JP5234406B2 - Seismic isolation device safety device and laminated rubber type seismic isolation device having the safety device - Google Patents

Seismic isolation device safety device and laminated rubber type seismic isolation device having the safety device Download PDF

Info

Publication number
JP5234406B2
JP5234406B2 JP2008116235A JP2008116235A JP5234406B2 JP 5234406 B2 JP5234406 B2 JP 5234406B2 JP 2008116235 A JP2008116235 A JP 2008116235A JP 2008116235 A JP2008116235 A JP 2008116235A JP 5234406 B2 JP5234406 B2 JP 5234406B2
Authority
JP
Japan
Prior art keywords
seismic isolation
isolation device
laminated rubber
safety device
sliding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008116235A
Other languages
Japanese (ja)
Other versions
JP2009264027A (en
Inventor
啓二 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2008116235A priority Critical patent/JP5234406B2/en
Publication of JP2009264027A publication Critical patent/JP2009264027A/en
Application granted granted Critical
Publication of JP5234406B2 publication Critical patent/JP5234406B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Description

本発明は、積層ゴムを用いた積層ゴム型免震装置の安全装置およびその安全装置を有する積層ゴム型免震装置に関し、特に原子力発電所建屋などの超重量建物に適した免震装置の安全装置およびその安全装置を有する積層ゴム型免震装置に関するものである。   TECHNICAL FIELD The present invention relates to a safety device for a laminated rubber type seismic isolation device using laminated rubber and a laminated rubber type seismic isolation device having the safety device, and in particular, the safety of a seismic isolation device suitable for a super heavy building such as a nuclear power plant building. The present invention relates to a laminated rubber type seismic isolation device having the device and its safety device.

従来、積層ゴムを用いた積層ゴム型免震装置の安全装置として、積層ゴムが万一破断した場合に受け材が建物荷重を支持するソフトランディング機構が知られている(例えば、特許文献1および特許文献2参照)。このソフトランディング機構は、積層ゴムの横側の上部構造体下面または下部構造体上面のいずれか一方にRC製の受け材を設けたものであり、非常に大きな地震によって積層ゴムが過大に水平変形して破断すると受け材がソフトランディングする。そして受け材が積層ゴムに代わって建物荷重を支持することでフェールセーフ機能を果たすようになっている。   Conventionally, as a safety device of a laminated rubber type seismic isolation device using laminated rubber, a soft landing mechanism in which a receiving material supports a building load when the laminated rubber breaks is known (for example, Patent Document 1 and Patent Document 2). This soft landing mechanism has RC receiving material on either the upper structure lower surface or the lower structure upper surface on the side of the laminated rubber, and the laminated rubber is deformed horizontally due to an extremely large earthquake. If it breaks, the receiving material will soft land. And a receiving material supports the building load instead of laminated rubber, and fulfills a fail-safe function.

一方、近年の構造物の設計においては、検討地震のレベルとして、稀に起こるレベル1、極めて稀に起こるレベル2、さらに余裕度検討レベルと称してレベル3(レベル2の1.5倍)の3段階に対して安全性を確認するようにしている。また、設計に用いる地震動の予測精度も向上してきている。こうしたことにより、近年の構造物設計においては、免震装置の安全装置としての受け材は省略して設計される場合が多い。   On the other hand, in the design of structures in recent years, the level of the study earthquake is level 1, which occurs rarely, level 2 which occurs very rarely, and the level 3 (1.5 times level 2) which is called the margin study level. Safety is confirmed for the three stages. In addition, the prediction accuracy of seismic motion used for design has been improved. For this reason, in recent structural design, the receiving material as a safety device of the seismic isolation device is often omitted.

特開平2−104834号公報Japanese Patent Laid-Open No. 2-104834 特開平3−275873号公報JP-A-3-275873

ところで、次世代の原子力発電所に配置される建物は、想定を超える地震動に対しても放射能を外部に漏らすような損傷の発生は許容されず、免震構造であることが前提となっている。この場合の免震構造に要求される安全性(余裕度)は、一般建築のそれよりもはるかに厳しくされている。   By the way, the buildings installed in the next-generation nuclear power plants are assumed to have seismic isolation structure, which does not allow damage that leaks radioactivity to the outside even if the earthquake motion exceeds the expected level. Yes. In this case, the safety (margin) required for the seismic isolation structure is much stricter than that of ordinary buildings.

こうした原子力発電所本館のような超重量建物に用いる免震装置の安全装置として、上記の従来のソフトランディング機構の適用を考えた場合、次のような問題が生じる。   When considering the application of the above-mentioned conventional soft landing mechanism as a safety device for a seismic isolation device used in such a heavy building such as the nuclear power plant main building, the following problems arise.

上記の従来のソフトランディング機構は、免震装置の積層ゴム破断後の建物荷重を点で支えるものである。この場合、地震による水平変形が大きい場合を想定すれば、ソフトランディング機構は、柱位置の免震装置からかなり離れた位置に設けなければならない。ところが、例えば、原子炉建屋のように基礎平面が小さく重量が大きい建物の場合には免震装置の間隔が非常に密になる。   The above-mentioned conventional soft landing mechanism supports the building load after breaking the laminated rubber of the seismic isolation device. In this case, assuming that the horizontal deformation due to the earthquake is large, the soft landing mechanism must be provided at a position far away from the seismic isolation device at the column position. However, for example, in the case of a building having a small foundation plane and a large weight such as a nuclear reactor building, the distance between the seismic isolation devices becomes very close.

本発明は、上記実情に鑑みてなされたものであり、免震装置から遠く離れた位置にソフトランディング機構を設ける必要がなく、かつ、地震による水平変形が大きい場合であってもフェールセーフ機能を果たすことができる免震装置の安全装置およびその安全装置を有する積層ゴム型免震装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and it is not necessary to provide a soft landing mechanism at a position far away from the seismic isolation device, and a fail-safe function is provided even when horizontal deformation due to an earthquake is large. An object of the present invention is to provide a safety device for a seismic isolation device that can be achieved and a laminated rubber type seismic isolation device having the safety device.

上記の目的を達成するために、本発明の請求項1に係る免震装置の安全装置は、上部構造体と下部構造体との間に介装される積層ゴム型免震装置に用いられる前記積層ゴム破断時の安全装置であって、前記免震装置の周囲の前記上部構造体下面に設けられる上部滑り部材と、前記免震装置の周囲の前記下部構造体上面に設けられる下部滑り部材とを備え、前記上部滑り部材と前記下部滑り部材は上下方向に所定クリアランスを有して互いに対向離間しており、前記下部構造体が所定水平距離だけ変位した際に前記上部滑り部材と前記下部滑り部材は前記免震装置の変形量が所定の変形量を超える前に当接するように構成され、前記上部滑り部材は、前記免震装置の周囲近傍の前記上部構造体下面から下側に向かって突出形成されるドーナツ状のアゴ部の下面に設けられ、前記下部滑り部材は、前記免震装置の周囲近傍で水平に延びる平坦部と、前記免震装置から離れるに従い立ち上がるスロープとを有することを特徴とする。 In order to achieve the above object, a safety device for a seismic isolation device according to claim 1 of the present invention is used in a laminated rubber type seismic isolation device interposed between an upper structure and a lower structure. A safety device for breaking a laminated rubber, wherein the upper sliding member is provided on the lower surface of the upper structure around the seismic isolation device, and the lower sliding member is provided on the upper surface of the lower structure around the seismic isolation device; The upper sliding member and the lower sliding member are spaced apart from each other with a predetermined clearance in the vertical direction, and when the lower structure is displaced by a predetermined horizontal distance , the upper sliding member and the lower sliding member The sliding member is configured to contact before the amount of deformation of the seismic isolation device exceeds a predetermined amount of deformation , and the upper sliding member is directed downward from the lower surface of the upper structure near the periphery of the seismic isolation device. Donuts protruding Provided in the lower surface of the jaw, the lower sliding member, characterized in that it has a flat portion extending horizontally around the vicinity of the seismic isolation device, and a slope which rises as the distance from the isolator.

また、本発明の請求項2に係る免震装置の安全装置は、上述した請求項1において、前記アゴ部は、着脱可能なPC部材を含んで構成されることを特徴とする。 The seismic isolation device safety device according to claim 2 of the present invention is characterized in that, in claim 1 described above, the jaw portion includes a detachable PC member .

また、本発明の請求項3に係る免震装置の安全装置は、上述した請求項1または請求項2において、前記免震装置は、前記上部構造体下面に設けられた凹部と、この凹部に対向するように前記下部構造体上面に設けられた凹部との間に介装されることを特徴とする。 The safety device for a seismic isolation device according to claim 3 of the present invention is the safety device for the seismic isolation device according to claim 1 or 2 described above, wherein the seismic isolation device includes It is interposed between the recesses provided on the upper surface of the lower structure so as to face each other.

また、本発明の請求項4に係る免震装置は、上述した請求項1から請求項3のいずれか一つに記載の安全装置を有する積層ゴム型免震装置であるFurther, MenShinSo location according to claim 4 of the present invention is a laminated rubber type vibration isolating apparatus having a safety device according to any one of claims 1 to 3 described above.

本発明によれば、積層ゴム型の免震装置の周囲の上部構造体下面に設けられる上部滑り部材と、免震装置の周囲の下部構造体上面に設けられる下部滑り部材とを備え、下部構造体が所定水平距離だけ変位した際に上部滑り部材と下部滑り部材とが当接する。このため、免震装置の水平変形が大きくなっても免震装置の周囲に形成される当接部で上部構造体の荷重を支持することができる。したがって、免震装置から遠く離れた位置にソフトランディング機構を設けずともフェールセーフ機能を果たすことができる。   According to the present invention, the lower structure is provided with the upper sliding member provided on the lower surface of the upper structure around the seismic isolation device of the laminated rubber type, and the lower sliding member provided on the upper surface of the lower structure around the seismic isolation device. When the body is displaced by a predetermined horizontal distance, the upper sliding member and the lower sliding member come into contact with each other. For this reason, even if the horizontal deformation of the seismic isolation device is increased, the load of the upper structure can be supported by the contact portion formed around the seismic isolation device. Therefore, the fail-safe function can be achieved without providing a soft landing mechanism at a position far away from the seismic isolation device.

免震装置を上部および下部構造体の凹部間に設置し、免震装置の周囲の上部構造体下面にドーナツ状のアゴ部を設けることにより、積層ゴム破断後に水平変形しても積層ゴムのフランジプレートが上部構造体のアゴ部に衝突することがない。このため、積層ゴム破断後における構造体の滑らかな動きを可能にする。とくに、下部構造体上面は、下部滑り部材の平坦部によりフラットにされていることから、想定を超えた水平変位であっても上部構造体としての建物が落下することによる衝撃は発生することはない。   By installing a seismic isolation device between the recesses of the upper and lower structures and providing a donut-shaped jaw on the lower surface of the upper structure around the seismic isolation device, the flange of the laminated rubber can be used even if it is deformed horizontally after the laminated rubber breaks. The plate does not collide with the jaw part of the superstructure. For this reason, the structure can be smoothly moved after the laminated rubber breaks. In particular, since the upper surface of the lower structure is flattened by the flat part of the lower sliding member, even if the horizontal displacement exceeds the expected level, an impact due to the falling of the building as the upper structure will not occur. Absent.

また、下部滑り部材が、免震装置から離れるに従い立ち上がるスロープを有することにより、過大な水平変形を抑制することができる。また、上部構造体を元の位置に戻そうとする復元力を付与することができる。   Moreover, an excessive horizontal deformation | transformation can be suppressed because a lower sliding member has a slope which stands | starts up as it leaves | separates from a seismic isolation apparatus. Further, a restoring force for returning the upper structure to the original position can be applied.

さらに、ドーナツ状のアゴ部の一部を着脱可能なPC部材(プレキャストコンクリート部材)とすることにより、PC部材を取り外してアゴ部に囲まれている積層ゴムの点検や取り替え作業を容易にすることができる。   Furthermore, by making a part of the doughnut-shaped jaw part a removable PC member (precast concrete member), the PC member can be removed to facilitate inspection and replacement work of the laminated rubber surrounded by the jaw part. Can do.

以下に添付図面を参照しながら、本発明に係る免震装置の安全装置およびその安全装置を有する積層ゴム型免震装置の好適な実施の形態を原子力発電所建屋に適用する場合について詳細に説明する。なお、想定する地震動による変形量を特定することは困難であることから、以下においては、一般建築で想定される地震時の最大変位60cmの2倍以上の変形量を想定している。図1は、本発明に係る免震装置の安全装置の概略断面図であり、図1(a)、(b)は変形前の平面断面図、正面断面図である。図1(c)、(d)は変形後の平面断面図、正面断面図である。   DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Detailed description will be given below of a case where a preferred embodiment of a safety device for a seismic isolation device and a laminated rubber type seismic isolation device having the safety device according to the present invention is applied to a nuclear power plant building with reference to the accompanying drawings. To do. In addition, since it is difficult to specify the amount of deformation due to the assumed ground motion, the following amount of deformation is assumed to be twice or more of the maximum displacement of 60 cm at the time of an earthquake assumed in general buildings. FIG. 1 is a schematic sectional view of a safety device for a seismic isolation device according to the present invention, and FIGS. 1A and 1B are a plan sectional view and a front sectional view before deformation. 1C and 1D are a plan sectional view and a front sectional view after deformation.

図1に示すように、原子力発電所建屋2外周の基礎10の上部基礎版12(上部構造体)と下部基礎版14(下部構造体)との間には免震装置としての積層ゴム20が介装されてある。一方、積層ゴム20から離れた建屋2内側には、滑り支承22が上部基礎版12の下面12aの凸部24下端に設けられてある。   As shown in FIG. 1, a laminated rubber 20 as a seismic isolation device is interposed between an upper foundation plate 12 (upper structure) and a lower foundation plate 14 (lower structure) of the foundation 10 on the outer periphery of the nuclear power plant building 2. It is intervened. On the other hand, on the inner side of the building 2 away from the laminated rubber 20, a sliding bearing 22 is provided at the lower end of the convex portion 24 of the lower surface 12 a of the upper base plate 12.

本発明に係る免震装置の安全装置100は、積層ゴム20の周囲の上部基礎版12の下面12aに配置される上部滑り部材としてのテフロン(登録商標)材30と、下部基礎版14の上面14aに配置される下部滑り部材としてのSUSプレート32とを備える。下部基礎版14の上面14aの全面は、略平坦な面にされてある。こうすることで想定以上の水平変形が発生した場合でも上部基礎版12の落下に伴う衝撃の発生を回避することができる。   The safety device 100 for a seismic isolation device according to the present invention includes a Teflon (registered trademark) material 30 as an upper sliding member disposed on the lower surface 12 a of the upper base plate 12 around the laminated rubber 20 and the upper surface of the lower base plate 14. And a SUS plate 32 as a lower sliding member disposed on 14a. The entire upper surface 14a of the lower base plate 14 is a substantially flat surface. By doing so, it is possible to avoid the occurrence of an impact due to the drop of the upper base plate 12 even when horizontal deformation more than expected occurs.

図2は、原子力発電所本館建屋の配置平面図であり、図3は、免震装置の安全装置の配置平面図である。図4は、免震装置の安全装置を適用した原子力発電所建屋イメージを表す概略斜視図である。図5は、建屋基礎一体化の概念を説明する概略正面断面図である。   FIG. 2 is an arrangement plan view of the main building of the nuclear power plant, and FIG. 3 is an arrangement plan view of the safety device of the seismic isolation device. FIG. 4 is a schematic perspective view showing an image of a nuclear power plant building to which a safety device for a seismic isolation device is applied. FIG. 5 is a schematic front sectional view for explaining the concept of building foundation integration.

免震装置は、積層ゴム20と滑り支承22とからなり、図2、図3および図4に示すように、原子力発電所本館である原子炉建屋(R/B)とタービン建屋(T/B)の両基礎10に配置される。積層ゴム20は、各建屋基礎10の外周側の複数箇所(例えば、両建屋合計60箇所)に互いに間隔をあけて配置される。滑り支承は、各建屋基礎10の平面内側の複数箇所(例えば、両建屋合計140箇所)に互いに間隔をあけて配置される。滑り支承22としては、弾性または剛すべり支承を用いることができる。建屋重量は、例えばR/Bは約18万トン、T/Bは約20万トンであり、超重量建物とされている。   The seismic isolation device comprises a laminated rubber 20 and a sliding bearing 22, and as shown in FIGS. 2, 3 and 4, the reactor building (R / B) and the turbine building (T / B) which are the main buildings of the nuclear power plant. ) On both foundations 10. The laminated rubber 20 is disposed at a plurality of locations on the outer peripheral side of each building foundation 10 (for example, a total of 60 locations on both buildings) at intervals. The sliding bearings are arranged at a plurality of locations (for example, a total of 140 locations on both buildings) inside the plane of each building foundation 10 with a space between each other. As the sliding bearing 22, an elastic or rigid sliding bearing can be used. The building weight is, for example, about 180,000 tons for R / B and about 200,000 tons for T / B.

なお、図5(a)に示すように、両建屋間には主蒸気配管などの重要度の比較的高い渡り配管60が設置されてあり、渡り配管60の地震に対する変位追従性能は例えば25cm程度と低いことから、図5(b)に示すように、渡り配管60の健全性確保のために両建屋基礎10は一体化されている。免震装置は、重要度の比較的低い給水ピットや配管部70で免震境界の変位を吸収することで、渡り配管60が過大変位して破損するおそれを低減する。   In addition, as shown to Fig.5 (a), the transition pipe 60 with comparatively high importance, such as main steam piping, is installed between both buildings, and the displacement follow-up performance with respect to the earthquake of the transition pipe 60 is about 25 cm, for example. Therefore, as shown in FIG. 5B, the two building foundations 10 are integrated in order to ensure the soundness of the transition pipe 60. The seismic isolation device absorbs the displacement of the seismic isolation boundary with the water supply pit and the piping part 70 having relatively low importance, thereby reducing the possibility that the transition pipe 60 is excessively displaced and damaged.

積層ゴム20は、図1に示すように、上部基礎版12、下部基礎版14の互いに対向する面をそれぞれ窪ませた凹部16間に介装される上下に延びた略円柱状の部材であり、不図示の鋼板とゴムとが交互に積層された鉛プラグ入りの構造とされてある。積層ゴム20は、円柱の上下各面に設けられたフランジプレート18を介して上部基礎版12、下部基礎版14に取り付けてある。   As shown in FIG. 1, the laminated rubber 20 is a substantially cylindrical member that extends vertically and is interposed between recesses 16 in which the opposing surfaces of the upper base plate 12 and the lower base plate 14 are recessed. The structure includes a lead plug in which steel plates and rubber (not shown) are alternately laminated. The laminated rubber 20 is attached to the upper base plate 12 and the lower base plate 14 via flange plates 18 provided on the upper and lower surfaces of the cylinder.

テフロン材30は、積層ゴム20外周の上部基礎版下面12aにて下側に向かって突出形成されるドーナツ状のアゴ部40の下面に配置される。アゴ部40の一部は、着脱可能なPC部材42(プレキャストコンクリート部材)で構成され、ボルト止めされてある。積層ゴム20の点検や取り替え時には、建屋2外周の点検用通路4からこのPC部材42を取り外すことで積層ゴム20の点検や取り替え作業を容易にすることができる。   The Teflon material 30 is disposed on the lower surface of a donut-shaped jaw portion 40 that protrudes downward from the upper base plate lower surface 12a on the outer periphery of the laminated rubber 20. A part of the jaw part 40 is composed of a detachable PC member 42 (precast concrete member) and is bolted. When the laminated rubber 20 is inspected or replaced, the inspection or replacement of the laminated rubber 20 can be facilitated by removing the PC member 42 from the inspection passage 4 on the outer periphery of the building 2.

テフロン材30およびSUSプレート32は、上下方向に所定クリアランスCを有して互いに対向離間している。このクリアランスCとしては、積層ゴム20が水平変形した際の積層ゴム20の沈み込み量を予め把握しておき、その沈み込み量に対応する長さとすることができる。   The Teflon material 30 and the SUS plate 32 are opposed to each other with a predetermined clearance C in the vertical direction. As this clearance C, the amount of depression of the laminated rubber 20 when the laminated rubber 20 is horizontally deformed can be grasped in advance, and the length corresponding to the amount of depression can be obtained.

上記のように構成することで、積層ゴム20がある程度水平変形したときに、荷重はテフロン材30とSUSプレート32の当接部34に移行して作用するようになる。一方、積層ゴム20に作用する荷重は減少するので、荷重作用状態におけるハードニング(大変形時に水平剛性が高くなる現象)が生じにくくなる。また、積層ゴム20が破断した後、大変形してもドーナツ状のアゴ部40の下面が下部基礎版14の上面14aに当接しているので、積層ゴム20のフランジプレート18と上部基礎版12のアゴ部40とは衝突することがなく、上部基礎版12はこの上面14aを滑らかに滑る。   With the configuration described above, when the laminated rubber 20 is deformed horizontally to some extent, the load moves to the contact portion 34 between the Teflon material 30 and the SUS plate 32 and acts. On the other hand, since the load acting on the laminated rubber 20 decreases, hardening in a load acting state (a phenomenon in which the horizontal rigidity increases during large deformation) is less likely to occur. Further, even if the laminated rubber 20 is ruptured and deformed greatly, the lower surface of the doughnut-shaped jaw portion 40 is in contact with the upper surface 14a of the lower foundation plate 14, so that the flange plate 18 and the upper foundation plate 12 of the laminated rubber 20 are contacted. The upper base plate 12 slides smoothly on the upper surface 14a without colliding with the jaw portion 40.

SUSプレート32は、積層ゴム20から水平方向所定距離だけ離れた位置に、積層ゴム20位置を中心として半径方向外方に行くに従い緩やかに立ち上がる同心円状のスロープ36を有する。このスロープ36によってSUSプレート32は略おわん形状とされている。なお、SUSプレート32は、滑り支承22に対向する下部基礎版14の上面14aにおいても同心円状のスロープ36を有する略おわん形状として設けられてある。そして、このスロープ36が地震の運動エネルギーを位置エネルギーに変換するように作用することで、上部基礎版12の水平変位を吸収する効果を期待することができる。   The SUS plate 32 has a concentric slope 36 that gradually rises outward from the laminated rubber 20 in the radial direction around the laminated rubber 20 position at a position that is a predetermined distance in the horizontal direction. The slope 36 makes the SUS plate 32 substantially bowl-shaped. Note that the SUS plate 32 is also provided in a substantially bowl shape having a concentric slope 36 on the upper surface 14 a of the lower base plate 14 facing the sliding support 22. The slope 36 acts so as to convert the kinetic energy of the earthquake into potential energy, so that it is possible to expect an effect of absorbing the horizontal displacement of the upper foundation plate 12.

より具体的には、大きな地震動によって積層ゴム20が破断すると、積層ゴム20内部の不図示の鉛プラグも破断するので減衰効果は減少する。しかし、SUSプレート32とテフロン材30の滑り動作に移行することによって新たに滑りによる減衰効果が効き始める。ところが、さらに大きな地震動が入力されるとどこまでも変位し続けることになることから、建屋2外周の配管60などが破損するおそれがある。そこで、この滑り動作による変位をある程度の変位量に抑えるために、SUSプレート32による滑り区間を完全な水平面ではなく、上記のようにスロープ36を有する構成としている。   More specifically, when the laminated rubber 20 is broken due to a large earthquake motion, the lead plug (not shown) inside the laminated rubber 20 is also broken, so that the damping effect is reduced. However, by shifting to the sliding operation of the SUS plate 32 and the Teflon member 30, the damping effect due to the sliding starts to be effective. However, if a greater seismic motion is input, it will continue to be displaced to any extent, and there is a risk of damage to the piping 60 and the like on the outer periphery of the building 2. Therefore, in order to suppress the displacement due to the sliding operation to a certain amount of displacement, the sliding section by the SUS plate 32 is not a complete horizontal plane but has the slope 36 as described above.

ここで、スロープ36の高さhは、想定する地震に応じて例えば次のように設定することができる。地震時の速度をv=100cm/sec(100kine)とすると、
運動エネルギーは、Ek=mv2/2
位置エネルギーは、Ep=mgh
Ek=Epとして、運動エネルギーを吸収するために必要なスロープ36の高さhは、
h=v2/2g=1.02/(2×9.8)=約0.05m
と、5cm程度のスロープ立ち上がり高さhで運動エネルギーを吸収することによって、それ以上、アゴ部40が水平変位しないように止めることが可能である。なお、アゴ部40はスロープ36を上がりながら水平変位した後、逆方向へ動いて最終的には元の位置に戻ることになる。
Here, the height h of the slope 36 can be set as follows, for example, according to the assumed earthquake. If the velocity at the time of earthquake is v = 100 cm / sec (100 kine),
Kinetic energy, Ek = mv 2/2
The potential energy is Ep = mgh
When Ek = Ep, the height h of the slope 36 necessary to absorb kinetic energy is
h = v 2 /2g=1.0 2 /(2×9.8)=about 0.05 m
Further, by absorbing the kinetic energy at the slope rising height h of about 5 cm, it is possible to stop the jaw part 40 from further horizontal displacement. In addition, the jaw part 40 moves horizontally in the reverse direction after moving up the slope 36, and finally returns to the original position.

次に、本発明の免震装置の安全装置100を適用した場合において、荷重が積層ゴム20から安全装置100へ移行する時の動作特性について図を参照しながら説明する。図6は、積層ゴムのせん断試験の状況写真である。積層ゴムが菱形に水平変形している状況が判る。図7は、このせん断試験による積層ゴムのせん断応力とせん断歪みの関係を示す水平変位特性図である。図8は、本発明の免震装置の安全装置を適用した場合の積層ゴムの水平変位特性図であり、荷重が積層ゴムから安全装置へ移行する時の特性を示す図である。   Next, when the safety device 100 of the seismic isolation device of the present invention is applied, the operation characteristics when the load is transferred from the laminated rubber 20 to the safety device 100 will be described with reference to the drawings. FIG. 6 is a state photograph of a shear test of laminated rubber. It can be seen that the laminated rubber is deformed horizontally in a diamond shape. FIG. 7 is a horizontal displacement characteristic diagram showing the relationship between the shear stress and the shear strain of the laminated rubber by this shear test. FIG. 8 is a horizontal displacement characteristic diagram of the laminated rubber when the safety device of the seismic isolation device of the present invention is applied, and is a diagram showing characteristics when the load is transferred from the laminated rubber to the safety device.

図6および図7に示すように、せん断歪み250%までの変形を設計範囲とし、250%を超える場合をハードニング領域とすることができる。積層ゴム20は、せん断歪み400〜420%程度で座屈したり、470%程度で破断することが判る。   As shown in FIGS. 6 and 7, the deformation range up to 250% of the shear strain can be set as the design range, and the case where it exceeds 250% can be set as the hardening region. It can be seen that the laminated rubber 20 buckles at a shear strain of about 400 to 420% or breaks at about 470%.

一方、図8に示すように、本発明の免震装置の安全装置100を適用した場合には、図中実線で示すように、水平変位(せん断歪み)470%程度を超えると積層ゴム20における作用荷重が減少することによって、ハードニング領域から滑り移行領域に移行することが判る。さらに水平変位700%程度に相当する位置に設けたスロープ36を滑り上がるように変位することが判る。なお、図中点線で示す積層ゴム20のみを用いてゴムにおける作用荷重を減少させないケースでは、水平変位470%程度で破断することが判る。また、図中一点鎖線で示す積層ゴム20のみを用いて荷重減少させたケースでは水平変位580%程度でゴムが破断することが判る。   On the other hand, as shown in FIG. 8, when the seismic isolation device safety device 100 of the present invention is applied, if the horizontal displacement (shear strain) exceeds about 470%, as shown by the solid line in the figure, the laminated rubber 20 It can be seen that when the applied load decreases, the transition from the hardening region to the slip transition region occurs. Further, it can be seen that the slope 36 provided at a position corresponding to about 700% of the horizontal displacement is displaced so as to slide up. In the case where only the laminated rubber 20 indicated by the dotted line in the figure is used and the applied load on the rubber is not reduced, it can be seen that the fracture occurs at a horizontal displacement of about 470%. In the case where the load is reduced by using only the laminated rubber 20 indicated by the one-dot chain line in the figure, it can be seen that the rubber breaks at a horizontal displacement of about 580%.

上記の実施形態において、滑り支承22は、破断することがないのでフェールセーフ機構としての安全装置100は不要である。このため、破断・座屈の可能性がある建屋2の基礎10の外周側に配置される積層ゴム20のみに対して安全装置100を設置すればよいことから、安全装置100の設置に係るスペースが少なくて済むという利点がある。   In the above embodiment, since the sliding bearing 22 does not break, the safety device 100 as a fail-safe mechanism is unnecessary. For this reason, since it is only necessary to install the safety device 100 only on the laminated rubber 20 disposed on the outer peripheral side of the foundation 10 of the building 2 that may break or buckle, the space related to the installation of the safety device 100 There is an advantage that less is required.

上記の実施形態において、本発明の免震装置の安全装置100を、隣接2建屋の基礎を一体化した免震構造に適用する場合について説明したが、2建屋を個別の免震構造とした場合にも適用することができる。この場合、2建屋間のエキスパンション距離が非常に大きくなること以外は、本発明の免震装置の安全装置に関する考え方は同じであり、いずれにしても本発明と同一の作用効果を奏することができる。   In said embodiment, although the case where the safety device 100 of the seismic isolation device of this invention was applied to the seismic isolation structure which integrated the foundation of 2 adjacent buildings was demonstrated, when 2 buildings were made into an individual seismic isolation structure It can also be applied to. In this case, the concept regarding the safety device of the seismic isolation device of the present invention is the same except that the expansion distance between the two buildings is very large, and in any case, the same operational effects as the present invention can be achieved. .

以上説明したように、本発明によれば、免震装置の水平変形が大きくなっても免震装置の周囲に形成される当接部で上部構造体の荷重を支持することができる。したがって、免震装置から遠く離れた位置にソフトランディング機構を設けずともフェールセーフ機能を果たすことができる。   As described above, according to the present invention, the load of the upper structure can be supported by the contact portion formed around the seismic isolation device even when the horizontal deformation of the seismic isolation device increases. Therefore, the fail-safe function can be achieved without providing a soft landing mechanism at a position far away from the seismic isolation device.

本発明に係る免震装置の安全装置の一例を示す変形前後の概略断面図である。It is a schematic sectional drawing before and behind a deformation | transformation which shows an example of the safety device of the seismic isolation apparatus which concerns on this invention. 原子力発電所本館建屋の配置の一例を示す概略平面図である。It is a schematic plan view which shows an example of arrangement | positioning of a nuclear power plant main building. 本発明に係る免震装置の安全装置の配置の一例を示す概略平面図である。It is a schematic plan view which shows an example of arrangement | positioning of the safety device of the seismic isolation apparatus which concerns on this invention. 本発明に係る免震装置の安全装置を適用した原子力発電所建屋の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the nuclear power plant building to which the safety device of the seismic isolation apparatus which concerns on this invention is applied. 建屋基礎一体化の概念を説明する概略正面断面図である。It is a schematic front sectional drawing explaining the concept of building foundation integration. 積層ゴムのせん断試験の状況写真を示す図である。It is a figure which shows the condition photograph of the shear test of laminated rubber. 積層ゴムのせん断試験によるせん断応力とせん断歪みの関係の一例を示す水平変位特性図である。It is a horizontal displacement characteristic figure which shows an example of the relationship between the shear stress by the shear test of laminated rubber, and a shear strain. 本発明に係る免震装置の安全装置を適用した場合の積層ゴムの水平変位特性図であり、荷重が積層ゴムから安全装置へ移行する時の特性を示す図である。It is a horizontal displacement characteristic figure at the time of applying the safety device of the seismic isolation apparatus which concerns on this invention, and is a figure which shows the characteristic when a load transfers to a safety device from laminated rubber.

符号の説明Explanation of symbols

2 原子力発電所建屋
4 点検用通路
10 基礎
12 上部基礎版(上部構造体)
12a 下面
14 下部基礎版(下部構造体)
14a 上面
16 凹部
18 フランジプレート
20 積層ゴム(免震装置)
22 滑り支承
24 凸部
30 テフロン材(上部滑り部材)
32 SUSプレート(下部滑り部材)
34 当接部
36 スロープ
40 アゴ部
42 PC部材
60 渡り配管
70 給水ピットおよび配管部
100 免震装置の安全装置
2 Nuclear power plant building 4 Passage for inspection 10 Foundation 12 Upper foundation version (upper structure)
12a Lower surface 14 Lower base version (lower structure)
14a Upper surface 16 Recess 18 Flange plate 20 Laminated rubber (Seismic isolation device)
22 Sliding bearing 24 Convex 30 Teflon material (upper sliding member)
32 SUS plate (lower sliding member)
34 Contact part 36 Slope 40 Jago part 42 PC member 60 Transition pipe 70 Water supply pit and pipe part 100 Seismic isolation device safety device

Claims (4)

上部構造体と下部構造体との間に介装される積層ゴム型免震装置に用いられる前記積層ゴム破断時の安全装置であって、
前記免震装置の周囲の前記上部構造体下面に設けられる上部滑り部材と、
前記免震装置の周囲の前記下部構造体上面に設けられる下部滑り部材とを備え、
前記上部滑り部材と前記下部滑り部材は上下方向に所定クリアランスを有して互いに対向離間しており、前記下部構造体が所定水平距離だけ変位した際に前記上部滑り部材と前記下部滑り部材は前記免震装置の変形量が所定の変形量を超える前に当接するように構成され、
前記上部滑り部材は、前記免震装置の周囲近傍の前記上部構造体下面から下側に向かって突出形成されるドーナツ状のアゴ部の下面に設けられ、
前記下部滑り部材は、前記免震装置の周囲近傍で水平に延びる平坦部と、前記免震装置から離れるに従い立ち上がるスロープとを有することを特徴とする免震装置の安全装置。
The laminated rubber safety device used at the time of the laminated rubber type seismic isolation device interposed between the upper structure and the lower structure,
An upper sliding member provided on the lower surface of the upper structure around the seismic isolation device;
A lower sliding member provided on the upper surface of the lower structure around the seismic isolation device,
The upper sliding member and the lower sliding member are spaced apart from each other with a predetermined clearance in the vertical direction, and when the lower structure is displaced by a predetermined horizontal distance , the upper sliding member and the lower sliding member are It is configured to contact before the amount of deformation of the seismic isolation device exceeds a predetermined amount of deformation ,
The upper sliding member is provided on a lower surface of a donut-shaped jaw portion formed to protrude downward from the lower surface of the upper structure near the periphery of the seismic isolation device,
The safety device for a seismic isolation device, wherein the lower sliding member has a flat portion that extends horizontally in the vicinity of the periphery of the seismic isolation device, and a slope that rises away from the seismic isolation device.
前記アゴ部は、着脱可能なPC部材を含んで構成されることを特徴とする請求項1に記載の免震装置の安全装置。 The seismic isolation device safety device according to claim 1, wherein the jaw portion includes a detachable PC member . 前記免震装置は、前記上部構造体下面に設けられた凹部と、この凹部に対向するように前記下部構造体上面に設けられた凹部との間に介装されることを特徴とする請求項1または請求項2に記載の免震装置の安全装置。 The seismic isolation device is interposed between a recess provided on the lower surface of the upper structure and a recess provided on the upper surface of the lower structure so as to face the recess. A seismic isolation device safety device according to claim 1 or claim 2. 請求項1から請求項3のいずれか一つに記載の安全装置を有する積層ゴム型免震装置。  A laminated rubber-type seismic isolation device comprising the safety device according to any one of claims 1 to 3.
JP2008116235A 2008-04-25 2008-04-25 Seismic isolation device safety device and laminated rubber type seismic isolation device having the safety device Active JP5234406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008116235A JP5234406B2 (en) 2008-04-25 2008-04-25 Seismic isolation device safety device and laminated rubber type seismic isolation device having the safety device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008116235A JP5234406B2 (en) 2008-04-25 2008-04-25 Seismic isolation device safety device and laminated rubber type seismic isolation device having the safety device

Publications (2)

Publication Number Publication Date
JP2009264027A JP2009264027A (en) 2009-11-12
JP5234406B2 true JP5234406B2 (en) 2013-07-10

Family

ID=41390197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008116235A Active JP5234406B2 (en) 2008-04-25 2008-04-25 Seismic isolation device safety device and laminated rubber type seismic isolation device having the safety device

Country Status (1)

Country Link
JP (1) JP5234406B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6567265B2 (en) 2014-10-24 2019-08-28 株式会社東芝 Seismic isolation device and seismic isolation method
JP6584248B2 (en) * 2015-09-09 2019-10-02 間瀬建設株式会社 Jack device for seismic isolation device replacement

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08158697A (en) * 1994-12-08 1996-06-18 Taisei Corp Base isolation method and base isolation device applied to same method
JPH10176435A (en) * 1996-12-17 1998-06-30 Ohbayashi Corp Construction of vibration isolation in wooden building
JP2000035084A (en) * 1998-07-17 2000-02-02 Ohbayashi Corp Base isolation device
JP3728652B2 (en) * 1999-12-01 2005-12-21 清水建設株式会社 How to build a base-isolated building
JP2001280414A (en) * 2000-03-28 2001-10-10 Showa Electric Wire & Cable Co Ltd Dust cover for sliding bearing
JP2003129692A (en) * 2001-10-23 2003-05-08 Sekisui Chem Co Ltd Base isolating device

Also Published As

Publication number Publication date
JP2009264027A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
JP2994281B2 (en) Integrated horizontal-vertical seismic isolation bearing
JP5354988B2 (en) Seismic isolation structure, building and seismic isolation building
CN108877963B (en) Three-dimensional shock insulation structure of large nuclear power station with double containment vessels
Dusi Seismic isolation of nuclear power plants
JP6567265B2 (en) Seismic isolation device and seismic isolation method
JP2016180292A (en) Base-isolation structure
KR20060084173A (en) Earthquake isolation bearing for bridges using shape memory alloy
CN108625279A (en) A kind of combined type bridge pier of anticollision
JP5234406B2 (en) Seismic isolation device safety device and laminated rubber type seismic isolation device having the safety device
Tajirian et al. Seismic isolation for advanced nuclear power stations
JP5284915B2 (en) Structure moving method and building
Guo et al. Seismic performance assessment of a super high-rise twin-tower structure connected with rotational friction negative stiffness damper and lead rubber bearing
JP7213766B2 (en) Fixed structure of seismic isolation device
JP7102249B2 (en) Multi-sided slide bearing device for structures
JP5234407B2 (en) Seismic isolation system
CN102561176B (en) Limiting structure for bridge
CN202530572U (en) High-damping and shock-insulation rubber base provided with limit devices
JP2006291588A (en) Base-isolated structure
JP6392067B2 (en) Nuclear fuel storage facility and nuclear fuel storage method
KR101323589B1 (en) Vibration isolation system in transfer story of apartment housing
JP2007321969A (en) Base-isolation structure and base-isolation method
KR101323587B1 (en) Vibration isolation system in transfer story of apartment housing
US11313145B2 (en) Earthquake protection systems, methods and apparatus using shape memory alloy (SMA)-based superelasticity-assisted slider (SSS)
JP2015224760A (en) Seismic isolator
JP2010189997A (en) Base-isolated structure and building having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5234406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3