. be. The following four methods have been devised so far to measure the gas that has passed through. That is,
(1) fuel cell type, (2) one using a semiconductor gas sensor (see Japanese Patent Application Laid-Open No. 52-322),
(4) Gas chromatography method. Among these, the former champion measures only hydrogen in the permeated gas, but the latter can measure not only hydrogen but also gases with multiple components. Furthermore, in terms of sample gas consumption, methods (1), (2), and (4) are gas consuming types, but method (3) is gas non-consuming. In the case of a gas-consuming type, especially in the case of a total-volume consuming type, the time required to reach permeation equilibrium between one measurement and the next measurement depends on the type and thickness of the polymer membrane. It takes 100 hours. On the other hand, in the case of a non-gas consumption type, there are no special restrictions on the measurement interval. The above method (3) is a gas non-consuming type, but it measures hydrogen and has the disadvantage that it cannot measure other hydrocarbon gases, co, co2, etc. In many cases of internal abnormalities in transformers, hydrogen is generated, but it is not possible to detect all internal abnormalities by analyzing hydrogen alone, and analysis of other gases such as CH4, C2H4, C0, 002, etc. may be detected. In this way, by analyzing not only hydrogen but also other gases, the detection rate of internal abnormalities can be improved, and the type and degree of internal abnormalities can also be estimated from the proportions of each component gas. Therefore, detection of gases other than hydrogen is a very effective method for diagnosing internal abnormalities in transformers, but conventionally there has been no method of detecting gases other than hydrogen that does not consume gas.

この発明は上述の欠点を除去して、油中から透過膜を透
過してきたガスを消費することなく、所望の種類のガス
を測定し、さらには複数種のガス全同時にあるいは切換
により測定できる装置全提供することである。
This invention eliminates the above-mentioned drawbacks, and is capable of measuring a desired type of gas without consuming the gas that has passed through the permeable membrane from oil, and furthermore, is capable of measuring multiple types of gas simultaneously or by switching between them. It is all about providing.

本発明の実施例の一つを第1図に従って説明する。One embodiment of the present invention will be described with reference to FIG.

本発明の油中ガス測定装置は、変圧器1に付属するパル
プ2の端部の7ランジ3にとりつけられる。パルプ2と
7ランジ30間の導管の途中には。
The gas-in-oil measuring device of the present invention is attached to a 7-lunge 3 at the end of a pulp 2 attached to a transformer 1. In the middle of the conduit between pulp 2 and 7 lunges 30.

図に示したようにコック4がとりつけられている。A cock 4 is attached as shown in the figure.

フランジ3の外側には、2枚の穴あき補強板5a。On the outside of the flange 3 are two perforated reinforcing plates 5a.

5bの間に挾持された透過膜6がとりつけられる。A permeable membrane 6 sandwiched between the membranes 5b is attached.

更に、外側の穴あき補強板5bには、透過膜6を透過し
てくるガスを捕集するガス室7がとりつけられる。この
ガス室7の相対する壁面には赤外線透過窓8 a + 
8bがとりつけられる。この赤外線透過窓8a、8bの
外側には赤外線式ガス検出器が備えられる。赤外線ガス
検出器は、赤外線光源9、チョッパーエ0.2つの受光
室11aおよびllb、2つの受光室をつなぐ導管の途
中に備えられた検知器(マイクロフローセンサー)12
とから成っている。
Further, a gas chamber 7 for collecting gas passing through the permeable membrane 6 is attached to the outer perforated reinforcing plate 5b. An infrared transmitting window 8 a + is provided on the opposite wall of the gas chamber 7.
8b is installed. An infrared gas detector is provided outside the infrared transmitting windows 8a, 8b. The infrared gas detector includes an infrared light source 9, a chopper 0.2 light receiving chambers 11a and llb, and a detector (micro flow sensor) 12 provided in the middle of a conduit connecting the two light receiving chambers.
It consists of.

2つの受光室11aおよびllbには、それぞれ図に示
す位置に赤外線透過窓13aおよび13bがつけられて
いる。赤外線光源9から出た光は、まずチ冑ツバ−10
を透過したのち、ガス室702つの透過窓8aT8bを
透過し、受光室118.11bに入射するように全体が
配置されている。受光%11aおよび11bには測定様
ガスが封入される。またガス室7には2本のパイプが接
続され、コック14a、14bがとりつけられており、
本装置の外側にはカバー15がとりつけられている。
The two light receiving chambers 11a and llb are provided with infrared transmitting windows 13a and 13b at the positions shown in the figure, respectively. The light emitted from the infrared light source 9 first
After passing through the gas chamber 70, the light passes through the two transmission windows 8aT8b and enters the light receiving chamber 118.11b. A measuring gas is sealed in the light receiving portions 11a and 11b. In addition, two pipes are connected to the gas chamber 7, and cocks 14a and 14b are installed.
A cover 15 is attached to the outside of the device.

以下各部分の機能について述べる。The functions of each part will be described below.

変圧器lに付属するパルプ2は、本装置がと9つけられ
ていない時は変圧器l内の絶縁油を外気からしゃ断し、
本装置がフランジ3に取りつけられた後変圧器1内の絶
縁油を穴あき補強板4aを通して透過膜6に接触させる
機能ケ持つ。透過膜6に接触する部分の絶縁油と変圧器
本体内の絶縁油は溶解ガスの種類および溶解量の点にお
いて常に差のないことが望まれるため、パルプ2の口径
はできるだけ大きなものが望ましい。例えばバタフライ
バルブあるいは口径の大きなボールパルプなどが適当で
ある。コック4は、本装置をフランジ3に取りつけた後
、パルプ2を開けて変圧器内の絶縁油を透過膜6に接触
嘔せる際、パルプ2と透過M6の開にあった空気を排出
するために使用する。従ってコック4に接研するパイプ
の増付位置は、第1図に示したようにパルプ2と7ラン
ジ3をつなぐ導管の上部が望ましい。
The pulp 2 attached to the transformer l shuts off the insulating oil in the transformer l from the outside air when this device is not connected to the
After this device is attached to the flange 3, it has the function of bringing the insulating oil in the transformer 1 into contact with the permeable membrane 6 through the perforated reinforcing plate 4a. Since it is desired that there is always no difference in the type and amount of dissolved gas between the insulating oil in the portion that contacts the permeable membrane 6 and the insulating oil in the transformer body, it is desirable that the diameter of the pulp 2 be as large as possible. For example, a butterfly valve or ball pulp with a large diameter is suitable. The cock 4 is used to discharge the air that was present between the pulp 2 and the permeable membrane 6 when the pulp 2 is opened to bring the insulating oil in the transformer into contact with the permeable membrane 6 after this device is attached to the flange 3. used for. Therefore, the preferred location for adding the pipe to be attached to the cock 4 is the upper part of the conduit connecting the pulp 2 and the 7-lunge 3, as shown in FIG.

穴あき補強板5a 、 5bは、その間に透過膜6を挾
持し、絶縁油の油圧に対して透過膜を保護すると共に、
油中溶解ガスが透過膜6を透過してガス室7に蓄積する
事を防げないものであればよい。透過膜6の材質および
厚みにもよるが、補強板につける穴はできるだけ小葛く
て数の多いものほど望ましい。もちろん外部との気密性
が充分に保たれる構造および材質であることが必要であ
る。従って必らずしも透過膜と接する中心部付近に穴を
開ける必要はなく、例えば中心部付近のみ多孔性金属、
を用いても目的は達成される。
The perforated reinforcing plates 5a and 5b sandwich the permeable membrane 6 between them, and protect the permeable membrane from the hydraulic pressure of the insulating oil.
Any material may be used as long as it does not prevent the dissolved gas in the oil from passing through the permeable membrane 6 and accumulating in the gas chamber 7. Although it depends on the material and thickness of the permeable membrane 6, it is preferable that the holes made in the reinforcing plate be as small and as large as possible. Of course, it is necessary that the structure and material are sufficiently airtight with the outside. Therefore, it is not necessarily necessary to make a hole near the center where it contacts the permeable membrane.
Even if you use , the purpose is achieved.

透過膜6は、絶縁油を通さず油中に溶解しているガスだ
けを透過するものであれはよいが、ある程度温度が上昇
した絶縁油と接触するため、使用期間中に絶縁油によっ
て変質あるいは劣化しないものが望ましい。この目的に
かなう膜としては、ホIJ f )ラフルオロエチレン
(PTFE)、フルオロエチレンプロピレン(FEP)
およびポリイミドなどの高分子膜が考えられる。
The permeable membrane 6 may be one that does not allow the insulating oil to pass through and only allows the gas dissolved in the oil to pass through, but since it comes into contact with the insulating oil whose temperature has risen to a certain degree, it may deteriorate or deteriorate due to the insulating oil during the period of use. Preferably something that does not deteriorate. Membranes suitable for this purpose include fluoroethylene (PTFE) and fluoroethylenepropylene (FEP).
and polymer membranes such as polyimide.

次にガス室7は、油中から透過して来るガスを蓄積する
部分であるから、透過膜に面する開口部以外は完全に気
密性が保たれていなければならない。また透過膜を介し
て油中溶解ガスがガス室内に透過して平衡に達するまで
にはある程度の時間を要するため、ガス室7の開口部の
面積を大きく取り、かつガス室の体積をできるだけ少な
くして、(厚さを減らして)ガスが平衡に達する時間を
短くするように構成することが望ましい。そのためには
、赤外線光源9、チョッパー10.受光室11a、  
   11bもできるだけ小さいものが望ましい。
Next, since the gas chamber 7 is a part that accumulates gas permeating from the oil, it must be completely airtight except for the opening facing the permeable membrane. Furthermore, since it takes a certain amount of time for the dissolved gas in the oil to permeate into the gas chamber through the permeable membrane and reach equilibrium, the opening area of the gas chamber 7 should be made large and the volume of the gas chamber should be kept as small as possible. It is desirable to configure the structure (by reducing the thickness) to shorten the time for the gas to reach equilibrium. For this purpose, an infrared light source 9, a chopper 10. Light receiving chamber 11a,
It is also desirable that 11b be as small as possible.

受光室11aおよびIlb Kは測定様ガスが封入され
ており、ガス室7に同種のガスが存在する場合には、当
該ガスに特有な波長の赤外光がガス室7内で部分的に吸
収されるため、受光室に入射する当該波長の赤外光が減
少することになる。この事により、受光室11aとll
b Kは吸収エネルギーの変化により圧力差を生じ、l
laと11bをつなぐ導管内にガスの流れが生じる。こ
の微量のガスの流れを検知器(マイクロフローセンサー
)12が電気信号に変換し、その信号量からガス室内の
当該ガスの濃度を知ることができる。受光室に封入する
ガスとしては、特定の赤外波長に吸収を持っCO。
The light receiving chamber 11a and Ilb K are filled with a gas to be measured, and when the same type of gas is present in the gas chamber 7, infrared light with a wavelength specific to the gas is partially absorbed in the gas chamber 7. Therefore, the amount of infrared light of the wavelength that enters the light receiving chamber is reduced. Due to this, the light receiving chambers 11a and ll
b K creates a pressure difference due to the change in absorbed energy, and l
A gas flow occurs in the conduit connecting la and 11b. A detector (microflow sensor) 12 converts this small amount of gas flow into an electrical signal, and the concentration of the gas in the gas chamber can be determined from the amount of the signal. The gas filled in the light receiving chamber is CO, which has absorption at specific infrared wavelengths.

CO2およびCH4などのガスが使用できる。Gases such as CO2 and CH4 can be used.

第1図は、1種類のガスを測定する場合を示したもので
あるが5次のいずれかの方法を用いることに、Jニジ複
数種のガスを測定することが可能である。
Although FIG. 1 shows the case of measuring one type of gas, it is possible to measure multiple types of gas by using any of the five-order methods.

(1)一つのガス室に対して赤外光源と受光室を並列に
設ける。
(1) An infrared light source and a light receiving chamber are provided in parallel for one gas chamber.

(2)受光室の直前にプリズムを置き赤外光線を分枝し
て受光室を並列に設ける。
(2) A prism is placed just in front of the light-receiving chamber, and the infrared rays are branched to provide parallel light-receiving chambers.

(3)受光室の最終像面にも赤外線透過窓を設け、その
うしろに直列に受光室を設ける。
(3) An infrared transmitting window is also provided at the final image plane of the light receiving chamber, and a light receiving chamber is provided in series behind it.

(4)上記(1)、(2)および(3)のいずれか2つ
または3つを組み合わせる。
(4) Combining any two or three of the above (1), (2) and (3).

本発明に係る他の実施例全第2図に示す。この図におい
ては、ガス室7が穴あき補強板5bに直結するのではな
く、パイプ16、コック17およびジヨイント18を介
して接続されている。この場合パイプ16、コック17
およびジョイ゛ント18は透過膜を透過したガスが外部
にもれないよう充分な気密性を保つことのできる材質、
構造であり、透過ガスができるだけ短時間に平衡に達す
ることができるように必要最小限の大きさにすることが
望ましい。
Another embodiment of the invention is shown in FIG. In this figure, the gas chamber 7 is not directly connected to the perforated reinforcing plate 5b, but is connected via a pipe 16, a cock 17, and a joint 18. In this case pipe 16, cock 17
The joint 18 is made of a material that can maintain sufficient airtightness so that the gas that has passed through the permeable membrane does not leak to the outside.
It is desirable to have the minimum size necessary to allow the permeate gas to reach equilibrium in the shortest possible time.

このような要求を満足するものであれは、フレキシブル
なパイプを使用することも可能である。また第2図にお
いても、第1図と同様、単一ガス成分の測定装置を示し
ているが、先の実施I+oで記したように(1)〜(4
)の方法によって膜数成分の測定がてきる点は変シがな
い。その上第3図の例では、ガス透過部分からコック1
7にいたるパイプ16を分岐させるかあるいはジヨイン
ト18の部分で分枝させて複数個のガス室および赤外1
式ガス分析装置を設けることに工つても複数成分のガス
を測定することができる。
It is also possible to use flexible pipes as long as they meet these requirements. Similarly to FIG. 1, FIG. 2 also shows a single gas component measurement device, but as described in the previous implementation I+o, (1) to (4)
) There is no difference in that the film number component can be measured using the method. Furthermore, in the example of Fig. 3, the cock 1 is
The pipe 16 leading to the infrared 1
It is also possible to measure gases of multiple components by providing a type gas analyzer.

第2図に示したJ:うに、ガス透過部分とガス検知部分
を取りはずすことができるため、保守点検が容易になる
と共に、別種のガスを測定するにも検知部分を簡単に交
換して測定することができる。
As shown in Figure 2, the gas permeation part and gas detection part can be removed, making maintenance and inspection easier, and the detection part can be easily replaced and measured when measuring a different type of gas. be able to.

この発明によれば、高分子透過膜を介して透過してきた
ガスを赤外線型ガス分析計により分析するため、変圧器
の内部異常を診断する上に非常に有効なCO、CO2、
CH4などのガスを測定することができる。例えば変圧
器の内部異常のうち、金属部分の過熱によっては主とし
てC)Llが生成し、また絶縁紙の過熱によってはCO
やC02が増大することが知られており、これらのガス
成分の量および変化の傾向から内部異常の種類と程度を
精度よく診断することが可能となる。
According to this invention, since the gas that has permeated through the polymer permeable membrane is analyzed using an infrared gas analyzer, CO, CO2, and
Gases such as CH4 can be measured. For example, among internal abnormalities in a transformer, overheating of metal parts mainly produces C)Ll, and overheating of insulating paper produces CO2.
It is known that the amount of gas and CO2 increases, and it is possible to accurately diagnose the type and degree of internal abnormality from the amount and change tendency of these gas components.

また、分析方法として赤外線の吸収を利用しているため
、サンプルガスを全く消費することがない。従って任意
の測定間隔で測定が可・能であり、ガス室内のガス濃度
の変化を追跡することができる。またガスを消費しない
ことから、ガス室t−iつだけでなく2つあるいは3つ
設置して、2種類あるいは3種類のガスを並列に測定す
ることも可能である。ガス室の体積を増したり、数を増
したりすると、油中ガスとガス室内のガスが平衡に達す
るまでにより多くの時間を必要とするので、ガス消費型
の検出器では一回の測定の後火の測定までの時間をより
長くしなければならないが、ガスを消費しない場合には
、たとえガス室の体積が増加し、平衡に達する時間は多
少長くなるにしても。
Furthermore, since infrared absorption is used as the analysis method, sample gas is not consumed at all. Therefore, measurements can be made at arbitrary measurement intervals, and changes in the gas concentration within the gas chamber can be tracked. Furthermore, since no gas is consumed, it is also possible to install not only one gas chamber but two or three gas chambers and measure two or three types of gas in parallel. Increasing the volume or number of gas chambers requires more time for the gas in the oil and the gas in the gas chamber to reach equilibrium, so gas-consuming detectors If the time between fire measurements has to be longer, but no gas is consumed, even though the volume of the gas chamber increases and the time to reach equilibrium becomes somewhat longer.

測定上何ら支障はない。There is no problem in measurement.

本発明を主として変圧器内の絶縁油中ガスの分析につい
て述べてきたが、変圧器に限らず他の油入絶縁電器、例
えば油入しゃ断器、油入コンデンサ、油入ケーブルにも
応用できる。
Although the present invention has been mainly described with respect to the analysis of gas in insulating oil in a transformer, it can be applied not only to transformers but also to other oil-filled insulated electrical appliances, such as oil-filled circuit breakers, oil-filled capacitors, and oil-filled cables.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明一実施例の断面図、第2図は他の実施例
の断面図である。 に油入絶縁電器、2:バルブ、5a、5b :穴あき補
強板、6:透過膜、7:ガス室、8a、8b :赤外線
透過窓、9:赤外線光源、11a、11b ”受光室、
12:検出器(マイクロフローセンサー)。
FIG. 1 is a sectional view of one embodiment of the present invention, and FIG. 2 is a sectional view of another embodiment. 2: Bulb, 5a, 5b: Perforated reinforcing plate, 6: Transmissive membrane, 7: Gas chamber, 8a, 8b: Infrared transmitting window, 9: Infrared light source, 11a, 11b "Light receiving chamber,
12: Detector (micro flow sensor).

Claims (1)

【特許請求の範囲】 1)油入絶縁電器を収納する容器内に充満される絶縁油
に直接に接するように取付けられ、絶縁油を通さず該絶
縁油中に溶存するガスのみを透過する透過膜と、該透過
膜の絶縁油側とは反対の側に連通して画成され、かつ赤
外光に対して透明な入口窓および出口窓を持ち該透過膜
を通るガスを捕集してその分圧を絶縁油中の該ガスの分
圧と平衡状態に保つよう密閉されたガス室と、前記人口
窓を通して赤外光を前記ガス室に入射する赤外光源と、
前記ガス室内のガスを透過した赤外光を前記出口窓を通
して受ける赤外線検出器とを備えたことを特徴とする油
入絶縁電器の油中ガス測定装置2、特許請求の範囲第1
項記載の測定装置において、ガス室が透過膜に隣接して
固定的に画成さ乳赤外線検出器が測定すべきガスの種類
に応じて複3)特許請求の範囲第1項記載の測定装置に
おいて、ガス室が透過膜に隣接して固定的に画成され、
赤外線検出器が測定すべきガスの種類に応じて取置。 4)特許請求の範囲第1項記載の測定装置において、ガ
ス室が透過膜に隣接して固定的に設けられたガス捕集室
と、該ガス捕集室に連通するよう着脱可能に取付けられ
入口窓および出口窓を備えた赤外光透過室と、該赤外光
透過室の着脱時に前記ガス補集室を一時的に封じるコッ
クとからなり、前記赤外光透過室と赤外線検出器とが測
定すべきガスの種類に応じて取換可能に構成されたこと
を特徴とする油入絶縁電器の油中ガス測定装置。 5)特許請求範囲第1項記載の測定装置において、透過
膜が高分子材料からなる薄膜であり、その絶縁油側およ
びガス室側からそれぞれ多孔質の補強板により挾持され
てなることを特徴とする油入絶縁電器の油中ガス測定装
置。 6)%許請求の範囲第1項記載の測定装置において、ガ
ス室に絶縁油の圧力に抗するよう赤外光IF吸収性の所
定のガスが所定圧力であらかじめ封入されたことを特徴
とする油入絶縁電器の油中ガス測定装置。
[Scope of Claims] 1) A permeable device that is installed so as to be in direct contact with the insulating oil filled in the container that houses the oil-filled insulated electrical appliance, and that only allows gas dissolved in the insulating oil to pass through without passing the insulating oil. a membrane, and an inlet window and an outlet window defined in communication with a side of the permeable membrane opposite to the insulating oil side and transparent to infrared light to collect gas passing through the permeable membrane. a gas chamber sealed so as to maintain its partial pressure in equilibrium with the partial pressure of the gas in insulating oil; and an infrared light source that enters infrared light into the gas chamber through the artificial window;
A gas-in-oil measuring device 2 for an oil-filled insulated electrical appliance characterized by comprising an infrared detector that receives infrared light transmitted through the gas in the gas chamber through the exit window, Claim 1
3) In the measuring device according to claim 1, the gas chamber is fixedly defined adjacent to the permeable membrane. a gas chamber is fixedly defined adjacent to the permeable membrane;
Set aside according to the type of gas that the infrared detector should measure. 4) In the measuring device according to claim 1, the gas chamber includes a gas collection chamber fixedly provided adjacent to the permeable membrane, and a gas collection chamber removably attached so as to communicate with the gas collection chamber. It consists of an infrared light transmission chamber equipped with an entrance window and an exit window, and a cock that temporarily closes the gas collection chamber when the infrared light transmission chamber is attached or removed, and the infrared light transmission chamber and the infrared detector are connected to each other. 1. A gas-in-oil measurement device for an oil-filled insulated electrical appliance, characterized in that the device is configured to be replaceable depending on the type of gas to be measured. 5) The measuring device according to claim 1, characterized in that the permeable membrane is a thin film made of a polymeric material, and is sandwiched between porous reinforcing plates from the insulating oil side and the gas chamber side, respectively. Gas-in-oil measuring device for oil-filled insulated electrical appliances. 6) % Allowance The measuring device according to claim 1 is characterized in that a predetermined gas absorbing infrared light IF is prefilled in the gas chamber at a predetermined pressure so as to resist the pressure of the insulating oil. Gas-in-oil measuring device for oil-filled insulated electrical appliances.
JP57221164A 1982-12-17 1982-12-17 Apparatus for measuring gas in oil of oil contained insulating electric device Pending JPS59111044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57221164A JPS59111044A (en) 1982-12-17 1982-12-17 Apparatus for measuring gas in oil of oil contained insulating electric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57221164A JPS59111044A (en) 1982-12-17 1982-12-17 Apparatus for measuring gas in oil of oil contained insulating electric device

Publications (1)

Publication Number Publication Date
JPS59111044A true JPS59111044A (en) 1984-06-27

Family

ID=16762469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57221164A Pending JPS59111044A (en) 1982-12-17 1982-12-17 Apparatus for measuring gas in oil of oil contained insulating electric device

Country Status (1)

Country Link
JP (1) JPS59111044A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194245A (en) * 1987-10-05 1989-04-12 Nissin Electric Co Ltd Detection of acetylene gas dissolved in oil
JPH01227045A (en) * 1988-03-07 1989-09-11 Hitachi Ltd Detecting apparatus of gas for oil-immersed apparatus, collecting apparatus of gas in oil and detecting method of gas
JPH02130454A (en) * 1988-11-11 1990-05-18 Hitachi Cable Ltd Cracked gas measuring apparatus for insulating oil
JP2012243323A (en) * 2011-05-20 2012-12-10 General Electric Co <Ge> Failed gas alarm system
CN105115921A (en) * 2015-09-09 2015-12-02 浙江大学 Detection device for detecting gas concentration in water

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52322A (en) * 1975-06-23 1977-01-05 Hitachi Ltd Inside abnorla gas detector of an oil-filled apparatus
JPS5587028A (en) * 1978-12-26 1980-07-01 Showa Electric Wire & Cable Co Ltd Measuring method for deterioration of insulating material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52322A (en) * 1975-06-23 1977-01-05 Hitachi Ltd Inside abnorla gas detector of an oil-filled apparatus
JPS5587028A (en) * 1978-12-26 1980-07-01 Showa Electric Wire & Cable Co Ltd Measuring method for deterioration of insulating material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194245A (en) * 1987-10-05 1989-04-12 Nissin Electric Co Ltd Detection of acetylene gas dissolved in oil
JPH01227045A (en) * 1988-03-07 1989-09-11 Hitachi Ltd Detecting apparatus of gas for oil-immersed apparatus, collecting apparatus of gas in oil and detecting method of gas
JPH02130454A (en) * 1988-11-11 1990-05-18 Hitachi Cable Ltd Cracked gas measuring apparatus for insulating oil
JP2012243323A (en) * 2011-05-20 2012-12-10 General Electric Co <Ge> Failed gas alarm system
CN105115921A (en) * 2015-09-09 2015-12-02 浙江大学 Detection device for detecting gas concentration in water
CN105115921B (en) * 2015-09-09 2017-10-20 浙江大学 A kind of detection means for being used to detect gas concentration in water

Similar Documents

Publication Publication Date Title
US6324891B1 (en) Method and apparatus for monitoring GAS(ES) in a dielectric fluid
CN102539338B (en) Online monitoring system for gas content in transformer oil by using photoacoustic spectrum
CN102661918A (en) Off-resonance photoacoustic spectrometric detection and analysis device
KR102056235B1 (en) Apparatus for measuring dissolved gas and oil immersed transformer having the same
US20140233034A1 (en) Apparatus and method for on-line, real-time analysis of chemical gasses dissolved in transformer oil
KR20170033489A (en) Apparatus for measuring dissolved gas and partial discharge
KR100842099B1 (en) A diagnostic apparatus and method for the internal abnormal conditions of gas combination type for power transformer
JPS59111044A (en) Apparatus for measuring gas in oil of oil contained insulating electric device
KR101961616B1 (en) Apparatus for measuring dissolved gas
CN109459411A (en) A kind of detection platform for spectral type fibre optical sensor
CN109239008B (en) Oil-immersed transformer fault detection device based on micro-nano optical fiber evanescent field
KR20100041370A (en) Gas extraction apparatus of transformer insulating oil
CN213715134U (en) Automatic detection system for combustible gas of gas relay
KR20010039446A (en) Apparatus for detecting abnormality in transformer
KR102056234B1 (en) Internal state detecting device for transformers
KR20220125830A (en) Gas Detection and Analysis device of Transformer
KR100342421B1 (en) Device for monitoring fault of transformer
JPH0712805A (en) Method and device for diagnosing continuous abnormatility and deterioration of sealed oil-immersed transformer
CN107957481B (en) Hydrogen sulfide concentration detection device
RU2393455C1 (en) Facility for analysis of gases in transformer oil
JPH05164754A (en) Automatically monitoring device for in-oil gas of transformer
CN216696147U (en) Electrochemical gas sensor with inlet and outlet interface
CN216926568U (en) Distributed sewage traceability system based on spectral analysis and optical fiber temperature measurement
CN214374320U (en) Color development early warning device for monitoring SF6 gas decomposition products of power equipment
JPS6010256B2 (en) gas analyzer