JP5233171B2 - Rolling bearing - Google Patents

Rolling bearing Download PDF

Info

Publication number
JP5233171B2
JP5233171B2 JP2007150087A JP2007150087A JP5233171B2 JP 5233171 B2 JP5233171 B2 JP 5233171B2 JP 2007150087 A JP2007150087 A JP 2007150087A JP 2007150087 A JP2007150087 A JP 2007150087A JP 5233171 B2 JP5233171 B2 JP 5233171B2
Authority
JP
Japan
Prior art keywords
rolling
mass
hardness
raceway
rolling element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007150087A
Other languages
Japanese (ja)
Other versions
JP2008303926A (en
Inventor
徹 植田
光司 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40232832&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5233171(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2007150087A priority Critical patent/JP5233171B2/en
Publication of JP2008303926A publication Critical patent/JP2008303926A/en
Application granted granted Critical
Publication of JP5233171B2 publication Critical patent/JP5233171B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は転がり軸受に係り、特に、自動車、農業機械、建設機械及び鉄鋼機械等のトランスミッション、エンジン用等に使用する玉軸受、円筒ころ軸受、円錐ころ軸受、自動調心ころ軸受、ニードル軸受等の転がり軸受の寿命向上に関する。   The present invention relates to a rolling bearing, in particular, a ball bearing, a cylindrical roller bearing, a tapered roller bearing, a self-aligning roller bearing, a needle bearing, etc. used for transmissions, engines, etc. of automobiles, agricultural machines, construction machines, and steel machines. This relates to the improvement of the service life of rolling bearings.

上記に挙げた転がり軸受では、潤滑油に異物等が混入し、転送面に異物の噛み込みによる圧痕が発生して、その圧痕を起点とする早期剥離を生じる可能性が高い。これを解決する手段として、例えば、内外輪、転動体に浸炭処理や浸炭窒化処理を施して残留オ−ステナイトを所定量析出させることにより、転送面表面に生じた圧痕による応力集中を緩和することで剥離寿命の延長を図ることが知られている(特許文献1参照)。また、高濃度浸炭処理により転送面の硬さを上げ、材料強度を向上させることにより長寿命化を図ることも知られている(特許文献2参照)。   In the above-described rolling bearing, foreign matter or the like is mixed in the lubricating oil, and an impression is generated due to the biting of the foreign matter on the transfer surface, so that there is a high possibility of causing early peeling starting from the indentation. As a means for solving this, for example, by subjecting inner and outer rings and rolling elements to carburizing or carbonitriding to deposit a predetermined amount of residual austenite, the stress concentration due to the indentation generated on the transfer surface is alleviated. It is known to extend the peeling life (see Patent Document 1). It is also known to increase the service life by increasing the hardness of the transfer surface by high-concentration carburizing treatment and improving the material strength (see Patent Document 2).

特開昭64−55423号公報Japanese Patent Laid-Open No. 64-55423 特開平7−41934号公報Japanese Unexamined Patent Publication No. 7-41934

しかしながら、上記の手段は何れも、基本的に内外輪、転動体を個別の部品と考え、個々の部品をそれぞれ強化しており、例えば、軌道輪の寿命を向上したい場合は、軌道輪に所定の長寿命化処理を施している。今日では、市場における軸受を取り巻く環境は、機械の小型化・高速化に伴い厳しくなってきており、従来の長寿命化技術では有効な長寿命化を図ることができないケースも増えてきている。   However, in any of the above means, the inner and outer rings and the rolling elements are basically considered as individual parts, and each part is strengthened. For example, when it is desired to improve the life of the raceway, a predetermined The service life is extended. Today, the environment surrounding bearings in the market is becoming more severe as machines become smaller and faster, and the number of cases in which effective longevity cannot be achieved with conventional longevity technologies is increasing.

一方で、材料強度を向上させるために高合金化等も考えられているが、特殊材を用いることは大幅なコスト増を招くことになり、最良の手段とはいえない。   On the other hand, in order to improve the material strength, high alloying and the like are also considered. However, the use of a special material causes a significant cost increase and is not the best means.

本発明はこのような状況に鑑みてなされたものであり、転動体及び軌道輪の両方の剥離を抑え、軸受寿命の延長を図った転がり軸受を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a rolling bearing that suppresses peeling of both the rolling elements and the raceway and extends the bearing life.

本発明者らは、軸受の長寿命化について検討し、軌道輪及び転動体を個別に強化するのではなく、これらの相乗効果に着目した。例えば、軌道輪の寿命を向上させるために、従来は軌道輪材料の強度だけを考えていたが、転動体の物性を考慮する。   The present inventors examined the life extension of the bearing and focused on the synergistic effect of the bearings and the rolling elements rather than individually strengthening them. For example, in order to improve the life of the raceway, conventionally, only the strength of the raceway material has been considered, but the physical properties of the rolling elements are taken into consideration.

その結果、軌道輪、転動体のそれぞれの寿命は、相手側の表面状態(粗さ及び圧痕等による形状崩れ)に大きく影響を受けることがわかった。例えば、軌道輪の寿命を向上させるには、軌道輪材料の改良よりも転動体の表面状態を良好にする方が有利であることがわかった。従って、軸受製造時に軌道輪及び転動体の双方の表面状態を良好にすることにより、それぞれ接触相手の寿命が向上し、軸受全体としての寿命が向上する。   As a result, it has been found that the life of each of the raceway and the rolling element is greatly affected by the surface condition of the counterpart (shape collapse due to roughness, indentation, etc.). For example, it has been found that it is more advantageous to improve the surface condition of the rolling element than to improve the raceway material in order to improve the life of the raceway. Therefore, by improving the surface condition of both the race and the rolling element during the manufacture of the bearing, the life of the contact partner is improved, and the life of the entire bearing is improved.

また、異物の噛み込みに対しては、軌道輪の耐圧痕性と転動体の耐圧痕性とを変え、どちらか一方に圧痕が優先的に形成される方が、軸受全体として長寿命化できることを見出した。軌道輪と転動体のどちらかに圧痕を形成させることにより、他方には圧痕による応力集中が発生しなくなり、圧痕が形成された側での応力集中による短寿命作用よりも圧痕が形成されない側の表面状態が良好に維持されることによる長寿命効果の方が大きくなり、結果的に軸受全体として長寿命となる。   In addition, for the foreign object biting, it is possible to extend the life of the bearing as a whole by changing the pressure dent of the raceway ring and the pressure dent of the rolling element and forming a dent preferentially on one of them. I found. By forming an indentation on either the raceway or the rolling element, stress concentration due to the indentation does not occur on the other side, and the side where the indentation is not formed is shorter than the short life effect due to stress concentration on the side where the indentation is formed. The long life effect due to the good maintenance of the surface condition becomes larger, and as a result, the entire bearing has a long life.

更に、軌道輪と転動体のどちらに優先的に圧痕を形成した方が軸受の長寿命化に有利であるかを検討した。接触する相手部品の表面状態が悪いと自身の圧痕縁に作用する接線力が大きくなり、寿命が低下する。また、周速が遅い側(従動側)の表面状態より周速が早い側(駆動側)の表面状態が寿命に顕著な影響を及ぼす。従って、従動側よりも駆動側の耐圧痕性を向上させ、圧痕を付き難くする方が効果的である。玉軸受や自動調心ころ軸受では、面圧が高い領域において転動体(玉やころ)が駆動側である。また、円筒ころ軸受や円錐ころ軸受では、面圧が高い領域において軌道輪と転動体との間で基本的に滑りが生じない(純転がり)ため、駆動側と従動側の区別はないが、エッジロードを抑制する目的でころにクラウニングを設ける場合が多く、その場合はころが従動側となる。これらの点から、玉軸受・ころ軸受とも、転動体の耐圧痕性を向上させて圧痕を付き難くする方が軸受全体としての寿命延長に効果的である。   Furthermore, it was examined whether it is advantageous to prolong the life of the bearing if the impression is preferentially formed on the raceway or the rolling element. If the surface condition of the mating component is poor, the tangential force acting on the edge of the indentation becomes large and the service life is shortened. In addition, the surface state on the side (drive side) where the peripheral speed is faster (drive side) than the surface state on the side where the peripheral speed is slow (driven side) significantly affects the life. Therefore, it is more effective to improve the pressure-proof dent on the drive side than on the driven side and make it difficult to make a dent. In a ball bearing or a self-aligning roller bearing, the rolling element (ball or roller) is on the drive side in a region where the surface pressure is high. In addition, in cylindrical roller bearings and tapered roller bearings, there is basically no slip between the bearing ring and the rolling element in the region where the surface pressure is high (pure rolling), so there is no distinction between the driving side and the driven side. In many cases, the roller is provided with a crowning for the purpose of suppressing the edge load, in which case the roller is on the driven side. From these points, in both ball bearings and roller bearings, it is more effective to extend the life of the entire bearing by improving the pressure dent of the rolling element and making it difficult to make the dent.

材料の圧痕の付き易さ、付き難さをコントロールする方法としては、硬さの差を持たせることが考えられる。従って、転動体の硬さを大きくし、軌道輪の硬さを小さくすれば、軌道輪に優先的に圧痕を形成することができるが、軌道輪の基本的な強度が低下してしまい、短寿命になる問題が生じる。そこで、本発明では、通常の軸受鋼よりも素材の炭素濃度を低くし、浸炭もしくは浸炭窒化処理により軌道輪軌道面の硬さを大きくするとともに、軌道輪芯部の硬さを小さくしている。   As a method for controlling the easiness of the indentation of the material and the difficulty of attaching it, it is conceivable to provide a difference in hardness. Therefore, if the hardness of the rolling element is increased and the hardness of the raceway ring is reduced, an indentation can be preferentially formed on the raceway ring, but the basic strength of the raceway ring is reduced and the shortness is reduced. There will be a problem of end of life. Therefore, in the present invention, the carbon concentration of the material is made lower than that of ordinary bearing steel, and the hardness of the raceway raceway surface is increased by carburizing or carbonitriding, and the hardness of the raceway ring core is reduced. .

また、圧痕の付き易さに影響を及ぼす材料因子として、硬さの他に残留オーステナイトが挙げられる。残留オーステナイトは、軸受材料の主要組織であるマルテンサイトよりも柔らかい組織であり、残留オーステナイトが多いほど圧痕は付き易くなる。更に、残留オーステナイトは、異物混入潤滑環境下において寿命延長効果もある。そこで、本発明では、軌道輪に圧痕を付き易くし、かつ、軌道輪の寿命延長効果を確保するために軌道輪軌道面の残留オーステナイトを多くしている。但し、残留オーステナイトが多すぎると表面硬さや耐圧痕性、耐摩耗性が低下するだけでなく、高温で使用される場合の寸法安定性も悪化する。   In addition to hardness, retained austenite can be cited as a material factor that affects the ease of indentation. Residual austenite is a softer structure than martensite, which is the main structure of the bearing material, and the greater the amount of retained austenite, the easier it is to form indentations. Furthermore, the retained austenite has an effect of extending the life in a foreign matter-mixed lubricating environment. Therefore, in the present invention, retained austenite on the raceway raceway surface is increased in order to make the raceway easily indented and to ensure the effect of extending the life of the raceway. However, when the amount of retained austenite is too large, not only the surface hardness, pressure scar resistance and wear resistance are lowered, but also the dimensional stability when used at high temperatures is deteriorated.

一方で、転動体に圧痕を付き難くするために、硬さの他に、材料因子として、表面の窒素濃度、窒化物の面積率や大きさ、個数を規定している。   On the other hand, in order to make it hard to make an indentation on a rolling element, in addition to hardness, the surface nitrogen concentration, the area ratio and size of nitride, and the number are specified as material factors.

上記に鑑み、本発明は以下の転がり軸受を提供する。
(1)内周面に軌道面を有する外方部材と、外周面に軌道面を有する内方部材と、外方部材の転動面と内方部材の転動面との間に転動自在に配設された複数の転動体とを備えた転がり軸受において、
前記内方部材及び前記外方部材が、浸炭処理または浸炭窒化処理され、かつ、前記各軌道面の残留オーステナイト量が20〜45体積%であり、
前記転動体が、浸炭窒化処理または窒化処理され、かつ、転動面における窒素濃度が0.2〜2.0質量%であり、Si及びMnを含有する窒化物の面積率が1%以上20%以下であり、表面硬さがHV750以上であり、平均粒径0.05μm〜1μmの該窒化物を面積375μm 中に100個以上含有し、
前記転動体の転動面からの深さをZとし、前記転動体の直径をdとしたとき、前記転動体のZ=0.045dにおける硬さがHV650〜850であり、Z=0.18dにおける硬さがHV700〜771であることを特徴とする転がり軸受。
In view of the above, the present invention provides the following rolling bearings.
(1) Rollable between an outer member having a raceway surface on the inner peripheral surface, an inner member having a raceway surface on the outer peripheral surface, and a rolling surface of the outer member and a rolling surface of the inner member. In a rolling bearing provided with a plurality of rolling elements arranged in
The inner member and the outer member are carburized or carbonitrided, and the amount of retained austenite on each raceway surface is 20 to 45% by volume,
The rolling element is carbonitrided or nitrided, the nitrogen concentration on the rolling surface is 0.2 to 2.0 mass%, and the area ratio of the nitride containing Si and Mn is 1% or more and 20 % Of the surface hardness is HV750 or more, and 100 or more nitrides having an average particle size of 0.05 μm to 1 μm are contained in an area of 375 μm 2 .
When the depth from the rolling surface of the rolling element is Z and the diameter of the rolling element is d, the hardness of the rolling element at Z = 0.045d is HV650-850, and Z = 0.18d. A rolling bearing characterized by having a hardness of HV700 to 771.

本発明の転がり軸受では、内外輪及び転動体を形成するそれぞれの材料の物性を相対的に規定することで、軸受全体としての耐圧痕性や耐摩耗性を向上させており、異物混入潤滑環境下で生じる圧痕起点型はく離に対して長寿命となる。   In the rolling bearing of the present invention, the physical properties of the respective materials forming the inner and outer rings and the rolling elements are relatively defined to improve the pressure scar resistance and wear resistance of the entire bearing. It has a long life against the indentation origin type peeling that occurs below.

以下、本発明に関して詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明において、転がり軸受の種類や構造には制限がなく、例えば図1に断面図にて示す深溝玉軸受を例示できる。この深溝玉軸受は、軌道面1aを外周面に有する内輪1(内方部材)と、内輪1の軌道面1aに対向する軌道面2aを内周面に有する外輪2(外方部材)と、両軌道面1a,2a間に転動自在に配された複数の転動体3である玉と、内輪1及び外輪2の間に転動体3を保持する保持器4と、内輪1及び外輪2の間の隙間の開口を覆うシール5,5と、を備えていて、両軌道面1a,2aと転動体3の転動面3aとの間の潤滑が、グリース、潤滑油等の潤滑剤6により行われている。尚、保持器4やシール5は備えていなくてもよい。   In the present invention, the type and structure of the rolling bearing are not limited, and for example, a deep groove ball bearing shown in a sectional view in FIG. 1 can be exemplified. The deep groove ball bearing includes an inner ring 1 (inner member) having a raceway surface 1a on an outer peripheral surface, an outer ring 2 (outer member) having a raceway surface 2a facing the raceway surface 1a of the inner ring 1 on an inner peripheral surface, A ball, which is a plurality of rolling elements 3 arranged so as to be capable of rolling between both raceway surfaces 1a, 2a, a retainer 4 that holds the rolling elements 3 between the inner ring 1 and the outer ring 2, and an inner ring 1 and an outer ring 2 Seals 5 and 5 covering the openings of the gaps between them, and lubrication between both raceway surfaces 1a and 2a and the rolling surface 3a of the rolling element 3 is performed by a lubricant 6 such as grease or lubricating oil. Has been done. Note that the cage 4 and the seal 5 may not be provided.

また、図2に断面図で示すような、内輪1と外輪2との間に、転動体3である円錐ころを保持器4により保持してなり、呼び番号L44649/610の円錐ころ軸受を例示することもできる。更に、図示は省略するが、アンギュラ玉軸受や円筒ころ軸受、自動調心ころ軸受、針状ころ軸受等も可能である。   Further, as shown in a sectional view in FIG. 2, a tapered roller as a rolling element 3 is held by a cage 4 between an inner ring 1 and an outer ring 2, and a tapered roller bearing having a nominal number L44649 / 610 is illustrated. You can also Further, although not shown, angular ball bearings, cylindrical roller bearings, self-aligning roller bearings, needle roller bearings, and the like are also possible.

本発明では、内輪及び外輪に浸炭処理または浸炭窒化処理を施し、軌道面の残留オーステナイト量を20〜45体積%とする。上述のように、残留オーステナイトが多いほど圧痕は付き易くなるため、本発明では残留オーステナイトを20体積%以上と多くする。好ましくは30体積%以上とする。但し、残留オーステナイトが多すぎると表面硬さや耐圧痕性、耐摩耗性が低下したり、高温での寸法安定性が悪化するため、45体積%以下、好ましくは40体積%以下とする。   In the present invention, the inner ring and the outer ring are subjected to carburizing or carbonitriding so that the amount of retained austenite on the raceway surface is 20 to 45% by volume. As described above, as the amount of retained austenite increases, the indentation is more easily formed. Therefore, in the present invention, the amount of retained austenite is increased to 20% by volume or more. Preferably it is 30 volume% or more. However, if there is too much retained austenite, the surface hardness, pressure scar resistance, and wear resistance will decrease, and the dimensional stability at high temperatures will deteriorate, so it will be 45% by volume or less, preferably 40% by volume or less.

また、転動体の表面層に所定の窒素を富化させるために浸炭窒化処理または窒化処理を行う。窒素は炭素と同じようにマルテンサイトの固溶強化および残留オーステナイトの安定確保に作用するだけでなく、窒化物または炭窒化物を形成して耐圧痕性、耐摩耗性を向上させる作用がある。表面窒素濃度が高いほど耐摩耗性、耐圧痕性に優れており、表面窒素濃度が0.2質量%を超えると顕著に効果が現れるが、好ましくは0.45質量%以上とする。   In addition, carbonitriding or nitriding is performed to enrich the surface layer of the rolling element with predetermined nitrogen. Nitrogen, like carbon, not only acts to strengthen the solid solution of martensite and to ensure the stability of retained austenite, but also forms nitrides or carbonitrides to improve the pressure resistance and wear resistance. The higher the surface nitrogen concentration is, the better the wear resistance and pressure scar resistance are. When the surface nitrogen concentration exceeds 0.2% by mass, a remarkable effect appears, but preferably 0.45% by mass or more.

一方で、窒素濃度が高すぎると靭性や静的強度が低下してしまう欠点がある。転がり軸受の転動体にとって靭性や静的強度は必要な性能であるため、窒素濃度が高すぎるのは好ましくない。そこで、本発明における窒素濃度の上限は2.0質量%とする。   On the other hand, if the nitrogen concentration is too high, there is a drawback that toughness and static strength are lowered. Since the toughness and static strength are necessary performances for rolling elements of a rolling bearing, it is not preferable that the nitrogen concentration is too high. Therefore, the upper limit of the nitrogen concentration in the present invention is 2.0% by mass.

また、窒素濃度が同じ場合でも、材料内部の窒素の存在状態によって耐圧痕性、耐摩耗性が変わる。窒素は材料内部に固溶して存在する場合と窒化物として析出して存在する場合がある。また、Si及びMnを多く含む材料を浸炭窒化処理した場合、同じ窒素濃度でも材料中に固溶して存在する窒素量よりも表面にSi及びMnを含有する窒化物(以下、「Si・Mn系窒化物」という)として析出して存在する窒素量が多くなる。Si・Mn系窒化物の面積率が高いほど耐摩耗性、耐圧痕性に優れており、Si・Mn系窒化物の面積率が1%を超えると顕著に効果が現れるが、より好ましくは2%以上である。   Further, even when the nitrogen concentration is the same, the pressure scar resistance and the wear resistance change depending on the presence of nitrogen inside the material. Nitrogen may be present as a solid solution in the material or may be precipitated as a nitride. In addition, when carbonitriding a material containing a large amount of Si and Mn, a nitride containing Si and Mn on the surface (hereinafter referred to as “Si · Mn”) rather than the amount of nitrogen present in solid solution in the material even at the same nitrogen concentration. The amount of nitrogen present by precipitation as "system nitride" increases. The higher the area ratio of the Si · Mn nitride, the better the wear resistance and the pressure scar resistance. When the area ratio of the Si · Mn nitride exceeds 1%, a remarkable effect appears. % Or more.

但し、窒素濃度と同様にSi・Mn系窒化物の析出量が多くなりすぎると、靭性や静的強度が低下してしまう欠点がある。転がり軸受の転動体にとって靭性や静的強度は必要な性能であるため、Si・Mn系窒化物の析出量が多くなりすぎるのは好ましくない。特に、Si・Mn系窒化物の面積率が20%を超えると、急激に靭性が低下する。従って、Si・Mn系窒化物の面積率の上限は20%であり、より好ましくは10%である。   However, as with the nitrogen concentration, if the amount of Si / Mn nitride deposited becomes too large, there is a drawback that the toughness and static strength decrease. Since the toughness and static strength are necessary performances for rolling elements of a rolling bearing, it is not preferable that the amount of Si / Mn nitride precipitates is excessive. In particular, when the area ratio of the Si · Mn nitride exceeds 20%, the toughness is drastically lowered. Therefore, the upper limit of the area ratio of the Si · Mn nitride is 20%, more preferably 10%.

また、1μmを越える窒化物は、材料の強化にあまり寄与しない。細かい窒化物が分散している方が強化される。この理由としては、析出強化の理論において析出物粒子間距離の小さい方が強化能に優れるので、Si・Mn系窒化物の面積率が同じであっても、析出粒子数が多ければ、相対的に粒子間距離が短くなり、強化される。即ち、Si及びMnの含有量の多い鋼を用い、Si・Mn系窒化物の面積率が1〜20%の範囲で、平均粒径が0.05μm以上1μm以下の微細な窒化物の個数を増やすのがよい。また、0.05μm以上のSi・Mn系窒化物のうち、0.05〜0.50μmのSi・Mn系窒化物の個数の比率を20%以上とすることにより、更に強化することが可能になる。   Further, nitrides exceeding 1 μm do not contribute much to the strengthening of the material. The one where fine nitride is dispersed is strengthened. The reason for this is that, in the theory of precipitation strengthening, the smaller the distance between the precipitate particles, the better the strengthening ability. Therefore, even if the area ratio of the Si / Mn nitride is the same, if the number of precipitated particles is large, the relative In addition, the interparticle distance is shortened and strengthened. That is, the number of fine nitrides having an average particle size of 0.05 μm or more and 1 μm or less is used in a range where the area ratio of Si · Mn nitride is 1 to 20%, using steel with a high content of Si and Mn. It is good to increase. Further, among the Si · Mn nitrides of 0.05 μm or more, the ratio of the number of Si · Mn nitrides of 0.05 to 0.50 μm is set to 20% or more, so that it can be further strengthened. Become.

具体的には、面積375μmの範囲で、0.05μm以上1μm以下のSi・Mn系窒化物が100個以上であることが好ましく、このような状態にする手法としては、浸炭窒化処理温度を800℃以上870℃以下とすることが好ましい。この温度を越えると、窒化物が粗大化して、微細なSi・Mn系窒化物の個数が減少する。また、この処理温度より温度が高くなると、窒素の固溶限が大きくなるため、窒化物の量が少なくなり、所望の面積率が得られなくなる場合がある。浸炭窒化工程の初期から、RXガスとエンリッチガスとアンモニウムガスの混合ガス雰囲気とし、CP値は1.2以上、アンモニアガスの流量はRXガス流量の少なくとも1/5以上とすることが好ましい。また、浸炭窒化後の焼入れは、油温60〜120℃の範囲で行うことが好ましい。この温度より高いと、十分な硬さが得られない場合がある。焼戻しは、160〜270℃の温度で行い、表面硬さの範囲としてはHv740以上、望ましくはHv780以上とする。また、必要に応じて、焼入れ処理後に、サブゼロ処理を行ってもよい。 Specifically, it is preferable that there are 100 or more Si · Mn nitrides having an area of 375 μm 2 and 0.05 μm or more and 1 μm or less. It is preferable to set it to 800 degreeC or more and 870 degrees C or less. When this temperature is exceeded, the nitride becomes coarse and the number of fine Si · Mn nitrides decreases. Further, when the temperature is higher than the treatment temperature, the solid solubility limit of nitrogen is increased, so that the amount of nitride is reduced and a desired area ratio may not be obtained. From the initial stage of the carbonitriding process, it is preferable that the mixed gas atmosphere of RX gas, enriched gas, and ammonium gas is used, the CP value is 1.2 or more, and the flow rate of ammonia gas is at least 1/5 of the RX gas flow rate. Moreover, it is preferable to perform the quenching after carbonitriding in the range of oil temperature 60-120 degreeC. If it is higher than this temperature, sufficient hardness may not be obtained. Tempering is performed at a temperature of 160 to 270 ° C., and the range of surface hardness is Hv 740 or higher, preferably Hv 780 or higher. Moreover, you may perform a subzero process after a quenching process as needed.

更には、転動体の表面硬さをHV750以上、好ましくはHV800以上、より好ましくはHV820以上とする。耐圧痕性を向上させるために最も有効な材料因子は硬さである。圧痕の種類としては異物を噛み込む事によって生じる異物圧痕と、過大荷重が作用した場合に転動体が軌道輪に食い込み、軌道輪が転動体を押しつぶすことによって生じるブリネル圧痕がある。異物圧痕の場合には表面近傍の硬さのみ大きくすれば圧痕の形成を抑制することができるが、ブリネル圧痕の場合には表面だけでなく芯部まで硬さが高いことが重要である。圧痕は軌道輪と転動体が接触し、荷重が負荷させることで材料内部に生じる静的せん断応力(転がり方向に対して45°の方向のせん断応力)によって形成される。圧痕が形成される現象は、材料に塑性変形が生じることによって起こるので、材料のもつ降伏せん断応力が作用する静的せん断応力以上であれば、圧痕は形成されない。通常、転がり軸受に作用する荷重は静定格荷重以下となるように設計されているため、静定格荷重が作用した場合にも圧痕が形成されない材料強度を保持することが重要である。静定格荷重は玉軸受の場合4200MPa、ころ軸受の場合4000MPaの接触面圧を生じさせるような荷重と定義されており、この面圧が作用した場合に発生する静的せん断応力が軸受材料の降伏せん断応力以下であれば圧痕は生じない。一方で、材料の降伏せん断応力は材料の硬さと比例関係にあり、降伏せん断応力とビッカース硬さにはτy=1/6×HVの関係がある。   Furthermore, the surface hardness of the rolling element is HV750 or more, preferably HV800 or more, more preferably HV820 or more. Hardness is the most effective material factor for improving the indentation resistance. Types of indentations include foreign matter indentations caused by biting foreign matter, and Brinell indentations caused by rolling elements biting into the raceway when an excessive load is applied, and the raceway crushing the rolling element. In the case of foreign matter indentation, the formation of the indentation can be suppressed by increasing only the hardness in the vicinity of the surface, but in the case of Brinell indentation, it is important that the hardness is high not only on the surface but also on the core. The indentation is formed by static shear stress (shear stress in a direction of 45 ° with respect to the rolling direction) generated inside the material when the raceway and the rolling element come into contact with each other and a load is applied. The phenomenon that the indentation is formed is caused by plastic deformation of the material. Therefore, if the yield shear stress of the material is equal to or higher than the static shear stress, the indentation is not formed. Usually, since the load acting on the rolling bearing is designed to be equal to or less than the static load rating, it is important to maintain a material strength that does not form indentation even when the static load rating is applied. The static load rating is defined as a load that generates a contact surface pressure of 4200 MPa for ball bearings and 4000 MPa for roller bearings. The static shear stress generated when this surface pressure is applied is the yield of the bearing material. Indentation does not occur if the shear stress or less. On the other hand, the yield shear stress of the material is proportional to the hardness of the material, and the yield shear stress and the Vickers hardness have a relationship of τy = 1/6 × HV.

従って、ブリネル圧痕を形成しないためには、静定格荷重作用時の静的せん断応力分布を上回るせん断降伏応力分布(硬さ分布)となるように硬さを規定することが重要である。一方で芯部の硬さが大きすぎると靭性が低下し、割れが問題となる。   Therefore, in order not to form the Brinell impression, it is important to define the hardness so that the shear yield stress distribution (hardness distribution) exceeds the static shear stress distribution at the time of static load application. On the other hand, if the hardness of the core is too large, the toughness is lowered and cracking becomes a problem.

また、最大静的せん断応力作用深さ(静的せん断応力分布)は転動体直径と相関があるため、次のように硬さを規定した。即ち、転動体の転動面からの深さをZとし、転動体の直径をdとしたとき、転動体のZ=0.045dにおける硬さをHV650〜850、好ましくはHV770〜816とし、Z=0.18dにおける硬さをHV700〜771、より好ましくはHV718〜771とすることにより、軌道輪と転動体との接触によるブリネル圧痕の形成を抑制することができ、軌道輪と転動体間に作用する接線力を抑制して長寿命化が達成可能である。 Moreover, since the maximum static shear stress working depth (static shear stress distribution) has a correlation with the rolling element diameter, the hardness was defined as follows. That is , when the depth from the rolling surface of the rolling element is Z and the diameter of the rolling element is d, the hardness of the rolling element at Z = 0.045d is HV650-850, preferably HV770-816, Z = 0.18d hardness is set to HV700 to 771, more preferably HV718 to 771, so that formation of Brinell indentation due to contact between the raceway and the rolling element can be suppressed. It is possible to achieve a long life by suppressing the tangential force acting on the.

尚、転動体は以下に示す元素を含有することが好ましい。残部は鉄及び不可避不純物である。   In addition, it is preferable that a rolling element contains the element shown below. The balance is iron and inevitable impurities.

[C:0.3〜1.2質量%]
炭素は鋼に必要な強度と寿命を得るために重要な元素である。炭素が少なすぎると十分な強度が得られないだけでなく、後述する浸炭窒化の際に必要な硬化層深さを得るための熱処理時間が長くなり、熱処理コストの増大につながる。そのため、炭素含有量は0.3質量%以上、好ましくは0.5質量%以上とする。Z=0.18d、好ましくはZ>0.06dの硬さを得るためには0.95質量%以上が好ましい。また、炭素含有量が多すぎると製鋼時に巨大炭化物が生成され、その後の焼入れ特性や転動疲労寿命に悪影響を与えるほか、ヘッダー性が低下してコストの上昇を招くおそれがあるため上限を1.2質量%、好ましくは1.10質量%とする。
[C: 0.3 to 1.2% by mass]
Carbon is an important element for obtaining the strength and life required for steel. If the amount of carbon is too small, not only a sufficient strength cannot be obtained, but also the heat treatment time required to obtain the hardened layer depth required for carbonitriding described later will be increased, leading to an increase in the heat treatment cost. Therefore, the carbon content is 0.3% by mass or more, preferably 0.5% by mass or more. In order to obtain a hardness of Z = 0.18d, preferably Z> 0.06d, 0.95% by mass or more is preferable. In addition, if the carbon content is too large, giant carbides are produced during steelmaking, which adversely affects the subsequent quenching characteristics and rolling fatigue life, and the header property may be reduced, leading to an increase in cost. .2% by mass, preferably 1.10% by mass.

[Si:0.3〜2.2質量%、Mn:0.2〜2.0質量%]
上述したように、Si・Mn系窒化物を十分に析出させるためには、Si及びMnを多く含有した鋼材を用いる必要がある。一般的な軸受材料であるSUJ2は、Si含有量が0.25%、Mn含有量が0.4%であり、浸炭窒化等で窒素を過剰に付加してもSi・Mn系窒化物量が少ない。このため、Si及びMnの含有量は、以下の値を臨界値とする。
[Si: 0.3-2.2% by mass, Mn: 0.2-2.0% by mass]
As described above, in order to sufficiently precipitate Si · Mn nitride, it is necessary to use a steel material containing a large amount of Si and Mn. SUJ2, a common bearing material, has a Si content of 0.25% and a Mn content of 0.4%, and even if nitrogen is added excessively by carbonitriding, etc., the amount of Si / Mn nitride is small . For this reason, content of Si and Mn makes the following values critical values.

<Si:0.3〜2.2質量%>
Si・Mn系窒化物の析出に必要な元素であり、Mnの存在によって、0.3質量%以上の添加で、窒素と効果的に反応して顕著に析出する。好ましくは0.4〜0.7質量%とする。
<Si: 0.3-2.2 mass%>
It is an element necessary for the precipitation of Si · Mn-based nitrides, and due to the presence of Mn, it effectively reacts with nitrogen and precipitates significantly when added in an amount of 0.3% by mass or more. Preferably it is 0.4-0.7 mass%.

<Mn:0.2〜2.0質量%>
Si・Mn系窒化物の析出に必要な元素であり、Siとの共存によって、0.2質量%以上の添加で、Si・Mn系窒化物の析出を促進させる作用がある。また、Mnはオーステナイトを安定化する働きがあるので、硬化熱処理後に残留オーステナイトが必要以上に増加するといった問題を引き起こすのを防止するため、2.0質量%以下とする。好ましくは0.9〜1.15質量%とする。また、より好ましくは、下記理由によりSi/Mn比率を5以下とする。
<Mn: 0.2 to 2.0% by mass>
It is an element necessary for the precipitation of Si · Mn nitride, and has the effect of promoting the precipitation of Si · Mn nitride when added in an amount of 0.2% by mass or more by coexistence with Si. Further, since Mn has a function of stabilizing austenite, it is set to 2.0% by mass or less in order to prevent the problem that the retained austenite increases more than necessary after the heat treatment for curing. Preferably it is 0.9 to 1.15 mass%. More preferably, the Si / Mn ratio is set to 5 or less for the following reason.

Si・Mn系窒化物は、焼戻しによる窒化物とは異なり、浸炭窒化処理時に侵入してきた窒素がオーステナイト域で、Mnを取り込みながらSiと反応して形成される。従って、Si添加量に対してMn添加量が少ないと、十分に窒素を拡散させても、Si・Mn系窒化物の析出が促進されない。前述したSi及びMn添加量の範囲で、且つ窒素量を0.2質量%以上侵入させた場合、Si/Mn比率を5以下とすることによって、寿命延長や耐摩耗性・耐焼き付き性向上に効果のある面積率1.0%以上のSi・Mn系窒化物の析出量を確保することができる。   Unlike nitrides obtained by tempering, Si · Mn-based nitrides are formed by reacting with Si while incorporating Mn in the austenite region when nitrogen that has entered during carbonitriding treatment. Therefore, if the amount of Mn added is less than the amount of Si added, precipitation of Si / Mn nitride is not promoted even if nitrogen is sufficiently diffused. In the range of Si and Mn addition described above, and when the nitrogen content penetrates 0.2% by mass or more, by making the Si / Mn ratio 5 or less, the life is extended and the wear resistance and seizure resistance are improved. An effective precipitation amount of Si · Mn nitride having an area ratio of 1.0% or more can be ensured.

[Cr:0.5〜2.0質量%]
Crは焼入れ性を向上させると同時に、炭化物形成元素であり、材料を強化する炭化物の析出を促進し、更に微細化させる。0.5質量%未満であると焼入れ性が低下して十分な硬さが得られなかったり、浸炭窒化時に炭化物が粗大化したりする。2.0質量%を越えると、浸炭窒化時に表面にCr酸化膜が形成されて、炭素及び窒素の拡散を阻害する。そのため、Cr含有量は0.5質量%以上2.0質量%以下とすることが好ましく、0.9〜1.2質量%とすることがより好ましい。
[Cr: 0.5 to 2.0% by mass]
Cr is a carbide forming element as well as improving hardenability, and promotes precipitation and further refines the carbide that strengthens the material. If it is less than 0.5% by mass, the hardenability is lowered and sufficient hardness cannot be obtained, or the carbides are coarsened during carbonitriding. If it exceeds 2.0% by mass, a Cr oxide film is formed on the surface during carbonitriding to inhibit the diffusion of carbon and nitrogen. Therefore, the Cr content is preferably 0.5% by mass or more and 2.0% by mass or less, and more preferably 0.9 to 1.2% by mass.

一方、内輪及び外輪は、以下の元素を含有することが好ましい。残部は鉄及び不可避不純物である。   On the other hand, the inner ring and the outer ring preferably contain the following elements. The balance is iron and inevitable impurities.

[C:0.1〜0.7質量%]
炭素の含有量が低いと浸炭処理や浸炭窒化処理に要する時間が長くなるため、0.1質量%以上が必要であり、0.3質量%以上が好ましく、0.41質量%以上がより好ましい。但し、内輪及び外輪が転動体よりも硬くなりすぎないためには、0.7質量%以下である必要があり、0.5質量%以下が好ましく、0.46質量%以下がより好ましい。また、このような炭素含有量とすることにより、平均残留オーステナイト量を規定の範囲とすることができる。
[C: 0.1 to 0.7% by mass]
If the carbon content is low, the time required for the carburizing treatment and carbonitriding treatment becomes longer, so 0.1 mass% or more is necessary, 0.3 mass% or more is preferable, and 0.41 mass% or more is more preferable. . However, in order for the inner ring and the outer ring not to be too hard than the rolling element, it is necessary to be 0.7 mass% or less, preferably 0.5 mass% or less, and more preferably 0.46 mass% or less. Moreover, by setting it as such carbon content, the average amount of retained austenite can be made into a defined range.

[Cr:0.5〜3.0質量%]
Crをこのように含有させることにより、浸炭処理や浸炭窒化処理により炭化物、炭窒化物及びクロム窒化物を多量に析出させることができるとともに、これらの粒径を微細にすることができる。Cr含有量が0.5質量%未満であると、浸炭処理や浸炭窒化処理時に炭化物の巨大化が起こりやすい。Cr含有量が3.0質量%を超えると、表面にクロム酸化物が形成されて炭素や窒素が入り難くなり、浸炭特性や浸炭窒化特性が低下する。Cr含有量は1.0〜1.6質量%とすることが好ましく、1.1〜1.3質量%とすることがより好ましい。
[Cr: 0.5 to 3.0% by mass]
By containing Cr in this manner, a large amount of carbides, carbonitrides and chromium nitrides can be precipitated by carburizing or carbonitriding, and these particle sizes can be made fine. If the Cr content is less than 0.5% by mass, the carbides are likely to become large during carburizing or carbonitriding. If the Cr content exceeds 3.0% by mass, chromium oxide is formed on the surface, making it difficult for carbon and nitrogen to enter, and the carburizing characteristics and carbonitriding characteristics deteriorate. The Cr content is preferably 1.0 to 1.6% by mass, and more preferably 1.1 to 1.3% by mass.

[Si:0.15〜1.0質量%]
Siをこのように含有させることにより、機械的性質と熱処理特性とが良好になる。Si含有量が0.15質量%未満では芯部の靭性が低下し、1.0質量%を超えると炭素や窒素が表面から入り難くなり、浸炭特性や浸炭窒化特性が低下する。Si含有量は0.15〜0.6質量%とすることが好ましく、0.3〜0.45質量%とすることがより好ましい。
[Si: 0.15-1.0% by mass]
By including Si in this manner, mechanical properties and heat treatment characteristics are improved. When the Si content is less than 0.15% by mass, the toughness of the core part is lowered, and when it exceeds 1.0% by mass, it is difficult for carbon and nitrogen to enter from the surface, and the carburizing characteristics and carbonitriding characteristics are deteriorated. The Si content is preferably 0.15 to 0.6% by mass, and more preferably 0.3 to 0.45% by mass.

[Mn:0.20〜1.5質量%]
Mnをこのように含有させることにより、焼入れ性が良くなり、焼入れ後に靭性が高まる。Mn含有量が0.20質量%未満ではその作用が十分に発現せず、1.5質量%を超えると合金鋼の被切削性と熱間加工性とが低下する。Mn含有量は0.6〜1.3質量%とすることが好ましく、1.0〜1,2質量%とすることがより好ましい。
[Mn: 0.20 to 1.5% by mass]
By containing Mn in this way, hardenability is improved and toughness is increased after quenching. When the Mn content is less than 0.20% by mass, the effect is not sufficiently exhibited, and when it exceeds 1.5% by mass, the machinability and hot workability of the alloy steel are deteriorated. The Mn content is preferably 0.6 to 1.3% by mass, and more preferably 1.0 to 1% by mass.

また、転動体、内輪及び外輪には、必要に応じて、Mo、Ni、Vの少なくとも1種類以上を添加してもよい。   Moreover, you may add at least 1 or more types of Mo, Ni, and V to a rolling element, an inner ring | wheel, and an outer ring | wheel as needed.

[Mo:0.2〜1.2質量%]
Moは、焼入れ性を向上させると同時に、炭窒化物形成元素であり、材料を強化する炭化物及び炭窒化物、窒化物の析出を促進し、更に微細化させる作用がある。その効果は、0.2質量%以上の添加で顕著になる。1.2質量%を越えると効果が飽和し、コストが高くなる。従って、Mo含有量は0.2〜1.2質量%とすることが好ましく、より好ましくは0.9〜1.1質量%とする。
[Mo: 0.2 to 1.2% by mass]
Mo is a carbonitride-forming element as well as improving hardenability, and has the effect of promoting precipitation and further refinement of carbides, carbonitrides, and nitrides that strengthen the material. The effect becomes remarkable when 0.2% by mass or more is added. If it exceeds 1.2% by mass, the effect is saturated and the cost increases. Therefore, the Mo content is preferably 0.2 to 1.2% by mass, and more preferably 0.9 to 1.1% by mass.

[Ni:0.5〜3.0質量%]
Niは、焼入れ性を向上させると同時に、靭性を向上させる作用があり、その効果は0.5質量%以上の添加で顕著となる。オーステナイト安定化元素であり、3.0質量%以上添加すると残留オーステナイトが過剰となり、心部硬度が低下する。従って、Ni含有量は0.5質量%以上3.0質量%以下とすることが好ましい。
[Ni: 0.5 to 3.0% by mass]
Ni has an effect of improving hardenability and at the same time improving toughness, and the effect becomes remarkable when 0.5% by mass or more is added. It is an austenite stabilizing element. When 3.0% by mass or more is added, the retained austenite becomes excessive and the core hardness decreases. Therefore, the Ni content is preferably 0.5% by mass or more and 3.0% by mass or less.

[V:0.5〜1.5質量%]
Vは、浸炭窒化によって硬質な炭化物や炭窒化物を形成して、耐摩耗性を向上させる作用がある。この効果は、0.5質量%以上の添加で顕著となる。1.5質量%を越えて過剰に添加すると、素材の固溶炭素と結びついて炭化物を形成し、硬さが低下する。従って、V含有量は0.5質量%以上1.5質量%以下とすることが好ましい。
[V: 0.5 to 1.5% by mass]
V has the effect of improving wear resistance by forming hard carbides and carbonitrides by carbonitriding. This effect becomes remarkable when 0.5% by mass or more is added. When it is added excessively exceeding 1.5% by mass, it is combined with the solid solution carbon of the material to form a carbide and the hardness is lowered. Accordingly, the V content is preferably 0.5% by mass or more and 1.5% by mass or less.

以下に実施例及び比較例を挙げて本発明を更に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be further described with reference to examples and comparative examples, but the present invention is not limited thereto.

(実施例1〜21、比較例1〜7)
試験軸受として、円錐ころ軸受L44649/610(転動体径d=5.44mm)を用意した。尚、内輪及び外輪には、表1に示す組成(残部は鉄及び不可避不純物)の浸炭鋼を用いた。この浸炭鋼は、浸炭窒化焼入れ(940℃×4hr、RXガス+エンリッチガス+アンモニアガス雰囲気)の後、焼入れ(830℃×0.5hr、RXガス、油焼入れ)、焼戻し(160〜220℃×2hr)を行なった。また、ころは、表2に示す組成(残部鉄及び不可避不純物)の線材をヘッダー加工、粗研削加工により製作し、浸炭窒化焼入れ(830℃×5〜20hr、RXガス+エンリッチガス+アンモニアガス雰囲気)、180〜270℃焼戻しの熱処理及び後工程を行った。
(Example 1-21 and Comparative Example 1-7)
A tapered roller bearing L44649 / 610 (rolling element diameter d = 5.44 mm) was prepared as a test bearing. For the inner ring and the outer ring, carburized steel having the composition shown in Table 1 (the balance is iron and inevitable impurities) was used. This carburized steel is carbonitrided and quenched (940 ° C. × 4 hr, RX gas + enrich gas + ammonia gas atmosphere), then quenched (830 ° C. × 0.5 hr, RX gas, oil quenching), tempered (160-220 ° C. × 2 hr). Also, the rollers are manufactured by header processing and rough grinding processing of wire rods having the composition shown in Table 2 (remaining iron and inevitable impurities), and carbonitriding and quenching (830 ° C. × 5 to 20 hr, RX gas + enrich gas + ammonia gas atmosphere) ), 180-270 ° C. tempering heat treatment and post-process.

転動体については、電子線マイクロアナライザー(EPMA)を用いて表面窒素量を測定し、X線回折法により表面層の残留オーステナイト量を測定した。また、電界放射型走査型電子顕微鏡(FE−SEM)を用いて、加速電圧10Kvで転動面の観察を行い、倍率5000倍で最低3視野以上写真を撮影した後、写真を2値化してから画像解析装置を用いて、Si・Mn系窒化物の面積率を計算した。更に、表面、0.045d、0.18dにおける転動体の硬さを測定した。各測定結果を表2に示す。   About the rolling element, the amount of surface nitrogen was measured using the electron beam microanalyzer (EPMA), and the amount of retained austenite of the surface layer was measured by the X-ray diffraction method. Also, using a field emission scanning electron microscope (FE-SEM), the rolling surface was observed at an acceleration voltage of 10 Kv, and after taking a picture of at least three fields of view at a magnification of 5000 times, the picture was binarized. Then, the area ratio of the Si · Mn nitride was calculated using an image analyzer. Furthermore, the hardness of the rolling element at the surface, 0.045d, 0.18d was measured. Table 2 shows the measurement results.

そして、上記の円すいころ軸受について、4000MPaの過大面圧を1回作用させた後、異物混入潤滑下で寿命試験を行った。試験条件は以下の通りであり、剥離が発生するまでの時間を計測し、ワイブルプロットを作成し、ワイブル分布の結果からL10寿命を求めた。試験は各12回行った。結果を表2の転がり寿命比率の欄に示すが、最も短寿命であった比較例1の値を1とする相対値で示してある。
・試験荷重:Fr=12kN、Fa=3.5kN
・回転数:3000min−1
・潤滑油:VG68
・異物の硬さ:HV870
・異物サイズ:74〜134μm
・異物混入量:0.1g
And about the said tapered roller bearing, after applying the excessive surface pressure of 4000 MPa once, the life test was done under foreign material mixing lubrication. The test conditions were as follows. The time until peeling occurred was measured, a Weibull plot was created, and the L10 life was obtained from the results of the Weibull distribution. Each test was performed 12 times. The results are shown in the column of the rolling life ratio in Table 2, and are shown as relative values with the value of Comparative Example 1 having the shortest life as 1.
Test load: Fr = 12 kN, Fa = 3.5 kN
・ Rotation speed: 3000 min -1
・ Lubricant: VG68
・ Hardness of foreign matter: HV870
Foreign material size: 74-134 μm
-Foreign matter contamination: 0.1g

Figure 0005233171
Figure 0005233171

Figure 0005233171
Figure 0005233171



表2に示すように、本発明に従い、浸炭処理または浸炭窒化処理され、軌道面の残留オーステナイト量が20〜45体積%である内外輪と、浸炭窒化処理または窒化処理され、転動面における窒素濃度が0.2〜2.0質量%で、Si・Mn系窒化物の面積率が1%以上20%以下で、表面硬さがHV750以上であるころとを組み合わた実施例は、何れも長寿命である。   As shown in Table 2, according to the present invention, carburizing or carbonitriding treatment, inner and outer rings having a retained austenite amount of 20 to 45% by volume on the raceway surface, carbonitriding or nitriding treatment, and nitrogen on the rolling surface Examples in which the concentration is 0.2 to 2.0% by mass, the area ratio of the Si · Mn nitride is 1% or more and 20% or less, and the surface hardness is HV750 or more are all combined. Long life.

転動装置の一例である深溝玉軸受の断面図である。It is sectional drawing of the deep groove ball bearing which is an example of a rolling device. 転動装置の他の例である円錐ころ軸受の断面図である。It is sectional drawing of the tapered roller bearing which is another example of a rolling device.

符号の説明Explanation of symbols

1 内輪
1a 軌道面
2 外輪
2a 軌道面
3 転動体
3a 転動面
4 保持器
DESCRIPTION OF SYMBOLS 1 Inner ring 1a Raceway surface 2 Outer ring 2a Raceway surface 3 Rolling element 3a Rolling surface 4 Cage

Claims (1)

内周面に軌道面を有する外方部材と、外周面に軌道面を有する内方部材と、外方部材の転動面と内方部材の転動面との間に転動自在に配設された複数の転動体とを備えた転がり軸受において、
前記内方部材及び前記外方部材が、浸炭処理または浸炭窒化処理され、かつ、前記各軌道面の残留オーステナイト量が20〜45体積%であり、
前記転動体が、浸炭窒化処理または窒化処理され、かつ、転動面における窒素濃度が0.2〜2.0質量%であり、Si及びMnを含有する窒化物の面積率が1%以上20%以下であり、表面硬さがHV750以上であり、平均粒径0.05μm〜1μmの該窒化物を面積375μm 中に100個以上含有し、
前記転動体の転動面からの深さをZとし、前記転動体の直径をdとしたとき、前記転動体のZ=0.045dにおける硬さがHV650〜850であり、Z=0.18dにおける硬さがHV700〜771であることを特徴とする転がり軸受。
An outer member having a raceway surface on the inner peripheral surface, an inner member having a raceway surface on the outer peripheral surface, and a rollable arrangement between the rolling surface of the outer member and the rolling surface of the inner member In a rolling bearing provided with a plurality of rolling elements,
The inner member and the outer member are carburized or carbonitrided, and the amount of retained austenite on each raceway surface is 20 to 45% by volume,
The rolling element is carbonitrided or nitrided, the nitrogen concentration on the rolling surface is 0.2 to 2.0 mass%, and the area ratio of the nitride containing Si and Mn is 1% or more and 20 % Of the surface hardness is HV750 or more, and 100 or more nitrides having an average particle size of 0.05 μm to 1 μm are contained in an area of 375 μm 2 .
When the depth from the rolling surface of the rolling element is Z and the diameter of the rolling element is d, the hardness of the rolling element at Z = 0.045d is HV650-850, and Z = 0.18d. A rolling bearing characterized by having a hardness of HV700 to 771.
JP2007150087A 2007-06-06 2007-06-06 Rolling bearing Active JP5233171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007150087A JP5233171B2 (en) 2007-06-06 2007-06-06 Rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007150087A JP5233171B2 (en) 2007-06-06 2007-06-06 Rolling bearing

Publications (2)

Publication Number Publication Date
JP2008303926A JP2008303926A (en) 2008-12-18
JP5233171B2 true JP5233171B2 (en) 2013-07-10

Family

ID=40232832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007150087A Active JP5233171B2 (en) 2007-06-06 2007-06-06 Rolling bearing

Country Status (1)

Country Link
JP (1) JP5233171B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3550308B2 (en) * 1998-12-25 2004-08-04 Ntn株式会社 Rolling bearing
JP2001289251A (en) * 2000-04-06 2001-10-19 Nsk Ltd Rolling bearing and method of manufacturing the same
JP2002250349A (en) * 2000-12-22 2002-09-06 Nsk Ltd Rolling bearing
JP3873741B2 (en) * 2001-12-27 2007-01-24 日本精工株式会社 Rolling bearing
JP2003278768A (en) * 2002-03-27 2003-10-02 Nsk Ltd Rolling bearing for belt type continuously variable transmission
JP2006322017A (en) * 2005-05-17 2006-11-30 Nsk Ltd Rolling bearing
JP2006348342A (en) * 2005-06-15 2006-12-28 Nsk Ltd Rolling supporter

Also Published As

Publication number Publication date
JP2008303926A (en) 2008-12-18

Similar Documents

Publication Publication Date Title
JP5194532B2 (en) Rolling bearing
JP2002004003A (en) Rolling shaft
JP2009192071A (en) Roller bearing
JPH0727139A (en) Rolling bearing
JP4998054B2 (en) Rolling bearing
JP2011220357A (en) Planetary gear device
JP2003193200A (en) Antifriction bearing
JP5372316B2 (en) Rolling member
JP2008151236A (en) Rolling bearing
JP5070735B2 (en) Rolling bearing
JP2008150672A (en) Rolling shaft
JP2019167551A (en) Steel component excellent in rolling fatigue characteristics
JP2009222076A (en) Four-row tapered roller bearing
JP5853409B2 (en) Manufacturing method of rolling bearing
JP2006071022A (en) Rolling bearing
JP2008232212A (en) Rolling device
JP2010031307A (en) Roller bearing
JP2009204076A (en) Rolling bearing
JP2009191942A (en) Rolling bearing
JP5194538B2 (en) Rolling bearing
JP5233171B2 (en) Rolling bearing
JP5211453B2 (en) Rolling bearing
JP2005337362A (en) Full type roller bearing
JP2006045591A (en) Tapered roller bearing
JP7212100B2 (en) rolling bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5233171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157