JPH0194245A - Detection of acetylene gas dissolved in oil - Google Patents

Detection of acetylene gas dissolved in oil

Info

Publication number
JPH0194245A
JPH0194245A JP62251313A JP25131387A JPH0194245A JP H0194245 A JPH0194245 A JP H0194245A JP 62251313 A JP62251313 A JP 62251313A JP 25131387 A JP25131387 A JP 25131387A JP H0194245 A JPH0194245 A JP H0194245A
Authority
JP
Japan
Prior art keywords
gas
infrared rays
transmitted
acetylene
gas chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62251313A
Other languages
Japanese (ja)
Inventor
Masaru Kanba
勝 神庭
Sadayoshi Mukai
向井 貞喜
Yasuo Inoue
靖雄 井上
Masaya Yoshikawa
正也 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP62251313A priority Critical patent/JPH0194245A/en
Publication of JPH0194245A publication Critical patent/JPH0194245A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To simply and continuously detect the acetylene gas dissolved in oil, by a method wherein the gas dissolved in insulating oil is allowed to transmit through a gas chamber through a fluorinated resin membrane and infrared rays having a wavelength of 2.9-3.2mum are further transmitted through the gas. CONSTITUTION:A valve 2 is provided to a part of the wall surface of an electric machinery 1 being an object to be detected and a gas chamber 4 is connected to said valve through a fluorinated resin membrane 3. Pervious windows 8, 9 are provided to the opposed places of the gas chamber 4 and the infrared rays having a wavelength of 2.9-3.2mum from a light emitter 6 are allowed to be incident to the gas chamber 4 through one pervious window 8 to be transmitted through the gas therein. The transmitted infrared rays transmit through the pervious window 9 to be received by a light receiver 7. The infrared rays are reacted only with acetylene gas to be absorbed corresponding to the concn. thereof. Therefore, when the intensity of the infrared rays incident to the pervious window 8 is compared and collated with that of the infrared rays transmitted through the pervious window 9 to detect the difference between both intensities, the concn. of the acetylene gas contained in the transmitted gas can be selectively detected even when other gas is mixed in said gas.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は電気機器の絶縁油中に溶存しているアセチレ
ンガスを検出する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for detecting acetylene gas dissolved in insulating oil of electrical equipment.

(従来の技術) 周知のように変圧器、コンデンサ、リアク1−ルその他
の油入電気機器においては、動部的にア一り放電が発生
するような異常状態が発生すると、絶縁油が分解されて
アセチレンガスが発生することが知られている。したが
ってアセチレンガスを検出することによって、油入電気
機器の異常を、事故が発生する以前に検知することがで
きるようになる。
(Prior art) As is well known, in oil-filled electrical equipment such as transformers, capacitors, reactors, etc., when an abnormal condition such as a flash discharge occurs in the dynamic parts, the insulating oil decomposes. It is known that acetylene gas is generated when Therefore, by detecting acetylene gas, abnormalities in oil-filled electrical equipment can be detected before an accident occurs.

従来ではこのようなアセチレンガスの検出に、電気機器
より絶縁油を採取し、これより溶存ガスを抽出し、これ
をガスクロマ1へグラフにより分析するようにしている
。しかしこのような手段によると、分析結果がでるまで
1〜3日を要するため、電気機器の異常発生に対する迅
速な対応がとれないし、また採取した絶縁油の運搬、分
析といった多大の工数を必要とする。
Conventionally, in order to detect such acetylene gas, insulating oil is collected from electrical equipment, dissolved gas is extracted from this, and this is analyzed using a gas chroma 1 using a graph. However, with this method, it takes 1 to 3 days for the analysis results to be available, making it difficult to respond quickly to abnormalities in electrical equipment, and requiring a large amount of man-hours to transport and analyze the sampled insulating oil. do.

(発明が解決しようとする問題点) この発明は油中に溶存しているアセチレンガスを簡単か
つ迅速にしかも連続的に検出できるようにすることを目
的とする。
(Problems to be Solved by the Invention) An object of the present invention is to enable easy, rapid, and continuous detection of acetylene gas dissolved in oil.

(問題点を解決するための手段) この発明は電気機器にフッ素系樹脂膜を介してガス室を
連設し、ガス室内に透過してきた電気機器内の絶縁油に
溶存しているガスに、波長が2.9〜3.2μmの赤外
線を透過または反射させ、その透過または反射してきた
赤外線の、入射赤外線に対する強度の変化から、ガス内
のアセチレンガスを検出するようにしたことを特徴とす
る。
(Means for Solving the Problems) This invention connects a gas chamber to an electrical device via a fluororesin membrane, and allows the gas dissolved in the insulating oil in the electrical device to permeate into the gas chamber. It is characterized by transmitting or reflecting infrared rays having a wavelength of 2.9 to 3.2 μm, and detecting acetylene gas in the gas from changes in the intensity of the transmitted or reflected infrared rays relative to the incident infrared rays. .

(作用) 波長が2.9〜3.2μmの赤外線は、ガスの中でアセ
チレンガスにのみ反応して吸収される。したがってアセ
チレンガスを透過してきた赤外線は、アセチレンガスの
濃度に応じて減衰するので、入射赤外線に対する透過赤
外線の強度の変化を求めることによって、アセチレンガ
スの濃度を検出することができるようになる。また検出
対象のガスの中に他のガスが混在していても1選択的に
分析できるようになる。
(Function) Infrared rays having a wavelength of 2.9 to 3.2 μm react only with acetylene gas in the gas and are absorbed. Therefore, the infrared rays that have passed through the acetylene gas are attenuated according to the concentration of the acetylene gas, so the concentration of acetylene gas can be detected by determining the change in the intensity of the transmitted infrared rays relative to the incident infrared rays. Furthermore, even if other gases are mixed in the gas to be detected, it becomes possible to selectively analyze one of them.

また検出対象の電気機器にフッ素系樹脂膜を介してガス
室を連設しているので、電気機器内の絶縁油に溶存して
いるガスは、連続的に常時ガス室内に透過してくるので
、常時連続して検出する二とができるようになる。
In addition, since the gas chamber is connected to the electrical equipment to be detected via a fluororesin membrane, the gas dissolved in the insulating oil inside the electrical equipment continuously permeates into the gas chamber. , it becomes possible to perform continuous detection at all times.

(実施例) この発明の実施例を図によって説明すると、コ。(Example) An example of the present invention will be described with reference to the drawings.

はたとえば油入変圧器のような、検出対象の電気機器で
、その壁面の一部にバルブ2を設け、これにフッ素系樹
脂膜3を介してガス室4を連設する。
is an electrical device to be detected, such as an oil-immersed transformer, and a valve 2 is provided on a part of its wall surface, and a gas chamber 4 is connected to this via a fluororesin film 3.

5はメンテナンスの際に使用するバルブである。5 is a valve used during maintenance.

周知のようにフッ素系樹脂膜3は絶縁油のような液体は
透過せず、ガスのような気体のみを透過する。したがっ
て電気機器1の内部でアーク放電、コロナ放電その他の
放電が発生していたとすれば、ガス室4内にはアセチレ
ンガス、水素ガスその他のガスが混在するようになる。
As is well known, the fluororesin film 3 does not allow liquids such as insulating oil to pass therethrough, but only allows gases such as gas to pass therethrough. Therefore, if arc discharge, corona discharge, or other discharge occurs inside the electrical device 1, acetylene gas, hydrogen gas, and other gases will be mixed in the gas chamber 4.

そして時間の経過とともにその量は増加していくように
なる。
And as time passes, the amount will increase.

6は波長が2.9〜3.2μmの赤外線を発光する発光
器、7は同赤外線を受光する受光器である。第1図に示
す例は、赤外線を透過させることによって検出する例を
示し、ガス室4の相対する個所に透過窓8,9を設け、
一方の透過窓8を通して発光器6からの赤外線をガス室
4内に入射させて内部のガス中を透過させる。透過した
赤外線は透過窓9より透過して、受光器7により受光さ
れる。
6 is a light emitter that emits infrared light having a wavelength of 2.9 to 3.2 μm, and 7 is a light receiver that receives the same infrared light. The example shown in FIG. 1 shows an example in which detection is performed by transmitting infrared rays, and transmission windows 8 and 9 are provided at opposite locations in the gas chamber 4.
Infrared rays from the light emitter 6 enter the gas chamber 4 through one transmission window 8 and are transmitted through the gas inside. The transmitted infrared rays are transmitted through the transmission window 9 and received by the light receiver 7.

前記した波長の赤外線はアセチレンガスにのみ反応し、
その濃度に応じて吸収される。したがって透過窓8に入
射される赤外線と、透過窓9から透過してきた赤外線と
の強度を比較対照して強度の差を検出すれば、透過して
きたガスに含まれているアセチレンガスの濃度を、他の
ガスが混在していてもこれを選択的に検出することがで
きるようになる。
Infrared rays of the wavelengths mentioned above react only with acetylene gas,
It is absorbed depending on its concentration. Therefore, by comparing and contrasting the intensities of the infrared rays incident on the transmission window 8 and the infrared rays transmitted through the transmission window 9 and detecting the difference in intensity, the concentration of acetylene gas contained in the transmitted gas can be determined. Even if other gases are present, they can be selectively detected.

第2図はガス室4の内部に赤外線を反射する反射板10
を設置し、その反射光から検出しようとする例を示し、
発光器6からの赤外線をガス室4内のガス中を通過させ
、これを反射板10で反射させてから再びガス中を通過
させ、その反射光を受光器7によって受光させるように
したものである。この場合も入射光と反射光との比較か
ら、第1図の場合と同様にアセチレンガスの濃度が検出
できる。
Figure 2 shows a reflector 10 that reflects infrared rays inside the gas chamber 4.
An example is shown in which a device is installed and detection is attempted from the reflected light.
The infrared rays from the light emitter 6 are passed through the gas in the gas chamber 4, reflected by the reflector 10, passed through the gas again, and the reflected light is received by the receiver 7. be. In this case as well, the concentration of acetylene gas can be detected by comparing the incident light and the reflected light as in the case of FIG.

(発明の効果) 以上詳述したようにこの発明によれば、電気機器にフッ
素系樹脂膜を介してガス室を連設し、ここに絶縁油に溶
存しているガスを透過させ、透過したガスに、波長が2
.9〜3.2μmの赤外線を透過または反射させるだけ
の簡単な操作により、絶縁油中に溶存していたアセチレ
ンガスの濃度を、他のガスが混在していてもこれらの影
響を受けることなく、高精度、かつ迅速にしかも選択的
に検出することができるようになり、また連続して検出
できるので、電気機器の絶縁状態を常時監視することが
できるといった効果を奏する。
(Effects of the Invention) As detailed above, according to the present invention, a gas chamber is connected to an electrical device through a fluororesin membrane, and gas dissolved in insulating oil is allowed to permeate through the gas chamber. Gas has a wavelength of 2
.. By simply transmitting or reflecting infrared rays of 9 to 3.2 μm, the concentration of acetylene gas dissolved in the insulating oil can be adjusted without being affected by other gases even if they are present. Since it is now possible to detect with high precision, quickly, and selectively, and it can be detected continuously, it is possible to constantly monitor the insulation state of electrical equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の詳細な説明するための構成図、第2
図はこの発明の他の実施例を説明するための構成図であ
る。 1・・・電気機器、3・・・フッ素系樹脂膜、4・・・
ガス室、6・・・赤外線発光器、7・・・赤外線受光器
、6,7・・・透過窓、1o・・・反射板、
Fig. 1 is a configuration diagram for explaining the invention in detail;
The figure is a configuration diagram for explaining another embodiment of the present invention. 1... Electrical equipment, 3... Fluorine resin membrane, 4...
Gas chamber, 6... Infrared emitter, 7... Infrared receiver, 6, 7... Transmission window, 1o... Reflection plate,

Claims (1)

【特許請求の範囲】[Claims] 電気機器にフッ素系樹脂膜を介してガス室を連設し、前
記フッ素系樹脂膜を介して前記ガス室内に透過してきた
前記電気機器内の絶縁油に溶存しているガスに、波長が
2.9〜3.2μmの赤外線を透過または反射させ、そ
の透過または反射してきた赤外線の、入射赤外線に対す
る強度の変化から、前記ガス内のアセチレンガスを検出
するようにしたことを特徴とする油中溶存アセチレンガ
ス検出方法。
A gas chamber is connected to an electrical device through a fluororesin film, and the gas dissolved in the insulating oil in the electrical equipment that has passed through the fluororesin film into the gas chamber has a wavelength of 2. .9 to 3.2 μm infrared rays are transmitted or reflected, and acetylene gas in the gas is detected from changes in the intensity of the transmitted or reflected infrared rays relative to the incident infrared rays. Dissolved acetylene gas detection method.
JP62251313A 1987-10-05 1987-10-05 Detection of acetylene gas dissolved in oil Pending JPH0194245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62251313A JPH0194245A (en) 1987-10-05 1987-10-05 Detection of acetylene gas dissolved in oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62251313A JPH0194245A (en) 1987-10-05 1987-10-05 Detection of acetylene gas dissolved in oil

Publications (1)

Publication Number Publication Date
JPH0194245A true JPH0194245A (en) 1989-04-12

Family

ID=17220948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62251313A Pending JPH0194245A (en) 1987-10-05 1987-10-05 Detection of acetylene gas dissolved in oil

Country Status (1)

Country Link
JP (1) JPH0194245A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104040A (en) * 1990-08-24 1992-04-06 Hitachi Cable Ltd Apparatus for measuring gas in insulating oil

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111044A (en) * 1982-12-17 1984-06-27 Fuji Electric Corp Res & Dev Ltd Apparatus for measuring gas in oil of oil contained insulating electric device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111044A (en) * 1982-12-17 1984-06-27 Fuji Electric Corp Res & Dev Ltd Apparatus for measuring gas in oil of oil contained insulating electric device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104040A (en) * 1990-08-24 1992-04-06 Hitachi Cable Ltd Apparatus for measuring gas in insulating oil

Similar Documents

Publication Publication Date Title
US3820901A (en) Measurement of concentrations of components of a gaseous mixture
US4694172A (en) Detection of fires and explosions
US20210396732A1 (en) Apparatus and method for performing gas analysis using optical absorption spectroscopy, such as infrared (ir) and/or uv, and use thereof in apparatus and method for performing dissolved gas analysis (dga) on a piece of electrical equipment
NO901792L (en) METHOD AND APPARATUS FOR MEASURING OPTICAL ABSORPTION OF GAS MIXTURES.
CN102661918A (en) Off-resonance photoacoustic spectrometric detection and analysis device
US4403861A (en) Photometric analyzer for automatically studying complex solutions
US3032654A (en) Emission spectrometer
US6762410B1 (en) Analysis apparatus
JPS62212551A (en) Gas chamber for test used for spectrometer
US3835322A (en) Method and apparatus for analyzing nitrogen oxides in gas
WO1994009266A1 (en) Sensor arrangement and process for monitoring the conversion rate of an exhaust gas catalyst
EP0121404A2 (en) A photometric light absorption measuring apparatus
FI890758A (en) IR spectrometric analysis method and IR spectrometer
CN105738306A (en) Portable fire control emergency rescue multi-gas rapid remote sensor and detecting method
JPH0194245A (en) Detection of acetylene gas dissolved in oil
O’Shea et al. NO 2 concentration measurements in an urban atmosphere using differential absorption techniques
CN109239008B (en) Oil-immersed transformer fault detection device based on micro-nano optical fiber evanescent field
US4591723A (en) Optical egg inspecting apparatus
EP0434893B1 (en) Abnormality detecting device
JPH0194244A (en) Detection of acetylene gas dissolved in oil
EP0094706A2 (en) Gas analyser
JPH09288058A (en) Gas-in-oil detector
GB2176889A (en) Detecting the presence of gas
JPH0777452A (en) Displacement quantity measuring device and inclination measuring device for anhydrous gas holder piston
CN113092373B (en) Device and method for monitoring dissolved acetylene in oil of oil-filled equipment by using infrared optics