JP2015224760A - Seismic isolator - Google Patents

Seismic isolator Download PDF

Info

Publication number
JP2015224760A
JP2015224760A JP2014111268A JP2014111268A JP2015224760A JP 2015224760 A JP2015224760 A JP 2015224760A JP 2014111268 A JP2014111268 A JP 2014111268A JP 2014111268 A JP2014111268 A JP 2014111268A JP 2015224760 A JP2015224760 A JP 2015224760A
Authority
JP
Japan
Prior art keywords
seismic isolation
laminated rubber
building
isolation device
rigidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014111268A
Other languages
Japanese (ja)
Other versions
JP6406880B2 (en
Inventor
満 竹内
Mitsuru Takeuchi
満 竹内
龍一 浅沼
Ryuichi Asanuma
龍一 浅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2014111268A priority Critical patent/JP6406880B2/en
Publication of JP2015224760A publication Critical patent/JP2015224760A/en
Application granted granted Critical
Publication of JP6406880B2 publication Critical patent/JP6406880B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To change the characteristics of a seismic isolator supporting the building according to the characteristics of disturbance acting on the building and the increase or decrease of the weight of the building.SOLUTION: A seismic isolator includes a seismic isolation supporter including a laminated rubber supporting a structure, and rigidity change means which changes the rigidity characteristics of the seismic isolation supporter according to the characteristics of disturbance acting on the structure, or the increase or decrease of the weight of the building.

Description

本発明は、免震建物に設けられる免震装置に関する。   The present invention relates to a seismic isolation device provided in a seismic isolation building.

近い将来に起こり得る大地震に対応すべく、免震装置によって構造物を免震支持する免震建物が普及している。例えば、特許文献1には、建物基礎に複数設置された積層ゴムによって建物本体を免震支持する免震建物が開示されている。   In order to cope with a large earthquake that may occur in the near future, seismic isolation buildings that support the seismic isolation of structures by seismic isolation devices have become widespread. For example, Patent Literature 1 discloses a base-isolated building in which a building body is supported by base isolation using a plurality of laminated rubbers installed on a building foundation.

また、免震建物には、より高い安全性や居住性が求められており、地震や台風等により免震建物が一時的に受ける外力の特性や、免震建物の増築、減築、改築、用途変更などによる建物重量の増減に応じて、免震装置の特性を変更できることが望まれている。   In addition, seismic isolation buildings are required to have higher safety and comfort, and the characteristics of external forces temporarily received by the seismic isolation buildings due to earthquakes, typhoons, etc., extension, reduction, reconstruction, It is desired that the characteristics of the seismic isolation device can be changed in accordance with the increase or decrease of the building weight due to changes in usage.

特開2009−121043号公報JP 2009-121043 A

本発明は係る事実を考慮し、建物に作用する外乱の特性や建物の重量増減に応じて、この建物を支持する免震装置の特性を変更することを課題とする。   This invention considers the fact which concerns, and makes it a subject to change the characteristic of the seismic isolation apparatus which supports this building according to the characteristic of the disturbance which acts on a building, or the weight increase / decrease of a building.

第1態様の発明は、構造物を支持する積層ゴムを備える免震支承と、前記構造物に作用する外乱の特性又は前記構造物の重量増減に応じて、前記免震支承の剛性特性を変更する剛性変更手段と、を有する免震装置である。   The first aspect of the invention is to change the rigidity characteristics of the seismic isolation bearing according to the seismic isolation bearing including the laminated rubber that supports the structure and the characteristics of the disturbance acting on the structure or the weight increase / decrease of the structure. A seismic isolation device.

第1態様の発明では、剛性変更手段によって免震支承の剛性特性を変更することにより、構造物に作用する外乱の特性や構造物の重量増減に応じて、この構造物を支持する免震装置の特性を変更することができる。   In the invention of the first aspect, the seismic isolation device that supports the structure according to the characteristics of the disturbance acting on the structure and the weight increase / decrease of the structure by changing the rigidity characteristics of the seismic isolation bearing by the rigidity changing means. The characteristics of can be changed.

第2態様の発明は、第1態様の免震装置において、前記免震支承は、前記積層ゴムの上面又は下面に滑り支承が設けられて構成された弾性滑り支承であり、前記剛性変更手段は、前記積層ゴムの周囲に配置され、前記積層ゴムの上フランジと下フランジを連結して前記上フランジと前記下フランジの水平方向への相対移動を拘束する連結部材である。   The invention of a second aspect is the seismic isolation device of the first aspect, wherein the seismic isolation bearing is an elastic sliding bearing configured by providing a sliding bearing on an upper surface or a lower surface of the laminated rubber, and the rigidity changing means is The connecting member is disposed around the laminated rubber and connects the upper flange and the lower flange of the laminated rubber to restrain the relative movement in the horizontal direction of the upper flange and the lower flange.

第2態様の発明では、積層ゴムの上フランジと下フランジを連結部材によって連結することにより、弾性滑り支承として機能する免震支承を、滑り支承として機能させることができる。これにより、連結部材を設ける前の免震装置と、連結部材を設けた後の免震装置との特性を変更することができる。   In the second aspect of the invention, by connecting the upper flange and the lower flange of the laminated rubber with the connecting member, the seismic isolation bearing that functions as an elastic sliding bearing can function as a sliding bearing. Thereby, the characteristic of the seismic isolation apparatus before providing a connection member and the seismic isolation apparatus after providing a connection member can be changed.

本発明は上記構成としたので、建物に作用する外乱の特性や建物の重量増減に応じて、この建物を支持する免震装置の特性を変更することができる。   Since the present invention has the above-described configuration, the characteristics of the seismic isolation device that supports the building can be changed according to the characteristics of the disturbance acting on the building and the weight increase / decrease of the building.

本発明の第1実施形態に係る建物を示す立面図である。It is an elevation view which shows the building which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る免震装置を示す正面図である。It is a front view which shows the seismic isolation apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る免震装置を示す平面断面図である。It is a plane sectional view showing the seismic isolation device concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る免震装置の効果を示す線図である。It is a diagram which shows the effect of the seismic isolation apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る免震装置のバリエーションを示す正面図である。It is a front view which shows the variation of the seismic isolation apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る免震装置のバリエーションを示す正面図である。It is a front view which shows the variation of the seismic isolation apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る免震装置のバリエーションを示す平面断面図である。It is a plane sectional view showing the variation of the seismic isolation device concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る免震装置のバリエーションを示す正面図である。It is a front view which shows the variation of the seismic isolation apparatus which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る免震装置を示す正面図である。It is a front view which shows the seismic isolation apparatus which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る免震装置を示す平面断面図である。It is a plane sectional view showing the seismic isolation device concerning a 2nd embodiment of the present invention. 本発明の第2実施形態に係る免震装置のバリエーションを示す正面断面図である。It is front sectional drawing which shows the variation of the seismic isolation apparatus which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る免震装置の効果を示す線図である。It is a diagram which shows the effect of the seismic isolation apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る建物を示す立面図である。It is an elevation view which shows the building which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る免震装置を示す正面図及び正面断面図である。It is the front view and front sectional view which show the seismic isolation apparatus which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る免震装置を示す平面断面図である。It is plane sectional drawing which shows the seismic isolation apparatus which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る免震装置の効果を示す線図である。It is a diagram which shows the effect of the seismic isolation apparatus which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る免震装置のバリエーションを示す正面断面図である。It is front sectional drawing which shows the variation of the seismic isolation apparatus which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る免震装置を示す正面図及び正面断面図である。It is the front view and front sectional view which show the seismic isolation apparatus which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る免震装置の効果を示す線図である。It is a diagram which shows the effect of the seismic isolation apparatus which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る免震装置のバリエーションを示す正面断面図である。It is front sectional drawing which shows the variation of the seismic isolation apparatus which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る免震装置を示す正面図及び正面断面図である。It is the front view and front sectional drawing which show the seismic isolation apparatus which concerns on 5th Embodiment of this invention. 本発明の第5実施形態に係る免震装置を示す平面断面図である。It is a plane sectional view showing the seismic isolation device concerning a 5th embodiment of the present invention. 本発明の第5実施形態に係る免震装置の効果を示す線図である。It is a diagram which shows the effect of the seismic isolation apparatus which concerns on 5th Embodiment of this invention. 本発明の第5実施形態に係る免震装置のバリエーションを示す正面断面図である。It is front sectional drawing which shows the variation of the seismic isolation apparatus which concerns on 5th Embodiment of this invention.

図を参照しながら、本発明の実施形態を説明する。まず、本発明の第1実施形態に係る免震装置と、その作用及び効果について説明する。   Embodiments of the present invention will be described with reference to the drawings. First, the seismic isolation device according to the first embodiment of the present invention, and its operation and effect will be described.

図1(b)の立面図、及び図2(b)の正面図に示すように、第1実施形態の免震装置10は、免震支承としての積層ゴム12と、積層ゴム12に着脱可能に取り付けられた剛性変更手段としての環状部材14とを有して構成されている。   As shown in the elevation view of FIG. 1B and the front view of FIG. 2B, the seismic isolation device 10 of the first embodiment is attached to and detached from the laminated rubber 12 as a seismic isolation bearing and the laminated rubber 12. And an annular member 14 as rigidity changing means attached in a possible manner.

図1(a)の立面図、及び図2(a)の正面図には、環状部材14を取り外した状態の免震装置10が示され、図1(b)及び図2(b)には、環状部材14が取り付けられた状態の免震装置10が示されている。   In the elevation view of FIG. 1 (a) and the front view of FIG. 2 (a), the seismic isolation device 10 with the annular member 14 removed is shown in FIGS. 1 (b) and 2 (b). Shows the seismic isolation device 10 with the annular member 14 attached thereto.

図2(a)に示すように、積層ゴム12は、ゴム層と鋼板を交互に積層して形成された積層ゴム本体16と、積層ゴム本体16の上面に設けられた上フランジ18と、積層ゴム本体16の下面に設けられた下フランジ20とを有して構成され、図1(a)に示すように、建物22の下部構造物を構成する建物基礎24上に設置されて、建物22の上部構造物を構成する構造物としての建物本体26を免震支持している。   As shown in FIG. 2 (a), the laminated rubber 12 includes a laminated rubber body 16 formed by alternately laminating rubber layers and steel plates, an upper flange 18 provided on the upper surface of the laminated rubber body 16, and a laminated rubber body. 1 and a lower flange 20 provided on the lower surface of the rubber body 16, and is installed on a building foundation 24 that constitutes a lower structure of the building 22 as shown in FIG. The building main body 26 as a structure constituting the upper structure is isolated from the earthquake.

第1実施形態では、図1(b)に示すように、図1(a)の状態の積層ゴム12に環状部材14を取り付けることにより、トリガー情報Tに応じて免震支承としての積層ゴム12の剛性特性を変更し、免震装置10の特性を変更する。   In the first embodiment, as shown in FIG. 1 (b), by attaching an annular member 14 to the laminated rubber 12 in the state of FIG. 1 (a), the laminated rubber 12 as a seismic isolation bearing according to the trigger information T. The characteristic of the seismic isolation device 10 is changed.

トリガー情報Tとしては、建物22に作用する外乱の特性となる、建物22に接近する台風の情報(例えば、予想される風荷重の大きさ)や、建物22の増築、減築、改築、用途変更などにより増減する建物本体26の重量の情報等が挙げられる。   As the trigger information T, information on the typhoon approaching the building 22 (for example, the expected magnitude of wind load), which is a characteristic of the disturbance acting on the building 22, and the extension, reduction, reconstruction, use of the building 22 For example, information on the weight of the building body 26 that increases or decreases due to a change or the like can be given.

例えば、数日後に建物22に台風がやってくる予報を得た場合には、環状部材14によって積層ゴム12の水平剛性を大きくして免震装置10の特性を変更し、建物本体26の免震周期を短くする。これにより、台風時における建物本体26の揺れを小さくしたり、居住性を向上させたりすることができる。   For example, when it is predicted that a typhoon will reach the building 22 a few days later, the horizontal rigidity of the laminated rubber 12 is increased by the annular member 14 to change the characteristics of the seismic isolation device 10, and the seismic isolation cycle of the building body 26 is changed. To shorten. Thereby, the shaking of the building main body 26 at the time of a typhoon can be made small, and living property can be improved.

また、例えば、建物22の増築、減築、改築、用途変更などにより増減する建物本体26の重量に対して建物本体26の免震周期が最適になるように、環状部材14によって積層ゴム12の水平剛性の大きさを変えて免震装置10の特性を変更する。   Further, for example, the annular rubber member 14 can be used to increase the seismic isolation cycle of the building body 26 with respect to the weight of the building body 26 that increases or decreases due to extension, reduction, reconstruction, application change, or the like. The characteristic of the seismic isolation device 10 is changed by changing the horizontal rigidity.

図2(b)、及び図2(b)のA−A断面図である図3(a)に示すように、環状部材14は、鋼製の円筒状部材28によって構成されており、この円筒状部材28を略等しく2つに分割した拘束部材30A、30Bの両端部同士をボルト32及びナット34で接合して拘束部材30A、30Bを一体化することにより形成されている。なお、円筒状部材28は、3つ以上に分割した拘束部材を一体化することによって形成してもよい。   As shown in FIG. 2 (b) and FIG. 3 (a), which is a cross-sectional view taken along the line AA of FIG. 2 (b), the annular member 14 is constituted by a cylindrical member 28 made of steel. The constraining members 30A and 30B, which are substantially equally divided into two parts, are joined together by bolts 32 and nuts 34 to integrate the constraining members 30A and 30B. The cylindrical member 28 may be formed by integrating three or more constraining members.

環状部材14は、図3(a)に示すように、積層ゴム本体16の外周部を取り囲むように拘束部材30A、30Bを配置し、拘束部材30A、30Bの両端部同士をボルト32及びナット34で接合して拘束部材30A、30Bを一体化することにより、積層ゴム12に取り付ける。   As shown in FIG. 3A, the annular member 14 has the restraining members 30 </ b> A and 30 </ b> B disposed so as to surround the outer peripheral portion of the laminated rubber main body 16, and both ends of the restraining members 30 </ b> A and 30 </ b> B are connected with bolts 32 and nuts 34. Are attached to the laminated rubber 12 by integrating the restraining members 30A and 30B.

これにより、積層ゴム本体16下部を円筒状部材28によって拘束し、積層ゴム本体16のせん断変形領域を小さくすることにより、積層ゴム12の水平剛性を大きくすることができる。よって、免震装置10の特性が変更され、建物本体26の免震周期を短くすることができる。   Thereby, the horizontal rigidity of the laminated rubber 12 can be increased by constraining the lower portion of the laminated rubber body 16 by the cylindrical member 28 and reducing the shear deformation region of the laminated rubber body 16. Therefore, the characteristic of the seismic isolation device 10 is changed, and the seismic isolation cycle of the building body 26 can be shortened.

例えば、図4のグラフに示すように、図2(a)の免震装置10における値36に対して、図2(b)の免震装置10においては値38とすることができる。図4のグラフの縦軸Yは、建物本体26に作用する水平力を示し、横軸Xは、建物基礎24に対する建物本体26の移動量を示している。すなわち、図2(a)の免震装置10の水平剛性(値36の傾き)よりも、図2(b)の免震装置10の水平剛性(値38の傾き)を大きくすることができる。   For example, as shown in the graph of FIG. 4, the value 36 in the seismic isolation device 10 in FIG. 2B can be set to 38 as opposed to the value 36 in the seismic isolation device 10 in FIG. The vertical axis Y of the graph in FIG. 4 indicates the horizontal force acting on the building body 26, and the horizontal axis X indicates the amount of movement of the building body 26 relative to the building foundation 24. That is, the horizontal rigidity (slope of value 38) of the seismic isolation device 10 in FIG. 2 (b) can be made larger than the horizontal rigidity (slope of value 36) of the seismic isolation device 10 in FIG. 2 (a).

以上説明したように、第1実施形態の免震装置10は、環状部材14によって免震支承としての積層ゴム12の剛性特性を変更することにより、建物本体26に作用する外乱の特性や建物本体26の重量増減に応じて、特性を変更することができる。   As described above, the seismic isolation device 10 according to the first embodiment changes the rigidity characteristics of the laminated rubber 12 as the seismic isolation bearing by the annular member 14, so that the characteristics of the disturbance acting on the building main body 26 and the building main body are changed. The characteristics can be changed according to the weight increase / decrease of 26.

以上、本発明の第1実施形態について説明した。   The first embodiment of the present invention has been described above.

なお、第1実施形態では、図2(b)に示す免震装置10のように、積層ゴム12に1つの環状部材14を取り付けた例を示したが、複数の環状部材14を上下方向へ積み重ねるように配置して取り付けてもよい。例えば、図2(c)の正面図に示す免震装置42のように、2つの環状部材14を上下方向へ積み重ねるように配置して積層ゴム12に取り付けてもよい。このようにすれば、積層ゴム本体16のせん断変形領域をさらに小さくできるので、図4のグラフに示すように、図2(c)の免震装置42においては値40とすることができる。すなわち、図2(b)の免震装置10の水平剛性(値38の傾き)よりも、図2(c)の免震装置10の水平剛性(値40の傾き)を大きくすることができる。この場合、上下に配置された環状部材14間の応力伝達は必須ではなく、環状部材14によって取り囲んだ部分の積層ゴム本体16のせん断変形を抑制できればよい。   In the first embodiment, an example in which one annular member 14 is attached to the laminated rubber 12 as in the seismic isolation device 10 shown in FIG. 2B is shown, but a plurality of annular members 14 are arranged in the vertical direction. You may arrange and attach so that it may pile up. For example, like the seismic isolation device 42 shown in the front view of FIG. 2C, the two annular members 14 may be arranged to be stacked in the vertical direction and attached to the laminated rubber 12. In this way, since the shear deformation region of the laminated rubber body 16 can be further reduced, the value 40 can be set in the seismic isolation device 42 of FIG. 2C as shown in the graph of FIG. That is, the horizontal stiffness (inclination of value 40) of the seismic isolation device 10 in FIG. 2 (c) can be made larger than the horizontal rigidity (inclination of value 38) of the seismic isolation device 10 in FIG. 2 (b). In this case, stress transmission between the annular members 14 arranged above and below is not essential, and it is only necessary to suppress the shear deformation of the laminated rubber body 16 in the portion surrounded by the annular member 14.

また、図3(b)の平面断面図に示す免震装置44のように、ボルト32の締め込みによって、拘束部材30A、30Bから積層ゴム本体16の半径方向へ圧縮力Pを作用させるようにしてもよい。このようにすれば、環状部材14によって取り囲まれた部分の積層ゴム本体16がガタなく圧縮拘束され、積層ゴム本体16の水平剛性を確実に変更することができる。   Further, as in the seismic isolation device 44 shown in the plan sectional view of FIG. 3B, the compression force P is applied from the restraining members 30A, 30B to the laminated rubber body 16 in the radial direction by tightening the bolts 32. May be. In this way, the portion of the laminated rubber body 16 surrounded by the annular member 14 is compressed and restrained without play, and the horizontal rigidity of the laminated rubber body 16 can be reliably changed.

さらに、第1実施形態では、環状部材14を鋼製の円筒状部材28によって構成した例を示したが、図5の正面図に示す免震装置46の備える環状部材48のように、積層ゴム本体16の外周面に帯状のゴム50を巻きつけて形成したものであってもよい。   Furthermore, in the first embodiment, the example in which the annular member 14 is configured by the steel cylindrical member 28 has been shown. However, like the annular member 48 included in the seismic isolation device 46 shown in the front view of FIG. It may be formed by winding a belt-like rubber 50 around the outer peripheral surface of the main body 16.

また、図6(a)、(b)の正面図に示す免震装置52の備える環状部材54のように、積層ゴム本体16の外周部を取り囲むように配置して取り付けられた環状のチューブ56によって構成したものであってもよい。   Moreover, like the annular member 54 provided in the seismic isolation device 52 shown in the front views of FIGS. 6A and 6B, an annular tube 56 disposed and attached so as to surround the outer peripheral portion of the laminated rubber body 16. It may be configured by.

図6(a)、及び図6(a)のB−B断面図である図7(a)の状態において、チューブ56は萎んだ状態になっている。このチューブ56の中にポンプ等によって空気、油、水などの流体を充填することにより、図6(b)、及び図6(b)のC−C断面図である図7(b)に示すように、チューブ56が完全に膨らんだ状態にする。これにより、チューブ56から積層ゴム本体16の半径方向へ圧縮力Pを作用させて、環状部材54によって取り囲まれた部分の積層ゴム本体16を圧縮拘束し、積層ゴム本体16の水平剛性を大きくする。積層ゴム本体16の水平剛性を小さくする際には、チューブ56の中に充填された空気、油、水などの流体をポンプ等により排出して、チューブ56を萎んだ状態にする。   In the state of FIG. 6A and FIG. 7A which is a BB cross-sectional view of FIG. 6A, the tube 56 is in a deflated state. When the tube 56 is filled with a fluid such as air, oil or water by a pump or the like, it is shown in FIG. 6B and FIG. 7B which is a cross-sectional view taken along the line CC in FIG. As such, the tube 56 is in a fully expanded state. As a result, a compressive force P is applied from the tube 56 in the radial direction of the laminated rubber body 16 to compress and restrain the laminated rubber body 16 in the portion surrounded by the annular member 54, thereby increasing the horizontal rigidity of the laminated rubber body 16. . When the horizontal rigidity of the laminated rubber body 16 is reduced, fluid such as air, oil, and water filled in the tube 56 is discharged by a pump or the like so that the tube 56 is deflated.

さらに、図8(a)〜(d)の正面図に示す免震装置58のように、複数のチューブ56を上下方向へ積み重ねるように配置して積層ゴム12に取り付けてもよい。図8(a)には、全てのチューブ56が萎んでいる状態が示され、図8(b)には、最下層のチューブ56が完全に膨らんでいる状態が示され、図8(c)には、最下層と中間層のチューブ56が完全に膨らんでいる状態が示され、図8(d)には、全てのチューブ56が完全に膨らんでいる状態が示されている。図8(b)の状態よりも図8(c)の状態の方が、積層ゴム本体16のせん断変形領域が小さくなるので、図8(b)よりも図8(c)の積層ゴム本体16の水平剛性を大きくすることができ、図8(c)の状態よりも図8(d)の状態の方が、積層ゴム本体16のせん断変形領域が小さくなるので、図8(c)よりも図8(d)の積層ゴム本体16の水平剛性を大きくすることができる。   Furthermore, like the seismic isolation device 58 shown to the front view of Fig.8 (a)-(d), you may arrange | position so that the several tube 56 may be piled up and down, and may attach it to the laminated rubber 12. FIG. FIG. 8A shows a state in which all the tubes 56 are deflated, and FIG. 8B shows a state in which the lowermost tube 56 is completely swollen, and FIG. FIG. 8 shows a state where the tubes 56 of the lowermost layer and the intermediate layer are completely expanded, and FIG. 8D shows a state where all the tubes 56 are completely expanded. Since the shear deformation region of the laminated rubber body 16 is smaller in the state of FIG. 8C than in the state of FIG. 8B, the laminated rubber body 16 of FIG. 8C is more than that of FIG. 8B. The horizontal rigidity of the laminated rubber body 16 is smaller in the state of FIG. 8 (d) than in the state of FIG. 8 (c), so that the shear deformation region of the laminated rubber body 16 is smaller than that of FIG. 8 (c). It is possible to increase the horizontal rigidity of the laminated rubber body 16 shown in FIG.

また、第1実施形態では、トリガー情報Tを、台風情報や建物本体26の重量情報とした例を示したが、トリガー情報Tは、構造物としての建物本体26に作用する外乱の特性又は建物本体26の重量増減の情報であればよい。例えば、トリガー情報Tは、建物22や建物22周辺に設置したセンサーによって得られた、地震時の入力地震動、建物応答(応答加速度、応答変位)の情報や、建物22へ到達し得る地震動の卓越周波数、規模等の特性を知らせる緊急地震速報等の情報であってもよい。   In the first embodiment, the trigger information T is an example of the typhoon information or the weight information of the building body 26. However, the trigger information T is a characteristic of disturbance acting on the building body 26 as a structure or a building. Any information on the weight increase / decrease of the main body 26 may be used. For example, the trigger information T is information on input earthquake motion, building response (response acceleration, response displacement) at the time of an earthquake obtained by a sensor installed in the building 22 or around the building 22, and predominance of earthquake motion that can reach the building 22. Information such as an earthquake early warning that informs characteristics such as frequency and scale may be used.

これらのトリガー情報Tに対しては、短時間又はリアルタイムで免震装置の特性を変更する必要があるが、図6、8に示す免震装置52、58であれば、これらのトリガー情報Tに対応して、短時間又はリアルタイムで免震装置52、58の特性を変更させることができ、最適な免震周期で建物本体26を免震支持することができる。   For these trigger information T, it is necessary to change the characteristics of the seismic isolation device in a short time or in real time, but in the case of the seismic isolation devices 52 and 58 shown in FIGS. Correspondingly, the characteristics of the seismic isolation devices 52 and 58 can be changed in a short time or in real time, and the building body 26 can be seismically isolated with an optimal seismic isolation cycle.

次に、本発明の第2実施形態に係る免震装置と、その作用及び効果について説明する。第2実施形態の説明において、第1実施形態と同じ構成のものは、同符号を付すると共に、適宜省略して説明する。   Next, the seismic isolation device according to the second embodiment of the present invention, and its operation and effect will be described. In the description of the second embodiment, components having the same configurations as those of the first embodiment are denoted by the same reference numerals and are appropriately omitted.

図9の正面図、及び図9のD−D断面図である図10に示すように、第2実施形態の免震装置60は、免震支承としての積層ゴム12と、剛性変更手段としての複数の壁部材62とを有して構成されている。   As shown in FIG. 10 which is a front view of FIG. 9 and a DD cross-sectional view of FIG. 9, the seismic isolation device 60 of the second embodiment includes a laminated rubber 12 as a seismic isolation bearing, and rigidity changing means. A plurality of wall members 62 are included.

壁部材62は、積層ゴム本体16の周りを取り囲むように平面視にて円状に配置されている。また、壁部材62は、積層ゴム本体16の外周面との間にギャップGを有するように配置され、積層ゴム12の半径方向へ移動可能に設けられている。   The wall member 62 is arranged in a circle in plan view so as to surround the laminated rubber body 16. The wall member 62 is disposed so as to have a gap G between the wall member 62 and the outer peripheral surface of the laminated rubber body 16, and is provided so as to be movable in the radial direction of the laminated rubber 12.

第2実施形態では、図9に示すように、免震装置60に壁部材62を取り付けることにより、トリガー情報Tに応じて免震支承としての積層ゴム12の剛性特性を変更し、免震装置60の特性を変更する。   In the second embodiment, as shown in FIG. 9, by attaching a wall member 62 to the seismic isolation device 60, the rigidity characteristic of the laminated rubber 12 as the seismic isolation bearing is changed according to the trigger information T, and the seismic isolation device Change 60 properties.

免震装置60では、積層ゴム本体16のせん断変形が進んで積層ゴム本体16の外周面が壁部材62に接触した状態において、壁部材62によって積層ゴム本体16の下部が拘束される。   In the seismic isolation device 60, the lower part of the laminated rubber body 16 is restrained by the wall member 62 in a state where the shear deformation of the laminated rubber body 16 proceeds and the outer peripheral surface of the laminated rubber body 16 contacts the wall member 62.

これにより、積層ゴム本体16のせん断変形領域が小さくなり、図11のグラフの値64に示すように、積層ゴム12の水平剛性が大きくなる。よって、免震装置60の特性が変更され、建物本体26の免震周期を短くすることができる。図11のグラフの縦軸Yは、建物本体26に作用する水平力を示し、横軸Xは、建物基礎24に対する建物本体26の移動量を示している。また、壁部材62を移動させてギャップGの大きさを変更すれば、積層ゴム12の水平剛性が大きくなるタイミングを変えることができる。   Thereby, the shear deformation region of the laminated rubber body 16 is reduced, and the horizontal rigidity of the laminated rubber 12 is increased as indicated by a value 64 in the graph of FIG. Therefore, the characteristic of the seismic isolation device 60 is changed, and the seismic isolation cycle of the building body 26 can be shortened. In the graph of FIG. 11, the vertical axis Y indicates the horizontal force acting on the building body 26, and the horizontal axis X indicates the amount of movement of the building body 26 relative to the building foundation 24. Further, when the wall member 62 is moved to change the size of the gap G, the timing at which the horizontal rigidity of the laminated rubber 12 increases can be changed.

以上説明したように、第2実施形態の免震装置60は、壁部材62を設けることによって免震支承としての積層ゴム12の剛性特性を変更することにより、建物本体26に作用する外乱の特性や建物本体26の重量増減に応じて、特性を変更することができる。   As described above, the seismic isolation device 60 according to the second embodiment has the characteristics of the disturbance acting on the building body 26 by changing the rigidity characteristics of the laminated rubber 12 as the seismic isolation bearing by providing the wall member 62. The characteristics can be changed according to the weight increase or decrease of the building body 26.

以上、本発明の第2実施形態について説明した。   The second embodiment of the present invention has been described above.

なお、第2実施形態では、壁部材62を複数配置した例を示したが、壁部材62によって積層ゴム本体16のせん断変形を拘束できれば、壁部材62の数、形状、及び大きさは、どのようなものであってもよい。   In the second embodiment, an example in which a plurality of wall members 62 are arranged has been described. However, if the shear deformation of the laminated rubber main body 16 can be restrained by the wall members 62, the number, shape, and size of the wall members 62 are not limited. It may be something like this.

また、第2実施形態では、壁部材62を移動可能に設けた例を示したが、壁部材62は移動させなくてもよい。この場合、壁部材62を、積層ゴム本体16の周りを取り囲むように配置される円環状の部材としてもよい。   In the second embodiment, the wall member 62 is movably provided. However, the wall member 62 may not be moved. In this case, the wall member 62 may be an annular member disposed so as to surround the laminated rubber main body 16.

さらに、図12の正面断面図に示すように、壁部材62の内壁面と、積層ゴム本体16の外周面との間に、湾曲又は屈折させた圧電素子68を配置してもよい。このようにすれば、圧電素子68に通電することにより圧電素子68は壁部材62の内壁面に押し付けられて弾性部材のように挙動するので、免震装置60の特性を図11のグラフの値66のように、連続的に変更することができる。   Furthermore, as shown in the front sectional view of FIG. 12, a curved or refracted piezoelectric element 68 may be disposed between the inner wall surface of the wall member 62 and the outer peripheral surface of the laminated rubber body 16. In this way, when the piezoelectric element 68 is energized, the piezoelectric element 68 is pressed against the inner wall surface of the wall member 62 and behaves like an elastic member. As in 66, it can be changed continuously.

次に、本発明の第3実施形態に係る免震装置と、その作用及び効果について説明する。第3実施形態の説明において、第1実施形態と同じ構成のものは、同符号を付すると共に、適宜省略して説明する。   Next, the seismic isolation device according to the third embodiment of the present invention, and its operation and effect will be described. In the description of the third embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and are appropriately omitted.

図13(b)の立面図、及び図14(b)の正面断面図に示すように、第3実施形態の免震装置70は、免震支承としての弾性滑り支承72に着脱可能に取り付けられた剛性変更手段としての連結部材74とを有して構成されている。   As shown in the elevation view of FIG. 13 (b) and the front sectional view of FIG. 14 (b), the seismic isolation device 70 of the third embodiment is detachably attached to an elastic sliding bearing 72 as a seismic isolation bearing. And a connecting member 74 as rigidity changing means.

図13(a)の立面図、及び図14(a)の正面図には、連結部材74を取り外した状態の免震装置70が示され、図13(b)及び図14(b)には、連結部材74が取り付けられた状態の免震装置70が示されている。   In the elevation view of FIG. 13 (a) and the front view of FIG. 14 (a), the seismic isolation device 70 with the connecting member 74 removed is shown in FIGS. 13 (b) and 14 (b). Shows the seismic isolation device 70 with the connecting member 74 attached thereto.

図14(a)に示すように、弾性滑り支承72は、積層ゴム12の上面又は下面に滑り支承76が設けられて構成され(図14(a)には、積層ゴム12の下面に滑り支承76が設けられている例が示されている)、図13(a)に示すように、建物78の下部構造物を構成する建物基礎80上に設置されて、建物78の上部構造物を構成する構造物としての建物本体82を免震支持している。   As shown in FIG. 14A, the elastic sliding bearing 72 is configured by providing a sliding bearing 76 on the upper surface or the lower surface of the laminated rubber 12 (FIG. 14A shows a sliding bearing on the lower surface of the laminated rubber 12. As shown in FIG. 13A, the upper structure of the building 78 is configured by being installed on the building foundation 80 that forms the lower structure of the building 78. The building body 82 is supported as a seismic isolation structure.

図14(a)に示すように、滑り支承76は、建物基礎80上面に設けられた滑り板84と、積層ゴム12の下フランジ20下面に取り付けられ、滑り板84上面を摺動可能な滑り材86とを有して構成されている。   As shown in FIG. 14 (a), the sliding bearing 76 is attached to the sliding plate 84 provided on the upper surface of the building foundation 80 and the lower surface of the lower flange 20 of the laminated rubber 12 and is slidable on the upper surface of the sliding plate 84. And a material 86.

図14(b)、及び図14(b)のE−E断面図である図15に示すように、連結部材74は、積層ゴム本体16の周囲に配置され、積層ゴム12の上フランジ18と下フランジ20をボルト88で連結することにより上フランジ18と下フランジ20の水平方向への相対移動を拘束する鋼製の円筒状部材90によって構成されている。円筒状部材90は、略等しく2つに分割可能な部材である。なお、円筒状部材90は、3つ以上に分割可能であってもよい。   14 (b) and FIG. 15 which is an EE cross-sectional view of FIG. 14 (b), the connecting member 74 is disposed around the laminated rubber body 16, and is connected to the upper flange 18 of the laminated rubber 12. The lower flange 20 is constituted by a steel cylindrical member 90 that restrains the relative movement of the upper flange 18 and the lower flange 20 in the horizontal direction by connecting the lower flange 20 with bolts 88. The cylindrical member 90 is a member that can be divided into two substantially equally. The cylindrical member 90 may be divided into three or more.

第3実施形態では、図13(b)に示すように、図13(a)の状態の弾性滑り支承72に連結部材74を取り付けることにより、トリガー情報Tに応じて免震支承としての弾性滑り支承72の剛性特性を変更し、免震装置70の特性を変更する。   In the third embodiment, as shown in FIG. 13 (b), by attaching a connecting member 74 to the elastic sliding bearing 72 in the state of FIG. The rigidity characteristic of the support 72 is changed, and the characteristic of the seismic isolation device 70 is changed.

具体的には、積層ゴム12の上フランジ18と下フランジ20を連結部材74によって連結することにより、弾性滑り支承72を滑り支承として機能させることができる。これにより、連結部材74を設ける前の免震装置70と、連結部材74を設けた後の免震装置70との特性を変更することができる。   Specifically, by connecting the upper flange 18 and the lower flange 20 of the laminated rubber 12 by the connecting member 74, the elastic sliding bearing 72 can function as a sliding bearing. Thereby, the characteristic of the seismic isolation apparatus 70 before providing the connection member 74 and the seismic isolation apparatus 70 after providing the connection member 74 can be changed.

例えば、図16のグラフに示すように、図13(a)の免震装置70における値92に対して、図13(b)の免震装置70においては値94とすることができる。図16のグラフの縦軸Yは、建物本体82に作用する水平力を示し、横軸Xは、建物基礎80に対する建物本体82の移動量を示している。すなわち、図13(a)の免震装置70の初期剛性(値92の傾き)よりも、図13(b)の免震装置70の初期剛性(値94の傾き)を大きくすることができ、また、免震装置70が滑り変形するタイミングを早くすることができる。   For example, as shown in the graph of FIG. 16, the value 92 can be set to 94 in the seismic isolation device 70 of FIG. 13B as opposed to the value 92 in the seismic isolation device 70 of FIG. The vertical axis Y in the graph of FIG. 16 indicates the horizontal force acting on the building body 82, and the horizontal axis X indicates the amount of movement of the building body 82 relative to the building foundation 80. That is, the initial stiffness (inclination of value 94) of the seismic isolation device 70 in FIG. 13 (b) can be made larger than the initial stiffness (inclination of value 92) of the seismic isolation device 70 in FIG. 13 (a). Moreover, the timing which the seismic isolation apparatus 70 slides and deforms can be advanced.

以上説明したように、第3実施形態の免震装置70は、連結部材74によって免震支承としての弾性滑り支承72の剛性特性を変更することにより、建物本体82に作用する外乱の特性や建物本体82の重量増減に応じて、特性を変更することができる。   As described above, the seismic isolation device 70 according to the third embodiment changes the rigidity characteristics of the elastic sliding bearing 72 as the seismic isolation bearing by the connecting member 74, so that the characteristics of the disturbance acting on the building body 82 and the building The characteristics can be changed according to the weight increase / decrease of the main body 82.

以上、本発明の第3実施形態について説明した。   The third embodiment of the present invention has been described above.

なお、第3実施形態では、連結部材74を円筒状部材90とした例を示したが、連結部材74は、積層ゴム12の上フランジ18と下フランジ20を連結して上フランジ18と下フランジ20の水平方向への相対移動を拘束できるものであればよい。例えば、連結部材74を複数配置される棒状部材または板状部材としてもよい。   In the third embodiment, the connecting member 74 is a cylindrical member 90. However, the connecting member 74 connects the upper flange 18 and the lower flange 20 of the laminated rubber 12 to connect the upper flange 18 and the lower flange. What is necessary is just to be able to restrain the relative movement of 20 in the horizontal direction. For example, a plurality of connecting members 74 may be arranged as rod-like members or plate-like members.

また、第3実施形態では、積層ゴム12の上フランジ18と下フランジ20をボルト88で連結した例を示したが、図17(a)の正面断面図、及び図17(b)の正面断面図に示す免震装置96のように、アクチュエータ98または手動により上下動するピン部材100を、円筒状部材90の下部フランジに形成した貫通孔140と、下フランジ20に形成した挿入孔102とへ挿入することによって、積層ゴム12の上フランジ18と下フランジ20を連結してもよい。   Moreover, in 3rd Embodiment, although the example which connected the upper flange 18 and the lower flange 20 of the laminated rubber 12 with the volt | bolt 88 was shown, front sectional drawing of Fig.17 (a) and front sectional drawing of FIG.17 (b) are shown. Like the seismic isolation device 96 shown in the drawing, the pin member 100 that moves up and down by the actuator 98 or manually is passed through the through hole 140 formed in the lower flange of the cylindrical member 90 and the insertion hole 102 formed in the lower flange 20. You may connect the upper flange 18 and the lower flange 20 of the laminated rubber 12 by inserting.

次に、本発明の第4実施形態に係る免震装置と、その作用及び効果について説明する。第4実施形態の説明において、第3実施形態と同じ構成のものは、同符号を付すると共に、適宜省略して説明する。   Next, a seismic isolation device according to a fourth embodiment of the present invention, and its operation and effects will be described. In the description of the fourth embodiment, components having the same configurations as those of the third embodiment are denoted by the same reference numerals and are appropriately omitted.

図18(a)の正面図、及び図18(b)の正面断面図に示すように、第4実施形態の免震装置104は、免震支承としての弾性滑り支承72に着脱可能に取り付けられた剛性変更手段としての補助摩擦部材106を有して構成されている。   As shown in the front view of FIG. 18A and the front sectional view of FIG. 18B, the seismic isolation device 104 of the fourth embodiment is detachably attached to an elastic sliding bearing 72 as a seismic isolation bearing. And an auxiliary friction member 106 as a rigidity changing means.

図18(a)には、補助摩擦部材106を取り外した状態の免震装置104が示され、図18(b)には、補助摩擦部材106が取り付けられた状態の免震装置104が示されている。   18A shows the seismic isolation device 104 with the auxiliary friction member 106 removed, and FIG. 18B shows the seismic isolation device 104 with the auxiliary friction member 106 attached. ing.

図18(b)に示すように、補助摩擦部材106には、下面に滑り材86と同じ材質の滑り材108が設けられており、ボルト110によって補助摩擦部材106を下フランジ20に固定することにより、滑り材108が、滑り材86の周囲に平面視にて円環状に、且つ滑り材86下面と滑り材108下面が面一になるように配置される。すなわち、補助摩擦部材106を弾性滑り支承72に取り付けることにより、滑り板84上を摺動する滑り材(滑り材86、108)の面積が大きくなって摩擦抵抗が大きくなる。   As shown in FIG. 18B, the auxiliary friction member 106 is provided with a sliding material 108 made of the same material as the sliding material 86 on the lower surface, and the auxiliary friction member 106 is fixed to the lower flange 20 by a bolt 110. Accordingly, the sliding material 108 is arranged in an annular shape around the sliding material 86 in a plan view so that the lower surface of the sliding material 86 and the lower surface of the sliding material 108 are flush with each other. That is, by attaching the auxiliary friction member 106 to the elastic sliding support 72, the area of the sliding material (sliding material 86, 108) sliding on the sliding plate 84 is increased, and the frictional resistance is increased.

第4実施形態では、図18(b)に示すように、図18(a)の状態の弾性滑り支承72に補助摩擦部材106を取り付けて、滑り板84上を摺動する滑り材(滑り材86、108)の摩擦抵抗を大きくすることにより、トリガー情報Tに応じて免震支承としての弾性滑り支承72の特性を変更し、免震装置104の特性を変更する。   In the fourth embodiment, as shown in FIG. 18B, a sliding material (sliding material) that slides on the sliding plate 84 by attaching the auxiliary friction member 106 to the elastic sliding bearing 72 in the state of FIG. 86, 108), the characteristic of the elastic sliding bearing 72 as the seismic isolation bearing is changed according to the trigger information T, and the characteristic of the seismic isolation device 104 is changed.

例えば、図19のグラフに示すように、図18(a)の免震装置104における値112に対して、図18(b)の免震装置104においては値114とすることができる。図19のグラフの縦軸Yは、建物本体82に作用する水平力を示し、横軸Xは、建物基礎80に対する建物本体82の移動量を示している。すなわち、図18(a)の免震装置104よりも、図18(b)の免震装置104の滑り変形するタイミングを遅くする(すなわち、滑り出し荷重を大きくする)ことができる。   For example, as shown in the graph of FIG. 19, the value 112 can be set to 114 in the seismic isolation device 104 in FIG. In the graph of FIG. 19, the vertical axis Y indicates the horizontal force acting on the building body 82, and the horizontal axis X indicates the amount of movement of the building body 82 relative to the building foundation 80. That is, the sliding deformation timing of the seismic isolation device 104 in FIG. 18B can be delayed (that is, the sliding load is increased) as compared with the seismic isolation device 104 in FIG.

以上説明したように、第4実施形態の免震装置104は、補助摩擦部材106によって免震支承としての弾性滑り支承72の剛性特性を変更することにより、建物本体82に作用する外乱の特性や建物本体82の重量増減に応じて、特性を変更することができる。   As described above, the seismic isolation device 104 of the fourth embodiment changes the rigidity characteristics of the elastic sliding bearing 72 as the seismic isolation bearing by the auxiliary friction member 106, thereby providing the characteristics of the disturbance acting on the building body 82. The characteristics can be changed according to the weight increase / decrease of the building body 82.

以上、本発明の第4実施形態について説明した。   The fourth embodiment of the present invention has been described above.

なお、第4実施形態では、補助摩擦部材106の滑り材108を滑り材86と同じ材質にした例を示したが、滑り材86よりも摩擦係数が大きくなる材質のものによって滑り材108を形成してもよい。   In the fourth embodiment, the sliding material 108 of the auxiliary friction member 106 is made of the same material as that of the sliding material 86. However, the sliding material 108 is made of a material having a friction coefficient larger than that of the sliding material 86. May be.

また、第4実施形態では、補助摩擦部材106をボルト110によって下フランジ20に固定した例を示したが、図20(a)の正面断面図、及び図20(b)の正面断面図に示す免震装置116のように、補助摩擦部材106をアクチュエータ118または手動により上下動させるようにしてもよい。   Moreover, in 4th Embodiment, although the auxiliary | assistant friction member 106 was fixed to the lower flange 20 with the volt | bolt 110, the front sectional drawing of Fig.20 (a) and the front sectional drawing of FIG.20 (b) show. Like the seismic isolation device 116, the auxiliary friction member 106 may be moved up and down by the actuator 118 or manually.

次に、本発明の第5実施形態に係る免震装置と、その作用及び効果について説明する。第5実施形態の説明において、第3実施形態と同じ構成のものは、同符号を付すると共に、適宜省略して説明する。   Next, a seismic isolation device according to a fifth embodiment of the present invention, and its operation and effects will be described. In the description of the fifth embodiment, the same components as those in the third embodiment are denoted by the same reference numerals, and are appropriately omitted.

図21(a)の正面図、及び図21(b)の正面図に示すように、第5実施形態の免震装置120は、免震支承としての弾性滑り支承72に着脱可能に取り付けられた剛性変更手段としての固定部材122を有して構成されている。   As shown in the front view of FIG. 21A and the front view of FIG. 21B, the seismic isolation device 120 of the fifth embodiment is detachably attached to an elastic sliding bearing 72 as a seismic isolation bearing. It has a fixing member 122 as rigidity changing means.

図21(a)には、固定部材122を取り外した状態の免震装置120が示され、図21(b)には、固定部材122が取り付けられた状態の免震装置120が示されている。   FIG. 21 (a) shows the seismic isolation device 120 with the fixing member 122 removed, and FIG. 21 (b) shows the seismic isolation device 120 with the fixing member 122 attached. .

図21(b)、及び図21(b)のF−F断面図である図22に示すように、固定部材122は、鋼製のリング部材124によって構成されており、鋼製のピン部材126が下方に突出して複数設けられている。このリング部材124を略等しく2つに分割した挟持部材128A、128Bを、下フランジ20を挟み込むようにして配置し、挟持部材128A、128Bの両端部同士をボルト32及びナット34で接合することにより、リング部材124が下フランジ20と一体化され、固定部材122が弾性滑り支承72に取り付けられる。なお、リング部材124は、3つ以上に分割した挟持部材を一体化することによって形成してもよい。   As shown in FIG. 21B and FIG. 22 which is a sectional view taken along line FF in FIG. 21B, the fixing member 122 is configured by a steel ring member 124, and a steel pin member 126. Are provided to protrude downward. By sandwiching the lower flange 20 between sandwiching members 128A and 128B obtained by equally dividing the ring member 124 into two parts, both ends of the sandwiching members 128A and 128B are joined to each other with bolts 32 and nuts 34. The ring member 124 is integrated with the lower flange 20, and the fixing member 122 is attached to the elastic sliding bearing 72. The ring member 124 may be formed by integrating three or more clamping members.

図21(b)に示すように、固定部材122は、ピン部材126を建物基礎24に設けた挿入孔130に挿入されるようにして、弾性滑り支承72に取り付ける。これによって、水平方向に対して下フランジ20が建物基礎80に固定される。   As shown in FIG. 21 (b), the fixing member 122 is attached to the elastic sliding support 72 such that the pin member 126 is inserted into the insertion hole 130 provided in the building foundation 24. Thereby, the lower flange 20 is fixed to the building foundation 80 with respect to the horizontal direction.

第5実施形態では、図21(b)に示すように、図21(a)の状態の弾性滑り支承72に固定部材122を取り付けて、弾性滑り支承72を滑り変形しない積層ゴムとして機能させることができる。これにより、固定部材122を設ける前の免震装置120と、固定部材122を設けた後の免震装置120との特性を変更することができる。   In the fifth embodiment, as shown in FIG. 21 (b), the fixing member 122 is attached to the elastic sliding support 72 in the state of FIG. 21 (a) so that the elastic sliding support 72 functions as a laminated rubber that does not slide. Can do. Thereby, the characteristic of the seismic isolation apparatus 120 before providing the fixing member 122 and the seismic isolation apparatus 120 after providing the fixing member 122 can be changed.

例えば、図23のグラフに示すように、図21(a)の免震装置120における値132に対して、図21(b)の免震装置120においては値134とすることができる。図23のグラフの縦軸Yは、建物本体82に作用する水平力を示し、横軸Xは、建物基礎80に対する建物本体82の移動量を示している。   For example, as shown in the graph of FIG. 23, the value 132 in the seismic isolation device 120 in FIG. 21B can be set to the value 134 in the seismic isolation device 120 in FIG. The vertical axis Y of the graph of FIG. 23 indicates the horizontal force acting on the building body 82, and the horizontal axis X indicates the amount of movement of the building body 82 relative to the building foundation 80.

以上説明したように、第5実施形態の免震装置120は、固定部材122によって免震支承としての弾性滑り支承72の特性を変更することにより、建物本体82に作用する外乱の特性や建物本体82の重量増減に応じて、特性を変更することができる。   As described above, the seismic isolation device 120 of the fifth embodiment changes the characteristics of the elastic sliding bearing 72 as the seismic isolation bearing by the fixing member 122, thereby allowing the characteristics of the disturbance acting on the building main body 82 and the building main body to be changed. The characteristics can be changed according to the weight increase / decrease of 82.

以上、本発明の第5実施形態について説明した。   The fifth embodiment of the present invention has been described above.

なお、第5実施形態では、固定部材122を下フランジ20に取り付けた例を示したが、図24(a)の正面断面図、及び図24(b)の正面断面図に示す免震装置136のように、アクチュエータ138または手動により上下動するピン部材126を、滑り板84及び建物基礎80に形成した挿入孔130へ挿入することによって、水平方向に対して下フランジ20を建物基礎80に固定してもよい。   In addition, in 5th Embodiment, although the example which attached the fixing member 122 to the lower flange 20 was shown, the seismic isolation apparatus 136 shown to front sectional drawing of Fig.24 (a) and front sectional drawing of FIG.24 (b) is shown. As described above, the lower flange 20 is fixed to the building foundation 80 with respect to the horizontal direction by inserting the actuator 138 or the pin member 126 that moves up and down manually into the insertion hole 130 formed in the sliding plate 84 and the building foundation 80. May be.

以上、本発明の第1〜第5実施形態について説明した。   The first to fifth embodiments of the present invention have been described above.

なお、第1〜第5実施形態では、免震装置10、42、44、46、52、58、60、70、96、104、116、120、136を、建物基礎24、80上の基礎免震層に設置した例を示したが、第1〜第5実施形態の免震装置10、42、44、46、52、58、60、70、96、104、116、120、136は、建物の中間免震層に設置してもよい。   In the first to fifth embodiments, the seismic isolation devices 10, 42, 44, 46, 52, 58, 60, 70, 96, 104, 116, 120, 136 are replaced with the foundation exemption on the building foundations 24, 80. Although the example installed in the seismic layer was shown, the seismic isolation devices 10, 42, 44, 46, 52, 58, 60, 70, 96, 104, 116, 120, 136 of the first to fifth embodiments are buildings. It may be installed in the middle seismic isolation layer.

以上、本発明の第1〜第5実施形態について説明したが、本発明はこうした実施形態に何等限定されるものでなく、第1〜第5実施形態を組み合わせて用いてもよいし、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。   The first to fifth embodiments of the present invention have been described above. However, the present invention is not limited to these embodiments, and the first to fifth embodiments may be used in combination. Needless to say, the present invention can be implemented in various forms without departing from the gist of the invention.

10、42、44、46、52、58、60、70、96、104、116、120、136 免震装置
12 積層ゴム(免震支承)
14 環状部材(剛性変更手段)
18 上フランジ
20 下フランジ
26、82 建物本体
48、54 環状部材(剛性変更手段)
62 壁部材(剛性変更手段)
72 弾性滑り支承(免震支承)
74 連結部材(剛性変更手段)
76 滑り支承
106 補助摩擦部材(剛性変更手段)
122 固定部材(剛性変更手段)
10, 42, 44, 46, 52, 58, 60, 70, 96, 104, 116, 120, 136 Seismic isolation device 12 Laminated rubber (Seismic isolation bearing)
14 annular member (rigidity changing means)
18 Upper flange 20 Lower flange 26, 82 Building body 48, 54 Annular member (rigidity changing means)
62 Wall member (rigidity changing means)
72 Elastic sliding bearing (Seismic isolation bearing)
74 Connecting member (rigidity changing means)
76 Sliding bearing 106 Auxiliary friction member (rigidity changing means)
122 Fixing member (rigidity changing means)

Claims (2)

構造物を支持する積層ゴムを備える免震支承と、
前記構造物に作用する外乱の特性又は前記構造物の重量増減に応じて、前記免震支承の剛性特性を変更する剛性変更手段と、
を有する免震装置。
Seismic isolation bearings with laminated rubber to support the structure;
Stiffness changing means for changing the stiffness characteristics of the seismic isolation bearing according to the characteristics of disturbance acting on the structure or the weight increase or decrease of the structure;
Seismic isolation device.
前記免震支承は、前記積層ゴムの上面又は下面に滑り支承が設けられて構成された弾性滑り支承であり、
前記剛性変更手段は、前記積層ゴムの周囲に配置され、前記積層ゴムの上フランジと下フランジを連結して前記上フランジと前記下フランジの水平方向への相対移動を拘束する連結部材である
請求項1に記載の免震装置。
The seismic isolation bearing is an elastic sliding bearing configured by providing a sliding bearing on the upper surface or the lower surface of the laminated rubber,
The rigidity changing means is a connecting member that is disposed around the laminated rubber and connects the upper flange and the lower flange of the laminated rubber to restrain relative movement of the upper flange and the lower flange in the horizontal direction. Item 1. The seismic isolation device according to item 1.
JP2014111268A 2014-05-29 2014-05-29 Seismic isolation device Expired - Fee Related JP6406880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014111268A JP6406880B2 (en) 2014-05-29 2014-05-29 Seismic isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014111268A JP6406880B2 (en) 2014-05-29 2014-05-29 Seismic isolation device

Publications (2)

Publication Number Publication Date
JP2015224760A true JP2015224760A (en) 2015-12-14
JP6406880B2 JP6406880B2 (en) 2018-10-17

Family

ID=54841674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014111268A Expired - Fee Related JP6406880B2 (en) 2014-05-29 2014-05-29 Seismic isolation device

Country Status (1)

Country Link
JP (1) JP6406880B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019215050A (en) * 2018-06-13 2019-12-19 株式会社ブリヂストン Seismic isolator
JP7390234B2 (en) 2020-03-30 2023-12-01 株式会社ブリヂストン Seismic isolation device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0164532U (en) * 1987-10-19 1989-04-25
JPH094276A (en) * 1995-06-21 1997-01-07 Toshiba Corp Seismic isolator of building
JPH09195391A (en) * 1996-01-19 1997-07-29 Fujikura Ltd Aseismic wind-resistant structure of building
JP2004332869A (en) * 2003-05-09 2004-11-25 Tokico Ltd Damping device
JP2010222797A (en) * 2009-03-19 2010-10-07 Bridgestone Corp Base-isolated structure
JP2011099462A (en) * 2009-11-04 2011-05-19 Shimizu Corp Base isolation device
JP2012017806A (en) * 2010-07-08 2012-01-26 Asahi Kasei Homes Co Base isolation support device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0164532U (en) * 1987-10-19 1989-04-25
JPH094276A (en) * 1995-06-21 1997-01-07 Toshiba Corp Seismic isolator of building
JPH09195391A (en) * 1996-01-19 1997-07-29 Fujikura Ltd Aseismic wind-resistant structure of building
JP2004332869A (en) * 2003-05-09 2004-11-25 Tokico Ltd Damping device
JP2010222797A (en) * 2009-03-19 2010-10-07 Bridgestone Corp Base-isolated structure
JP2011099462A (en) * 2009-11-04 2011-05-19 Shimizu Corp Base isolation device
JP2012017806A (en) * 2010-07-08 2012-01-26 Asahi Kasei Homes Co Base isolation support device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019215050A (en) * 2018-06-13 2019-12-19 株式会社ブリヂストン Seismic isolator
JP7036677B2 (en) 2018-06-13 2022-03-15 株式会社ブリヂストン Seismic isolation device
JP7390234B2 (en) 2020-03-30 2023-12-01 株式会社ブリヂストン Seismic isolation device

Also Published As

Publication number Publication date
JP6406880B2 (en) 2018-10-17

Similar Documents

Publication Publication Date Title
EP2894365B1 (en) Seismic base isolation device
CN203741993U (en) Friction pendulum type seismic isolation support provided with anti-drawing devices
JP6567265B2 (en) Seismic isolation device and seismic isolation method
JP6406880B2 (en) Seismic isolation device
JP6006194B2 (en) Damper device for seismic reinforcement of structures
JP5901159B2 (en) Seismic isolation structure
JP2016216906A (en) Base isolation structure
CN104805922A (en) Multi-dimensional visco-elastic shock isolation device
JP6002883B2 (en) Seismic isolation building
JP2011122602A (en) Multi-stage base isolation device
JP2017502182A (en) Polygonal seismic isolation system
JP6338563B2 (en) Tower structure
JP2010222797A (en) Base-isolated structure
JP2010189998A (en) Base-isolation structure and building having the same
WO2015030690A3 (en) Elastomer-based earthquake isolators made of natural rubber, synthetic rubber, rigid polyurethane and similar materials with conical, pyramidal shape (frusto-conical prism, frusto-pyramidal prism with square, rectangular and other geometric cross-sections)
JP2012163194A (en) Seismic isolation device
JP2015129651A (en) reactor containment vessel
JP2018003558A (en) Aseismatic structure, and method to improve aseismatic performance
JP4188347B2 (en) Seismic isolation structure
JP2007332643A (en) Base isolated building
JP2011184950A (en) Slide foundation structure
JP6405733B2 (en) Vibration control structure
JP5852394B2 (en) Seismic isolation device
JP2019082092A (en) Base-isolated building
JP2005344508A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180918

R150 Certificate of patent or registration of utility model

Ref document number: 6406880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees