JP5236875B2 - Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same - Google Patents

Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same Download PDF

Info

Publication number
JP5236875B2
JP5236875B2 JP2006341368A JP2006341368A JP5236875B2 JP 5236875 B2 JP5236875 B2 JP 5236875B2 JP 2006341368 A JP2006341368 A JP 2006341368A JP 2006341368 A JP2006341368 A JP 2006341368A JP 5236875 B2 JP5236875 B2 JP 5236875B2
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
secondary battery
lithium
negative electrode
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006341368A
Other languages
Japanese (ja)
Other versions
JP2008153118A (en
Inventor
石川  仁志
功二 宇津木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Envision AESC Energy Devices Ltd
Original Assignee
NEC Energy Devices Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Energy Devices Ltd filed Critical NEC Energy Devices Ltd
Priority to JP2006341368A priority Critical patent/JP5236875B2/en
Publication of JP2008153118A publication Critical patent/JP2008153118A/en
Application granted granted Critical
Publication of JP5236875B2 publication Critical patent/JP5236875B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水電解液及びそれを用いた非水電解液二次電池に関する。   The present invention relates to a non-aqueous electrolyte and a non-aqueous electrolyte secondary battery using the same.

負極に炭素材料、酸化物、リチウム合金またはリチウム金属を用いた非水電解液リチウムイオンまたはリチウム二次電池は、高いエネルギー密度を実現できることから携帯電話ノートパソコン用などの電源として注目されている。この二次電池において、負極の表面には表面膜、保護膜、SEI(Solid Electrolyte Interface:固体電解質界面)または皮膜等と呼ばれる膜(以下、表面膜とも呼ぶ)が生成することが知られている。この表面膜は、充放電効率、サイクル寿命、安全性に大きな影響を及ぼすことから負極の高性能化には表面膜の制御が不可欠であることが知られている。炭素材料、酸化物材料についてはその不可逆容量の低減が必要であり、リチウム金属、合金負極においては充放電効率の低下とデンドライト(樹枝状結晶)生成による安全性の問題を解決する必要がある。   Non-aqueous electrolyte lithium ion or lithium secondary batteries using carbon materials, oxides, lithium alloys, or lithium metals for the negative electrode are attracting attention as power sources for mobile phone notebook computers and the like because of their high energy density. In this secondary battery, it is known that a film called a surface film, a protective film, SEI (Solid Electrolyte Interface) or a film (hereinafter also referred to as a surface film) is formed on the surface of the negative electrode. . Since this surface film has a great influence on charge / discharge efficiency, cycle life and safety, it is known that control of the surface film is indispensable for improving the performance of the negative electrode. For carbon materials and oxide materials, it is necessary to reduce the irreversible capacity, and for lithium metal and alloy negative electrodes, it is necessary to solve the problem of safety due to the decrease in charge / discharge efficiency and the generation of dendrites (dendrites).

負極に表面膜を形成させるために種々の電解液用添加剤が提案されてきた。例えば、特許文献1〜3に示すような環状モノスルホン酸エステルが電極表面の表面膜形成能に優れ、電池特性の改善が図れることでよく使われている。また、最近では環状モノスルホン酸エステルを用いたものよりもサイクル特性や保存特性(抵抗上昇の抑制や容量維持率)を向上できることから、特許文献4に示すような環状ジスルホン酸エステルを用いる提案がある。環状ジスルホン酸エステルは、例えば特許文献5に示されるような方法で合成することができる。   In order to form a surface film on the negative electrode, various additives for electrolytic solutions have been proposed. For example, the cyclic monosulfonic acid esters as shown in Patent Documents 1 to 3 are often used because they have excellent surface film forming ability on the electrode surface and can improve battery characteristics. In addition, recently, since cycle characteristics and storage characteristics (suppression of resistance increase and capacity retention rate) can be improved as compared with those using cyclic monosulfonic acid esters, a proposal using cyclic disulfonic acid esters as shown in Patent Document 4 has been proposed. is there. The cyclic disulfonic acid ester can be synthesized by a method as disclosed in Patent Document 5, for example.

特許第2597091号公報Japanese Patent No. 2597091 特開2000−3724号公報JP 2000-3724 A 特開平11−339850号公報JP 11-339850 A 特開2004−281368号公報JP 2004-281368 A 特公平5−44946号公報Japanese Patent Publication No. 5-44946

本発明は、ジスルホン酸エステル化合物の製造工程において、粗合成後最終的に再結晶や昇華精製等を行っているが、十分に乾燥処理を行わず水分含有量が多い場合、ジスルホン酸エステルが加水分解反応を起こして副生成物が生成し、電解液中の支持塩と反応することで電解液が劣化し、これを用いて作製した電池の特性も低下することを見出したものである。 The present invention, in a manufacturing process of disulfonic acid ester compound, as synthesized after finally is performed recrystallization and sublimation purification or the like, sufficient moisture content without drying process is large if, disulfonic acid It has been found that the ester undergoes a hydrolysis reaction to produce a by-product, which reacts with the supporting salt in the electrolytic solution to degrade the electrolytic solution, and the characteristics of the battery produced using this deteriorate. is there.

本発明の課題は、ジスルホン酸エステルを電解液添加剤として用いた場合の電解液において、長期保存しても安定な電解液を得ると共に非水電解液二次電池のサイクル寿命を向上させ、抵抗上昇を抑制し、容量維持率を向上させる非水電解液およびそれを用いた非水電解液二次電池を提供することにある。 An object of the present invention, the electrolyte solution in the case of using the di-sulfonic acid ester as an electrolyte additive, the cycle life of the nonaqueous electrolyte secondary battery improve with obtaining long-term storage was stable electrolytes also, An object of the present invention is to provide a non-aqueous electrolyte that suppresses an increase in resistance and improves a capacity retention rate, and a non-aqueous electrolyte secondary battery using the same.

本発明者らは、ジスルホン酸エステルを含有する非水電解液において、ジスルホン酸エステルの含水量が所定濃度以下となる場合に上記課題が解決されることを見出し本発明に至った。   The present inventors have found that the above-mentioned problems can be solved when the water content of the disulfonic acid ester is a predetermined concentration or less in the non-aqueous electrolyte containing the disulfonic acid ester, and have reached the present invention.

すなわち本発明の非水電解液は、非プロトン性溶媒と、ジスルホン酸エステルとを含む非水電解液において、前記ジスルホン酸エステルの水分含有量が300ppm未満であることを特徴とする。   That is, the nonaqueous electrolytic solution of the present invention is characterized in that in the nonaqueous electrolytic solution containing an aprotic solvent and a disulfonic acid ester, the water content of the disulfonic acid ester is less than 300 ppm.

また本発明の非水電解液は、式(1)で示されるジスルホン酸エステルを含んでいてもよい。 The nonaqueous electrolytic solution of the present invention may contain a disulfonic acid ester represented by the formula (1) .

但し、式(1)において、Qは酸素原子、メチレン基または単結合、Aは、分岐していても良い置換もしくは無置換の炭素数1〜5のアルキレン基、カルボニル基、スルフィニル基、分岐していても良い置換もしくは無置換の炭素数1〜5のパーフルオロアルキレン基、分岐していても良い炭素数2〜6の置換もしくは無置換のフルオロアルキレン基、エーテル結合を含み分岐していても良い置換もしくは無置換の炭素数1〜6のアルキレン基、エーテル結合を含み分岐していても良い置換もしくは無置換の炭素数1〜6のパーフルオロアルキレン基又はエーテル結合を含み分岐していても良い炭素数2〜6の置換もしくは無置換のフルオロアルキレン基を示す。Bは分岐していても良い置換もしくは無置換のアルキレン基、フルオロメチレン基、あるいは酸素原子を示す。 However, in Formula (1) , Q is an oxygen atom, a methylene group or a single bond, A is a substituted or unsubstituted alkylene group having 1 to 5 carbon atoms which may be branched, a carbonyl group, a sulfinyl group, a branched group. A substituted or unsubstituted perfluoroalkylene group having 1 to 5 carbon atoms, which may be branched, a substituted or unsubstituted fluoroalkylene group having 2 to 6 carbon atoms which may be branched, or a branched structure containing an ether bond A good substituted or unsubstituted alkylene group having 1 to 6 carbon atoms, which may be branched including an ether bond, a substituted or unsubstituted perfluoroalkylene group having 1 to 6 carbon atoms or a branched structure containing an ether bond A good substituted or unsubstituted fluoroalkylene group having 2 to 6 carbon atoms is shown. B represents a substituted or unsubstituted alkylene group , fluoromethylene group or oxygen atom which may be branched.

また本発明の非水電解液は、式(2)で示されるジスルホン酸エステルを含んでいてもよい。 The nonaqueous electrolytic solution of the present invention may contain a disulfonic acid ester represented by the formula (2) .

但し、式(2)において、 1 および 4 は、それぞれ独立して、水素原子、置換もしくは無置換の炭素数1〜5のアルキル基、置換もしくは無置換の炭素数1〜5のアルコキシ基、置換もしくは無置換の炭素数1〜5のフルオロアルキル基、炭素数1〜5のポリフルオロアルキル基、−SO21(X1は置換もしくは無置換の炭素数1〜5のアルキル基)、−SY1(Y1は置換もしくは無置換の炭素数1〜5のアルキル基)、−COZ(Zは水素原子、または置換もしくは無置換の炭素数1〜5のアルキル基)、及びハロゲン原子、から選ばれる原子または基を示す。R2およびR3は、それぞれ独立して、置換もしくは無置換の炭素数1〜5のアルキル基、置換もしくは無置換の炭素数1〜5のアルコキシ基、置換もしくは無置換のフェノキシ基、置換もしくは無置換の炭素数1〜5のフルオロアルキル基、炭素数1〜5のポリフルオロアルキル基、置換もしくは無置換の炭素数1〜5のフルオロアルコキシ基、炭素数1〜5のポリフルオロアルコキシ基、水酸基、ハロゲン原子、−NX23(X2及びX3は、それぞれ独立して、水素原子、または置換もしくは無置換の炭素数1〜5のアルキル基) 、及び−NY2CONY34(Y2〜Y4は、それぞれ独立して、水素原子、または置換もしくは無置換の炭素数1〜5のアルキル基)、から選ばれる原子または基を示す。 However, in Formula (2) , R < 1 > and R < 4 > are respectively independently a hydrogen atom, a substituted or unsubstituted C1-C5 alkyl group, a substituted or unsubstituted C1-C5 alkoxy group. , Substituted or unsubstituted fluoroalkyl group having 1 to 5 carbon atoms, polyfluoroalkyl group having 1 to 5 carbon atoms, —SO 2 X 1 (X 1 is a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms) , -SY 1 (Y 1 is a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms), -COZ (Z is a hydrogen atom, or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms), and a halogen atom An atom or group selected from R 2 and R 3 are each independently a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 5 carbon atoms, a substituted or unsubstituted phenoxy group, substituted or An unsubstituted fluoroalkyl group having 1 to 5 carbon atoms, a polyfluoroalkyl group having 1 to 5 carbon atoms, a substituted or unsubstituted fluoroalkoxy group having 1 to 5 carbon atoms, a polyfluoroalkoxy group having 1 to 5 carbon atoms, a hydroxyl group, a halogen atom, -NX 2 X 3 (X 2 and X 3 are each independently a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms), and -NY 2 CONY 3 Y 4 (Y 2 to Y 4 each independently represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms).

さらに本発明の非水電解液は、前記非プロトン性溶媒が、環状カーボネート類、鎖状カーボネート類、脂肪族カルボン酸エステル類、γ−ラクトン類、環状エーテル類、鎖状エーテル類及びそれらのフッ化誘導体からなる群より選択された少なくとも1種類の有機溶媒を含むことが好ましく、前記非水電解液は、更にリチウム塩としてLiPF6、LiBF4、LiAsF6、LiSbF6、LiClO4、LiAlCl4、LiN(Ck2k+1SO22及びLiN(Cn2n+1SO2)(Cm2m+1SO2)(k、n、mは自然数)からなる群より選択された少なくとも1種類を含むことが好ましい。 Further, in the nonaqueous electrolytic solution of the present invention, the aprotic solvent is a cyclic carbonate, a chain carbonate, an aliphatic carboxylic acid ester, a γ-lactone, a cyclic ether, a chain ether, or a fluorine thereof. preferably contains at least one organic solvent selected from the group consisting of derivatives, said non-aqueous electrolyte, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiClO 4, LiAlCl 4 as further lithium salt, Selected from the group consisting of LiN (C k F 2k + 1 SO 2 ) 2 and LiN (C n F 2n + 1 SO 2 ) (C m F 2m + 1 SO 2 ) (k, n and m are natural numbers) It is preferable to include at least one kind.

また、本発明の非水電解液二次電池は、前記非水電解液と少なくとも正極と負極を備え、前記正極の正極活物質としてリチウム含有複合酸化物を含むことが好ましく、前記負極の負極活物質として、リチウムを吸蔵、放出できる材料、リチウム金属、リチウムと合金を形成することができる金属材料、および酸化物材料、からなる群から選択される一または二以上の物質を含むことが好ましく、前記負極活物質が炭素材料を含むことが好ましく、前記炭素材料が黒鉛であってもよいし、前記炭素材料が非晶質炭素であってもよい。   The non-aqueous electrolyte secondary battery of the present invention preferably includes the non-aqueous electrolyte, at least a positive electrode, and a negative electrode, and includes a lithium-containing composite oxide as a positive electrode active material of the positive electrode. Preferably, the substance includes one or more substances selected from the group consisting of materials capable of inserting and extracting lithium, lithium metal, metal materials capable of forming an alloy with lithium, and oxide materials. The negative electrode active material preferably includes a carbon material, and the carbon material may be graphite, or the carbon material may be amorphous carbon.

本発明によれば、非プロトン性溶媒と水分含有量が300ppm以下のジスルホン酸エステルを含む非水電解液を用いることにより、非水電解液二次電池の電解液の分解を抑制することができる。また、本発明によれば、非水電解液二次電池の充放電効率、サイクル寿命を向上させることができる。また、本発明によれば、二次電池の抵抗上昇を抑制することができる。尚、本発明に係る非水電解液は、溶媒に対し水分含有量が300ppm以下のジスルホン酸エステルを溶解させる工程と、リチウム塩を溶解させる工程により簡便で安定的に製造される。   ADVANTAGE OF THE INVENTION According to this invention, decomposition | disassembly of the electrolyte solution of a nonaqueous electrolyte secondary battery can be suppressed by using the nonaqueous electrolyte solution containing an aprotic solvent and the disulfonic acid ester whose water content is 300 ppm or less. . Moreover, according to this invention, the charging / discharging efficiency and cycle life of a nonaqueous electrolyte secondary battery can be improved. Further, according to the present invention, it is possible to suppress an increase in resistance of the secondary battery. The nonaqueous electrolytic solution according to the present invention is simply and stably produced by a step of dissolving a disulfonic acid ester having a water content of 300 ppm or less in a solvent and a step of dissolving a lithium salt.

以下、本発明の非水電解液の構成について説明する。非水電解液は、非プロトン性溶媒と、リチウム塩、及び水分含有量が300ppm以下のジスルホン酸エステルとを含む。上記ジスルホン酸エステルは下記式(1)または式(2)で示される化合物がよい。 Hereinafter, the configuration of the non-aqueous electrolyte of the present invention will be described. The nonaqueous electrolytic solution contains an aprotic solvent, a lithium salt, and a disulfonic acid ester having a water content of 300 ppm or less. The disulfonic acid ester is preferably a compound represented by the following formula (1) or formula (2) .

さらに、上記式(1)で示される化合物の代表例を表1に、式(2)で示される化合物の代表例を表2に具体的に例示するが、本発明はこれらに限定されるものではない。 Further, representative examples of the compound represented by the above formula (1) are specifically exemplified in Table 1, and typical examples of the compound represented by the formula (2) are specifically exemplified in Table 2, but the present invention is limited to these. is not.

上記式(1)または式(2)に示す化合物は、例えば特許文献5に記載される製造方法を用いて得ることができる。 The compound represented by the above formula (1) or formula (2) can be obtained, for example, using the production method described in Patent Document 5.

式(1)または式(2)に示す化合物の電解液に占める割合は特に限定されないが、電解液全体の0.005〜10質量%で含まれることが好ましい。式(1)または式(2)に示す化合物の濃度を0.005質量%以上とすることにより、十分な表面膜の効果を得ることができる。より好ましくは0.01質量%以上添加することにより、電池特性をさらに向上させることができる。また、10質量%以下とすることにより、電解液の粘性の上昇、およびそれに伴う抵抗の増加を抑制することができる。より好ましくは5質量%以下添加することにより、電池特性をさらに向上させることができる。 The proportion of the compound represented by formula (1) or formula (2) in the electrolytic solution is not particularly limited, but it is preferably included in 0.005 to 10% by mass of the entire electrolytic solution. By setting the concentration of the compound represented by the formula (1) or the formula (2) to 0.005% by mass or more, a sufficient surface film effect can be obtained. More preferably, the battery characteristics can be further improved by adding 0.01% by mass or more. Moreover, by setting it as 10 mass% or less, the raise of the viscosity of electrolyte solution and the increase in resistance accompanying it can be suppressed. More preferably, the battery characteristics can be further improved by adding 5% by mass or less.

電解液は、上記式(1)または式(2)で示される化合物に加え、さらにスルホニル基を有する一以上の化合物を含む構成とすることができる。たとえば、下記式(3)で示されるスルトン化合物を含んでもよい。 In addition to the compound represented by the above formula (1) or formula (2) , the electrolytic solution may further include one or more compounds having a sulfonyl group. For example, a sultone compound represented by the following formula (3) may be included.

但し、上記式(3)において、nは0以上2以下の整数である。また、R8〜R13は、水素原子、炭素数1以上12以下のアルキル基、炭素数3以上6以下のシクロアルキル基、炭素数6以上12以下のアリール基から独立に選択される。 However, in the above formula (3) , n is an integer of 0 or more and 2 or less. R 8 to R 13 are independently selected from a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and an aryl group having 6 to 12 carbon atoms.

式(1)または式(2)に示す化合物に加え、式(3)で示されるスルホニル基を有する化合物を加えることにより、電解液の粘度の調整が容易になる。また、スルホニル基を有する化合物を組み合わせて用いることにより相乗効果により、表面膜の安定性が向上する。また、溶媒分子の分解抑制を抑制することができる。また、電解液中の水分の除去効果が大きくなる。 In addition to the compound represented by Formula (1) or Formula (2) , by adding the compound having a sulfonyl group represented by Formula (3) , the viscosity of the electrolytic solution can be easily adjusted. Moreover, the stability of the surface film is improved by a synergistic effect by using a compound having a sulfonyl group in combination. Moreover, decomposition suppression of solvent molecules can be suppressed. In addition, the effect of removing moisture in the electrolytic solution is increased.

スルホニル基を有する化合物としては、具体的には、スルホラン(特開昭60−154478号公報)、1,3−プロパンスルトンや1,4−ブタンスルトン(特開昭62−100948号公報、特開昭63−102173号公報、特開平1 1−339850号公報、特開2000−3724号公報) 、アルカンスルホン酸無水物(特開平10−189041号公報)、γ−スルトン化合物(特開2000−235866号公報) 、スルホレン誘導体(特開2000−294278号公報)などがあげられるが、これらに限定されるものではない。   Specific examples of the compound having a sulfonyl group include sulfolane (Japanese Patent Laid-Open No. 60-154478), 1,3-propane sultone and 1,4-butane sultone (Japanese Patent Laid-Open No. 62-1000094), Japanese Patent 63-102173, JP-A-11-339850, JP-A-2000-3724), alkanesulfonic anhydride (JP-A-10-189041), γ-sultone compound (JP-A 2000-235866). Gazette) and sulfolene derivatives (Japanese Patent Laid-Open No. 2000-294278), but are not limited thereto.

前記式(1)または式(2)に加え、さらにスルホニル化合物を電解液中に添加する場合、たとえば電解液中に0.005質量%以上10質量%以下となるよう添加することができる。0.005質量%以上とすることにより、負極表面において効果的に表面膜を形成することができる。より好ましくは0.01質量%以上とすることができる。また、10質量%以下とすることにより、スルホニル化合物の溶解性が維持され、また電解液の粘性上昇を抑制することができる。より好ましくは、5質量%以下とすることができる。 In addition to the formula (1) or the formula (2) , when a sulfonyl compound is further added to the electrolytic solution, it can be added to the electrolytic solution, for example, in an amount of 0.005 mass% to 10 mass%. By setting it as 0.005 mass% or more, a surface film can be effectively formed in the negative electrode surface. More preferably, it can be 0.01 mass% or more. Moreover, the solubility of a sulfonyl compound is maintained by setting it as 10 mass% or less, and the viscosity raise of electrolyte solution can be suppressed. More preferably, it can be 5 mass% or less.

電解液は、非プロトン性溶媒に式(1)または式(2)に示す化合物、および必要に応じてスルホニル基を有する化合物、リチウム塩や他の添加物を溶解または分散させることにより得られる。性質の異なる添加剤を混合させることにより、負極表面に性質の異なる表面膜を形成させるため、電池特性の向上に有効である。 The electrolytic solution can be obtained by dissolving or dispersing a compound represented by the formula (1) or the formula (2) , a compound having a sulfonyl group, a lithium salt, or other additives as necessary in an aprotic solvent. By mixing additives having different properties, a surface film having different properties is formed on the negative electrode surface, which is effective in improving battery characteristics.

また、電解液に、ビニレンカーボネート(VC)またはその誘導体を添加することにより、非水電解液二次電池のサイクル特性や抵抗上昇抑制効果の改善を図ることができる。ビニレンカーボネートまたはその誘導体は、例えば、特開平4−169075号公報、特開平7−122296号公報、特開平8−45545号公報、特開平5−82138号公報、特開平5−74486号公報、特開平6−52887号公報、特開平11−260401号公報、特開2000−208169号公報、特開2001−35530号公報、特開2000−138071号公報に示される化合物を適宜使用することができる。   Further, by adding vinylene carbonate (VC) or a derivative thereof to the electrolytic solution, it is possible to improve the cycle characteristics and the resistance increase suppressing effect of the non-aqueous electrolyte secondary battery. Examples of vinylene carbonate or derivatives thereof include, for example, JP-A-4-16975, JP-A-7-122296, JP-A-8-45545, JP-A-5-82138, JP-A-5-74486, The compounds shown in JP-A-6-52887, JP-A-11-260401, JP-A-2000-208169, JP-A-2001-35530, and JP-A-2000-138071 can be used as appropriate.

VCまたはその誘導体の添加量は、電解液全体の0.01質量%以上10質量%以下であることが好ましい。0.01質量%以上とすることにより、サイクル特性を好適に発揮させることができ、さらに高温化での保存時の抵抗上昇を抑制することも可能となる。10質量%以下とすることにより、電解液の抵抗値を低くすることができる。   The addition amount of VC or a derivative thereof is preferably 0.01% by mass or more and 10% by mass or less of the entire electrolytic solution. By setting the content to 0.01% by mass or more, the cycle characteristics can be suitably exhibited, and further, it is possible to suppress an increase in resistance during storage at a high temperature. The resistance value of electrolyte solution can be made low by setting it as 10 mass% or less.

電解液において、さらに電解質としてリチウム塩を含む構成とすることができる。こうすることにより、リチウムイオンを移動物質とすることができるため、電池特性を向上させることができる。リチウム塩としてたとえば、LiPF6、LiBF4、LiAsF6、LiSbF6、LiClO4、LiAlCl4、LiN(Ck2k+1SO22及びLiN(Cn2n+1SO2)(Cm2m+1SO2)(k、n、mは自然数)の中から選択された一以上の物質を含む構成とすることができる。また、特にLiPF6またはLiBF4を用いることが好ましい。これらを用いることにより、リチウム塩の電気伝導率を高めることができ、非水電解液二次電池のサイクル特性をさらに向上させることができる。 The electrolyte solution may further include a lithium salt as an electrolyte. In this way, since lithium ions can be used as a mobile substance, battery characteristics can be improved. Examples of lithium salts include LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiClO 4 , LiAlCl 4 , LiN (C k F 2k + 1 SO 2 ) 2 and LiN (C n F 2n + 1 SO 2 ) (C m F 2m + 1 SO 2 ) (k, n, and m are natural numbers) may be included. In particular, it is preferable to use LiPF 6 or LiBF 4 . By using these, the electrical conductivity of the lithium salt can be increased, and the cycle characteristics of the nonaqueous electrolyte secondary battery can be further improved.

非水電解液は、非プロトン性溶媒として、環状カーボネート類、鎖状カーボネート類、脂肪族カルボン酸エステル類、γ−ラクトン類、環状エーテル類、鎖状エーテル類およびこれらのいずれかのフッ素誘導体、からなる群から選択された一または二以上の溶媒を含むことができる。   The non-aqueous electrolyte includes, as an aprotic solvent, cyclic carbonates, chain carbonates, aliphatic carboxylic acid esters, γ-lactones, cyclic ethers, chain ethers, and fluorine derivatives of any of these, One or more solvents selected from the group consisting of can be included.

具体的には、たとえばプロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ−ブチロラクトン等のγ−ラクトン類、1,2−エトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3−ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、N−メチルピロリドン、フッ素化カルボン酸エステル、メチル−2,2,2−トリフルオロエチルカーボネート、メチル−2,2,3,3,3−ペンタフルオロプロピルカーボネート、トリフルオロメチルエチレンカーボネート、モノフルオロメチルエチレンカーボネート、ジフルオロメチルエチレンカーボネート、4,5−ジフルオロ−1,3−ジオキソラン−2−オン、モノフルオロエチレンカーボネートなどのうち、一種または二種以上を混合して使用することができる。   Specifically, for example, cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), chain carbonates such as dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, γ-lactones such as γ-butyrolactone, 1,2-ethoxy Chain ethers such as ethane (DEE) and ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylphenol Rumamide, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, Propylene carbonate derivative, tetrahydrofuran derivative, ethyl ether, N-methylpyrrolidone, fluorinated carboxylic acid ester, methyl-2,2,2-trifluoroethyl carbonate, methyl-2,2,3,3,3-pentafluoropropyl carbonate , Trifluoromethyl ethylene carbonate, monofluoromethyl ethylene carbonate, difluoromethyl ethylene carbonate, 4,5-difluoro-1,3-dioxolan-2-one, monofluoroe Of such alkylene carbonate, it can be used by mixing one or two or more.

以下、本発明の非水電解液二次電池の構成について図面を参照しながら説明する。図1は、本発明の非水電解液二次電池の概略構成図である。   Hereinafter, the configuration of the nonaqueous electrolyte secondary battery of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a non-aqueous electrolyte secondary battery of the present invention.

本発明に係る電池は、たとえば図1のような構造を有する。正極は、正極活物質を含有する層12が正極集電体11に成膜して成る。負極は、負極活物質を含有する層13が負極集電体14上に成膜して成る。これらの正極と負極は、非水電解液、および非水電解液の中の多孔質セパレータ16を介して対向配置されている。多孔質セパレータ16は、負極活物質を含有する層13に対して略平行に配置されている。   The battery according to the present invention has a structure as shown in FIG. The positive electrode is formed by forming a layer 12 containing a positive electrode active material on the positive electrode current collector 11. The negative electrode is formed by forming a layer 13 containing a negative electrode active material on a negative electrode current collector 14. The positive electrode and the negative electrode are disposed to face each other with a non-aqueous electrolyte and a porous separator 16 in the non-aqueous electrolyte. The porous separator 16 is disposed substantially parallel to the layer 13 containing the negative electrode active material.

図1の非水電解液二次電池において、負極活物質を含有する層13に用いる負極活物質には、たとえばリチウム金属、リチウム合金、およびリチウムを吸蔵、放出できる材料、からなる群から選択される一または二以上の物質を用いることができる。リチウムイオンを吸蔵、放出する材料としては、炭素材料または酸化物を用いることができる。   In the non-aqueous electrolyte secondary battery of FIG. 1, the negative electrode active material used for the layer 13 containing the negative electrode active material is selected from the group consisting of, for example, lithium metal, lithium alloy, and a material capable of inserting and extracting lithium. One or more substances can be used. As a material for inserting and extracting lithium ions, a carbon material or an oxide can be used.

炭素材料としては、リチウムを吸蔵する黒鉛、非晶質炭素、ダイヤモンド状炭素、カーボンナノチューブなどを用いることができる。このうち、特に黒鉛材料または非晶質炭素であることが好ましい。特に、黒鉛材料は、電子伝導性が高く、銅などの金属からなる集電体との接着性と電圧平坦性が優れており、高い処理温度によって形成されるため含有不純物が少なく、負極性能の向上に有利であり、好ましい。   As the carbon material, graphite that absorbs lithium, amorphous carbon, diamond-like carbon, carbon nanotube, and the like can be used. Of these, graphite material or amorphous carbon is particularly preferable. In particular, the graphite material has high electron conductivity, excellent adhesion to a current collector made of a metal such as copper, and voltage flatness, and is formed at a high processing temperature, so it contains few impurities and has negative electrode performance. It is advantageous for improvement and is preferable.

また、酸化物としては、酸化シリコン、酸化スズ、酸化インジウム、酸化亜鉛、酸化リチウム、リン酸、ホウ酸のいずれか、あるいはこれらの複合物を用いてもよく、特に酸化シリコンを含むことが好ましい。構造としてはアモルファス状態であることが好ましい。これは、酸化シリコンが安定で他の化合物との反応を引き起こさないため、またアモルファス構造が結晶粒界、欠陥といった不均一性に起因する劣化を導かないためである。成膜方法としては、蒸着法、CVD法、スパッタリング法などの方法を用いることができる。   Further, as the oxide, any of silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, phosphoric acid, boric acid, or a composite thereof may be used, and it is particularly preferable to include silicon oxide. . The structure is preferably in an amorphous state. This is because silicon oxide is stable and does not cause a reaction with other compounds, and the amorphous structure does not lead to deterioration due to nonuniformity such as crystal grain boundaries and defects. As a film forming method, a vapor deposition method, a CVD method, a sputtering method, or the like can be used.

リチウム合金は、リチウムおよびリチウムと合金形成可能な金属により構成される。例えば、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、Laなどの金属とリチウムとの2元または3元以上の合金により構成される。リチウム金属やリチウム合金としては、特にアモルファス状のものが好ましい。これは、アモルファス構造により結晶粒界、欠陥といった不均一性に起因する劣化が起きにくいためである。   The lithium alloy is composed of lithium and a metal capable of forming an alloy with lithium. For example, it is composed of a binary or ternary alloy of a metal such as Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, and lithium. . As the lithium metal or lithium alloy, an amorphous one is particularly preferable. This is because the amorphous structure hardly causes deterioration due to non-uniformity such as crystal grain boundaries and defects.

リチウム金属またはリチウム合金は、融液冷却方式、液体急冷方式、アトマイズ方式、真空蒸着方式、スパッタリング方式、プラズマCVD方式、光CVD方式、熱CVD方式、ゾル−ゲル方式、などの適宜な方式で形成することができる。   Lithium metal or lithium alloy is formed by an appropriate method such as a melt cooling method, a liquid quenching method, an atomizing method, a vacuum deposition method, a sputtering method, a plasma CVD method, a photo CVD method, a thermal CVD method, or a sol-gel method. can do.

図1の非水電解液二次電池の負極において、遷移金属カチオンとイミドアニオンからなる錯体を電解液との界面に存在させると、負極は、金属、合金相の体積変化に対する柔軟性、イオン分布の均一性、物理的・化学的安定性に優れたものとなるので好ましい。その結果、デンドライト生成やリチウムの微粉化を効果的に防止することができ、サイクル効率と寿命が向上する。   In the negative electrode of the non-aqueous electrolyte secondary battery in FIG. 1, when a complex composed of a transition metal cation and an imide anion is present at the interface with the electrolyte, the negative electrode is flexible with respect to volume changes of metal and alloy phases, and ion distribution. This is preferable because of excellent uniformity and physical / chemical stability. As a result, dendrite formation and lithium atomization can be effectively prevented, and cycle efficiency and life are improved.

また、負極として炭素材料や酸化物材料を用いたときにその表面に存在するダングリングボンドは化学的活性が高く、容易に溶媒を分解させることになる。この表面に、遷移金属カチオンとイミドアニオンからなる錯体を吸着させることによって、溶媒の分解が抑制され、不可逆容量が大きく減少するため、充放電効率を高く維持することができる。   Further, when a carbon material or an oxide material is used as the negative electrode, dangling bonds existing on the surface have high chemical activity, and the solvent is easily decomposed. By adsorbing a complex composed of a transition metal cation and an imide anion on this surface, the decomposition of the solvent is suppressed and the irreversible capacity is greatly reduced, so that the charge / discharge efficiency can be kept high.

さらに、表面膜が機械的に壊れた際には、その壊れた箇所において、負極表面のリチウムと負極表面に吸着したイミドアニオンとの反応性生物であるフッ化リチウムが、表面膜を修復する機能を有しており、表面膜が破壊された後においても、安定な表面化合物の生成を導く効果を有している。   Furthermore, when the surface film is mechanically broken, lithium fluoride, which is a reactive product of lithium on the negative electrode surface and the imide anion adsorbed on the negative electrode surface, repairs the surface film. And has the effect of leading to the formation of a stable surface compound even after the surface film is destroyed.

図1の非水電解液二次電池において、正極活物質を含有する層12に用いる正極活物質としては、例えば、LiCoO2、LiNiO2、LiMn24などのリチウム含有複合酸化物があげられる。また、これらのリチウム含有複合酸化物の遷移金属部分を他元素で置き換えたものでもよい。 In the non-aqueous electrolyte secondary battery of FIG. 1, examples of the positive electrode active material used for the layer 12 containing the positive electrode active material include lithium-containing composite oxides such as LiCoO 2 , LiNiO 2 , and LiMn 2 O 4. . In addition, the transition metal portion of these lithium-containing composite oxides may be replaced with another element.

また、金属リチウム対極電位で4.5V以上にプラトーを有するリチウム含有複合酸化物を用いることもできる。リチウム含有複合酸化物としては、スピネル型リチウムマンガン複合酸化物、オリビン型リチウム含有複合酸化物、逆スピネル型リチウム含有複合酸化物等が例示される。リチウム含有複合酸化物は、例えばLia(MxMn2-x)O4(ただし、0<x<2であり、また、0<a<1.2である。また、Mは、Ni、Co、Fe、CrおよびCuよりなる群から選ばれる少なくとも一種である。)で表される化合物とすることができる。 Alternatively, a lithium-containing composite oxide having a plateau at 4.5 V or more at the metal lithium counter electrode potential can be used. Examples of the lithium-containing composite oxide include spinel-type lithium manganese composite oxide, olivine-type lithium-containing composite oxide, and reverse spinel-type lithium-containing composite oxide. The lithium-containing composite oxide is, for example, Li a (M x Mn 2−x ) O 4 (where 0 <x <2 and 0 <a <1.2. M is Ni, And at least one selected from the group consisting of Co, Fe, Cr, and Cu.

正極は、これらの活物質を、カーボンブラック等の導電性物質、ポリビニリデンフルオライド(PVDF)等の結着剤とともにN−メチル−2−ピロリドン(NMP)等の溶剤中に分散混練し、これをアルミニウム箔等の基体上に塗布することにより得ることができる。   The positive electrode is obtained by dispersing and kneading these active materials in a solvent such as N-methyl-2-pyrrolidone (NMP) together with a conductive material such as carbon black and a binder such as polyvinylidene fluoride (PVDF). Can be obtained by coating on a substrate such as an aluminum foil.

図1の非水電解液二次電池は、乾燥空気または不活性ガス雰囲気において、負極および正極を、多孔質セパレータ16を介して積層、あるいは積層したものを捲回した後に、電池缶や、合成樹脂と金属箔との積層体からなる可とう性フィルム等の外装体に収容し、上記式(1)で示される化合物を含む電解液を含浸させる。そして、外装体を封止または封止後に、非水電解液二次電池の充電を行うことにより、負極上に表面膜を形成させることができる。なお、多孔質セパレータ16としては、ポリプロピレン、ポリエチレン等のポリオレフィン、フッ素樹脂等の多孔性フィルムが用いられる。 The non-aqueous electrolyte secondary battery of FIG. 1 has a negative electrode and a positive electrode laminated via a porous separator 16 in a dry air or inert gas atmosphere. It accommodates in exterior bodies, such as a flexible film which consists of a laminated body of resin and metal foil, and impregnates the electrolyte solution containing the compound shown by said Formula (1) . And a surface film | membrane can be formed on a negative electrode by charging a nonaqueous electrolyte secondary battery after sealing or sealing an exterior body. In addition, as the porous separator 16, porous films, such as polyolefin, such as a polypropylene and polyethylene, a fluororesin, are used.

本実施の形態に係る非水電解液二次電池の形状としては、特に制限はないが、例えば、円筒型、角型、ラミネート外装型、コイン型などがあげられる。   The shape of the nonaqueous electrolyte secondary battery according to the present embodiment is not particularly limited, and examples thereof include a cylindrical shape, a square shape, a laminate outer shape, and a coin shape.

(ジスルホン酸エステルの合成と乾燥)
化合物No.1は、特許文献5に記載の方法に従って合成した。粗成生物をヘキサン:酢酸エチル=1:1混合溶媒を用いたシリカゲルカラムクロマトグラフィーにて精製して得られた化合物No.1の水分量をカールフィッシャー法にて測定したところ、3000ppmであった。この化合物を40℃、減圧下で12時間乾燥後の水分量は500ppm、18時間乾燥後の水分量は300ppm、24時間乾燥後は250ppmとなった。
(Synthesis and drying of disulfonic acid ester)
Compound No. 1 was synthesized according to the method described in Patent Document 5. The crude product was purified by silica gel column chromatography using a mixed solvent of hexane: ethyl acetate = 1: 1. When the water content of 1 was measured by the Karl Fischer method, it was 3000 ppm. The moisture content after drying this compound at 40 ° C. under reduced pressure for 12 hours was 500 ppm, the moisture content after drying for 18 hours was 300 ppm, and after drying for 24 hours, it was 250 ppm.

(電池の作製)
本実施例の電池の作製について説明する。正極集電体として厚み20μm のアルミニウム箔を用い、正極活物質としてLiM n24を用いた。また、負極集電体として厚み10μmの銅箔を用い、この銅箔上に負極活物質として厚み20μmリチウム金属を蒸着したものを負極として用いた。また、電解液の溶媒としてECとDECの混合溶媒(体積比:30/70)を用い、支持電解質としてLiN(C25SO22(以下、LiBETIと略記する。)を1molL-1溶解し、さらに、上記表1に記載の化合物No.1において、減圧下での乾燥時間を24時間行って得られた化合物No.1を電解液中に1質量%含まれるように加えた。そして、負極と正極とをポリエチレンからなるセパレータを介して積層し、本実施例の非水電解液二次電池を作製した。
(Production of battery)
The production of the battery of this example will be described. An aluminum foil having a thickness of 20 μm was used as the positive electrode current collector, and LiM n 2 O 4 was used as the positive electrode active material. Further, a copper foil having a thickness of 10 μm was used as the negative electrode current collector, and a negative electrode active material obtained by vapor deposition of 20 μm thick lithium metal was used as the negative electrode. In addition, a mixed solvent of EC and DEC (volume ratio: 30/70) is used as the solvent of the electrolytic solution, and LiN (C 2 F 5 SO 2 ) 2 (hereinafter abbreviated as LiBETI) is used as 1 mol L −1 as the supporting electrolyte. Further, the compound No. 1 described in Table 1 above was dissolved. 1, Compound No. 1 obtained by performing the drying time under reduced pressure for 24 hours. 1 was added so that 1 mass% was contained in electrolyte solution. And the negative electrode and the positive electrode were laminated | stacked through the separator which consists of polyethylene, and the nonaqueous electrolyte secondary battery of a present Example was produced.

(電池特性評価試験)
得られた電池を一旦充電し、放電深度50%まで放電した状態で60℃の恒温槽に入れて1ヶ月放置し、放置後に室温に戻してから放電し、再度充放電を行い、2回目の放電容量を回復容量とし、初期の容量に対する割合を容量回復率とした。電池の抵抗は、初期の放電容量を1時間で放電した時の電流値を1Cとし、1C、3C、5C、7Cの各電流値で10秒間充放電した時の電流及び電圧の10秒値から算出した。サイクル容量維持率(%)は400サイクル後の放電容量(mAh) を、10サイクル目の放電容量(mAh)で割った値である。これらの結果を表3に示す。
(Battery characteristics evaluation test)
The obtained battery is charged once, discharged in a depth of 50%, placed in a constant temperature bath at 60 ° C., left for one month, then returned to room temperature and discharged, and then charged and discharged again. The discharge capacity was the recovery capacity, and the ratio to the initial capacity was the capacity recovery rate. The resistance of the battery is based on the 10 second value of the current and voltage when charging and discharging for 10 seconds at each current value of 1C, 3C, 5C, and 7C, assuming that the current value when the initial discharge capacity is discharged in 1 hour is 1C. Calculated. The cycle capacity retention rate (%) is a value obtained by dividing the discharge capacity (mAh) after 400 cycles by the discharge capacity (mAh) at the 10th cycle. These results are shown in Table 3.

(比較例1)
減圧乾燥を18時間行って得られた化合物No.1を用いた電解液を用いた以外は実施例と同様に非水電解液二次電池を作製し同様の評価を行った。その結果を表3に示す。
(Comparative Example 1)
Compound No. obtained by drying under reduced pressure for 18 hours. A non-aqueous electrolyte secondary battery was produced and evaluated in the same manner as in the example except that the electrolyte solution using No. 1 was used. The results are shown in Table 3.

(比較例2)
減圧乾燥を12時間行って得られた化合物No.1を用いた電解液を用いた以外は実施例と同様に非水電解液二次電池を作製し同様の評価を行った。その結果を表3に示す。
(Comparative Example 2)
Compound No. obtained by drying under reduced pressure for 12 hours. A non-aqueous electrolyte secondary battery was produced and evaluated in the same manner as in the example except that the electrolyte solution using No. 1 was used. The results are shown in Table 3.

(比較例3)
減圧乾燥を行わずに得られた化合物No.1を用いた電解液を用いた以外は実施例と同様に非水電解液二次電池を作製し同様の評価を行った。その結果を表3に示す。
(Comparative Example 3)
Compound No. obtained without drying under reduced pressure. A non-aqueous electrolyte secondary battery was produced and evaluated in the same manner as in the example except that the electrolyte solution using No. 1 was used. The results are shown in Table 3.

表3に示されるように、水分含有量が300ppm以上である場合、容量回復率が90%以下と極端に減少し、抵抗上昇倍率やサイクル容量維持率も極端に悪化していることが分かる。   As shown in Table 3, when the water content is 300 ppm or more, the capacity recovery rate is extremely reduced to 90% or less, and the resistance increase ratio and the cycle capacity retention rate are also extremely deteriorated.

本発明の非水電解液二次電池の概略構成図。The schematic block diagram of the nonaqueous electrolyte secondary battery of this invention.

符号の説明Explanation of symbols

11 正極集電体
12 正極活物質を含有する層
13 負極活物質を含有する層
14 負極集電体
15 非水電解液
16 多孔質セパレータ
11 Positive Electrode Current Collector 12 Layer Containing Positive Electrode Active Material 13 Layer Containing Negative Electrode Active Material 14 Negative Electrode Current Collector 15 Nonaqueous Electrolytic Solution 16 Porous Separator

Claims (10)

非プロトン性溶媒と、リチウム塩と、ジスルホン酸エステルとを含む非水電解液であって、
前記非水電解液中へ添加される前の前記ジスルホン酸エステルの水分含有量が300ppm未満であり、
前記ジスルホン酸エステルの前記非水電解液全体に占める割合が0.005〜10質量%であり、
前記ジスルホン酸エステルが、下記化合物No.1〜22および下記化合物No.101〜120で表される化合物からなる群から選択された少なくとも一種の化合物であることを特徴とする非水電解液。
A non-aqueous electrolyte solution containing an aprotic solvent, a lithium salt, and a disulfonic acid ester,
Ri said 300ppm less der water content of disulfonic acid ester before being added to the nonaqueous electrolytic solution,
The proportion of the disulfonic acid ester in the entire non-aqueous electrolyte is 0.005 to 10% by mass,
The disulfonic acid ester has the following compound No. 1-22 and the following compound No. A non-aqueous electrolyte , which is at least one compound selected from the group consisting of compounds represented by 101 to 120 .
前記ジスルホン酸エステルの前記非水電解液全体に占める割合が0.005〜5質量%であることを特徴とする請求項1に記載の非水電解液。  2. The non-aqueous electrolyte according to claim 1, wherein a ratio of the disulfonic acid ester to the entire non-aqueous electrolyte is 0.005 to 5 mass%. 前記非プロトン性溶媒が、環状カーボネート類、鎖状カーボネート類、脂肪族カルボン酸エステル類、γ−ラクトン類、環状エーテル類、鎖状エーテル類及びそれらのフッ化誘導体からなる群より選択された少なくとも1種類の有機溶媒を含むことを特徴とする請求項1または2に記載の非水電解液。 The aprotic solvent is at least selected from the group consisting of cyclic carbonates, chain carbonates, aliphatic carboxylic acid esters, γ-lactones, cyclic ethers, chain ethers, and fluorinated derivatives thereof. The nonaqueous electrolytic solution according to claim 1 or 2 , comprising one type of organic solvent. 前記リチウム塩がLiPF6、LiBF4、LiAsF6、LiSbF6、LiClO4、LiAlCl4、LiN(Ck2k+1SO22及びLiN(Cn2n+1SO2)(Cm2m+1SO2)(k、n、mは自然数) からなる群より選択された少なくとも1種類であることを特徴とする請求項1〜のいずれか1項に記載の非水電解液。 The lithium salt is LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiClO 4 , LiAlCl 4 , LiN (C k F 2k + 1 SO 2 ) 2 and LiN (C n F 2n + 1 SO 2 ) (C m F 2m + 1 SO 2) (k , n, m are non-aqueous electrolyte according to any one of claims 1 to 3, characterized in that at least one member selected from the group consisting of natural numbers). 正極と、負極と、非水電解液とを備えた非水電解液二次電池において、前記非水電解液が請求項1〜のいずれか1項に記載の非水電解液であることを特徴とする非水電解液二次電池。 A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the non-aqueous electrolyte is the non-aqueous electrolyte according to any one of claims 1 to 4. Non-aqueous electrolyte secondary battery characterized. 前記正極が、正極活物質としてリチウム含有複合酸化物を含むことを特徴とする請求項に記載の非水電解液二次電池。 The non-aqueous electrolyte secondary battery according to claim 5 , wherein the positive electrode includes a lithium-containing composite oxide as a positive electrode active material. 前記負極が、負極活物質としてリチウムを吸蔵、放出できる材料、リチウム金属、リチウムと合金を形成することができる金属材料及び酸化物材料からなる群より選択された少なくとも1種を含むことを特徴とする請求項又はに記載の非水電解液二次電池。 The negative electrode includes at least one selected from the group consisting of a material capable of inserting and extracting lithium as a negative electrode active material, a lithium metal, a metal material capable of forming an alloy with lithium, and an oxide material. The nonaqueous electrolyte secondary battery according to claim 5 or 6 . 前記負極が、負極活物質として炭素を有することを特徴とする請求項のいずれか1項に記載の非水電解液二次電池。 The nonaqueous electrolyte secondary battery according to any one of claims 5 to 7 , wherein the negative electrode has carbon as a negative electrode active material. 前記炭素が黒鉛であることを特徴とする請求項に記載の非水電解液二次電池。 The non-aqueous electrolyte secondary battery according to claim 8 , wherein the carbon is graphite. 前記炭素が非晶質炭素であることを特徴とする請求項に記載の非水電解液二次電池。 The non-aqueous electrolyte secondary battery according to claim 8 , wherein the carbon is amorphous carbon.
JP2006341368A 2006-12-19 2006-12-19 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same Active JP5236875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006341368A JP5236875B2 (en) 2006-12-19 2006-12-19 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006341368A JP5236875B2 (en) 2006-12-19 2006-12-19 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2008153118A JP2008153118A (en) 2008-07-03
JP5236875B2 true JP5236875B2 (en) 2013-07-17

Family

ID=39655077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006341368A Active JP5236875B2 (en) 2006-12-19 2006-12-19 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same

Country Status (1)

Country Link
JP (1) JP5236875B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5169400B2 (en) * 2008-04-07 2013-03-27 Necエナジーデバイス株式会社 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP4730405B2 (en) * 2008-07-11 2011-07-20 トヨタ自動車株式会社 Battery electrode foil used for positive electrode plate of lithium ion battery, positive electrode plate for lithium ion battery, lithium ion battery, vehicle, battery-equipped device, method for producing battery electrode foil used for positive electrode plate of lithium ion battery, And method for producing positive electrode plate for lithium ion battery
US8377596B2 (en) * 2009-10-28 2013-02-19 Nec Energy Devices, Ltd. Nonaqueous-type electrolyte solution, and device comprising the same
EP2503634B1 (en) * 2009-11-19 2016-03-30 NEC Energy Devices, Ltd. Method for manufacturing a lithium-ion secondary battery
WO2011083585A1 (en) 2010-01-08 2011-07-14 トヨタ自動車株式会社 Positive electrode plate for lithium ion secondary battery, lithium ion secondary battery, vehicle, device with battery mounted thereon, and method for producing positive electrode plate for lithium ion secondary battery
JPWO2011096572A1 (en) * 2010-02-08 2013-06-13 Necエナジーデバイス株式会社 Non-aqueous electrolyte secondary battery
JP5861634B2 (en) 2010-08-05 2016-02-16 和光純薬工業株式会社 Non-aqueous electrolyte, process for producing the same, and non-aqueous electrolyte battery using the electrolyte
KR101899303B1 (en) * 2010-08-05 2018-09-18 후지필름 와코 준야꾸 가부시키가이샤 Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same
JP5472041B2 (en) * 2010-10-28 2014-04-16 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
IN2015DN00402A (en) * 2012-06-28 2015-06-19 Nec Corp
WO2014133161A1 (en) * 2013-03-01 2014-09-04 日本電気株式会社 Nonaqueous electrolyte secondary battery
US9941545B2 (en) 2013-03-01 2018-04-10 Nec Corporation Electrolyte solution for secondary batteries, and secondary battery using same
US9780411B2 (en) 2013-03-01 2017-10-03 Nec Corporation Nonaqueous electrolyte solution secondary battery
WO2015037367A1 (en) * 2013-09-13 2015-03-19 日本電気株式会社 Nonaqueous-electrolyte secondary battery
WO2016021596A1 (en) * 2014-08-07 2016-02-11 日本電気株式会社 Lithium secondary battery and production method for same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3815087B2 (en) * 1998-10-26 2006-08-30 宇部興産株式会社 Non-aqueous electrolyte and lithium secondary battery using the same
JP2001035501A (en) * 1999-07-23 2001-02-09 Tonen Chem Corp Electrolyte for lithium battery and manufacture thereof
JP2001297750A (en) * 2000-04-11 2001-10-26 Yuasa Corp Power-generating element for lithium secondary battery and lithium secondary battery using same
JP4229615B2 (en) * 2002-01-24 2009-02-25 三菱化学株式会社 Non-aqueous electrolyte and lithium secondary battery using the same
JP4283565B2 (en) * 2002-03-08 2009-06-24 三菱化学株式会社 Non-aqueous electrolyte and lithium secondary battery using the same
JP4033074B2 (en) * 2002-08-29 2008-01-16 日本電気株式会社 Secondary battery electrolyte and secondary battery using the same
US7662519B2 (en) * 2003-09-16 2010-02-16 Nec Corporation Non-aqueous electrolyte secondary battery
WO2005057715A1 (en) * 2003-12-15 2005-06-23 Nec Corporation Secondary battery

Also Published As

Publication number Publication date
JP2008153118A (en) 2008-07-03

Similar Documents

Publication Publication Date Title
JP5236875B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP5169400B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP4033074B2 (en) Secondary battery electrolyte and secondary battery using the same
JP6099155B2 (en) Secondary battery electrolyte and secondary battery using the same
JP5305446B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP4577482B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP4465968B2 (en) Secondary battery electrolyte and secondary battery using the same
JP4909649B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
US7662519B2 (en) Non-aqueous electrolyte secondary battery
JP2009129747A (en) Secondary battery
WO2014133165A1 (en) Lithium-ion secondary cell
JP4968614B2 (en) Secondary battery electrolyte and secondary battery using the same
JP4352719B2 (en) ELECTROLYTE SOLUTION FOR LITHIUM ION SECONDARY BATTERY AND LITHIUM ION SECONDARY BATTERY USING THE SAME
JP4433163B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP5300054B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
WO2016021596A1 (en) Lithium secondary battery and production method for same
JP6341195B2 (en) Secondary battery electrolyte and secondary battery using the same
WO2015194559A1 (en) Electrolyte and secondary cell
JP2009016232A (en) Nonaqueous electrolyte secondary battery
JP4265169B2 (en) Secondary battery electrolyte and secondary battery using the same
JP6398984B2 (en) New compounds, electrolytes and secondary batteries
JPWO2014087922A1 (en) Secondary battery
JP4525018B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
KR20090106993A (en) Non-aqueous electrolyte solution and non-aqueous electrolyte secondary battery using the same
WO2014133161A1 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090702

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5236875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250