JP5233921B2 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
JP5233921B2
JP5233921B2 JP2009202210A JP2009202210A JP5233921B2 JP 5233921 B2 JP5233921 B2 JP 5233921B2 JP 2009202210 A JP2009202210 A JP 2009202210A JP 2009202210 A JP2009202210 A JP 2009202210A JP 5233921 B2 JP5233921 B2 JP 5233921B2
Authority
JP
Japan
Prior art keywords
vane
piston
rotary compressor
curved surface
compression chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009202210A
Other languages
Japanese (ja)
Other versions
JP2011052592A (en
Inventor
健 苅野
雅夫 中野
大輔 船越
澤井  清
飯田  登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009202210A priority Critical patent/JP5233921B2/en
Publication of JP2011052592A publication Critical patent/JP2011052592A/en
Application granted granted Critical
Publication of JP5233921B2 publication Critical patent/JP5233921B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は、冷蔵庫又は空気調和機に組み込み可能な回転式圧縮機に関する。   The present invention relates to a rotary compressor that can be incorporated into a refrigerator or an air conditioner.

図12及び図13は、従来の回転式圧縮機の構成を示す模式図である。図12及び図13に示すように、従来の回転式圧縮機においては、密閉容器1内に、電動機と、電動機によって駆動される圧縮機構が収納される。圧縮機構は、シリンダー5と、このシリンダー5の両端面に締結されてシリンダー室6を形成する上軸受け7及び下軸受け8と、この上軸受け7と下軸受け8との間に位置するシャフト4の偏心部に嵌合されるピストン9と、シリンダー5に形成されるベーン溝10内を往復運動するベーン11とで構成される。   12 and 13 are schematic views showing the configuration of a conventional rotary compressor. As shown in FIGS. 12 and 13, in a conventional rotary compressor, an electric motor and a compression mechanism driven by the electric motor are housed in a hermetic container 1. The compression mechanism includes a cylinder 5, an upper bearing 7 and a lower bearing 8 that are fastened to both end surfaces of the cylinder 5 to form a cylinder chamber 6, and a shaft 4 that is positioned between the upper bearing 7 and the lower bearing 8. The piston 9 is fitted in the eccentric portion, and the vane 11 reciprocates in the vane groove 10 formed in the cylinder 5.

このベーン11の背面に、密閉容器1内に吐出された高温高圧の作動冷媒の一部を背圧として作用させて、ベーン11の先端部をピストン9の外周面に当接させることにより、シリンダー室6内にベーン11によって仕切られた吸入室12と圧縮室13が形成される。   A part of the high-temperature and high-pressure working refrigerant discharged into the hermetic container 1 acts on the back surface of the vane 11 as a back pressure, and the tip of the vane 11 is brought into contact with the outer peripheral surface of the piston 9 to thereby form a cylinder. A suction chamber 12 and a compression chamber 13 partitioned by a vane 11 are formed in the chamber 6.

シャフト4の回転に伴うピストン9の揺動運動と、ベーン11の往復運動とによって吸入室12と圧縮室13との容積が変化し、この容積変化により、吸入ポート14から吸入室12に吸入された作動冷媒が圧縮されて高温高圧となり、圧縮室13より吐出ポート15、吐出マフラー室103を経て、圧縮された冷媒が密閉容器1内に吐出される。   The volume of the suction chamber 12 and the compression chamber 13 is changed by the swinging motion of the piston 9 accompanying the rotation of the shaft 4 and the reciprocating motion of the vane 11, and the suction port 14 is sucked into the suction chamber 12 by this volume change. The working refrigerant is compressed to a high temperature and pressure, and the compressed refrigerant is discharged from the compression chamber 13 through the discharge port 15 and the discharge muffler chamber 103 into the sealed container 1.

ところで、図12及び図13の回転式圧縮機では、運転の際、圧縮室13の圧力Pcと吸入室12の圧力Psとの差圧によって、ベーンが押し上げられてベーン飛びが生じ、体積効率が低下する問題があった。この問題を解決するため、図14に示す回転式圧縮機では、ベーン11の先端部11Aが円弧形状に加工され、このような先端部11Aが、ピストン9に形成された嵌合部9Aに揺動自在に嵌合し接続される。これにより、ベーン飛びが確実に防止される(例えば、特許文献1を参照)。   By the way, in the rotary compressor of FIGS. 12 and 13, during operation, the vane is pushed up by the pressure difference between the pressure Pc of the compression chamber 13 and the pressure Ps of the suction chamber 12 to cause vane jumping, and volume efficiency is improved. There was a problem of lowering. In order to solve this problem, in the rotary compressor shown in FIG. 14, the tip end portion 11 </ b> A of the vane 11 is processed into an arc shape, and such a tip end portion 11 </ b> A swings on the fitting portion 9 </ b> A formed on the piston 9. Fit and connect freely. Thereby, vane jumping is reliably prevented (see, for example, Patent Document 1).

特開2000−120572号公報JP 2000-120572 A

図14に示す回転式圧縮機では、ピストン9がシリンダー室6内を揺動運動する際に、ピストン9がベーン11の側面と接触しないように、ピストン9に形成された嵌合部9Aの円弧曲面と、ピストン9の外周面9Cとが切欠きを介して接続されている。その結果、嵌合部9Aの入口9Bの幅と、ベーン11の先端部11Aの直径との差が小さくなるため、運転時にピストン9がベーン11と比較して大きく熱膨張した場合、ベーン飛びする恐れがあった。これに対処するため、ベーン11の先端部11Aの直径を大きくし、嵌合部入口9Bの幅との差を確保してベーン飛びを防止していた。   In the rotary compressor shown in FIG. 14, the arc of the fitting portion 9 </ b> A formed on the piston 9 is prevented so that the piston 9 does not contact the side surface of the vane 11 when the piston 9 swings in the cylinder chamber 6. The curved surface and the outer peripheral surface 9C of the piston 9 are connected via a notch. As a result, since the difference between the width of the inlet 9B of the fitting portion 9A and the diameter of the tip portion 11A of the vane 11 is reduced, the vane jumps when the piston 9 expands greatly compared to the vane 11 during operation. There was a fear. In order to cope with this, the diameter of the tip portion 11A of the vane 11 is increased, and a difference from the width of the fitting portion inlet 9B is ensured to prevent the vane from flying.

しかしながら、図15に示すように、ベーン11の背面部が密閉容器1内と連通していて、ベーン11の背面には密閉容器1内に吐出された高温高圧の作動冷媒の一部が背圧として作用する。その結果、ベーン11の先端部11Aは、ピストン9の外周面9Cよりピストン9の径方向内側で、つまり例えば接点203で線接触する。また、ベーン11の先
端部11Aには、この接点203を境に、吸入室12に臨む円弧側面に吸入室圧力Psが働き、圧縮室13に臨む円弧側面に圧縮室圧力Pcが働く。
However, as shown in FIG. 15, the back surface of the vane 11 communicates with the inside of the closed container 1, and a part of the high-temperature and high-pressure working refrigerant discharged into the closed container 1 is back pressure on the back of the vane 11. Acts as As a result, the tip end portion 11 </ b> A of the vane 11 is in line contact with the outer peripheral surface 9 </ b> C of the piston 9 in the radial direction of the piston 9, that is, for example, at the contact 203. Further, the suction chamber pressure Ps acts on the arc side surface facing the suction chamber 12 and the compression chamber pressure Pc acts on the arc side surface facing the compression chamber 13 at the tip portion 11A of the vane 11 with the contact 203 as a boundary.

以上のことから、図16に示すように、ベーン11が圧縮室圧力Pcと吸入室圧力Psを受圧する面積が大きくなり、ベーン11がベーン溝10内を往復運動する際に、圧縮室圧力Pcと吸入室圧力Psの差圧Pc−Psによってベーン11に作用する力の反力としてベーン11とベーン溝10の接点201および接点202に働くベーン溝10との摩擦抵抗力が増加して、ベーン11がベーン溝10内を往復運動することにより発生する摺動損失が大きくなる問題があった。   From the above, as shown in FIG. 16, the area where the vane 11 receives the compression chamber pressure Pc and the suction chamber pressure Ps increases, and the compression chamber pressure Pc when the vane 11 reciprocates in the vane groove 10. As the reaction force of the force acting on the vane 11 due to the differential pressure Pc−Ps between the suction chamber pressure Ps and the suction chamber pressure Ps, the frictional resistance force between the vane 11 and the vane groove 10 acting on the contact 201 and the contact 202 of the vane groove 10 increases. There is a problem that the sliding loss generated by the reciprocating motion of 11 in the vane groove 10 increases.

それ故に、本発明は、ベーンがベーン溝内を往復運動することにより発生する摺動損失を低減し、入力ロスの小さい回転式圧縮機を提供することを目的とする。   Therefore, an object of the present invention is to provide a rotary compressor that reduces sliding loss caused by reciprocating motion of vanes in the vane groove and has low input loss.

上記目的を達成するために、本発明は、シリンダー室を持つシリンダーと、前記シリンダー室内を揺動運動するピストンと、前記シリンダー室内を吸入室と圧縮室に仕切るベーンと、前記シリンダーに形成され、前記ベーンが往復運動するベーン溝を有し、前記ベーンの先端部の少なくとも一部を前記ベーンの厚みより大きい直径をもった円弧形状として前記ピストンに形成された嵌合部に揺動自在に嵌合接続して構成される回転式圧縮機において、前記ピストンが前記シリンダー室内を揺動運動する際に、前記ピストンに形成された嵌合部の円弧曲面と前記ピストンの外周面が接続される平面もしくは曲面と接触しないように、前記ベーンの、吸入室に臨む側面と圧縮室に臨む側面に切欠きを設け、前記ベーンの圧縮室に臨む側面に設けた切欠きの形状が、前記ベーンが前記ベーン溝内に最も収納された時点の前記シャフトの位置を0度とした場合に、前記シャフトの回転方向に270度の角度位置で、前記ピストンに形成された嵌合部の円弧曲面と前記ピストンの外周面が接続される平面もしくは曲面の形状とほぼ一致することを特徴とする。 To achieve the above object, the present invention is formed in a cylinder having a cylinder chamber, a piston that swings and moves in the cylinder chamber, a vane that partitions the cylinder chamber into a suction chamber and a compression chamber, and the cylinder. The vane has a vane groove in which the vane reciprocates, and at least a part of the tip of the vane has an arc shape having a diameter larger than the thickness of the vane and is fitted in a swingable manner in a fitting portion formed in the piston. In the rotary compressor configured to be coupled, when the piston oscillates in the cylinder chamber, the arc surface of the fitting portion formed on the piston and the plane on which the outer peripheral surface of the piston is connected or so as not to contact the curved surface, of the vane, a notch is provided on a side surface facing the side surface and the compression chamber facing the suction chamber, provided on a side surface facing the compression chamber of the vane The shape of the notch is formed in the piston at an angular position of 270 degrees in the rotational direction of the shaft when the position of the shaft when the vane is most housed in the vane groove is 0 degree. The arcuate curved surface of the fitting portion and the shape of a flat surface or curved surface to which the outer peripheral surface of the piston is connected substantially coincide .

上記によれば、ピストンに形成された嵌合部の円弧曲面と交差するピストンの外周面に設けた切欠きを無くしてピストンの嵌合部入口の幅を小さく構成できるので、ベーン飛びを確実に防止するために必要なピストンの嵌合部入口の幅とベーンの先端部の直径との差を確保した状態で、従来の回転式圧縮機と比べ、ベーンの先端部の直径を小さくすることが可能となる。従って、ベーンの先端部がピストンに当接する接点の位置をピストンの径方向外側に構成できるので、ベーンがベーン溝内を往復運動する際に、ベーンが圧縮室圧力と吸入室圧力を受圧する面積が小さくなり、圧縮室圧力と吸入室圧力の差圧によってベーンに作用する力も小さくすることができる。これにより、この力の反力としてベーンに働くベーン溝との摩擦抵抗力が軽減される。従って、ベーンがベーン溝内を往復運動することによって発生する摺動損失を低減し、入力ロスが小さい回転式圧縮機を提供することが可能となる。   According to the above, since the notch provided on the outer peripheral surface of the piston intersecting the arcuate curved surface of the fitting portion formed on the piston can be eliminated and the width of the piston fitting portion inlet can be made small, vane jumping is ensured. The diameter of the tip of the vane can be made smaller than that of a conventional rotary compressor in a state where the difference between the width of the inlet of the fitting portion of the piston necessary to prevent the diameter of the tip of the vane is secured. It becomes possible. Therefore, since the position of the contact point where the tip of the vane contacts the piston can be configured on the radially outer side of the piston, the area where the vane receives the compression chamber pressure and the suction chamber pressure when the vane reciprocates in the vane groove. The force acting on the vane can be reduced by the differential pressure between the compression chamber pressure and the suction chamber pressure. Thereby, the frictional resistance with the vane groove acting on the vane as a reaction force of this force is reduced. Therefore, it is possible to provide a rotary compressor in which the sliding loss generated by the reciprocating motion of the vane in the vane groove is reduced and the input loss is small.

本発明の一実施の形態に係る回転式圧縮機の要部を示す破断面図FIG. 3 is a broken sectional view showing a main part of the rotary compressor according to the embodiment of the present invention. 図1の回転式圧縮機を面A−Aに沿う切断面を矢印の方向から見た時の横断面図FIG. 1 is a cross-sectional view of the rotary compressor of FIG. 1 as viewed from the direction of the arrow along the section AA. 図2に示すベーン11の先端部11Aの周辺を示す拡大図The enlarged view which shows the periphery of the front-end | tip part 11A of the vane 11 shown in FIG. シャフト4の回転方向を示す第1の模式図First schematic diagram showing the rotation direction of the shaft 4 図4の各タイミングにおける、ベーン11の側面と、嵌合部9Aの円弧曲面と外周面9Cが接続される曲面との位置関係を示す模式図FIG. 4 is a schematic diagram showing the positional relationship between the side surface of the vane 11, the circular curved surface of the fitting portion 9A, and the curved surface to which the outer peripheral surface 9C is connected at each timing of FIG. 嵌合部入口9Bの幅と先端部11Aの直径との差Xと、嵌合部入口9Bの幅をYとを示す模式図Schematic diagram showing the difference X between the width of the fitting portion inlet 9B and the diameter of the tip portion 11A and the width of the fitting portion inlet 9B as Y. シャフト4の回転方向を示す第2の模式図Second schematic diagram showing the rotation direction of the shaft 4 トップクリアランスボリューム301を示す模式図Schematic diagram showing the top clearance volume 301 外周面9C中心と先端部11Aの円弧中心とを結んだ直線が、ベーン溝11の幅方向中心線となす角度θを示す模式図The schematic diagram which shows angle (theta) which the straight line which connected 9C of outer peripheral surfaces and the circular arc center of front-end | tip part 11A makes with the width direction centerline of the vane groove | channel 11 トップクリアランスボリューム301の低減を示す模式図Schematic diagram showing reduction of top clearance volume 301 図1の回転式圧縮機の変形例を示す模式図The schematic diagram which shows the modification of the rotary compressor of FIG. 従来の第1の回転式圧縮機を示す部分縦断面図Partial longitudinal sectional view showing a conventional first rotary compressor 図12に示す回転式圧縮機の横断面図Cross section of the rotary compressor shown in FIG. 従来の第2の回転式圧縮機を示す模式図Schematic diagram showing a conventional second rotary compressor 図14の回転式圧縮機における、吸入室圧力Psと圧縮室圧力Pcを示す模式図Schematic diagram showing suction chamber pressure Ps and compression chamber pressure Pc in the rotary compressor of FIG. 圧縮室圧力Pcと吸入室圧力Psの差圧Pc−Psを示す模式図Schematic showing differential pressure Pc-Ps between compression chamber pressure Pc and suction chamber pressure Ps

図1は、本発明の一実施の形態に係る回転式圧縮機の要部を示す破断面図である。図2は、図1の回転式圧縮機を面A−Aに沿う切断面を矢印の方向から見た時の横断面図である。   FIG. 1 is a broken sectional view showing a main part of a rotary compressor according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of the rotary compressor of FIG. 1 when a cut surface along the plane AA is viewed from the direction of the arrow.

図1において、回転式圧縮機は、大略的には、略円筒状の密閉容器1と、この密閉容器1の内部上側に配置された電動機102と、この電動機102の下側に配置され、この電動機部102によって駆動される圧縮機構101とを備えている。   In FIG. 1, the rotary compressor is generally arranged in a substantially cylindrical sealed container 1, an electric motor 102 disposed on the upper side of the sealed container 1, and a lower side of the electric motor 102. And a compression mechanism 101 driven by the electric motor unit 102.

電動機102は、密閉容器1の内部上側の内周面に沿って環状に取り付けられたステータ2と、このステータ2の内側に若干の隙間を設けて挿入されるロータ3とを含み、このロータ3は、自身の中心部で鉛直方向にシャフト4に固定される。   The electric motor 102 includes a stator 2 that is annularly attached along the inner peripheral surface on the upper side of the hermetic container 1, and a rotor 3 that is inserted inside the stator 2 with a slight gap therebetween. Is fixed to the shaft 4 in the vertical direction at its center.

圧縮機構部101は、図1,図2に示すように、シリンダー5と、このシリンダー5の両端面に締結されてシリンダー室6を形成する上軸受け7及び下軸受け8と、この上軸受け7と下軸受け8との間に位置するシャフト4の偏心部に嵌合されるピストン9と、シリンダー5に形成されるベーン溝10内を往復運動するベーン11とを含んでいる。   As shown in FIGS. 1 and 2, the compression mechanism 101 includes a cylinder 5, an upper bearing 7 and a lower bearing 8 that are fastened to both end surfaces of the cylinder 5 to form a cylinder chamber 6, and the upper bearing 7 A piston 9 fitted to an eccentric portion of the shaft 4 positioned between the lower bearing 8 and a vane 11 that reciprocates in a vane groove 10 formed in the cylinder 5 is included.

ベーン11は、具体的には、先端部11Aと、ベーン溝10内を往復運動する本体部11Bとを有する。この先端部11Aは、この本体部11Bの厚みより大きい直径をもった円弧形状として、ピストン9に形成された嵌合部に揺動自在に嵌合接続することにより、シリンダー室6内にベーン11によって仕切られた吸入室12と圧縮室13を形成する。   Specifically, the vane 11 includes a front end portion 11A and a main body portion 11B that reciprocates in the vane groove 10. The tip portion 11A is formed in an arc shape having a diameter larger than the thickness of the main body portion 11B, and is slidably fitted and connected to a fitting portion formed on the piston 9, so that the vane 11 is placed in the cylinder chamber 6. Thus, a suction chamber 12 and a compression chamber 13 are formed.

ここで、図3は、図2に示すベーン11の先端部11Aの周辺を示す拡大図である。図3において、ベーン11において、吸入室12に臨む側面と、圧縮室13に臨む側面とに切欠き11c,11dが設けられており、ピストン9がシリンダー室6内を揺動運動することによって吸入室12と圧縮室13の容積が変化する際に、ピストン9に形成された嵌合部9Aの円弧曲面と、ピストン9の外周面9Cとが接続される曲面部分がベーン11と接触しないように構成されている。   Here, FIG. 3 is an enlarged view showing the periphery of the tip portion 11A of the vane 11 shown in FIG. In FIG. 3, notches 11 c and 11 d are provided in the vane 11 on the side facing the suction chamber 12 and the side facing the compression chamber 13, and the piston 9 performs suction by swinging in the cylinder chamber 6. When the volume of the chamber 12 and the compression chamber 13 changes, the curved surface portion where the arcuate curved surface of the fitting portion 9A formed on the piston 9 and the outer peripheral surface 9C of the piston 9 are connected does not come into contact with the vane 11. It is configured.

従来の回転式圧縮機では、図14に示すように、ピストン9に形成された嵌合部9Aの円弧曲面と、ピストン9の外周面9Cとを接続する切欠きがピストン9に形成されていた。それに対し、図3の例では、ベーン11側に切欠き11c,11dを形成し、ピストン9側の切欠きを実質的に無くしたため、ピストン9の嵌合部の入口9Bの幅を小さく構成できる。言い換えると、従来の回転式圧縮機と比べ、ベーン11の先端部11Aの直径を小さくすることが可能となる。その結果、ベーン11の先端部11Aがピストン9に当接する接点を、従来よりもピストン9の径方向外側に位置させることができる。これによっ
て、ベーン11がベーン溝10内を往復運動する際に、ベーン11が圧縮室圧力Pcと吸入室圧力Psを受圧する面積が小さくなり、圧縮室圧力と吸入室圧力の差圧Pc−Psによってベーン11に作用する力も小さくすることができる。従って、この力の反力としてベーン11に働くベーン溝10との摩擦抵抗力が軽減されるので、ベーン11がベーン溝10内を往復運動することによって発生する摺動損失を低減することができる。また、ピストン9の嵌合部入口9Bの幅とベーン11の先端部11Aの直径との差を、従来の回転式圧縮機と同程度に確保できるので、ベーン飛びも確実に防止でき、信頼性が低下することもなくなる。
In the conventional rotary compressor, as shown in FIG. 14, the piston 9 has a notch that connects the arcuate curved surface of the fitting portion 9 </ b> A formed on the piston 9 and the outer peripheral surface 9 </ b> C of the piston 9. . On the other hand, in the example of FIG. 3, the notches 11c and 11d are formed on the vane 11 side, and the notches on the piston 9 side are substantially eliminated, so that the width of the inlet 9B of the fitting portion of the piston 9 can be reduced. . In other words, it is possible to reduce the diameter of the tip 11A of the vane 11 as compared with the conventional rotary compressor. As a result, the contact point at which the tip portion 11A of the vane 11 contacts the piston 9 can be positioned on the radially outer side of the piston 9 as compared with the related art. Thereby, when the vane 11 reciprocates in the vane groove 10, the area where the vane 11 receives the compression chamber pressure Pc and the suction chamber pressure Ps becomes small, and the pressure difference Pc−Ps between the compression chamber pressure and the suction chamber pressure. Thus, the force acting on the vane 11 can also be reduced. Therefore, since the frictional resistance force with the vane groove 10 acting on the vane 11 is reduced as a reaction force of this force, the sliding loss caused by the reciprocating motion of the vane 11 in the vane groove 10 can be reduced. . Further, since the difference between the width of the fitting portion inlet 9B of the piston 9 and the diameter of the tip end portion 11A of the vane 11 can be ensured to the same extent as that of the conventional rotary compressor, vane jumping can be surely prevented and the reliability is improved. Will not drop.

次に、先端部11Aに必要な直径について、ベーン11の側面と、ピストン9に形成された嵌合部9Aの円弧曲面とピストン9の外周面9Cが接続される曲面との位置関係から説明する。   Next, the diameter required for the tip portion 11A will be described from the positional relationship between the side surface of the vane 11, the circular curved surface of the fitting portion 9A formed on the piston 9, and the curved surface to which the outer peripheral surface 9C of the piston 9 is connected. .

ベーン11がベーン溝10内に最も収納された時点のシャフト4の角度位置を0度とした場合に、シャフト4を回転方向に0度、90度、180度、270度と順に回転させると、図4に示すように、(A)、(B)、(C)、(D)の順にベーン11とピストン9の位置が変化する。従来の回転式圧縮機の場合、それぞれのタイミングでの、ベーン11の側面と、ピストン9に形成された嵌合部9Aの円弧曲面とピストン9の外周面9Cが接続される曲面との位置関係は図5のようになる。図5に示すように、(B)または(D)のタイミング、すなわち、シャフト4の回転方向に90度または270度の角度位置で、ピストン9に形成された嵌合部9Aの円弧曲面とピストン9の外周面9Cとを接続する曲面がベーン11の側面に最も接近するので、これらの角度位置でベーン11の側面に接触しないように、ピストン9に形成された嵌合部9Aの円弧曲面と交差するピストン9の外周面9Cとの間に切欠きを設けている。従って、図6に示すように、ベーン飛びを確実に防止するために必要なピストン9の嵌合部入口9Bの幅とベーン11の先端部11Aの直径との差X、ピストン9の嵌合部入口9Bの幅をYとすると、ベーン11の先端部11Aに必要な直径DVは、式Aで表される。   When the angle position of the shaft 4 at the time when the vane 11 is stored most in the vane groove 10 is 0 degree, when the shaft 4 is rotated in the rotation direction in the order of 0 degree, 90 degrees, 180 degrees, and 270 degrees, As shown in FIG. 4, the positions of the vane 11 and the piston 9 change in the order of (A), (B), (C), and (D). In the case of the conventional rotary compressor, the positional relationship between the side surface of the vane 11, the circular curved surface of the fitting portion 9A formed on the piston 9 and the curved surface to which the outer peripheral surface 9C of the piston 9 is connected at each timing. Is as shown in FIG. As shown in FIG. 5, the arc curved surface of the fitting portion 9A formed on the piston 9 and the piston at the timing of (B) or (D), that is, at an angular position of 90 degrees or 270 degrees in the rotation direction of the shaft 4. 9 is the closest to the side surface of the vane 11, so that the curved surface of the fitting portion 9A formed on the piston 9 does not come into contact with the side surface of the vane 11 at these angular positions. A notch is provided between the intersecting piston 9 and the outer peripheral surface 9C. Therefore, as shown in FIG. 6, the difference X between the width of the fitting portion inlet 9 </ b> B of the piston 9 and the diameter of the tip portion 11 </ b> A of the vane 11 necessary for reliably preventing vane jumping, and the fitting portion of the piston 9. Assuming that the width of the inlet 9B is Y, the diameter DV required for the tip portion 11A of the vane 11 is expressed by Formula A.

DV≧X+Y ・・・ 式A
それに対し、本実施の形態によれば、ベーン11において、吸入室に臨む側面と圧縮室に臨む側面に切欠きが設けられており、従来の回転式圧縮機においてピストン9に形成された嵌合部9Aの円弧曲面と交差するピストン9の外周面9Cに設けた切欠きを無くしてピストン9の嵌合部の入口9Bの幅Yを小さく構成できるので、式Aより、従来の回転式圧縮機と比べ、ベーン11の先端部11Aに必要な直径DVを小さくすることが可能となる。
DV ≧ X + Y Formula A
On the other hand, according to the present embodiment, the vane 11 is provided with a notch on the side facing the suction chamber and the side facing the compression chamber, and the fitting formed on the piston 9 in the conventional rotary compressor Since the width Y of the inlet 9B of the fitting portion of the piston 9 can be reduced by eliminating the notch provided in the outer peripheral surface 9C of the piston 9 that intersects the arcuate curved surface of the portion 9A, the conventional rotary compressor is obtained from the equation A. As compared with the above, it is possible to reduce the diameter DV required for the tip portion 11A of the vane 11.

しかも、ベーン11の圧縮室13に臨む側面に、ベーン11がベーン溝10内に最も収納された時点のシャフト4の位置を0度とした場合に、シャフト4の回転方向に270度の角度位置で、ピストン9に形成された嵌合部9Aの円弧曲面とピストン9の外周面9Cが接続される曲面の形状とほぼ一致する切欠きが設けられる。その結果、ベーン11の圧縮室13に臨む側面と、ピストン9に形成された嵌合部9Aの円弧曲面とピストン9の外周面9Cが接続される曲面とによって形成されるトップクリアランスボリュームを低減することができる。これにより、体積効率を低下させることなく、入力ロスが小さい回転式圧縮機を提供することが可能となる。すなわち、ベーン11の側面と、ピストン9に形成された嵌合部9Aの円弧曲面とピストン9の外周面9Cが接続される曲面との位置関係は、ベーン11がベーン溝10内に最も収納された時点のシャフト4の角度位置を0度とした場合に、シャフト4の回転方向に0度、90度、180度、270度と順に回転させると、図7に示すように、(A)、(B)、(C)、(D)と変化する。図8に示すように、作動冷媒が吐出されずに残留するトップクリアランスボリューム301は、シャフト4の回転方向に270度の角度位置で図7(D)に示すピストン9に形成された嵌合部9A
の円弧曲面とピストン9の外周面9Cが接続される曲面と接触しないように、ベーン11の圧縮室13に臨む側面に設けた切欠きにより形成される。このように、シャフト4の回転方向に270度の角度位置で、前述の切欠きの形状を、ピストン9に形成された嵌合部9Aの円弧曲面とピストン9の外周面9Cが接続される曲面の形状とほぼ一致するように構成することにより、ベーン11の圧縮室13に臨む側面と、ピストン9に形成された嵌合部9Aの円弧曲面とピストン9の外周面9Cが接続される曲面とによって形成されるトップクリアランスボリュームを低減することが可能となる。
Moreover, on the side surface of the vane 11 facing the compression chamber 13, when the position of the shaft 4 when the vane 11 is most housed in the vane groove 10 is 0 degree, the angular position of 270 degrees in the rotation direction of the shaft 4. Thus, a notch substantially matching the shape of the curved surface to which the arcuate curved surface of the fitting portion 9A formed on the piston 9 and the outer peripheral surface 9C of the piston 9 are connected is provided. As a result, the top clearance volume formed by the side surface of the vane 11 facing the compression chamber 13, the circular curved surface of the fitting portion 9 </ b> A formed on the piston 9, and the curved surface to which the outer peripheral surface 9 </ b> C of the piston 9 is connected is reduced. be able to. Thereby, it becomes possible to provide a rotary compressor with a small input loss, without reducing volumetric efficiency. That is, the positional relationship between the side surface of the vane 11, the arcuate curved surface of the fitting portion 9 </ b> A formed on the piston 9 and the curved surface to which the outer peripheral surface 9 </ b> C of the piston 9 is connected is that the vane 11 is stored most in the vane groove 10. When the angle position of the shaft 4 at that time is 0 degree, when the shaft 4 is rotated in order of 0 degree, 90 degrees, 180 degrees, and 270 degrees in the rotation direction of the shaft 4, as shown in FIG. It changes as (B), (C), (D). As shown in FIG. 8, the top clearance volume 301 where the working refrigerant remains without being discharged is a fitting portion formed on the piston 9 shown in FIG. 7D at an angular position of 270 degrees in the rotation direction of the shaft 4. 9A
This is formed by a notch provided on the side surface of the vane 11 facing the compression chamber 13 so as not to come into contact with the curved surface to which the circular arc curved surface and the outer peripheral surface 9C of the piston 9 are connected. In this way, at the angular position of 270 degrees in the rotation direction of the shaft 4, the above-described notch shape is a curved surface where the circular curved surface of the fitting portion 9 </ b> A formed on the piston 9 and the outer peripheral surface 9 </ b> C of the piston 9 are connected. The side surface of the vane 11 that faces the compression chamber 13, the curved surface of the fitting portion 9 </ b> A formed on the piston 9, and the curved surface to which the outer peripheral surface 9 </ b> C of the piston 9 is connected are configured. Thus, it is possible to reduce the top clearance volume formed.

ベーン11の先端部11Aの円弧中心が、ベーン11の厚み方向中心より圧縮室側に構成されることが更に好ましい。これにより、ベーン11の圧縮室13に臨む側面と、ピストン9に形成された嵌合部9Aの円弧曲面とピストン9の外周面9Cが接続される曲面とによって形成されるトップクリアランスボリュームをより低減することができる。すなわち、図9に示すように、ベーン11がベーン溝10内に最も収納された時点のシャフト4の位置を0度とした場合に、シャフト4の回転方向に270度の角度位置で、ピストン9の外周面9C中心とベーン11の先端部11Aの円弧中心とを結んだ直線が、ベーン溝11の幅方向中心線となす角度をθとすると、ベーン11の先端部11Aの円弧中心を、ベーン11の厚み方向中心より圧縮室側に構成することにより、図9に極端に示すように、θ角度が小さくなり、つまり、ベーン11の先端部11Aの円弧中心回りにピストン9が揺動する角度範囲が小さくなる。また、ベーン11の先端部11Aの円弧中心を、ベーン11の厚み方向中心より圧縮室側に構成していて、ピストン9に形成された嵌合部9Aの円弧曲面とピストン9の外周面9Cが接続される曲面がベーン11の圧縮室13に臨む側面に干渉する部分を小さくできる。これらにより、図10に極端に示すように、ベーン11の圧縮室13に臨む側面に設ける切欠きを小さくして、ベーン11の圧縮室13に臨む側面と、ピストン9に形成された嵌合部9Aの円弧曲面とピストン9の外周面9Cが接続される曲面とによって形成されるトップクリアランスボリューム301をより低減することが可能となる。   More preferably, the arc center of the tip 11A of the vane 11 is configured closer to the compression chamber than the center of the vane 11 in the thickness direction. Thereby, the top clearance volume formed by the side surface of the vane 11 facing the compression chamber 13, the circular curved surface of the fitting portion 9 </ b> A formed on the piston 9, and the curved surface to which the outer peripheral surface 9 </ b> C of the piston 9 is connected is further reduced. can do. That is, as shown in FIG. 9, when the position of the shaft 4 when the vane 11 is most housed in the vane groove 10 is 0 degree, the piston 9 is at an angular position of 270 degrees in the rotational direction of the shaft 4. If the angle formed by the straight line connecting the center of the outer peripheral surface 9C of the vane 11 and the arc center of the tip 11A of the vane 11 with the center line in the width direction of the vane groove 11 is θ, the arc center of the tip 11A of the vane 11 As shown in FIG. 9, the θ angle is reduced by the configuration from the thickness direction center of 11 to the compression chamber side, that is, the angle at which the piston 9 swings around the arc center of the tip portion 11A of the vane 11. The range becomes smaller. Further, the center of the arc of the tip portion 11A of the vane 11 is formed on the compression chamber side from the center in the thickness direction of the vane 11, and the arc curved surface of the fitting portion 9A formed on the piston 9 and the outer peripheral surface 9C of the piston 9 are The portion where the curved surface to be connected interferes with the side surface of the vane 11 facing the compression chamber 13 can be reduced. Accordingly, as shown extremely in FIG. 10, the notch provided on the side surface of the vane 11 that faces the compression chamber 13 is reduced, and the side surface of the vane 11 that faces the compression chamber 13 and the fitting portion formed on the piston 9. It is possible to further reduce the top clearance volume 301 formed by the circular curved surface of 9A and the curved surface to which the outer peripheral surface 9C of the piston 9 is connected.

図11は、上述の実施の形態の変形例を示す図である。図11の例では、ベーン溝10の幅方向中心Lが、シリンダー5の内周面中心Cより圧縮室13側に位置するよう構成される。また、ベーン11の圧縮室13に臨む側面に、ベーン11がベーン溝10内に最も収納された時点のシャフト4の位置を0度とした場合に、シャフト4の回転方向に270度の角度位置で、ピストン9に形成された嵌合部9Aの円弧曲面とピストン9の外周面9Cが接続される曲面の形状とほぼ一致する切欠きが設けられる。これらにより、ベーン11の圧縮室13に臨む側面と、ピストン9に形成された嵌合部9Aの円弧曲面とピストン9の外周面9Cが接続される曲面とによって形成されるトップクリアランスボリュームを低減することが可能となる。すなわち、図11に示すように、ベーン11がベーン溝10内に最も収納された時点のシャフト4の位置を0度とした場合に、シャフト4の回転方向に270度の角度位置で、ピストン9の外周面中心とベーン11の先端部11Aの円弧中心とを結んだ直線が、ベーン溝10の幅方向中心線となす角度をθ’とすると、ベーン溝10の幅方向中心Lを、シリンダー5の内周面中心Cより圧縮室側に構成する。これにより、図11に極端に示すように、θ’角度が小さくなり、つまり、ベーン11の先端部11Aの円弧中心回りにピストン9が揺動する角度範囲が小さくなり、ピストン9に形成された嵌合部9Aの円弧曲面とピストン9の外周面9Cが接続される曲面がベーン11の圧縮室13に臨む側面に干渉する部分を小さくできるので、ベーン11の圧縮室13に臨む側面に設ける切欠きを小さくして、ベーン11の圧縮室13に臨む側面と、ピストン9に形成された嵌合部9Aの円弧曲面とピストン9の外周面9Cに接続される曲面とによって形成されるトップクリアランスボリュームを低減することが可能となる。   FIG. 11 is a diagram showing a modification of the above-described embodiment. In the example of FIG. 11, the width direction center L of the vane groove 10 is configured to be positioned closer to the compression chamber 13 than the inner peripheral surface center C of the cylinder 5. Further, when the position of the shaft 4 at the time when the vane 11 is stored most in the vane groove 10 is set to 0 degree on the side surface facing the compression chamber 13 of the vane 11, the angular position of 270 degrees in the rotation direction of the shaft 4 Thus, a notch substantially matching the shape of the curved surface to which the arcuate curved surface of the fitting portion 9A formed on the piston 9 and the outer peripheral surface 9C of the piston 9 are connected is provided. As a result, the top clearance volume formed by the side surface of the vane 11 facing the compression chamber 13, the arcuate curved surface of the fitting portion 9 </ b> A formed on the piston 9, and the curved surface to which the outer peripheral surface 9 </ b> C of the piston 9 is connected is reduced. It becomes possible. That is, as shown in FIG. 11, when the position of the shaft 4 when the vane 11 is most housed in the vane groove 10 is 0 degree, the piston 9 is at an angular position of 270 degrees in the rotational direction of the shaft 4. If the angle between the straight line connecting the center of the outer peripheral surface of the vane 11 and the arc center of the tip 11A of the vane 11 and the center line in the width direction of the vane groove 10 is θ ′, the center L in the width direction of the vane groove 10 is The inner peripheral surface center C is configured on the compression chamber side. As a result, as shown in FIG. 11, the θ ′ angle is reduced, that is, the angle range in which the piston 9 swings around the center of the arc of the tip end portion 11 </ b> A of the vane 11 is reduced. Since the curved surface to which the arcuate curved surface of the fitting portion 9A and the outer peripheral surface 9C of the piston 9 are connected can interfere with the side surface of the vane 11 facing the compression chamber 13, the cut provided on the side surface of the vane 11 facing the compression chamber 13 A top clearance volume formed by a side face of the vane 11 facing the compression chamber 13, a circular curved surface of the fitting portion 9 </ b> A formed on the piston 9, and a curved surface connected to the outer peripheral surface 9 </ b> C of the piston 9. Can be reduced.

また、本実施の形態の回転式圧縮機において、作動冷媒としてCOを用いた場合に、ベーン11がベーン溝10内を往復運動する際、特に、圧縮室圧力Pcと吸入室圧力Ps
の高い差圧によってベーン11に作用する力の反力としてベーン11に働くベーン溝10との摩擦抵抗力が大きいので、より効果的にベーン11がベーン溝10内を往復運動することによって発生する摺動損失を低減することができる。
Further, in the rotary compressor of the present embodiment, when CO 2 is used as the working refrigerant, when the vane 11 reciprocates in the vane groove 10, in particular, the compression chamber pressure Pc and the suction chamber pressure Ps.
Since the frictional resistance force with the vane groove 10 acting on the vane 11 is large as a reaction force of the force acting on the vane 11 due to the high differential pressure, the vane 11 is reciprocated in the vane groove 10 more effectively. Sliding loss can be reduced.

更に、本実施の形態の回転式圧縮機において、作動冷媒として炭素と炭素間に2重結合を有するハイドロフルオロオレフィンをベース成分とし、2重結合を有しないハイドロフルオロカーボンと混合した冷媒を用いた場合には、特に、高温において化学的安定性が低下することに伴い、潤滑性が悪化するので、より効果的にベーン11がベーン溝10内を往復運動することによって発生する摺動損失を低減することができる。   Further, in the rotary compressor of the present embodiment, when a refrigerant mixed with hydrofluoroolefin having a double bond between carbon and carbon as a base component and mixed with hydrofluorocarbon having no double bond is used as a working refrigerant. In particular, since the lubricity deteriorates with a decrease in chemical stability at a high temperature, the sliding loss caused by the reciprocating motion of the vane 11 in the vane groove 10 is more effectively reduced. be able to.

本発明にかかる回転式圧縮機は、入力ロスを小さくすることができるという効果を奏し、給湯器用圧縮機、空気圧縮の用途にも適用できる。   INDUSTRIAL APPLICABILITY The rotary compressor according to the present invention has an effect that input loss can be reduced, and can be applied to a hot water compressor and an air compression application.

5 シリンダー
9 ピストン
11 ベーン
10 ベーン溝
9A 嵌合部
11c、11d 切欠き
5 Cylinder 9 Piston 11 Vane 10 Vane groove 9A Fitting part 11c, 11d Notch

Claims (5)

シリンダー室を持つシリンダーと、前記シリンダー室内を揺動運動するピストンと、前記シリンダー室内を吸入室と圧縮室に仕切るベーンと、前記シリンダーに形成され、前記ベーンが往復運動するベーン溝を有し、前記ベーンの先端部の少なくとも一部を前記ベーンの厚みより大きい直径をもった円弧形状として前記ピストンに形成された嵌合部に揺動自在に嵌合接続して構成される回転式圧縮機において、前記ピストンが前記シリンダー室内を揺動運動する際に、前記ピストンに形成された嵌合部の円弧曲面と前記ピストンの外周面が接続される平面もしくは曲面と接触しないように、前記ベーンの、吸入室に臨む側面と圧縮室に臨む側面に切欠きを設け、前記ベーンの圧縮室に臨む側面に設けた切欠きの形状が、前記ベーンが前記ベーン溝内に最も収納された時点の前記シャフトの位置を0度とした場合に、前記シャフトの回転方向に270度の角度位置で、前記ピストンに形成された嵌合部の円弧曲面と前記ピストンの外周面が接続される平面もしくは曲面の形状とほぼ一致することを特徴とする回転式圧縮機。 A cylinder having a cylinder chamber, a piston that swings in the cylinder chamber, a vane that divides the cylinder chamber into a suction chamber and a compression chamber, and a vane groove that is formed in the cylinder and in which the vane reciprocates, In the rotary compressor configured such that at least a part of the tip end portion of the vane has an arc shape having a diameter larger than the thickness of the vane and is swingably fitted to a fitting portion formed on the piston. When the piston swings in the cylinder chamber, the vane of the vane does not come into contact with the arcuate curved surface of the fitting portion formed on the piston and the plane or curved surface to which the outer peripheral surface of the piston is connected. a notch on the side facing the side surface and the compression chamber facing the suction chamber is provided, the notch shape provided on the side facing the compression chamber of the vane, the vane is a base When the position of the shaft when it is most housed in the groove is set to 0 degree, the circular curved surface of the fitting portion formed on the piston and the piston at an angular position of 270 degrees in the rotation direction of the shaft. A rotary compressor characterized in that the outer peripheral surface substantially coincides with the shape of a plane or curved surface to which it is connected . 前記ベーンの先端部の円弧中心を、前記ベーンの厚み方向中心より圧縮室側に構成した請求項記載の回転式圧縮機。 The arc center of the distal end portion of the vane, rotary compressor according to claim 1, wherein configured to the compression chamber side of the thickness direction center of the vane. 前記ベーン溝の幅方向中心を、前記シリンダーの内周面中心より圧縮室側に構成した請求項記載の回転式圧縮機。 Wherein the widthwise center of the vane groove, the rotary compressor according to claim 1, wherein configured to the compression chamber side of the inner circumferential surface center of the cylinder. 作動冷媒としてCOを用いたことを特徴とする請求項1からのいずれか1項に記載の回転式圧縮機。 The rotary compressor according to any one of claims 1 to 3 , wherein CO 2 is used as a working refrigerant. 作動冷媒として炭素と炭素間に2重結合を有するハイドロフルオロオレフィンをベース成分とし、2重結合を有しないハイドロフルオロカーボンと混合した冷媒を用いたことを特徴とする請求項1からのいずれか1項に記載の回転式圧縮機。 The hydrofluoroolefin having double bond between carbon and carbon as the working refrigerant and base component, any one of claim 1, wherein the third for using the refrigerant mixed with no hydrofluorocarbon double bond 1 The rotary compressor according to item.
JP2009202210A 2009-09-02 2009-09-02 Rotary compressor Active JP5233921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009202210A JP5233921B2 (en) 2009-09-02 2009-09-02 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009202210A JP5233921B2 (en) 2009-09-02 2009-09-02 Rotary compressor

Publications (2)

Publication Number Publication Date
JP2011052592A JP2011052592A (en) 2011-03-17
JP5233921B2 true JP5233921B2 (en) 2013-07-10

Family

ID=43941852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009202210A Active JP5233921B2 (en) 2009-09-02 2009-09-02 Rotary compressor

Country Status (1)

Country Link
JP (1) JP5233921B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105971878A (en) * 2016-06-15 2016-09-28 珠海格力节能环保制冷技术研究中心有限公司 Rotor type compressor pump body

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104343686A (en) * 2013-07-30 2015-02-11 珠海格力节能环保制冷技术研究中心有限公司 Rotary compressor pump body assembly, and rotary compressor provided with assembly
KR102249115B1 (en) 2014-09-19 2021-05-07 엘지전자 주식회사 Compressor
CN107120286B (en) * 2016-02-25 2024-05-17 珠海凌达压缩机有限公司 Low-pressure cavity compressor and air conditioner
CN109667758A (en) * 2019-01-31 2019-04-23 宁波甬微集团有限公司 A kind of rotator type compression assembly, compressor and air-conditioning equipment
KR102227092B1 (en) 2019-05-24 2021-03-12 엘지전자 주식회사 Rotary compressor
KR102206103B1 (en) * 2019-06-26 2021-01-21 엘지전자 주식회사 Rotary compressor having a combined vane-roller structure
CN114992124A (en) * 2019-06-28 2022-09-02 安徽美芝精密制造有限公司 Compressor and refrigerating device with same
KR102288429B1 (en) * 2019-07-17 2021-08-10 엘지전자 주식회사 Rotary Compressor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04228894A (en) * 1990-12-27 1992-08-18 Matsushita Refrig Co Ltd Rotary compressor
JP2000120572A (en) * 1998-10-12 2000-04-25 Sanyo Electric Co Ltd Rotary compressor
JP4488104B2 (en) * 2008-01-23 2010-06-23 ダイキン工業株式会社 Compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105971878A (en) * 2016-06-15 2016-09-28 珠海格力节能环保制冷技术研究中心有限公司 Rotor type compressor pump body
CN105971878B (en) * 2016-06-15 2017-12-29 珠海格力节能环保制冷技术研究中心有限公司 A kind of rotor-type compressor pump housing

Also Published As

Publication number Publication date
JP2011052592A (en) 2011-03-17

Similar Documents

Publication Publication Date Title
JP5233921B2 (en) Rotary compressor
US7534100B2 (en) Rotary fluid machine
JP5442638B2 (en) Rotary compressor
US7641454B2 (en) Two-stage rotary compressor
JP5040934B2 (en) Hermetic compressor
KR101459183B1 (en) Vane rotary compressor
JP6503901B2 (en) Scroll compressor
CN203796562U (en) Rotating piston type compressor
CN110546385B (en) Gas compressor
JP5195055B2 (en) Rotary compressor
KR101055279B1 (en) Donut vane rotary compressor
JP2013139725A (en) Oscillating piston type compressor
CN109026696B (en) Compressor pump body, compressor and air conditioner
JP5176990B2 (en) Rotary compressor
JP2009108762A (en) Rotary fluid machine
JP2007162622A (en) Scroll type fluid machine
JP2014129796A (en) Compressor
EP2857688B1 (en) Rotary compressor
JP4635819B2 (en) Rotary compressor
JP5929189B2 (en) Swing piston compressor
JP2012087665A (en) Rotary compressor
JP2005240564A (en) Rotary compressor
JP2006170213A5 (en)
JP2006170213A (en) Rotary type fluid machine
JP2006342703A (en) Rotary fluid machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120227

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130311

R151 Written notification of patent or utility model registration

Ref document number: 5233921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3