JP2009224579A - Deterioration diagnosis method of oil electrical apparatus - Google Patents

Deterioration diagnosis method of oil electrical apparatus Download PDF

Info

Publication number
JP2009224579A
JP2009224579A JP2008067804A JP2008067804A JP2009224579A JP 2009224579 A JP2009224579 A JP 2009224579A JP 2008067804 A JP2008067804 A JP 2008067804A JP 2008067804 A JP2008067804 A JP 2008067804A JP 2009224579 A JP2009224579 A JP 2009224579A
Authority
JP
Japan
Prior art keywords
oil
insulating oil
amount
oxygen
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008067804A
Other languages
Japanese (ja)
Inventor
Shigekazu Mori
繁和 森
Shin Yamada
慎 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008067804A priority Critical patent/JP2009224579A/en
Publication of JP2009224579A publication Critical patent/JP2009224579A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To perform a reliable and precise prediction diagnosis of oxidation deterioration in the characteristics of an insulating oil by evaluating gas shut-off performance by the deterioration multiplication coefficient of a nitrogen gas transmission coefficient in a diaphragm and quantitatively evaluating the amount of consumption of oxygen in the insulating oil using the deterioration multiplication coefficient. <P>SOLUTION: By using nitrogen concentration in oil, data of temperature in the insulating oil with time, and temperature characteristic data the nitrogen gas transmission coefficient of the diaphragm in a non-deteriorated conservator, the amount of penetration of nitrogen gas in the non-deteriorated diaphragm is obtained. The deterioration of an oil electrical apparatus is diagnosed by obtaining the amount of oxygen consumed by the oil electrical apparatus according to a coefficient for evaluating the amount of nitrogen gas comprising the ratio of an actual amount of penetration of nitrogen gas expressed by the product of the amount of penetration of nitrogen gas in the non-deteriorated diaphragm, the amount of change in the nitrogen concentration in oil of the oil electrical apparatus, and the volume of the insulating oil to the amount of penetration of nitrogen gas in the non-deteriorated diaphragm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、油入電気機器の劣化診断方法に係り、特に、絶縁油特性の劣化についての油入電気機器の劣化診断に関する。   The present invention relates to a method for diagnosing deterioration of oil-filled electrical equipment, and more particularly to degradation diagnosis of oil-filled electrical equipment for deterioration of insulating oil characteristics.

従来から、電力コンデンサや変圧器等の油入電気機器には、コンサベータが設けられている。コンサベータは、油入電気機器の内部に密封されている絶縁油が運転時の温度変化によって膨張・収縮を起こす際、その絶縁油の膨張・収縮を吸収し、油入電気機器内部の圧力を一定に保つ装置である。このコンサベータが気密不良を起こすと、油入電気機器内部に気体等(例えば空気)が侵入してしまい、油入電気機器に悪影響を及ぼす。特に、侵入した空気中の酸素が油入電気機器の内部の絶縁油に溶解すると、絶縁油の劣化を促進し、油入電気機器の寿命に大きな影響を及ぼすことが知られている。したがって、油入電気機器の絶縁油の劣化を診断することは、油入電気機器の寿命を予測する上で重要である。   Conventionally, oil-filled electrical devices such as power capacitors and transformers have been provided with conservators. When the insulating oil sealed inside the oil-filled electrical device expands and contracts due to temperature changes during operation, the conservator absorbs the expansion and contraction of the insulating oil and reduces the pressure inside the oil-filled electrical device. It is a device that keeps it constant. When this conservator causes poor airtightness, gas or the like (for example, air) enters the oil-filled electrical device, which adversely affects the oil-filled electrical device. In particular, it is known that when oxygen in the air that has entered dissolves in the insulating oil inside the oil-filled electrical device, the deterioration of the insulating oil is promoted and the life of the oil-filled electrical device is greatly affected. Therefore, diagnosing the deterioration of the insulating oil in the oil-filled electrical device is important for predicting the life of the oil-filled electrical device.

このような油入電気機器の絶縁油の劣化を診断する技術の1つとして、油入電気機器の絶縁油中の窒素ガス濃度から油入電気機器内の固体絶縁物の酸化状態を推定し、絶縁油の劣化診断を行う方法が開示されている(例えば、特許文献1参照)。これは、絶縁油の窒素ガス濃度の増加と絶縁油で消費される酸素量の増加とが定性的に一致することを利用して、窒素ガス濃度から絶縁油で消費される酸素量を評価し、絶縁油の劣化を診断する方法である。
特開2005−223104号公報
As one of the techniques for diagnosing the deterioration of insulating oil in such oil-filled electrical equipment, the oxidation state of the solid insulator in the oil-filled electrical equipment is estimated from the nitrogen gas concentration in the insulating oil of the oil-filled electrical equipment, A method for diagnosing deterioration of insulating oil is disclosed (for example, see Patent Document 1). This is because the increase in the nitrogen gas concentration of the insulating oil and the increase in the amount of oxygen consumed in the insulating oil are qualitatively matched to evaluate the amount of oxygen consumed in the insulating oil from the nitrogen gas concentration. This is a method for diagnosing deterioration of insulating oil.
JP-A-2005-223104

しかし、上記特許文献1に開示の方法には以下の問題がある。   However, the method disclosed in Patent Document 1 has the following problems.

すなわち、油入電気機器の窒素ガス濃度は、絶縁油の温度(以下、油温という)に対して温度依存性を有するため、外気温の上昇や変圧器の負荷増加による発熱によって油温が上昇した場合、これに伴い絶縁油中の窒素ガス濃度も上昇する。したがって、窒素ガス濃度の上昇が、絶縁油の劣化によるものなのか、油温の上昇によるものか正確には判定できなかった。絶縁油中に侵入する酸素量に対する評価も不明確であった。   In other words, the nitrogen gas concentration of oil-filled electrical equipment has a temperature dependency on the temperature of the insulating oil (hereinafter referred to as oil temperature), so the oil temperature rises due to heat generation due to an increase in the outside air temperature or an increase in the load on the transformer In this case, the nitrogen gas concentration in the insulating oil increases accordingly. Therefore, it cannot be accurately determined whether the increase in the nitrogen gas concentration is due to the deterioration of the insulating oil or the increase in the oil temperature. Evaluation of the amount of oxygen entering the insulating oil was also unclear.

また、上記特許文献1の方法は、絶縁油中の窒素ガス濃度と絶縁油中で消費される酸素量との定性的な関係があることを前提とした技術であるが、実際に絶縁油中で消費される酸素量を定量的に評価する方法については解決されていない。そこで本発明は、上記問題点を解決するためになされたものであって、窒素ガス透過係数の劣化増倍係数を利用して、絶縁油で消費される酸素量を定量評価することで、絶縁油の劣化を予測診断し、油入電気機器について精度の高い劣化診断が可能な油入電気機器の劣化診断方法を提供することを目的とする。   The method of Patent Document 1 is a technique based on the premise that there is a qualitative relationship between the nitrogen gas concentration in the insulating oil and the amount of oxygen consumed in the insulating oil. The method for quantitatively evaluating the amount of oxygen consumed in the water is not solved. Accordingly, the present invention has been made to solve the above-mentioned problems, and by using the deterioration multiplication factor of the nitrogen gas permeability coefficient, the amount of oxygen consumed by the insulating oil is quantitatively evaluated, thereby insulating the material. It is an object of the present invention to provide a deterioration diagnosis method for oil-filled electrical equipment capable of predicting and diagnosing oil deterioration and performing highly accurate deterioration diagnosis on oil-filled electrical equipment.

本発明における油入電気機器の劣化診断方法は、隔膜を備えたコンサベータを有するとともにその内部に絶縁油を収納する油入電気機器において、前記絶縁油の油中窒素濃度と、前記絶縁油の油温の関数として与えられる未劣化の隔膜における窒素ガス透過係数とを用いて、未劣化の隔膜を透過して前記絶縁油へ侵入する窒素ガス侵入量を算出し、予め定められた期間における前記油中窒素濃度の変化量と前記絶縁油体積との積から算出される実際に前記絶縁油へ侵入した窒素ガス侵入量と、前記未劣化の隔膜を透過して前記絶縁油へ侵入する窒素ガス侵入量との比から算出される窒素ガス量評価係数を算出する一方、予め定められた期間内に前記絶縁油内で酸化に消費される酸素量を、前記窒素ガス量評価係数と未劣化の隔膜を透過して前記絶縁油へ侵入する酸素の侵入速度から求められる実際に絶縁油へ侵入した酸素の侵入量と、前記絶縁油に溶存する酸素濃度と前記絶縁油の体積との積とから求められる値、との差から求めることを特徴とする。   The oil-filled electrical device deterioration diagnosis method according to the present invention includes an oil-filled electrical device having a conservator having a diaphragm and containing insulating oil therein, the nitrogen concentration of the insulating oil in the oil, and the insulating oil Using the nitrogen gas permeability coefficient in the undegraded diaphragm given as a function of the oil temperature, the amount of nitrogen gas entering through the undegraded diaphragm and entering the insulating oil is calculated. The amount of nitrogen gas intruding into the insulating oil actually calculated from the product of the amount of change in nitrogen concentration in the oil and the volume of the insulating oil, and nitrogen gas entering the insulating oil through the undegraded diaphragm While calculating the nitrogen gas amount evaluation coefficient calculated from the ratio to the intrusion amount, the amount of oxygen consumed for oxidation in the insulating oil within a predetermined period is changed from the nitrogen gas amount evaluation coefficient to the undegraded amount. Before passing through the diaphragm A value obtained from the product of the amount of oxygen that actually penetrates into the insulating oil and the product of the oxygen concentration dissolved in the insulating oil and the volume of the insulating oil, which is obtained from the penetration rate of oxygen that penetrates into the insulating oil. It is characterized by obtaining from the difference.

本発明によれば、窒素ガス透過係数の劣化増倍係数を利用して、絶縁油で消費される酸素量を定量評価することで、絶縁油の劣化を予測診断し、油入電気機器について精度の高い劣化診断を行うことができる。   According to the present invention, the deterioration of the insulating oil is predicted and diagnosed by quantitatively evaluating the amount of oxygen consumed by the insulating oil by using the deterioration multiplication coefficient of the nitrogen gas permeability coefficient, and the accuracy of the oil-filled electrical equipment is improved. High degradation diagnosis can be performed.

(実施例)
以下、本発明の実施形態を、油入電気機器の一例として油入変圧器に適用した場合について図を参照しながら説明する。
(Example)
Hereinafter, a case where an embodiment of the present invention is applied to an oil-filled transformer as an example of an oil-filled electrical device will be described with reference to the drawings.

油入変圧器1の概略構成図を図1に示す。図1において、油入変圧器タンク2の内部には、図示しない変圧器本体を収納するとともに、絶縁油10が満たされている。そして、この変圧器タンク2の上部にはコンサベータ3が設置され、互いに連通管4によって接続されている。このコンサベータ3の内部にはニトリルゴム等の耐油性ゴムを使用した隔膜5がフランジ6で固定設置されている。   A schematic diagram of the oil-filled transformer 1 is shown in FIG. In FIG. 1, an oil-filled transformer tank 2 contains a transformer body (not shown) and is filled with insulating oil 10. A conservator 3 is installed above the transformer tank 2 and connected to each other by a communication pipe 4. Inside the conservator 3, a diaphragm 5 using oil-resistant rubber such as nitrile rubber is fixedly installed with a flange 6.

さらに、この隔膜5はフランジ6を介してコンサベータ3の外部に設けられた配管7と連通する一方、この配管7に取り付けられたブリーザ8を介して外気とも連通している。そして、隔膜5内の空気やその他のガス等の空気ガス(以下、空気という)9をコンサベータ3内の絶縁油10から遮断することで、絶縁油10の劣化を防止する役割を有する。 なお、隔膜5内の空気9の圧力は大気圧となっており、またブリーザ8内には、外気中の湿気が隔膜5内に侵入することを防ぐため、シリカゲル等の乾燥剤が装填されている。   Further, the diaphragm 5 communicates with a pipe 7 provided outside the conservator 3 via a flange 6, and communicates with outside air via a breather 8 attached to the pipe 7. And it has the role which prevents deterioration of the insulating oil 10 by interrupting air gas (henceforth air) 9, such as the air in the diaphragm 5, and other gas, from the insulating oil 10 in the conservator 3. FIG. The pressure of the air 9 in the diaphragm 5 is atmospheric pressure, and a desiccant such as silica gel is loaded in the breather 8 in order to prevent moisture in the outside air from entering the diaphragm 5. Yes.

なお、図1で図示した油入変圧器1のコンサベータ3は、隔膜5を袋状にして内部に空気を満たした形式のコンサベータであるが、シート状にした隔膜5によりコンサベータ3のタンク内を上下に2分(上部側に空気を満たす)するように配置した形式のコンサベータであってもよい。   The conservator 3 of the oil-filled transformer 1 illustrated in FIG. 1 is a conservator of a type in which the diaphragm 5 is formed in a bag shape and filled with air, but the conservator 3 is formed by a sheet-shaped diaphragm 5. It may be a conservator of a type arranged so that the inside of the tank is vertically divided for 2 minutes (the upper side is filled with air).

ここで、コンサベータ3の機能について説明する。   Here, the function of the conservator 3 will be described.

油入変圧器1の絶縁油10の油温は外気温の変動や負荷損による発熱増減によって絶えず変化し、その体積はこの油温の変化に依存する。このため、油入変圧器1では、変圧器タンク2が完全に密封されていると、絶縁油の体積が増加した場合、変圧器タンク2の圧力が上昇し、変圧器タンク2が破損したり、絶縁油10が漏油したりする虞がある。特に、漏油が原因で変圧器タンク2内に空気が進入すると、空気と接した絶縁油10は、スラッジ等の劣化生成物を発生し、絶縁油10の絶縁性能や冷却性能を低下させる。そこで、油入変圧器1では、変圧器タンク2に外気と連通する配管7を設けて外気の圧力(大気圧)と変圧器タンク2の内圧を平衡させるとともに、コンサベータ3内の油体積を変化させることで変圧器の絶縁油10の体積変動の緩衝を行っている。   The oil temperature of the insulating oil 10 of the oil-filled transformer 1 is constantly changed by fluctuations in the outside air temperature and heat generation caused by load loss, and its volume depends on the change in the oil temperature. For this reason, in the oil-filled transformer 1, when the transformer tank 2 is completely sealed, when the volume of the insulating oil increases, the pressure of the transformer tank 2 increases and the transformer tank 2 is damaged. The insulating oil 10 may leak. In particular, when air enters the transformer tank 2 due to oil leakage, the insulating oil 10 in contact with the air generates a degradation product such as sludge, thereby reducing the insulating performance and cooling performance of the insulating oil 10. Therefore, in the oil-filled transformer 1, a pipe 7 communicating with the outside air is provided in the transformer tank 2 to balance the pressure of the outside air (atmospheric pressure) and the inside pressure of the transformer tank 2, and the oil volume in the conservator 3 is reduced. By changing, the volume fluctuation of the insulating oil 10 of the transformer is buffered.

すなわち、コンサベータ3は絶縁油10の体積変化を隔膜5の体積変化に変換することによって、絶縁油10が空気9に曝されることなく変圧器タンク2内の圧力を一定に保ち変圧器タンク2を保護し、絶縁油10がタンクから外部に溢れ出ることを防いでいる。   That is, the conservator 3 converts the volume change of the insulating oil 10 into the volume change of the diaphragm 5 so that the pressure in the transformer tank 2 is kept constant without the insulating oil 10 being exposed to the air 9. 2 and the insulating oil 10 is prevented from overflowing from the tank to the outside.

コンサベータ3の隔膜5に使用されるゴム材は、ガス遮断性能や耐油性に優れるニトリルゴムを基材にしたものが一般的に使用されているが、隔膜5内の空気9を完全に絶縁油から遮断できるわけではない。隔膜5に穴等の欠陥部位がなくても、空気9の気体分子は、隔膜5のゴム材を透過して内部に拡散し、拡散した気体分子が油側に到達して放出されて絶縁油10と接触する。一般的に、コンサベータ3に使用される耐油性のニトリルゴム製隔膜の空気透過率は、ASTM(米国材料試験協会;American Society for Testing and Materials) D1434に記載される方法で測定を行うと10−6cm/cm・min・atmオーダの値である。 The rubber material used for the diaphragm 5 of the conservator 3 is generally based on a nitrile rubber having excellent gas barrier performance and oil resistance, but the air 9 in the diaphragm 5 is completely insulated. It cannot be cut off from oil. Even if there is no defect such as a hole in the diaphragm 5, the gas molecules of the air 9 permeate the rubber material of the diaphragm 5 and diffuse to the inside, and the diffused gas molecules reach the oil side and are released to be insulated oil. 10 is contacted. In general, the air permeability of the oil-resistant nitrile rubber diaphragm used for Conservator 3 is 10 when measured by the method described in ASTM (American Society for Testing and Materials) D1434. It is a value on the order of −6 cm 3 / cm 2 · min · atm.

電力用の油入変圧器は、20年以上の機器としての寿命が期待される。このため長期間の使用においては、隔膜5の空気透過率が微少であっても、その運転期間中の油入変圧器1への空気侵入量を積算すると、その量は無視できない。特に、空気9中の酸素の侵入は油入変圧器1内の絶縁油10の劣化、それによる油入変圧器1の寿命に大きく影響を及ぼす。   Oil-filled transformers for electric power are expected to have a life of 20 years or longer. For this reason, even if the air permeability of the diaphragm 5 is very small during long-term use, if the amount of air entering the oil-filled transformer 1 during the operation period is integrated, the amount cannot be ignored. In particular, the intrusion of oxygen in the air 9 greatly affects the deterioration of the insulating oil 10 in the oil-filled transformer 1 and thereby the life of the oil-filled transformer 1.

よって、絶縁油10の劣化を予測するには、酸化劣化の原因となる油入変圧器1へ侵入する酸素量、すなわち絶縁油に侵入する酸素量を把握することは非常に重要となる。なお、図1で説明したように、変圧器タンク2内には絶縁油10が満たされており、隔膜5は直接絶縁油10と接触していることから、以下の説明において、「〜変圧器1へ侵入する〜」や「〜変圧器タンク2内に侵入する〜」なる記載は「〜変圧器1内の絶縁油10に侵入する〜」や「〜変圧器タンク2内の絶縁油10に侵入する〜」なる意であることを定義しておく。   Therefore, in order to predict the deterioration of the insulating oil 10, it is very important to know the amount of oxygen that enters the oil-filled transformer 1 that causes oxidation deterioration, that is, the amount of oxygen that enters the insulating oil. As described with reference to FIG. 1, the transformer tank 2 is filled with the insulating oil 10, and the diaphragm 5 is in direct contact with the insulating oil 10. The description of “invading into 1” or “intruding into the transformer tank 2” is “to enter into the insulating oil 10 in the transformer 1” or “to the insulating oil 10 in the transformer tank 2”. It is defined that it means “invading”.

以下、窒素ガス量評価係数A<N2>を用いて、空気9中の酸素が隔膜5を透過して油入変圧器タンク2内に侵入する場合の侵入速度と侵入した酸素の絶縁油10での消費量を評価することで、絶縁油10の劣化診断を行う方法について説明する。   Hereinafter, using the nitrogen gas amount evaluation coefficient A <N2>, the penetration speed when oxygen in the air 9 penetrates the diaphragm 5 and enters the oil-filled transformer tank 2 and the insulating oil 10 of the penetrated oxygen A method for diagnosing deterioration of the insulating oil 10 by evaluating the consumption amount of oil will be described.

まず、隔膜5の窒素ガス透過係数k<N2新>を算出する。窒素ガス透過係数k<N2新>とは、隔膜5が劣化していない状態でのガス透過係数である。ここで、劣化していない状態とは、隔膜に穴も傷も生じていない状態を意味しており、未使用であるか否かは問わない。   First, the nitrogen gas permeability coefficient k <N2 new> of the diaphragm 5 is calculated. The nitrogen gas permeability coefficient k <N2 new> is a gas permeability coefficient when the diaphragm 5 is not deteriorated. Here, the state which has not deteriorated means the state in which neither a hole nor a damage | wound has arisen in the diaphragm, and it does not ask | require whether it is unused.

コンサベータ3内での隔膜5の空気に接する表面積をS、隔膜5の厚さをdとする。油入変圧器1に対する、単位時間当たりの空気中の窒素ガスの侵入量、すなわち窒素侵入速度(F<N2>)は、以下で表される。   The surface area of the diaphragm 5 in contact with the air in the conservator 3 is S, and the thickness of the diaphragm 5 is d. The penetration amount of nitrogen gas in the air per unit time with respect to the oil-filled transformer 1, that is, the nitrogen penetration rate (F <N2>) is expressed as follows.

F<N2> = k<N2新>・S/d・(P<N2空気>−P<N2油>)・・・・(1)
ここで、P<N2空気>、P<N2油>は、それぞれ空気中(1atm=101,325Pa)、油中の窒素のガス分圧であり、P<N2空気>は定数と見なせる。また、油中窒素ガス分圧P<N2油>は、油中窒素濃度[N2油]に比例し、絶縁油における窒素のオストワルドの吸収係数をC<N2>、空気中(1atm)の窒素濃度をそれぞれ[N2空気](定数)とすると、以下で表される。
F <N2> = k <N2 new>. S / d. (P <N2 air> -P <N2 oil>) (1)
Here, P <N2 air> and P <N2 oil> are gas partial pressures of nitrogen in the air (1 atm = 101, 325 Pa) and oil, respectively, and P <N2 air> can be regarded as a constant. Moreover, the nitrogen gas partial pressure P <N2 oil> in oil is proportional to the nitrogen concentration in oil [N2 oil], the Ostwald absorption coefficient of nitrogen in the insulating oil is C <N2>, and the nitrogen concentration in the air (1 atm) Is represented as [N2 air] (constant), respectively.

P<N2油> = (P<N2空気>/C<N2>)・([N2油]/[N2空気]空気)・・・・(2)
絶縁油10のオストワルドの吸収係数C<N2>については、例えばASTM D2779−92(2002)において窒素や酸素ガスに対する値が温度の関数として定式化されており、これを用いればよい。油中窒素ガス分圧P<N2油>を窒素侵入速度F<N2>の式に代入すると以下で表される。
F<N2>=S/d・P<N2空気>・k<N2新>・[1−[N2油]/(C<N2> ・[N2空気])]・・・・(3)
このように、窒素ガス透過係数k<N2新>、オストワルドの吸収係数C<N2>、油中窒素濃度[N2油]が変数となる。上述のように、窒素ガス透過係数k<N2>、オストワルドの吸収係数C<N2>は油温の関数として求めるが、例えばASTMにおいて窒素に対する値が温度の関数として定式化されており、これを用いればよい。油中窒素濃度[N2油]は実際の絶縁油10をガス分析することによって求められる。
P <N2 oil> = (P <N2 air> / C <N2>). ([N2 oil] / [N2 air] air) (2)
As for the Ostwald absorption coefficient C <N2> of the insulating oil 10, values for nitrogen and oxygen gas are formulated as a function of temperature in, for example, ASTM D2779-92 (2002), and this may be used. Substituting the nitrogen gas partial pressure P <N2 oil> in the oil into the formula of the nitrogen penetration rate F <N2>, it is expressed as follows.
F <N2> = S / d.P <N2 air> .k <N2 new>. [1- [N2 oil] / (C <N2>. [N2 air])] ... (3)
Thus, the nitrogen gas permeability coefficient k <N2 new>, the Ostwald absorption coefficient C <N2>, and the nitrogen concentration in oil [N2 oil] are variables. As described above, the nitrogen gas permeability coefficient k <N2> and the Ostwald absorption coefficient C <N2> are obtained as a function of the oil temperature. For example, in ASTM, the value for nitrogen is formulated as a function of the temperature. Use it. The nitrogen concentration in oil [N2 oil] is obtained by gas analysis of the actual insulating oil 10.

変圧器への窒素ガス侵入量Q<N2>は、窒素侵入速度F<N2>を時間積分すればよく
Q <N2> = ∫F<N2> dt・・・・(4)
で求められる。この窒素ガス侵入量Q<N2>、窒素侵入速度F<N2>は、導出に使用した窒素ガス透過係数k<N2新>が、隔膜5が劣化していない状態の値であることから、それぞれ未劣化状態の隔膜5を透過して変圧器へ進入する際の窒素ガス侵入速度、及び侵入量である。
The nitrogen gas penetration amount Q <N2> into the transformer may be obtained by integrating the nitrogen penetration speed F <N2> over time. Q <N2> = ∫F <N2> dt (4)
Is required. The nitrogen gas penetration amount Q <N2> and the nitrogen penetration speed F <N2> are values of the state in which the diaphragm 5 is not deteriorated because the nitrogen gas permeability coefficient k <N2 new> used for derivation is These are the nitrogen gas intrusion speed and the amount of intrusion when entering the transformer through the undegraded diaphragm 5.

ここで、ある期間における変圧器への窒素ガス侵入量は、式(4)についてはその期間の時間積分を行って求めることができる。   Here, the nitrogen gas intrusion amount into the transformer in a certain period can be obtained by performing time integration of the period for the expression (4).

また、実際の窒素ガス侵入量Q<N2実>については、その期間における油中窒素濃度の増加量Δ([N2油])を測定し、これに、油入変圧器の油体積Vとの積を取ることによって、以下で求めることができる。   In addition, for the actual nitrogen gas intrusion amount Q <N2 actual>, the increase amount Δ ([N2 oil]) of the nitrogen concentration in oil during that period is measured, and this is compared with the oil volume V of the oil-filled transformer. By taking the product, we can find

Q<N2実> = Δ([N2油])・V ・・・・(5)
窒素ガス侵入量Q<N2>に対する実際の窒素ガス侵入量Q<N2実>の比をA<N2>とし、以下に表す。
Q <N2 actual> = Δ ([N2 oil]) · V (5)
The ratio of the actual nitrogen gas intrusion amount Q <N2 actual> to the nitrogen gas intrusion amount Q <N2> is represented as A <N2>.

A<N2> = Q<N2実>/Q<N2> = m・α<N2>・・・・(6)
このA<N2>を窒素ガス量評価係数とする。ここで、mは、油中窒素濃度[N2油]や油体積V等の測定誤差、評価誤差に関する係数であり、同一の変圧器では常数として扱い、誤差が無い理想的な場合にはm=1となる。
A <N2> = Q <N2 actual> / Q <N2> = M · α <N2> (6)
Let A <N2> be the nitrogen gas amount evaluation coefficient. Here, m is a coefficient relating to measurement error and evaluation error such as nitrogen concentration in oil [N2 oil] and oil volume V, and is treated as a constant in the same transformer, and in an ideal case with no error, m = 1

α<N2>は、コンサベータ隔膜の劣化による窒素ガス透過係数の増倍率で、
α<N2> =k<N2劣>/k<N2新>・・・・(7)
となる。
α <N2> is the multiplication factor of the nitrogen gas permeability coefficient due to deterioration of the conservator diaphragm,
α <N2> = K <N2 inferior> / k <N2 new> (7)
It becomes.

次に、油入変圧器1に対する酸素ガスの侵入速度F<O2>及び侵入量Q<O2>を考えるとき、式(1)(3)(4)における窒素ガスに関する項目を酸素ガスに置き換えれば良く、以下で表される。   Next, when considering the oxygen gas penetration rate F <O2> and the penetration amount Q <O2> into the oil-filled transformer 1, the items relating to nitrogen gas in the equations (1), (3), and (4) should be replaced with oxygen gas. Well represented by:

F<O2> = k<O2新>・S/d・(P<O2空気>−P<O2油>)
=S/d・P<O2空気>・k<O2新>・[1−[O2油]/(C<O2> ・[O2空気])]・・・(8)
Q<O2> = ∫F<O2> dt・・・・(9)
ここで、P<O2空気>、P<O2油>は、空気中(1atm=101,325Pa)、油中の酸素ガス分圧であり、P<O2空気>は定数である。C<O2>は絶縁油10における酸素のオストワルドの吸収係数であり、例えばASTMにおいて酸素ガスに対する値が温度の関数として定式化されているので、これを用いればよい。[O2空気]、[O2油]はそれぞれ空気中、絶縁油中の酸素濃度である。k<O2新>は、劣化していない隔膜5の酸素ガス透過係数とし、その値は温度に依存するため、変圧器で想定される油温度範囲の温度依存性のデータを予め取得しておく。ここで、Sはコンサベータ3内での隔膜5の空気に接する表面積を、dは隔膜5の厚さである。
F <O2> = k <O2 new> .S / d. (P <O2 air> -P <O2 oil>)
= S / d · P <O2 air> · k <O2 new> · [1- [O2 oil] / (C <O2> · [O2 air])] (8)
Q <O2> = ∫F <O2> dt (9)
Here, P <O2 air> and P <O2 oil> are oxygen gas partial pressures in the air (1 atm = 101, 325 Pa) and oil, and P <O2 air> is a constant. C <O2> is an Ostwald absorption coefficient of oxygen in the insulating oil 10. For example, a value for oxygen gas is formulated as a function of temperature in ASTM, and this may be used. [O2 air] and [O2 oil] are oxygen concentrations in air and insulating oil, respectively. k <O2 new> is the oxygen gas permeation coefficient of the diaphragm 5 which has not deteriorated, and the value depends on the temperature. Therefore, data on the temperature dependence of the oil temperature range assumed in the transformer is acquired in advance. . Here, S is the surface area of the diaphragm 5 in contact with the air in the conservator 3, and d is the thickness of the diaphragm 5.

式(8)、(9)の酸素ガス透過係数k<O2>は、隔膜5が劣化していない状態の値を用いている。ここで、隔膜5が劣化した場合において、窒素ガス透過係数の増倍率が窒素ガスの場合と酸素ガスの場合とで変化がないものとすると、式(6)の窒素ガス量評価係数A<N2>を用いて、隔膜5の劣化を考慮した実際の酸素ガスの変圧器への侵入速度F<O2実>及び侵入量Q<O2実>は、以下で表される。   As the oxygen gas permeability coefficient k <O2> in the equations (8) and (9), a value in a state where the diaphragm 5 is not deteriorated is used. Here, when the diaphragm 5 is deteriorated, assuming that the multiplication factor of the nitrogen gas permeability coefficient does not change between the case of nitrogen gas and the case of oxygen gas, the nitrogen gas amount evaluation coefficient A <N2 in the equation (6) >, The actual oxygen gas penetration speed F <O2 actual> and the intrusion amount Q <O2 actual> into the transformer in consideration of the deterioration of the diaphragm 5 are expressed as follows.

F<O2実>=A<N2>・F<O2> ・・・・(10)
Q<O2実>=∫F<O2実>dt = ∫(A<N2>・F<O2>)dt・・・・(11)
ある期間に絶縁油中で酸化によって消費される酸素量E<O2>は、その期間で式(11)を時間積分するとともに、その期間における変圧器の酸素濃度の変化量Δ([O2油])から求められ、
E<O2> = Q<O2実>−Δ([O2油])・V ・・・・(12)
として評価することが可能である。ここで、Vは油入変圧器1中の絶縁油10の油体積である。
F <O2 actual> = A <N2> · F <O2> (10)
Q <O2 actual> = ∫F <O2 actual> dt = ∫ (A <N2> · F <O2>) dt ··· (11)
The amount of oxygen E <O2> consumed by oxidation in the insulating oil in a certain period is obtained by integrating the expression (11) over time during that period, and the amount of change Δ ([O2 oil] in the transformer oxygen concentration during that period. )
E <O2> = Q <O2 actual> -Δ ([O2 oil]) · V (12)
Can be evaluated as Here, V is the oil volume of the insulating oil 10 in the oil-filled transformer 1.

次に、具体的に、酸素消費量を用いた変圧器油の劣化診断方法を示したフローチャートを用いて、本実施形態の診断方法を説明する。まず、診断を開始する前に、予め、劣化していない隔膜5の酸素ガス侵入速度F<O2>と酸素ガス侵入量Q<O2>を測定しておく。   Next, the diagnosis method of the present embodiment will be described specifically using a flowchart showing a transformer oil deterioration diagnosis method using oxygen consumption. First, before the diagnosis is started, the oxygen gas intrusion speed F <O2> and the oxygen gas intrusion amount Q <O2> of the diaphragm 5 that has not deteriorated are measured in advance.

測定を開始し(ステップS50)、始めに、窒素ガス量評価係数A<N2>を算出する(ステップS51)。その後、式(10)に基づいて実際の酸素ガス侵入速度F<O2実>(ステップS52)を、また、式(11)に基づいて実際の酸素ガス侵入量Q<O2実>(ステップS53)を算出する。これらの値を式(12)に代入して、酸素消費量E<O2>を算出する(ステップS54)。   Measurement is started (step S50), and first, a nitrogen gas amount evaluation coefficient A <N2> is calculated (step S51). Thereafter, the actual oxygen gas penetration rate F <O2 actual> (step S52) based on the equation (10), and the actual oxygen gas penetration amount Q <O2 actual> (step S53) based on the equation (11). Is calculated. By substituting these values into equation (12), the oxygen consumption E <O2> is calculated (step S54).

算出結果の時間変化を観察することにより、ある時期において酸素消費量E<O2>が増加していないか否か判定する(ステップS55)。酸素消費量E<O2>が増加していない場合、絶縁油10に劣化がないと判断する(ステップS56)。一方、ある期間において、酸素消費量E<O2>が増加している場合は、絶縁油10に劣化があると判断する(ステップS57)。なお、求めた酸素消費量と時間との関係を外挿することにより将来の絶縁油10の酸素消費量E<O2>を予測することもできる。   By observing the temporal change of the calculation result, it is determined whether or not the oxygen consumption E <O2> has increased at a certain time (step S55). If the oxygen consumption E <O2> has not increased, it is determined that the insulating oil 10 is not deteriorated (step S56). On the other hand, if the oxygen consumption E <O2> has increased in a certain period, it is determined that the insulating oil 10 has deteriorated (step S57). It is also possible to predict the future oxygen consumption E <O2> of the insulating oil 10 by extrapolating the relationship between the obtained oxygen consumption and time.

さらに、増加した酸素消費量E<O2>を予め試験等によって得られたデータに基づいて定めた管理値を超えるか否かによって、油入変圧器1の寿命を判定することも可能である(ステップS58)。すなわち、酸素消費量E<O2>が管理値を超えていない場合には、油入変圧器1の絶縁油は寿命に至っておらず、継続して使用可能であると判定する(ステップS59)とともに、酸素消費量E<O2>が管理値を超えた場合には、絶縁油は寿命に至っていると判定するのである(ステップS60)。   Furthermore, it is also possible to determine the life of the oil-filled transformer 1 based on whether or not the increased oxygen consumption E <O2> exceeds a management value determined based on data obtained in advance through tests or the like ( Step S58). That is, when the oxygen consumption E <O2> does not exceed the control value, it is determined that the insulating oil of the oil-filled transformer 1 has not reached the end of its life and can be used continuously (step S59). When the oxygen consumption E <O2> exceeds the control value, it is determined that the insulating oil has reached the end of life (step S60).

以上のステップより、酸素消費量E<O2>を用いた絶縁油10の劣化診断は終了する(ステップS61)。   From the above steps, the deterioration diagnosis of the insulating oil 10 using the oxygen consumption amount E <O2> is completed (step S61).

本実施の形態においては、次のような作用効果を生じる。   In the present embodiment, the following operational effects are produced.

油入変圧器1の絶縁油10の劣化度は、絶縁油10への実際の酸素ガスの侵入速度F<O2実>、侵入量Q<O2実>絶縁油10での酸素の消費量E<O2>は、[O2油]、油温Tと窒素ガス量評価係数A<N2>の経時データと、劣化していない隔膜5の酸素ガス透過係数k<O2新>の油温依存性が把握できていれば、評価することが可能となる。また、酸素ガスの侵入量Q<O2実>、酸素消費量E<O2>O2の経時変化を観察することにより、将来に渡る変圧器への酸素透過量や消費量を予測することも可能である。 The deterioration degree of the insulating oil 10 of the oil-filled transformer 1 is determined by the actual oxygen gas penetration rate F <O2 actual>, the intrusion amount Q <O2 actual> into the insulating oil 10, and the oxygen consumption E in the insulating oil 10. <O2> is the oil temperature dependence of [O2 oil], oil temperature T and nitrogen gas amount evaluation coefficient A <N2> time-lapse data, and oxygen gas permeability coefficient k <O2 new> of the diaphragm 5 that has not deteriorated. If it is understood, it will be possible to evaluate. It is also possible to predict the amount of oxygen permeation and consumption into the transformer in the future by observing changes in oxygen gas penetration Q <O2 actual> and oxygen consumption E <O2> O2 over time. is there.

上述の酸素量を評価することと平行して、絶縁油10の各種特性(体積抵抗率、誘電正接、粘度、帯電度)と酸素消費量E<O2>との関係の経時変化を、予め加熱劣化試験等によってデータを取得することにより、今後の油入変圧器1の油特性変化の動向を予測することが可能となる。これによって、各種油特性の管理値を設けることが可能となり、その寿命診断を行うことが可能となる。   In parallel with the above-described evaluation of the amount of oxygen, the temporal change in the relationship between the various characteristics (volume resistivity, dielectric loss tangent, viscosity, charge degree) of the insulating oil 10 and the oxygen consumption E <O2> is pre-heated. By acquiring data through a deterioration test or the like, it is possible to predict the future trend of changes in the oil characteristics of the oil-filled transformer 1. This makes it possible to provide management values for various oil characteristics and to perform life diagnosis thereof.

なお、酸素消費量E<O2>と絶縁油10の各種特性の関係の経時変化を、予め加熱劣化試験等によって取得する際に使用する絶縁油10は、診断対象の油入変圧器と同一種類であることはもちろんであるが、対象変圧器から採油された経年油であれば絶縁油の劣化試験はより実際に即したものとなり、精度の高い診断を行うことが可能となる。   The insulating oil 10 used when acquiring the temporal change in the relationship between the oxygen consumption E <O2> and various characteristics of the insulating oil 10 in advance by a heat deterioration test or the like is the same type as the oil-filled transformer to be diagnosed. Of course, if it is an aged oil collected from the target transformer, the deterioration test of the insulating oil is more realistic, and a highly accurate diagnosis can be performed.

なお、油温や酸素ガス濃度[O2油]の測定箇所であるが、式(7)〜(11)の導出においては、コンサベータ3内での酸素ガス透過に関する現象であることから、油入変圧器タンク2内の油温、油中酸素濃度とするのが望ましい。一方、式(12)中の変圧器の酸素濃度の変化量Δ([O2油])に関しては、変圧器タンク2の油中酸素濃度とするか、変圧器タンク2やコンサベータ3等の各部位の油体積を考慮した体積平均値を用いるのが好ましい。   Although the oil temperature and oxygen gas concentration [O2 oil] are measured, the derivation of the equations (7) to (11) is a phenomenon related to oxygen gas permeation in the conservator 3. It is desirable to set the oil temperature and the oxygen concentration in the oil in the transformer tank 2. On the other hand, regarding the change amount Δ ([O2 oil]) of the oxygen concentration of the transformer in the equation (12), the oxygen concentration in the oil in the transformer tank 2 or the transformer tank 2, the conservator 3, etc. It is preferable to use a volume average value in consideration of the oil volume of the part.

このように、窒素ガス透過係数の劣化増倍係数を利用して、油入電気機器の絶縁油10で消費される酸素量を定量評価することで、絶縁油10の劣化を予測診断することが可能となり、油入電気機器に対して精度の高い劣化予測診断を行うことができる。   As described above, the deterioration of the insulating oil 10 can be predicted and diagnosed by quantitatively evaluating the amount of oxygen consumed in the insulating oil 10 of the oil-filled electrical device by using the deterioration multiplication coefficient of the nitrogen gas permeability coefficient. This makes it possible to perform highly accurate deterioration prediction diagnosis for oil-filled electrical equipment.

本発明の実施形態に係る油入変圧器を示す図。The figure which shows the oil-filled transformer which concerns on embodiment of this invention. 酸素消費量を用いた変圧器油の劣化診断方法を示したフローチャート。The flowchart which showed the deterioration diagnosis method of the transformer oil using oxygen consumption.

符号の説明Explanation of symbols

1・・・・油入変圧器
2・・・・変圧器タンク
3・・・・コンサベータ
4・・・・連通管
5・・・・隔膜
6・・・・フランジ
7・・・・配管
8・・・・ブリーザ
9・・・・空気
10・・・・絶縁油
DESCRIPTION OF SYMBOLS 1 ... Oil-filled transformer 2 ... Transformer tank 3 ... Conservator 4 ... Communication pipe 5 ... Diaphragm 6 ... Flange 7 ... Piping 8 .... Breather 9 ... Air 10 ... Insulating oil

Claims (6)

隔膜を備えたコンサベータを有するとともにその内部に絶縁油を収納する油入電気機器において、
前記絶縁油の油中窒素濃度と、前記絶縁油の油温の関数として与えられる未劣化の隔膜における窒素ガス透過係数とを用いて、未劣化の隔膜を透過して前記絶縁油へ侵入する窒素ガス侵入量を算出し、
予め定められた期間における前記油中窒素濃度の変化量と前記絶縁油体積との積から算出される実際に前記絶縁油へ侵入した窒素ガス侵入量と、前記未劣化の隔膜を透過して前記絶縁油へ侵入する窒素ガス侵入量との比から算出される窒素ガス量評価係数を算出する一方、
予め定められた期間内に前記絶縁油内で酸化に消費される酸素量を、前記窒素ガス量評価係数と未劣化の隔膜を透過して前記絶縁油へ侵入する酸素の侵入速度から求められる実際に絶縁油へ侵入した酸素の侵入量と、前記絶縁油に溶存する酸素濃度と前記絶縁油の体積との積とから求められる値、との差から求めることを特徴とする油入電気機器の劣化診断方法。
In an oil-filled electrical device having a conservator with a diaphragm and storing insulating oil therein,
Nitrogen that permeates through the undegraded diaphragm and enters the insulating oil using the nitrogen concentration in the oil of the insulating oil and the nitrogen gas permeability coefficient in the undegraded diaphragm given as a function of the oil temperature of the insulating oil Calculate the amount of gas intrusion,
The nitrogen gas intrusion amount actually infiltrated into the insulating oil calculated from the product of the amount of change in the nitrogen concentration in the oil and the volume of the insulating oil in a predetermined period, and the permeation through the undegraded diaphragm While calculating the nitrogen gas amount evaluation coefficient calculated from the ratio with the nitrogen gas intrusion amount that penetrates into the insulating oil,
The amount of oxygen consumed for oxidation in the insulating oil within a predetermined period is actually determined from the nitrogen gas amount evaluation coefficient and the penetration rate of oxygen penetrating into the insulating oil through the undegraded diaphragm. An oil-filled electrical device characterized in that it is obtained from the difference between the amount of oxygen that has penetrated into the insulating oil and the value obtained from the product of the concentration of oxygen dissolved in the insulating oil and the volume of the insulating oil. Degradation diagnosis method.
前記実際に絶縁油へ侵入した酸素の侵入量を、実際に絶縁油へ侵入する酸素の侵入速度を予め定められた期間で時間積分することにより算出し、
前記実際に絶縁油へ侵入する酸素の侵入速度を、前記窒素ガス量評価係数と未劣化の隔膜を透過して前記絶縁油へ侵入する酸素の侵入速度との積で算出することを特徴とする請求項1記載の油入電気機器の劣化診断方法。
The amount of oxygen that has actually penetrated into the insulating oil is calculated by time-integrating the penetration rate of oxygen that actually penetrates into the insulating oil over a predetermined period,
The penetration rate of oxygen that actually penetrates into the insulating oil is calculated by the product of the nitrogen gas amount evaluation coefficient and the penetration rate of oxygen that penetrates the undegraded diaphragm and penetrates into the insulating oil. The deterioration diagnosis method for oil-filled electrical equipment according to claim 1.
前記未劣化の隔膜を透過して前記絶縁油へ侵入する酸素の侵入速度を、前記絶縁油の油中酸素濃度と、前記絶縁油の油温の関数として与えられる未劣化の隔膜における酸素ガス透過係数とを用いて算出することを特徴とする請求項1または2に記載の油入電気機器の劣化診断方法。   Oxygen gas permeation through the undegraded diaphragm given the rate of oxygen permeation through the undegraded diaphragm and into the insulating oil as a function of the oxygen concentration in the oil of the insulating oil and the oil temperature of the insulating oil The deterioration diagnosis method for oil-filled electrical equipment according to claim 1, wherein the deterioration diagnosis method is calculated using a coefficient. 前記絶縁油内で酸化に消費される酸素量の値が増加した場合、前記絶縁油に劣化があるとすることを特徴とする請求項3記載の油入電気機器の劣化診断方法。   4. The deterioration diagnosis method for oil-filled electrical equipment according to claim 3, wherein when the value of the amount of oxygen consumed for oxidation in the insulating oil increases, the insulating oil is deteriorated. 前記絶縁油内で酸化に消費される酸素量の値が、予め実験により求められた所定の管理値を超過した場合、前記油入電気機器の寿命であるとすることを特徴とする請求項4記載の油入変圧器の劣化診断方法。   5. The life of the oil-filled electrical device when the value of the amount of oxygen consumed for oxidation in the insulating oil exceeds a predetermined control value obtained in advance through experiments. Degradation diagnosis method for oil-filled transformer as described. 前記実際に絶縁油に侵入した酸素の侵入量と、前記絶縁油内で酸化に消費される酸素量と、予め加熱劣化試験によりこれらの酸素量に対する絶縁油の劣化特性の経時データと、を用いて、前記油入電気機器の劣化を予測することを特徴とする請求項5記載の油入変圧器の劣化診断方法。   Using the amount of oxygen that has actually penetrated into the insulating oil, the amount of oxygen consumed for oxidation in the insulating oil, and the time-lapse data of the deterioration characteristics of the insulating oil with respect to these oxygen amounts in advance through a heat deterioration test The deterioration diagnosis method for an oil-filled transformer according to claim 5, wherein deterioration of the oil-filled electrical device is predicted.
JP2008067804A 2008-03-17 2008-03-17 Deterioration diagnosis method of oil electrical apparatus Pending JP2009224579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008067804A JP2009224579A (en) 2008-03-17 2008-03-17 Deterioration diagnosis method of oil electrical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008067804A JP2009224579A (en) 2008-03-17 2008-03-17 Deterioration diagnosis method of oil electrical apparatus

Publications (1)

Publication Number Publication Date
JP2009224579A true JP2009224579A (en) 2009-10-01

Family

ID=41241050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008067804A Pending JP2009224579A (en) 2008-03-17 2008-03-17 Deterioration diagnosis method of oil electrical apparatus

Country Status (1)

Country Link
JP (1) JP2009224579A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102368417A (en) * 2011-11-22 2012-03-07 虞海盈 Recovery method of synthetic oil in internal part of transformer
CN106248912A (en) * 2016-07-21 2016-12-21 广东电网有限责任公司电力科学研究院 A kind of characterizing method of transformer oil ageing
CN107481841A (en) * 2017-09-26 2017-12-15 洛阳市星合特种变压器有限公司 A kind of installation for transformer
TWI682131B (en) * 2018-12-28 2020-01-11 華城電機股份有限公司 Intelligent air-drying system and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102368417A (en) * 2011-11-22 2012-03-07 虞海盈 Recovery method of synthetic oil in internal part of transformer
CN106248912A (en) * 2016-07-21 2016-12-21 广东电网有限责任公司电力科学研究院 A kind of characterizing method of transformer oil ageing
CN107481841A (en) * 2017-09-26 2017-12-15 洛阳市星合特种变压器有限公司 A kind of installation for transformer
CN107481841B (en) * 2017-09-26 2023-05-23 洛阳市星合特种变压器有限公司 Transformer oil pillow
TWI682131B (en) * 2018-12-28 2020-01-11 華城電機股份有限公司 Intelligent air-drying system and method

Similar Documents

Publication Publication Date Title
US9128477B2 (en) Bushing diagnosis
US11450918B2 (en) Battery module gas sensor for battery cell monitoring
US7516651B2 (en) Method and apparatus to determine moisture content in solid insulation
CN110045243B (en) Method for evaluating thermal aging state of transformer bushing
KR20180024545A (en) Battery management system
JP2009224579A (en) Deterioration diagnosis method of oil electrical apparatus
EP2113929B1 (en) Method and device for determining the relative humidity of an insulating liquid filled electric apparatus
CN109374672A (en) A kind of in-situ detection method of lithium battery interior electrolysis liquid hold-up
JP2019102694A (en) Transformer diagnostic system, transformer diagnostic method, and transformer
García et al. A multiphysical model to study moisture dynamics in transformers
RU2007112778A (en) METHOD FOR TESTING ELECTRICAL STRENGTH INSULATION OF SURFACE CABLE
JP2013044714A (en) Lifetime diagnosis method of electrolytic capacitor
JP5341376B2 (en) Degradation diagnosis method for oil-filled electrical equipment
JP4888402B2 (en) Remaining life diagnosis method for oil-filled transformers
KR101546805B1 (en) Failure predicting and detection system for heat transfer circulation system
JP6101181B2 (en) Turbine oil life prediction method
KR102518070B1 (en) Method for evaluating the hydrogen permeation properties of the sample
CN105784977B (en) A kind of power transformer method for evaluating reliability
CN106019091B (en) power system transformer performance evaluation system
WO2016006994A1 (en) Electronic device for online monitoring of the moisture content of the paper of a potential transformer subjected to overloading, diagnosis of the safe operating time therein, and corresponding method
Andersen et al. Permeability of methane, carbon dioxide and water in PA11 and PVDF used for flexible pipes
Shahsiah et al. A new dynamic model for propagation of characteristic gases in transformer oil-cellulose structures due to temperature variations
JP2012032332A (en) Method of diagnosing lifetime of electrolytic capacitor
Danylov et al. An experimental assessment of the intermittent heating and cooling operation effect on power transformer insulation
JP2009294049A (en) Apparatus and method for determining air tightness