JP5232686B2 - Gas purification method and purification apparatus - Google Patents

Gas purification method and purification apparatus Download PDF

Info

Publication number
JP5232686B2
JP5232686B2 JP2009041033A JP2009041033A JP5232686B2 JP 5232686 B2 JP5232686 B2 JP 5232686B2 JP 2009041033 A JP2009041033 A JP 2009041033A JP 2009041033 A JP2009041033 A JP 2009041033A JP 5232686 B2 JP5232686 B2 JP 5232686B2
Authority
JP
Japan
Prior art keywords
gas
carbon dioxide
alumina
adsorption tower
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009041033A
Other languages
Japanese (ja)
Other versions
JP2010195616A (en
Inventor
貴義 足立
和彦 藤江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2009041033A priority Critical patent/JP5232686B2/en
Priority to CN201010114317.XA priority patent/CN101811680B/en
Priority to TW099104941A priority patent/TWI482655B/en
Publication of JP2010195616A publication Critical patent/JP2010195616A/en
Application granted granted Critical
Publication of JP5232686B2 publication Critical patent/JP5232686B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Description

この発明は、半導体製造などに用いられる窒素ガス、アルゴンガスなどの希ガス中に含まれる水素、一酸化炭素、二酸化炭素、酸素および水を除去して、精製する方法とその装置に関する。   The present invention relates to a method and apparatus for purifying by removing hydrogen, carbon monoxide, carbon dioxide, oxygen and water contained in a rare gas such as nitrogen gas or argon gas used for semiconductor production.

半導体製造工程では大量の窒素ガス、アルゴンガスなどの不活性ガスが使用されている。これらのガスは、深冷式空気分離装置で製造されているが、この分離装置で製造された窒素ガスやアルゴンガス中にはppm〜ppbレベルの水素、一酸化炭素、二酸化炭素、酸素、水などが不純物として含まれている。   In the semiconductor manufacturing process, a large amount of inert gas such as nitrogen gas or argon gas is used. These gases are produced by a cryogenic air separation device, and in the nitrogen gas and argon gas produced by this separation device, hydrogen, carbon monoxide, carbon dioxide, oxygen, water of ppm to ppb level are contained. Etc. are included as impurities.

しかし、近年の半導体高集積化に伴い、半導体製造工程で使用されるガス中の不純物濃度はppb以下が望まれ、ガスを更に精製する必要がある。また、近年半導体工場の大規模化に伴い、ガスの使用量も大幅に増えており、大型の精製設備の導入が増加しているが、半導体の価格競争が熾烈な為、精製設備のコストダウンも強く望まれている。   However, with the recent high integration of semiconductors, the impurity concentration in the gas used in the semiconductor manufacturing process is desired to be ppb or less, and the gas needs to be further purified. In recent years, with the increase in the size of semiconductor factories, the amount of gas used has increased significantly, and the introduction of large-scale refining equipment has increased. However, due to fierce semiconductor price competition, the cost of refining equipment has been reduced. Is also strongly desired.

このような半導体製造向けの窒素ガスや希ガス中の微量の不純物を除去して精製する方法として、特許第2741622号公報には、ジルコニウムゲッターによって不純物の除去する方法が提案されている。
しかし、この方法では、ジルコニウムゲッターが高価かつ再生不可であり、大量のガス精製には適当でないと言う問題がある。
As a method for removing and purifying a small amount of impurities in such nitrogen gas or rare gas for semiconductor manufacturing, Japanese Patent No. 2741622 proposes a method of removing impurities by a zirconium getter.
However, this method has a problem that the zirconium getter is expensive and cannot be regenerated, and is not suitable for mass gas purification.

また、特許第2602670号公報には、還元金属により酸素と一酸化炭素を除去し、ついでゼオライト等の吸着剤により二酸化炭素と水を除去する方法が開示されている。
この精製方法にあっては、吸着後の還元金属を水素ガスにより再生して再利用可能であるが、ゼオライトのppbレベルの分圧における二酸化炭素吸着量は非常に少ない為、大量のガス精製の場合に装置が大型化してコストアップの要因にもなってしまう。
Japanese Patent No. 2602670 discloses a method of removing oxygen and carbon monoxide with a reducing metal, and then removing carbon dioxide and water with an adsorbent such as zeolite.
In this purification method, the reduced metal after adsorption can be regenerated and reused with hydrogen gas. However, the amount of carbon dioxide adsorbed at a partial pressure of ppb level of zeolite is very small. In such a case, the apparatus becomes large, resulting in an increase in cost.

特許第3462604号公報には、酸化亜鉛により二酸化炭素を除去したのち、ニッケル触媒または銅触媒により酸素と一酸化炭素を除去し、さらに合成ゼオライトにより水の除去を行う方法が開示されている。
この精製方法にあっては、ニッケル触媒に一酸化炭素、酸素を吸着させた場合、その触媒作用で二酸化炭素が微量ながら発生する。よって、発生した二酸化炭素を再び吸着させるために合成ゼオライトを大量に充填する必要があり、この結果吸着塔が大きくなってコストアップとなる不都合がある。
Japanese Patent No. 3462604 discloses a method of removing carbon dioxide with zinc oxide, removing oxygen and carbon monoxide with a nickel catalyst or a copper catalyst, and removing water with synthetic zeolite.
In this purification method, when carbon monoxide and oxygen are adsorbed on a nickel catalyst, a small amount of carbon dioxide is generated by the catalytic action. Therefore, it is necessary to pack a large amount of synthetic zeolite in order to adsorb the generated carbon dioxide again. As a result, there is a disadvantage that the adsorption tower becomes large and the cost is increased.

特開平11−518号公報や特開2001−104737号公報には、アルミナによる二酸化炭素の除去について開示されている。いずれもアルカリ金属、土類をアルミナに含有させることで、アルミナへの二酸化炭素の吸着量が増加することを記載している。
しかし、いずれも空気中の二酸化炭素、すなわち、400ppm程度の高濃度二酸化炭素の除去を対象にしており、低濃度二酸化炭素を吸着処理する知見はない。さらに400ppm程度の高濃度二酸化炭素の吸着処理では、アルミナよりゼオライトの方が二酸化炭素を多く吸着するため、従来は精製装置において主にゼオライトが使用されていた。
Japanese Patent Application Laid-Open Nos. 11-518 and 2001-104737 disclose the removal of carbon dioxide by alumina. In both cases, it is described that the amount of carbon dioxide adsorbed on alumina increases by containing alkali metal and earth in alumina.
However, both are intended for removal of carbon dioxide in the air, that is, high concentration carbon dioxide of about 400 ppm, and there is no knowledge of adsorption treatment of low concentration carbon dioxide. Further, in the adsorption treatment of carbon dioxide having a high concentration of about 400 ppm, since zeolite adsorbs more carbon dioxide than alumina, conventionally, zeolite has been mainly used in a purification apparatus.

また、上記の先行発明方法においては、いずれも大量のガスを精製するためには、吸着剤が高価であり吸着塔が大きく製造コストも高くなる。このため、大量のガスを効率的に精製可能な方法が望まれている。   In any of the above prior invention methods, in order to purify a large amount of gas, the adsorbent is expensive, the adsorption tower is large, and the production cost is high. For this reason, a method capable of efficiently purifying a large amount of gas is desired.

特許第2741622号公報Japanese Patent No. 2741622 特許第2602670号公報Japanese Patent No. 2602670 特許第3462604号公報Japanese Patent No. 3462604 特開平11−518号公報Japanese Patent Laid-Open No. 11-518 特開2001−104737号公報JP 2001-104737 A

よって、本発明における課題は、大量の窒素ガスまたは希ガス中の水素、一酸化炭素、二酸化炭素、酸素および水を除去して精製する際に、精製装置のコンパクト化が可能であり、高価なジルコニウムゲッターやニッケル触媒などの触媒の使用量を低減でき、精製コストを削減できるようにすることにある。   Therefore, the problem in the present invention is that, when purifying by removing hydrogen, carbon monoxide, carbon dioxide, oxygen and water in a large amount of nitrogen gas or rare gas, the purification apparatus can be made compact and expensive. The purpose is to reduce the amount of catalyst used such as a zirconium getter or a nickel catalyst, thereby reducing the purification cost.

かかる課題を解決するため、
請求項1にかかる発明は、大量の窒素ガスまたは希ガス中の水素、一酸化炭素、二酸化炭素、酸素および水を除去するガスの精製方法であって、
窒素ガスまたは希ガスを水分吸着剤に接触させて水を除去するとともにガスの流れを整流し、ついでニッケル触媒に接触させて水素、一酸化炭素および酸素を除去し、さらにアルミナに接触させて二酸化炭素を除去し、かつガスの流れをダウンフローとし、そのガス流速を理論的に充填剤が流動化を起こす速度以上することを特徴とするガスの精製方法である。
To solve this problem,
The invention according to claim 1 is a gas purification method for removing hydrogen, carbon monoxide, carbon dioxide, oxygen and water in a large amount of nitrogen gas or rare gas,
Nitrogen gas or rare gas is contacted with a moisture adsorbent to remove water and the flow of gas is rectified, then contacted with a nickel catalyst to remove hydrogen, carbon monoxide and oxygen, and then contacted with alumina to form carbon dioxide. to remove carbon, and the gas flow and down-flow, the gas flow rate theoretically filler is a method for purifying a gas, characterized in that a higher rate that causes fluidization.

請求項2にかかる発明は、前記窒素ガスまたは希ガス中の二酸化炭素の分圧が19Pa以下であることを特徴とする請求項1に記載のガスの精製方法である。
請求項3にかかる発明は、前記アルミナにナトリウムを0.1〜10wt%含ませたことを特徴とする請求項1または2に記載のガスの精製方法である。
The invention according to claim 2 is the gas purification method according to claim 1, wherein the partial pressure of carbon dioxide in the nitrogen gas or the rare gas is 19 Pa or less.
The invention according to claim 3 is the gas purification method according to claim 1 or 2, wherein the alumina contains 0.1 to 10 wt% of sodium.

請求項4にかかる発明は、前記ガス流速を空塔速度で31〜100cm/秒とすることを特徴とする請求項1〜3のいずれか一項に記載のガスの精製方法である。 The invention according to claim 4 is the gas purification method according to any one of claims 1 to 3, wherein the gas flow rate is set to 31 to 100 cm / second as a superficial velocity.

請求項5にかかる発明は、大量の窒素ガスまたは希ガス中の水素、一酸化炭素、二酸化炭素、酸素および水を除去するガスの精製装置であって、
窒素ガスまたは希ガスの流入側から流出側に向けて、水分吸着剤、ニッケル触媒およびアルミナをこの順序によって充填してなる吸着塔を備えることを特徴とするガスの精製装置である。
The invention according to claim 5 is a gas purifier for removing hydrogen, carbon monoxide, carbon dioxide, oxygen and water in a large amount of nitrogen gas or rare gas,
A gas purification apparatus comprising an adsorption tower in which a moisture adsorbent, a nickel catalyst, and alumina are packed in this order from the inflow side to the outflow side of nitrogen gas or rare gas.

本発明において、「大量の窒素ガスまたは希ガス」とは、1時間当たりの流量が1000〜100000Nmの範囲であることを言う。また、「整流」とは、吸着塔内のガスの流れに直交する面内におけるすべての位置の間での流速の変動値が±1cm/秒以内であることを言う。 In the present invention, “a large amount of nitrogen gas or rare gas” means that the flow rate per hour is in the range of 1000 to 100,000 Nm 3 . “Rectification” means that the fluctuation value of the flow velocity between all positions in a plane orthogonal to the gas flow in the adsorption tower is within ± 1 cm / second.

本発明によれば、被精製ガスをダウンフローにより高流速で流すため、1000〜100000Nm/時間の大量の被精製ガスを流す場合も吸着塔を大口径とする必要がない。
また、ガス流速を高速とすると、吸着塔の上部空間に圧力分布が発生して、吸着層内にガスの偏流が起こり、偏流部では不純物の除去が十分に出来ずに吸着剤を有効に利用できなくなる問題が新たに生じるが、前段に水分吸着剤を充填してこの水分吸着剤により整流を行うとともに水分の除去がなされるので、ニッケル触媒が効果的に利用され、その充填量を減量することが可能となりコストダウンとなる。
According to the present invention, since the gas to be purified flows at a high flow rate by downflow, it is not necessary to make the adsorption tower have a large diameter even when a large amount of gas to be purified of 1000 to 100,000 Nm 3 / hour is flowed.
In addition, when the gas flow rate is high, pressure distribution occurs in the upper space of the adsorption tower, gas drift occurs in the adsorption layer, and impurities can not be sufficiently removed in the drift section, so that the adsorbent is used effectively. Although a new problem arises, the moisture adsorbent is charged in the previous stage and rectification is performed by the moisture adsorbent, and the water is removed, so that the nickel catalyst is effectively used and the amount of filling is reduced. This makes it possible to reduce costs.

アルミナにより二酸化炭素を除去するが、被精製ガス中の二酸化炭素の分圧が19Pa以下の条件、すなわち被精製ガス中に微量に含まれる場合であっても、これまでより小型の吸着塔で効率的な二酸化炭素の除去が可能になる。前記アルミナにナトリウムを含有させれば、さらに小型の吸着塔で二酸化炭素の除去が可能である。   Carbon dioxide is removed by alumina. Even if the partial pressure of carbon dioxide in the gas to be refined is 19 Pa or less, that is, even if it is contained in a trace amount in the gas to be refined, it is more efficient than a conventional adsorption tower. Carbon dioxide removal is possible. If sodium is contained in the alumina, carbon dioxide can be removed with a smaller adsorption tower.

ニッケル触媒上で一酸化炭素と酸素が反応して二酸化炭素が微量ながら発生するが、水分吸着剤は二酸化炭素と窒素との共吸着により窒素ガス中では低分圧二酸化炭素の吸着能力がほとんどないため、二酸化炭素を吸着するために大量のゼオライトを充填する必要があった。
しかし、窒素ガス中の低分圧二酸化炭素の吸着能力の大きなナトリウム含有活性アルミナにこの微量な二酸化炭素を吸着させることにより、吸着剤を大幅に減量させることが可能となる。
Carbon monoxide and oxygen react on nickel catalyst to generate a small amount of carbon dioxide, but the moisture adsorbent has little adsorption capability of low partial pressure carbon dioxide in nitrogen gas due to co-adsorption of carbon dioxide and nitrogen. Therefore, it was necessary to fill a large amount of zeolite in order to adsorb carbon dioxide.
However, it is possible to significantly reduce the amount of the adsorbent by adsorbing this trace amount of carbon dioxide on sodium-containing activated alumina having a large adsorption ability of low partial pressure carbon dioxide in nitrogen gas.

本発明のガス精製装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the gas purification apparatus of this invention. ゼオライトと本発明のアルミナの低分圧二酸化炭素の吸着量を比較したグラフである。It is the graph which compared the adsorption amount of the low partial pressure carbon dioxide of a zeolite and the alumina of this invention. 本発明のアルミナに含まれるナトリウム含有量と二酸化炭素の吸着量を示すグラフである。It is a graph which shows the sodium content contained in the alumina of this invention, and the adsorption amount of a carbon dioxide. 本発明に係るアルミナ層の空塔速度とErgun式による圧力損失を示すグラフである。It is a graph which shows the superficial velocity of the alumina layer which concerns on this invention, and the pressure loss by Ergun type | formula.

図1は、この発明のガス精製装置の一例を示すものである。
図1において、符号1Aおよび1Bは吸着塔を示す。この吸着塔1A(1B)は、その内部に上方から水分吸着剤が充填された水分吸着剤層2と、ニッケル触媒が充填されたニッケル触媒層3と、アルミナが充填されたアルミナ層4が積層されており、被精製ガスが上方から水分吸着剤層2とニッケル触媒層3とアルミナ層4を通過して下方に流れるように(ダウンフロー)に構成されている。
FIG. 1 shows an example of a gas purification apparatus of the present invention.
In FIG. 1, reference numerals 1A and 1B denote adsorption towers. The adsorption tower 1A (1B) has a moisture adsorbent layer 2 filled with a moisture adsorbent from above, a nickel catalyst layer 3 filled with a nickel catalyst, and an alumina layer 4 filled with alumina. The gas to be purified passes through the moisture adsorbent layer 2, the nickel catalyst layer 3, and the alumina layer 4 from above and flows downward (downflow).

また、一方の吸着塔1Aが吸着工程にあるときには、他方の吸着塔1Bが再生工程にあり、弁V1、V2、V3・・・V8の開閉により、両吸着塔を交互に切り替えて運転されるようになっている。
さらに、再生用ガスを加熱するヒータ5が設けられており、加熱された再生用ガスが吸着塔1A(1B)の底部から上方に向けて流入するように構成されている。再生用ガスには、水素と不活性ガスとの混合ガスおよび不活性ガスが用いられ、不活性ガスには精製後のガスの一部を利用するようになっている。
When one of the adsorption towers 1A is in the adsorption process, the other adsorption tower 1B is in the regeneration process, and is operated by alternately switching both adsorption towers by opening and closing valves V1, V2, V3,. It is like that.
Further, a heater 5 for heating the regeneration gas is provided, and the heated regeneration gas is configured to flow upward from the bottom of the adsorption tower 1A (1B). As the regeneration gas, a mixed gas of hydrogen and an inert gas and an inert gas are used, and a part of the purified gas is used as the inert gas.

前記水分吸着剤しては、活性アルミナ、シリカゲル、合成ゼオライトなどが用いられる。
前記ニッケル触媒としては、活性アルミナ、珪藻土、活性炭などの担体にニッケル金属を10〜90wt%担持してなる触媒が用いられ、水素による還元処理を施し、さらに窒素などの不活性ガスの存在下で加熱処理を施して再使用できるものである。
前記アルミナとして、ナトリウムを1〜10wt%含むγ−アルミナが用いられる。
As the moisture adsorbent, activated alumina, silica gel, synthetic zeolite or the like is used.
As the nickel catalyst, a catalyst in which nickel metal is supported on a carrier such as activated alumina, diatomaceous earth, activated carbon or the like is used in an amount of 10 to 90 wt%, subjected to reduction treatment with hydrogen, and in the presence of an inert gas such as nitrogen. It can be reused after heat treatment.
As the alumina, γ-alumina containing 1 to 10 wt% of sodium is used.

前記アルミナを使用するとゼオライトより二酸化炭素吸着において有利な点がある。
1つ目は、低分圧二酸化炭素を吸着するにはゼオライトより能力が高い点である。
図2は、ゼオライトとアルミナの低分圧二酸化炭素の吸着量を比較したものである。二酸化炭素吸着量の測定は、定容量式ガス吸着量測定装置を用いて、温度を25℃に一定にするとともに圧力を任意に設定して行った。
図2より、二酸化炭素の分圧が19Pa以下では、アルミナの二酸化炭素吸着量がゼオライトの二酸化炭素吸着量より多いことがわかる。
The use of alumina has an advantage in carbon dioxide adsorption over zeolite.
The first is that it has higher capacity than zeolite to adsorb low partial pressure carbon dioxide.
FIG. 2 compares the adsorption amounts of low partial pressure carbon dioxide between zeolite and alumina. The carbon dioxide adsorption amount was measured by using a constant capacity gas adsorption amount measuring device while keeping the temperature constant at 25 ° C. and arbitrarily setting the pressure.
FIG. 2 shows that when the partial pressure of carbon dioxide is 19 Pa or less, the carbon dioxide adsorption amount of alumina is larger than the carbon dioxide adsorption amount of zeolite.

2つ目は、ゼオライトは一般に窒素の吸着能力も高いため、特に窒素ガスをゼオライトで精製する場合には、二酸化炭素吸着量が少なくなることが知られている点である。   Second, since zeolite generally has a high nitrogen adsorption capacity, it is known that the amount of carbon dioxide adsorbed is reduced particularly when nitrogen gas is purified with zeolite.

3つ目は、アルミナにナトリウムを含ませることで、ナトリウムを含まないアルミナよりもナトリウムを含むアルミナのほうが二酸化炭素吸着量が多くなることである。
図3に示すように、アルミナにナトリウムを1〜10wt%含ませると二酸化炭素吸着量が多くなることがわかる。二酸化炭素吸着量の測定は、定容量式ガス吸着量測定装置を用いて、温度25℃、圧力1Paに設定して行った。
Thirdly, by adding sodium to alumina, the amount of carbon dioxide adsorbed by alumina containing sodium is larger than that of alumina not containing sodium.
As shown in FIG. 3, it can be seen that the amount of carbon dioxide adsorption increases when 1-10 wt% sodium is included in alumina. The carbon dioxide adsorption amount was measured using a constant capacity type gas adsorption amount measuring device at a temperature of 25 ° C. and a pressure of 1 Pa.

深冷式空気分離装置からの窒素、アルゴンなどの1000〜100000Nm/時間の大量の被精製ガスは、管6から弁V1を通って吸着塔1Aの上部に導入される。この被精製ガスには、ppm〜ppbレベルの水素、一酸化炭素、二酸化炭素、酸素および水が不純物として含まれている。被精製ガス中の二酸化炭素は、その分圧が19Pa以下であり、その含有量が微量であることが望ましい。
被精製ガスの流速は、空塔速度で31〜100cm/秒とされ、31cm/秒未満では吸着塔の直径が大きくなって装置が大型化してコストアップとなり、100cm/秒を越えると吸着塔内に導入される被精製ガスの圧力損失が大きくなりすぎて精製されたガスの圧力が低くなってしまう。
さらに、精製装置において吸着塔の精製ガス流れはアップフローにするのが一般的であるが、空塔速度が31cm/秒以上であると充填剤が流動化を起こしてガス精製が十分に行われない。そこで、本発明では流速を速くすると共にダウンフローで精製する。
A large amount of gas to be purified such as nitrogen and argon from the cryogenic air separation apparatus at 1000 to 100,000 Nm 3 / hour is introduced from the pipe 6 through the valve V1 to the upper part of the adsorption tower 1A. This gas to be purified contains hydrogen, carbon monoxide, carbon dioxide, oxygen, and water as impurities in the ppm to ppb level. It is desirable that the carbon dioxide in the gas to be purified has a partial pressure of 19 Pa or less and a small content.
The flow rate of the gas to be purified is 31 to 100 cm / second at the superficial velocity, and if it is less than 31 cm / second, the diameter of the adsorption tower becomes large, resulting in an increase in the size of the apparatus and the cost. The pressure loss of the gas to be purified introduced into the gas becomes too large, and the pressure of the purified gas becomes low.
Furthermore, in the purification apparatus, the purification gas flow in the adsorption tower is generally up-flow. However, if the superficial velocity is 31 cm / second or more, the filler fluidizes and gas purification is sufficiently performed. Absent. Therefore, in the present invention, the flow rate is increased and the purification is performed by downflow.

例えば、図4は、直径1.6mmの球状アルミナを用いて充填密度780kg/m、空隙率0.41、厚さ100mmでアルミナ層4を形成した場合の空塔速度と(ΔP/L)/GBの関係を表すグラフで、多孔質媒体を通過する流れでよく用いられるErgun式を使って推算できる。Ergun式において、ΔPは圧力損失、Lは充填層厚さ、GBは充填密度である。
アルミナ層4に充填されているアルミナが流動しない条件は、(ΔP/L)/GB≦1であるから、この例の場合のアルミナが流動しない空塔速度は31cm/秒以下となる。よって、31cm/秒以上ではダウンフローを採用する必要がある。
For example, FIG. 4 shows the superficial velocity when the alumina layer 4 is formed with a packing density of 780 kg / m 3 , a porosity of 0.41, and a thickness of 100 mm using spherical alumina having a diameter of 1.6 mm (ΔP / L). / GB is a graph representing the relationship and can be estimated using the Ergun equation, which is often used for flows through porous media. In the Ergun equation, ΔP is the pressure loss, L is the packed layer thickness, and GB is the packing density.
Since the condition in which the alumina filled in the alumina layer 4 does not flow is (ΔP / L) / GB ≦ 1, the superficial velocity at which alumina does not flow in this example is 31 cm / second or less. Therefore, it is necessary to adopt downflow at 31 cm / second or more.

この被精製ガスは、まず最上段の水分吸着剤層2に流入し、ここで不純物のうち、水分が吸着、除去されると同時に被精製ガスの偏流がただされて整流される。
被精製ガスが31〜100cm/秒の高流速で吸着塔1Aの上方に流入すると、水分吸着剤層2の上方では、被精製ガスの偏流が生じ、水分吸着剤層2に均一にガスが流れ込まなくなり、水分吸着剤層2の表層において、部分的に流速の速い部分と遅い部分とが生じ、その流速差が5cm/秒程度になることがある。
The gas to be purified first flows into the uppermost moisture adsorbent layer 2, where moisture out of impurities is adsorbed and removed, and at the same time, the gas to be purified is drifted and rectified.
When the gas to be purified flows into the upper part of the adsorption tower 1A at a high flow rate of 31 to 100 cm / sec, a drift of the gas to be purified occurs above the moisture adsorbent layer 2, and the gas flows uniformly into the moisture adsorbent layer 2. In the surface layer of the moisture adsorbent layer 2, a part having a high flow rate and a part having a low flow rate are partially generated, and the flow rate difference may be about 5 cm / second.

この被精製ガスは、水分吸着剤層2内の水分吸着剤粒子間をガスが流れる途中において、流速差が小さくなる。すなわち、水分吸着剤層2は、一種の整流機能を発揮し、被精製ガスが水分吸着剤層2から流出する時には、その流速差が1cm/秒以下となって、偏流がただされて整流された状態となって、次段のニッケル触媒層3に流れ込む。
被精製ガスがニッケル触媒層3内を均一に流れるので、存在するニッケル触媒がすべて水素、酸素、一酸化炭素の除去に寄与する。
This refined gas has a small flow rate difference in the middle of the gas flow between the moisture adsorbent particles in the moisture adsorbent layer 2. That is, the moisture adsorbent layer 2 exhibits a kind of rectification function, and when the gas to be purified flows out of the moisture adsorbent layer 2, the flow rate difference becomes 1 cm / second or less, and a drift is created and rectified. In this state, it flows into the nickel catalyst layer 3 at the next stage.
Since the gas to be purified flows uniformly in the nickel catalyst layer 3, all of the existing nickel catalyst contributes to the removal of hydrogen, oxygen, and carbon monoxide.

これに対して、被精製ガスが偏流状態で直接ニッケル触媒層3に流入した場合には、被精製ガスとニッケル触媒粒子との接触が均一に行われず、十分に不純物を除去しようとすると、ニッケル触媒層3の厚さを厚くする必要があり、高価なニッケル触媒を多量に使用することになって、コストが嵩む。   On the other hand, when the gas to be purified flows directly into the nickel catalyst layer 3 in a drift state, the contact between the gas to be purified and the nickel catalyst particles is not performed uniformly. It is necessary to increase the thickness of the catalyst layer 3, and a large amount of expensive nickel catalyst is used, which increases the cost.

ついで、被精製ガスは、整流された状態でニッケル触媒層3に流入し、ここで不純物である水素、酸素、一酸化炭素が除去される。同時に、一部の一酸化炭素と酸素が反応して、微量の二酸化炭素が生成する。
さらに、ニッケル触媒層3から流出した被精製ガスは、アルミナ層4に導入され、ここで不純物としての二酸化炭素とニッケル触媒層3において生成された二酸化炭素が吸着、除去される。
Next, the gas to be purified flows into the nickel catalyst layer 3 in a rectified state, where impurities such as hydrogen, oxygen, and carbon monoxide are removed. At the same time, a portion of carbon monoxide and oxygen react to produce a trace amount of carbon dioxide.
Further, the gas to be purified flowing out of the nickel catalyst layer 3 is introduced into the alumina layer 4 where carbon dioxide as impurities and carbon dioxide generated in the nickel catalyst layer 3 are adsorbed and removed.

そして、アルミナ層4から流出した被精製ガスは、これに含まれていた水素、一酸化炭素、二酸化炭素、酸素および水が除去され、これら不純物の濃度がppbレベル以下とされた精製ガスとされ、この精製ガスは、弁V7、管7を経て製品ガスとして導出される。   The to-be-purified gas flowing out of the alumina layer 4 is a purified gas in which hydrogen, carbon monoxide, carbon dioxide, oxygen and water contained therein are removed, and the concentration of these impurities is reduced to the ppb level or less. The purified gas is led out as a product gas through the valve V7 and the pipe 7.

吸着塔1Aに被精製ガスを所定時間導入した後、弁V1〜V8を開閉操作し、被精製ガスを管6から弁V2を通して、吸着塔1Bに切り替えて導入し、吸着塔1Bにおいて前述と同様の吸着工程を実施し、吸着塔1Bの底部からの精製ガスを、弁V8、管7から製品ガスとして導出する。
一方、吸着塔1Aは再生工程に入る。
After introducing the gas to be purified into the adsorption tower 1A for a predetermined time, the valves V1 to V8 are opened and closed, and the gas to be refined is switched to the adsorption tower 1B through the valve V2 and introduced into the adsorption tower 1B. Then, the purified gas from the bottom of the adsorption tower 1B is led out from the valve V8 and the pipe 7 as product gas.
On the other hand, the adsorption tower 1A enters the regeneration step.

再生は、管8から供給される水素と管9により分岐された窒素、アルゴンなどの精製ガスとを混合し、水素濃度1〜5vol%の混合ガスとし、これをヒータ5に送って、150〜300℃に加熱した後、管10、弁V5を経て、吸着塔1Aの底部に導入し、上方に向けて流す。
この加熱混合ガスの導入により、アルミナ層4に吸着されている二酸化炭素が脱着し、ニッケル触媒層3に吸着されている酸素、一酸化炭素が水素により還元されて脱着して水分吸着剤層2に吸着されている水分が脱着する。吸着塔1Aの上部からは脱着された不純物を含む混合ガスが排ガスとして、弁V3、管11を経由して系外に排出される。
このようにして再生を終えた吸着塔1Aは、次の吸着工程を待つことになる。
In the regeneration, hydrogen supplied from the pipe 8 and purified gas such as nitrogen and argon branched by the pipe 9 are mixed to obtain a mixed gas having a hydrogen concentration of 1 to 5 vol%, and this is sent to the heater 5, and 150 to After heating to 300 ° C., it is introduced into the bottom of the adsorption tower 1A through the tube 10 and the valve V5, and flows upward.
By introducing this heated mixed gas, the carbon dioxide adsorbed on the alumina layer 4 is desorbed, and the oxygen and carbon monoxide adsorbed on the nickel catalyst layer 3 are reduced and desorbed by hydrogen to desorb the moisture adsorbent layer 2. Moisture adsorbed on is desorbed. From the upper part of the adsorption tower 1A, the mixed gas containing the desorbed impurities is discharged out of the system through the valve V3 and the pipe 11 as exhaust gas.
The adsorption tower 1A that has been regenerated in this way waits for the next adsorption step.

吸着塔1Aは再び吸着工程とされ、吸着塔1Bは、再生工程となる。吸着塔1Bの再生は、再生用のガスを管10、弁V6を経て吸着塔1Bの底部から上方に向けて導入し、吸着塔1Bの上部からの排ガスを弁4、管11を経て系外に排出することで行われる。   The adsorption tower 1A is again an adsorption process, and the adsorption tower 1B is a regeneration process. The regeneration of the adsorption tower 1B is carried out by introducing a regeneration gas upward from the bottom of the adsorption tower 1B through the pipe 10 and the valve V6, and exhaust gas from the top of the adsorption tower 1B through the valve 4 and the pipe 11 outside the system. It is done by discharging.

(実施例1)
内径100mmのステンレス鋼製円筒内に、上方から厚さ100mmのゼオライト層(MS5A)、厚さ100mmのニッケル触媒層(N112)、厚さ100mmのアルミナ層を形成して吸着塔とした。
この吸着塔の各層を以下の条件で再生した。
Example 1
A 100 mm thick zeolite layer (MS5A), a 100 mm thick nickel catalyst layer (N112), and a 100 mm thick alumina layer were formed from above in a stainless steel cylinder having an inner diameter of 100 mm to form an adsorption tower.
Each layer of this adsorption tower was regenerated under the following conditions.

初めに、水素濃度2vol%を含む窒素を200℃に加熱し流量3Nm/時間で3時間流し、ついで窒素を200℃に加熱し流量3Nm/時間で3時間流し、さらに冷却した。
こののち、1ppm−水素、1ppm−一酸化炭素、0.5ppm−二酸化炭素、1ppm−酸素、2.6ppm−水分を含む窒素を被精製ガスとして、圧力100PaG、温度25℃、流速(空塔速度)53cm/秒、流量30Nm/時間の条件で吸着塔にダウンフローにて導入した。
導入開始後、24時間経過した時点で、水素が第1破過成分として検出された。
First, nitrogen containing a hydrogen concentration of 2 vol% was heated to 200 ° C. and allowed to flow at a flow rate of 3 Nm 3 / hour for 3 hours, then nitrogen was heated to 200 ° C. and allowed to flow at a flow rate of 3 Nm 3 / hour for 3 hours, and further cooled.
Thereafter, 1 ppm-hydrogen, 1 ppm-carbon monoxide, 0.5 ppm-carbon dioxide, 1 ppm-oxygen, 2.6 ppm-nitrogen containing moisture is used as the gas to be purified, pressure 100 PaG, temperature 25 ° C., flow rate (superficial velocity) ) It was introduced into the adsorption tower by downflow under the conditions of 53 cm / second and a flow rate of 30 Nm 3 / hour.
Hydrogen was detected as the first breakthrough component when 24 hours passed after the start of introduction.

(実施例2)
内径100mmのステンレス鋼製円筒内に、上方から厚さ100mmのゼオライト層(MS5A)、厚さ100mmのニッケル触媒層(N112)、厚さ50mmのナトリウムを重量比で5.8%含むアルミナを形成して吸着塔とした。
(Example 2)
Formed in a stainless steel cylinder with an inner diameter of 100 mm is an alumina containing a zeolite layer (MS5A) having a thickness of 100 mm, a nickel catalyst layer (N112) having a thickness of 100 mm, and sodium containing 5.8% by weight of sodium having a thickness of 50 mm. Thus, an adsorption tower was obtained.

この吸着塔を実施例1と同様の条件で再生した後、実施例1と同様の組成の被精製ガスを同様に条件で導入した。
導入開始後、24時間経過した時点で、水素が第1破過成分として検出された。
After the adsorption tower was regenerated under the same conditions as in Example 1, a gas to be purified having the same composition as in Example 1 was introduced under the same conditions.
Hydrogen was detected as the first breakthrough component when 24 hours passed after the start of introduction.

(比較例1)
内径100mmのステンレス鋼製円筒内に、上方から厚さ100mmのニッケル触媒層(N112)、厚さ100mmのゼオライト層(MS5A)、厚さ100mmのアルミナ層を形成して吸着塔とした。
この吸着塔を実施例1と同様の条件で再生した後、実施例1と同様の組成の被精製ガスを同様の条件で導入した。
導入開始後、18時間経過した時点で、水素が第1破過成分として検出された。
(Comparative Example 1)
A nickel catalyst layer (N112) having a thickness of 100 mm, a zeolite layer (MS5A) having a thickness of 100 mm, and an alumina layer having a thickness of 100 mm were formed from above in a stainless steel cylinder having an inner diameter of 100 mm to obtain an adsorption tower.
After this adsorption tower was regenerated under the same conditions as in Example 1, a gas to be purified having the same composition as in Example 1 was introduced under the same conditions.
Hydrogen was detected as the first breakthrough component when 18 hours passed after the start of introduction.

(比較例2)
内径100mmのステンレス鋼製円筒内に、上方から厚さ50mmのニッケル触媒層(N112)、厚さ50mmのゼオライト層(MS5A)、厚さ50mmのアルミナ層を形成して吸着塔とした。
この吸着塔の各層を以下の条件で再生した。
(Comparative Example 2)
An adsorption tower was formed by forming a nickel catalyst layer (N112) having a thickness of 50 mm, a zeolite layer (MS5A) having a thickness of 50 mm, and an alumina layer having a thickness of 50 mm in a stainless steel cylinder having an inner diameter of 100 mm.
Each layer of this adsorption tower was regenerated under the following conditions.

初めに、水素濃度2vol%を含む窒素を200℃に加熱し流量1.5Nm/時間で3時間流し、ついで窒素を200℃に加熱し流量1.5Nm/時間で3時間流し、さらに冷却した。
こののち、1ppm−水素、1ppm−一酸化炭素、0.5ppm−二酸化炭素、1ppm−酸素、2.6ppm−水分を含む窒素を被精製ガスとして、圧力100PaG、温度25℃、流速(空塔速度)26.5cm/秒、流量15Nm/時間の条件で吸着塔にダウンフローにて導入した。
導入開始後、23時間経過した時点で、水素が第1破過成分として検出された。
First, nitrogen containing a hydrogen concentration of 2 vol% is heated to 200 ° C. and flowed at a flow rate of 1.5 Nm 3 / hour for 3 hours, then nitrogen is heated to 200 ° C. and flowed at a flow rate of 1.5 Nm 3 / hour for 3 hours and further cooled did.
Thereafter, 1 ppm-hydrogen, 1 ppm-carbon monoxide, 0.5 ppm-carbon dioxide, 1 ppm-oxygen, 2.6 ppm-nitrogen containing moisture is used as the gas to be purified, pressure 100 PaG, temperature 25 ° C., flow rate (superficial velocity) ) It was introduced into the adsorption tower by downflow under the conditions of 26.5 cm / second and a flow rate of 15 Nm 3 / hour.
Hydrogen was detected as the first breakthrough component when 23 hours had elapsed after the start of introduction.

(比較例3)
内径100mmのステンレス鋼製円筒内に、上方から厚さ100mmのゼオライト層(MS5A)、厚さ100mmのニッケル触媒層(N112)、厚さ50mmのアルミナを形成して吸着塔とした。
この吸着塔を実施例1と同様の条件で再生した後、実施例1と同様の組成の被精製ガスを同様の条件で導入した。
導入開始後、13時間経過した時点で、二酸化炭素が第1破過成分として検出された。
(Comparative Example 3)
A zeolite layer (MS5A) having a thickness of 100 mm, a nickel catalyst layer (N112) having a thickness of 100 mm, and an alumina having a thickness of 50 mm were formed from above in a stainless steel cylinder having an inner diameter of 100 mm to obtain an adsorption tower.
After this adsorption tower was regenerated under the same conditions as in Example 1, a gas to be purified having the same composition as in Example 1 was introduced under the same conditions.
Carbon dioxide was detected as the first breakthrough component when 13 hours had passed after the start of introduction.

実施例1と比較例1とから、ゼオライト層をニッケル触媒層の上に形成することで、ニッケル触媒層での水素吸着量が増加することがわかる。   From Example 1 and Comparative Example 1, it can be seen that the amount of hydrogen adsorbed on the nickel catalyst layer is increased by forming the zeolite layer on the nickel catalyst layer.

実施例1と比較例1〜2とから、ニッケル触媒層が第1層とされた場合には、被精製ガスの流速が低速では、水素の破過時間は長いが、高流速となると破過時間が短くなり、高流速による影響が確認できる。   From Example 1 and Comparative Examples 1-2, when the nickel catalyst layer is the first layer, the hydrogen breakthrough time is long when the flow rate of the gas to be purified is low, but breakthrough occurs when the flow rate is high. Time is shortened and the effect of high flow rate can be confirmed.

実施例2と比較例3とから、ナトリウムを含むアルミナを使用すると充填量を大幅に減らしても二酸化炭素が検出されないことがわかる。   From Example 2 and Comparative Example 3, it can be seen that when alumina containing sodium is used, carbon dioxide is not detected even if the filling amount is greatly reduced.

1A(1B)・・・吸着塔1、2・・水分吸着剤層、3・・ニッケル触媒層、4・・アルミナ層、5・・ヒータ、6、7、8、9、10、11・・管、V1〜V8・・弁 1A (1B) ... Adsorption tower 1, 2, ... Moisture adsorbent layer, 3 .... Nickel catalyst layer, 4 .... Alumina layer, 5 .... Heater, 6, 7, 8, 9, 10, 11, ... Tube, V1-V8 ... Valve

Claims (5)

大量の窒素ガスまたは希ガス中の水素、一酸化炭素、二酸化炭素、酸素および水を除去するガスの精製方法であって、
窒素ガスまたは希ガスを水分吸着剤に接触させて水を除去するとともにガスの流れを整流し、ついでニッケル触媒に接触させて水素、一酸化炭素および酸素を除去し、さらにアルミナに接触させて二酸化炭素を除去し、かつガスの流れをダウンフローとし、そのガス流速を理論的に充填剤が流動化を起こす速度以上することを特徴とするガスの精製方法。
A gas purification method for removing hydrogen, carbon monoxide, carbon dioxide, oxygen and water in a large amount of nitrogen gas or rare gas,
Nitrogen gas or rare gas is contacted with a moisture adsorbent to remove water and the flow of gas is rectified, then contacted with a nickel catalyst to remove hydrogen, carbon monoxide and oxygen, and then contacted with alumina to form carbon dioxide. method for purifying a gas, characterized in that removal of carbon, and the gas flow and down-flow, the gas flow rate is theoretically the filler be at least the speed causing fluidization.
前記窒素ガスまたは希ガス中の二酸化炭素の分圧が19Pa以下であることを特徴とする請求項1に記載のガスの精製方法。   The method for purifying a gas according to claim 1, wherein the partial pressure of carbon dioxide in the nitrogen gas or rare gas is 19 Pa or less. 前記アルミナにナトリウムを0.1〜10wt%含ませたことを特徴とする請求項1または2に記載のガスの精製方法。   The gas purification method according to claim 1 or 2, wherein the alumina contains 0.1 to 10 wt% of sodium. 前記ガス流速を空塔速度で31〜100cm/秒とすることを特徴とする請求項1〜3のいずれか一項に記載のガスの精製方法。 The gas purification method according to any one of claims 1 to 3 , wherein the gas flow rate is set to 31 to 100 cm / second as a superficial velocity. 大量の窒素ガスまたは希ガス中の水素、一酸化炭素、二酸化炭素、酸素および水を除去するガスの精製装置であって、
窒素ガスまたは希ガスの流入側から流出側に向けて、水分吸着剤、ニッケル触媒およびアルミナをこの順序によって充填してなる吸着塔を備えることを特徴とするガスの精製装置。
A gas purifier for removing hydrogen, carbon monoxide, carbon dioxide, oxygen and water in a large amount of nitrogen gas or rare gas,
A gas purification apparatus comprising an adsorption tower in which a moisture adsorbent, a nickel catalyst, and alumina are packed in this order from the inflow side to the outflow side of nitrogen gas or rare gas.
JP2009041033A 2009-02-24 2009-02-24 Gas purification method and purification apparatus Active JP5232686B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009041033A JP5232686B2 (en) 2009-02-24 2009-02-24 Gas purification method and purification apparatus
CN201010114317.XA CN101811680B (en) 2009-02-24 2010-02-09 Purification method for gas and purification device with same
TW099104941A TWI482655B (en) 2009-02-24 2010-02-22 Gas purification method and gas purification apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009041033A JP5232686B2 (en) 2009-02-24 2009-02-24 Gas purification method and purification apparatus

Publications (2)

Publication Number Publication Date
JP2010195616A JP2010195616A (en) 2010-09-09
JP5232686B2 true JP5232686B2 (en) 2013-07-10

Family

ID=42619075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009041033A Active JP5232686B2 (en) 2009-02-24 2009-02-24 Gas purification method and purification apparatus

Country Status (3)

Country Link
JP (1) JP5232686B2 (en)
CN (1) CN101811680B (en)
TW (1) TWI482655B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5133929B2 (en) * 2009-03-31 2013-01-30 大陽日酸株式会社 Method and apparatus for producing ultra-high purity nitrogen gas
JP5566815B2 (en) * 2010-08-31 2014-08-06 大陽日酸株式会社 Gas purification method and gas purification apparatus
JP2013049605A (en) * 2011-08-31 2013-03-14 Taiyo Nippon Sanso Corp Inert gas purification method
WO2013080889A1 (en) * 2011-11-29 2013-06-06 関西電力株式会社 Co2 desorption catalyst
TWI617344B (en) 2012-02-10 2018-03-11 恩特葛瑞斯股份有限公司 Gas purifier
JP6965127B2 (en) * 2016-11-30 2021-11-10 大陽日酸株式会社 Nitrogen and oxygen production method
JP6851839B2 (en) * 2017-01-27 2021-03-31 大陽日酸株式会社 Heat recovery type oxygen nitrogen supply system
CN109179346B (en) * 2018-10-15 2021-01-12 杭州博大净化设备有限公司 Nitrogen purification equipment
CN111422839A (en) * 2020-04-24 2020-07-17 苏州星烁纳米科技有限公司 Inert gas treatment device and manufacturing method
CN113582144A (en) * 2020-04-30 2021-11-02 盐城市海之诺气体设备有限公司 Nitrogen and argon terminal purification device and purification method
TWI809444B (en) * 2020-08-19 2023-07-21 美商普雷瑟科技股份有限公司 Method for pre-purification of a feed gas stream
JP2022090755A (en) * 2020-12-08 2022-06-20 大陽日酸株式会社 Gas adsorption and separation device
CN117446804B (en) * 2023-12-26 2024-03-22 大连华邦化学有限公司 Carbon dioxide purification method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1027802C (en) * 1990-01-19 1995-03-08 波克集团股份有限公司 Low temp. purification of gases
JP3462604B2 (en) * 1994-12-26 2003-11-05 日本パイオニクス株式会社 Method and apparatus for purifying inert gas
US6113869A (en) * 1996-09-30 2000-09-05 The Boc Group, Inc. Process for argon purification
FR2798304B1 (en) * 1999-09-13 2001-11-09 Air Liquide USE OF AN ACTIVATED ALUMINA TO REMOVE CO2 FROM A GAS

Also Published As

Publication number Publication date
CN101811680A (en) 2010-08-25
TW201109077A (en) 2011-03-16
CN101811680B (en) 2014-02-12
TWI482655B (en) 2015-05-01
JP2010195616A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
JP5232686B2 (en) Gas purification method and purification apparatus
KR100966064B1 (en) Syngas purification process
JP5566815B2 (en) Gas purification method and gas purification apparatus
KR100300918B1 (en) Gas Purification Method and Apparatus
KR100896455B1 (en) Pressure swing adsorption apparatus and method for hydrogen purification using the same
JP5566574B2 (en) Gas purification method
JP2008212845A (en) Carbon monoxide adsorbent, gas purification method, and gas purifier
JPS63107720A (en) Method for separating and removing water content and carbon dioxide gas in air
JP4733960B2 (en) Method and apparatus for purifying argon gas containing impurities by thermal swing adsorption method
JP4101955B2 (en) Ammonia purification method
CN102470287A (en) Process for removing harmful substances from liquid carbon dioxide and apparatus for performance thereof
JP6101971B2 (en) Ammonia purification apparatus and regeneration method thereof
JP4845334B2 (en) Purification method of raw material air in air liquefaction separation device
JPS6351056B2 (en)
JP5684898B2 (en) Gas purification method
KR20100085285A (en) Method for purification of hydrogen gas
KR20100085286A (en) Method for purification of hydrogen gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5232686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250