JP5232680B2 - Method for treating treated water containing inorganic sludge - Google Patents

Method for treating treated water containing inorganic sludge Download PDF

Info

Publication number
JP5232680B2
JP5232680B2 JP2009028561A JP2009028561A JP5232680B2 JP 5232680 B2 JP5232680 B2 JP 5232680B2 JP 2009028561 A JP2009028561 A JP 2009028561A JP 2009028561 A JP2009028561 A JP 2009028561A JP 5232680 B2 JP5232680 B2 JP 5232680B2
Authority
JP
Japan
Prior art keywords
monomer
water
inorganic sludge
polymer flocculant
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009028561A
Other languages
Japanese (ja)
Other versions
JP2010184172A (en
Inventor
孝行 小林
信孝 國分
元樹 白石
昌宏 秋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dia Nitrix Co Ltd
Original Assignee
Dia Nitrix Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dia Nitrix Co Ltd filed Critical Dia Nitrix Co Ltd
Priority to JP2009028561A priority Critical patent/JP5232680B2/en
Publication of JP2010184172A publication Critical patent/JP2010184172A/en
Application granted granted Critical
Publication of JP5232680B2 publication Critical patent/JP5232680B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、土木・建設工事で発生する泥水等の、無機質汚泥を含む被処理水を処理する方法に関する。   The present invention relates to a method for treating water to be treated containing inorganic sludge, such as mud generated in civil engineering and construction work.

土木・建設工事で発生する泥水は、多くの水を含み、かつ流動性が高いことから、そのままの状態では、取扱性が悪く、搬出に多額の費用がかかる。そのため、通常は、土木・建設工事の現場にて、泥水を脱水して減容化する処理を行い、搬出費用を抑えている。   Muddy water generated in civil engineering / construction work contains a lot of water and has high fluidity. Therefore, in that state, handling is poor and it takes a large amount of money to carry out. For this reason, usually, muddy water is dehydrated and volume-reduced at civil engineering / construction work sites to reduce carry-out costs.

泥水の処理方法としては、泥水に、凝集剤を含む脱水剤を添加して無機質汚泥を凝集させた後、脱水して無機質汚泥の脱水ケーキとし、該脱水ケーキを、埋戻土、盛土として再利用する方法が一般的である。
しかし、シールド工法で発生する泥水には、水を含んで膨潤しやすい泥土調整剤(ベントナイト等。)が含まれているため、脱水が困難となる場合が多い。
The muddy water is treated by adding a dehydrating agent containing a flocculant to the mud and aggregating the inorganic sludge. The method to use is common.
However, the muddy water generated by the shield method often contains a mud adjuster (such as bentonite) that contains water and easily swells, so dehydration is often difficult.

ベントナイトを含む泥水(以下、ベントナイト泥水と記す。)の処理方法としては、下記の方法が提案されている。
(1)カチオン性高分子凝集剤、アニオン性高分子凝集剤および水溶性塩(塩化カルシウム、塩化マグネシウム等。)からなる脱水剤を用いる方法(特許文献1)。
(2)ベントナイト泥水に、水溶性金属塩(塩化マグネシウム、塩化カルシウム等。)を添加した後、カチオン性高分子凝集剤、アニオン性高分子凝集剤および水溶性塩(硫酸ナトリウム等。)からなる脱水剤を添加する方法(特許文献2)。
(3)ベントナイト泥水に、カチオン性高分子凝集剤を添加した後、アニオン性高分子凝集剤を添加する方法(特許文献3)。
The following method has been proposed as a method for treating muddy water containing bentonite (hereinafter referred to as bentonite muddy water).
(1) A method using a dehydrating agent comprising a cationic polymer flocculant, an anionic polymer flocculant, and a water-soluble salt (calcium chloride, magnesium chloride, etc.) (Patent Document 1).
(2) After adding a water-soluble metal salt (magnesium chloride, calcium chloride, etc.) to bentonite mud, it consists of a cationic polymer flocculant, an anionic polymer flocculant, and a water-soluble salt (sodium sulfate, etc.). A method of adding a dehydrating agent (Patent Document 2).
(3) A method of adding an anionic polymer flocculant after adding a cationic polymer flocculant to bentonite mud (Patent Document 3).

しかし、(1)、(2)の方法では、無機質汚泥を凝集させるために、脱水剤を多量に添加する必要があり、処理コストが高い。
(3)の方法では、カチオン性高分子凝集剤とアニオン性高分子凝集剤とを別々に添加しているため、工程が増え、手間がかかる。
However, in the methods (1) and (2), in order to agglomerate inorganic sludge, it is necessary to add a large amount of a dehydrating agent, and the processing cost is high.
In the method (3), since the cationic polymer flocculant and the anionic polymer flocculant are added separately, the number of steps is increased and time is required.

特開平5−38404号公報Japanese Patent Laid-Open No. 5-38404 特開2001−49981号公報JP 2001-49981 A 特公昭55−16718号公報Japanese Patent Publication No. 55-16718

本発明は、無機質汚泥を含む被処理水を、低コストで、かつ簡便に処理できる方法を提供する。   The present invention provides a method that can easily treat water to be treated containing inorganic sludge at low cost.

本発明の、無機質汚泥を含む被処理水の処理方法は、無機質汚泥を含む被処理水に脱水剤を添加し、前記無機質汚泥を凝集させて凝集物を含む処理水を得る工程を有する、無機質汚泥を含む被処理水の処理方法において、さらに、前記無機質汚泥を含む被処理水のpHをあらかじめ7〜11に調整する工程を有し、前記無機質汚泥を含む被処理水が、泥土調整剤を含む泥水であり、前記脱水剤として、水に塩基性化合物および下記両性高分子凝集剤を溶解させたものを用いることを特徴とする。
両性高分子凝集剤:カルボキシ基を有する単量体(a)に由来する構成単位と、下記式(1)で表される単量体(b1)または下記式(2)で表される単量体(b2)に由来する構成単位とを有する重合体。
The treatment method of water to be treated containing inorganic sludge according to the present invention includes a step of adding a dehydrating agent to water to be treated containing inorganic sludge and aggregating the inorganic sludge to obtain treated water containing aggregates. In the method for treating water to be treated containing sludge, the method further comprises adjusting the pH of the water to be treated containing inorganic sludge to 7 to 11 in advance, and the water to be treated containing inorganic sludge has a mud adjuster. The muddy water is used , and the dehydrating agent is obtained by dissolving a basic compound and the following amphoteric polymer flocculant in water.
Amphoteric polymer flocculant: a structural unit derived from the monomer (a) having a carboxy group, and a monomer represented by the following formula (1) (b1) or the following formula (2) A polymer having a structural unit derived from the body (b2).

Figure 0005232680
Figure 0005232680

式中、Rは、水素原子またはメチル基であり、Rは、水素原子または炭素数が1〜4のアルキル基であり、Rは、水素原子または炭素数が1〜4のアルキル基であり、Rは、炭素数が1〜4のアルキル基またはベンジル基であり、Zは、Clまたは1/2SO 2−である。 In the formula, R 1 is a hydrogen atom or a methyl group, R 2 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 3 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. and a, R 4 is an alkyl group or a benzyl group having 1 to 4 carbon atoms, Z - is Cl - or 1 / 2SO 4 2-.

本発明の、無機質汚泥を含む被処理水の処理方法は、さらに、前記凝集物を含む処理水を脱水する工程を有することが好ましい It is preferable that the method for treating water to be treated containing inorganic sludge according to the present invention further includes a step of dehydrating the treated water containing the aggregates .

前記両性高分子凝集剤は、前記単量体(a)に由来する構成単位の5〜20モル%と、前記単量体(b1)または前記単量体(b2)に由来する構成単位の2〜20モル%と、他の単量体(c)に由来する構成単位の60〜93モル%とを有する重合体であることが好ましい。   The amphoteric polymer flocculant contains 5 to 20 mol% of the structural unit derived from the monomer (a) and 2 of the structural unit derived from the monomer (b1) or the monomer (b2). It is preferable that it is a polymer which has -20 mol% and 60-93 mol% of the structural unit derived from another monomer (c).

本発明の、無機質汚泥を含む被処理水の処理方法によれば、無機質汚泥を含む被処理水を、低コストで、かつ簡便に処理できる。   According to the method for treating water to be treated containing inorganic sludge according to the present invention, the water to be treated containing inorganic sludge can be easily treated at low cost.

本発明の、無機質汚泥を含む被処理水の処理方法に用いられる処理システムの一例を示す概略図である。It is the schematic which shows an example of the processing system used for the processing method of the to-be-processed water containing inorganic sludge of this invention.

<無機質汚泥を含む被処理水の処理方法>
図1は、本発明の、無機質汚泥を含む被処理水の処理方法に用いられる処理システムの一例を示す概略図である。処理システム10は、無機質汚泥を含む被処理水を貯留する貯泥槽12と、無機質汚泥を含む被処理水に脱水剤を添加し、無機質汚泥を凝集させて凝集物を含む処理水を得る凝集反応槽14と、凝集物を含む処理水を脱水する脱水機16と、凝集反応槽14に供給される脱水剤を調製し、貯留する脱水剤槽18とを備えるものである。
<Treatment of treated water containing inorganic sludge>
FIG. 1 is a schematic diagram showing an example of a treatment system used in the treatment method of water to be treated containing inorganic sludge according to the present invention. The treatment system 10 is a mud storage tank 12 for storing treated water containing inorganic sludge, and a dehydrating agent is added to the treated water containing inorganic sludge, and the inorganic sludge is aggregated to obtain treated water containing aggregates. A reaction tank 14, a dehydrator 16 that dehydrates treated water containing aggregates, and a dehydrant tank 18 that prepares and stores a dehydrating agent to be supplied to the aggregation reaction tank 14 are provided.

処理システム10を用いた、無機質汚泥を含む被処理水の処理は、下記の工程(I)〜(III)を経て行われる。
(I)必要に応じて、貯泥槽12等にて、無機質汚泥を含む被処理水のpHを7〜11に調整する工程。
(II)凝集反応槽14にて、無機質汚泥を含む被処理水に脱水剤を添加し、無機質汚泥を凝集させて凝集物を含む処理水を得る工程。
(III)脱水機16にて、凝集物を含む処理水を脱水する工程。
Treatment of water to be treated containing inorganic sludge using the treatment system 10 is performed through the following steps (I) to (III).
(I) The process of adjusting the pH of the to-be-processed water containing inorganic sludge to 7-11 in the mud storage tank 12 grade | etc., As needed.
(II) A step of adding a dehydrating agent to the water to be treated containing inorganic sludge in the agglomeration reaction tank 14 to agglomerate the inorganic sludge to obtain treated water containing the aggregate.
(III) A step of dehydrating treated water containing aggregates in the dehydrator 16.

(工程(I))
貯泥槽12等にて、無機質汚泥を含む被処理水のpHをあらかじめ7〜11に調整することにより、両性高分子凝集剤と無機質汚泥との反応が効率よく進行するため、工程(II)における脱水剤の添加量をさらに低減できる。pHは9〜11がより好ましい。
pHの調整には、酸性化合物(硫酸、塩酸等。)、塩基性化合物(水酸化カルシウム、水酸化マグネシウム等。)を用いてもよい。
(Process (I))
Since the reaction between the amphoteric polymer flocculant and the inorganic sludge proceeds efficiently by adjusting the pH of the water to be treated containing inorganic sludge to 7 to 11 in advance in the mud storage tank 12 or the like, step (II) The amount of dehydrating agent added in can be further reduced. The pH is more preferably 9-11.
For adjusting the pH, an acidic compound (sulfuric acid, hydrochloric acid, etc.) or a basic compound (calcium hydroxide, magnesium hydroxide, etc.) may be used.

無機質汚泥を含む被処理水としては、土木・建設工事で発生する泥水、シールド泥水、浚渫泥水等が挙げられる。
土木・建設工事で発生する泥水とは、地中連続壁工法、泥水シールド工法、場所打ち杭工法等で発生するスラリー状物であり、該泥水としては、ベントナイト泥水、ポリマー泥水、シルト泥水等が挙げられる。
本発明の、無機質汚泥を含む被処理水の処理方法は、無機質汚泥が凝集しにくい、泥土調整剤(ベントナイト、CMC等。)を含む泥水の処理に好適である。
Examples of treated water containing inorganic sludge include muddy water, shield muddy water, and dredged muddy water generated in civil engineering and construction work.
Mud generated in civil engineering and construction works is a slurry-like material generated by the underground continuous wall method, mud shield method, cast-in-place pile method, etc., and examples of the mud include bentonite mud, polymer mud, silt mud, etc. Can be mentioned.
The processing method of the to-be-processed water containing inorganic sludge of this invention is suitable for the treatment of the mud containing the mud modifier (bentonite, CMC, etc.) with which inorganic sludge is hard to aggregate.

(工程(II))
凝集反応槽14にて、無機質汚泥を含む被処理水に脱水剤を添加し、無機質汚泥を凝集させて凝集物を含む処理水を得る。
凝集反応槽14としては、2軸パドルミキサー、円形・矩形の槽と各種回転翼からなる混合槽、回転ドラム式、スタティックミキサー等が挙げられる。
脱水剤は、水に塩基性化合物および両性高分子凝集剤を溶解させた水溶液である。
(Process (II))
In the aggregation reaction tank 14, a dehydrating agent is added to the water to be treated containing inorganic sludge, and the inorganic sludge is aggregated to obtain treated water containing aggregates.
Examples of the agglomeration reaction tank 14 include a biaxial paddle mixer, a mixing tank composed of a circular / rectangular tank and various rotary blades, a rotary drum type, and a static mixer.
The dehydrating agent is an aqueous solution in which a basic compound and an amphoteric polymer flocculant are dissolved in water.

脱水剤の添加量は、両性高分子凝集剤の添加率が被処理水中、300〜3000ppmとなる量が好ましい。
脱水剤(100質量%)中の両性高分子凝集剤の濃度は、0.01〜1.0質量%が好ましい。
The addition amount of the dehydrating agent is preferably such that the addition rate of the amphoteric polymer flocculant is 300 to 3000 ppm in the water to be treated.
The concentration of the amphoteric polymer flocculant in the dehydrating agent (100% by mass) is preferably 0.01 to 1.0% by mass.

塩基性化合物は、両性高分子凝集剤を水に溶解できるよう、水のpHをアルカリ性にするために用いる。
塩基性化合物としては、水酸化ナトリウム、水酸化カリウム等が挙げられる。
両性高分子凝集剤を溶解させる前の水のpHは、9〜13が好ましい。
The basic compound is used to make the pH of water alkaline so that the amphoteric polymer flocculant can be dissolved in water.
Examples of the basic compound include sodium hydroxide and potassium hydroxide.
The pH of the water before dissolving the amphoteric polymer flocculant is preferably 9-13.

両性高分子凝集剤は、カルボキシ基を有する単量体(a)に由来する構成単位と、下記式(1)で表される単量体(b1)または下記式(2)で表される単量体(b2)(以下、単量体(b1)および単量体(b2)をまとめて単量体(b)とも記す。)に由来する構成単位と、必要に応じて単量体(a)および単量体(b)を除く他の単量体(c)に由来する構成単位とを有する水溶性の重合体である。   The amphoteric polymer flocculant is composed of a structural unit derived from the monomer (a) having a carboxy group and a monomer (b1) represented by the following formula (1) or a single unit represented by the following formula (2). A structural unit derived from the monomer (b2) (hereinafter, the monomer (b1) and the monomer (b2) are collectively referred to as the monomer (b)), and the monomer (a ) And a structural unit derived from another monomer (c) excluding the monomer (b).

Figure 0005232680
Figure 0005232680

式中、Rは、水素原子またはメチル基であり、Rは、水素原子または炭素数が1〜4のアルキル基であり、Rは、水素原子または炭素数が1〜4のアルキル基であり、Rは、炭素数が1〜4のアルキル基またはベンジル基であり、Zは、Clまたは1/2SO 2−である。 In the formula, R 1 is a hydrogen atom or a methyl group, R 2 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 3 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. and a, R 4 is an alkyl group or a benzyl group having 1 to 4 carbon atoms, Z - is Cl - or 1 / 2SO 4 2-.

単量体(a)としては、(メタ)アクリル酸、(メタ)アクリル酸塩、クロトン酸、クロトン酸塩、イタコン酸、イタコン酸塩、マレイン酸、マレイン酸塩等が挙げられ、汎用性が高く、比較的安価である点から、(メタ)アクリル酸、(メタ)アクリル酸塩が好ましい。単量体(a)は、1種を単独で用いてもよく、2種以上を併用してもよい。   Examples of the monomer (a) include (meth) acrylic acid, (meth) acrylate, crotonic acid, crotonic acid salt, itaconic acid, itaconic acid salt, maleic acid, maleate, etc. From the viewpoint of being high and relatively inexpensive, (meth) acrylic acid and (meth) acrylate are preferable. A monomer (a) may be used individually by 1 type, and may use 2 or more types together.

単量体(b)としては、3級塩(N,N−ジアルキルアミノアルキル(メタ)アクリルアミド(N,N−ジメチルアミノプロピル(メタ)アクリルアミド等。)の塩酸塩等。)、4級アンモニウム塩(ハロゲン化アルキル付加物(N,N−ジアルキルアミノアルキル(メタ)アクリルアミドの塩化メチル付加物等。)、ハロゲン化アリール付加物(N,N−ジアルキルアミノアルキル(メタ)アクリルアミドの塩化ベンジル付加物等。)等。)等が挙げられ、pH:10.3で解離を示す3級アミンを有するN,N−ジメチルアミノプロピルアクリルアミド塩酸塩が好ましい。単量体(b)は、1種を単独で用いてもよく、2種以上を併用してもよい。   As the monomer (b), tertiary salt (hydrochloric acid salt of N, N-dialkylaminoalkyl (meth) acrylamide (N, N-dimethylaminopropyl (meth) acrylamide) etc.), quaternary ammonium salt (Halogenated alkyl adducts (N, N-dialkylaminoalkyl (meth) acrylamide methyl chloride adducts, etc.), halogenated aryl adducts (N, N-dialkylaminoalkyl (meth) acrylamide benzyl chloride adducts, etc.) N, N-dimethylaminopropylacrylamide hydrochloride having a tertiary amine exhibiting dissociation at pH: 10.3 is preferable. A monomer (b) may be used individually by 1 type, and may use 2 or more types together.

他の単量体(c)としては、水に溶解する単量体であれば特に限定されず、水溶性非イオン性単量体である(メタ)アクリルアミドが好ましい。   The other monomer (c) is not particularly limited as long as it is a monomer that dissolves in water, and (meth) acrylamide which is a water-soluble nonionic monomer is preferable.

単量体(a)に由来する構成単位の割合は、全構成単位(100モル%)中、5〜20モル%が好ましく、10〜15モル%がより好ましい。単量体(a)に由来する構成単位が5モル%以上であれば、単量体(b)に由来する構成単位のカチオン性基とのバランスが良好となり、強固な凝集物(フロック)を形成できる。単量体(a)に由来する構成単位が20モル%以下であれば、単量体(b)に由来する構成単位のカチオン性基とイオンコンプレックスを形成しにくいため、両性高分子凝集剤を水に溶解しやすい。   5-20 mol% is preferable in all the structural units (100 mol%), and, as for the ratio of the structural unit derived from a monomer (a), 10-15 mol% is more preferable. If the structural unit derived from the monomer (a) is 5 mol% or more, the balance with the cationic group of the structural unit derived from the monomer (b) becomes good, and a strong aggregate (floc) is formed. Can be formed. If the structural unit derived from the monomer (a) is 20 mol% or less, it is difficult to form an ion complex with the cationic group of the structural unit derived from the monomer (b). Easy to dissolve in water.

単量体(b)に由来する構成単位の割合は、全構成単位(100モル%)中、2〜20モル%が好ましく、3〜15モル%がより好ましい。単量体(b)に由来する構成単位が2モル%以上であれば、比較的pHの高い泥水の脱水効果が発揮されやすい。単量体(b)に由来する構成単位が20モル%以下であれば、単量体(a)に由来する構成単位のアニオン性基とのイオンバランスが良好となり、強固な凝集物(フロック)を形成できる。   2-20 mol% is preferable in all the structural units (100 mol%), and, as for the ratio of the structural unit derived from a monomer (b), 3-15 mol% is more preferable. If the structural unit derived from the monomer (b) is 2 mol% or more, the dewatering effect of muddy water having a relatively high pH is easily exhibited. If the structural unit derived from the monomer (b) is 20 mol% or less, the ion balance with the anionic group of the structural unit derived from the monomer (a) becomes good, and a strong aggregate (floc) Can be formed.

他の単量体(c)に由来する構成単位の割合は、全構成単位(100モル%)中、60〜93ル%が好ましく、70〜90モル%がより好ましい。他の単量体(c)に由来する構成単位が該範囲内であれば、両性高分子凝集剤に導入されるアニオン性基およびカチオン性基のイオン量が適度な量となり、強固な凝集物(フロック)を形成できる。
各単量体に由来する構成単位の割合は、重合体を製造する際の各単量体の仕込み量から計算する。
The proportion of the structural unit derived from the other monomer (c) is preferably 60 to 93% by mole, more preferably 70 to 90% by mole in all the structural units (100% by mole). If the structural unit derived from the other monomer (c) is within this range, the amount of ions of the anionic group and the cationic group introduced into the amphoteric polymer flocculant becomes an appropriate amount, and a strong aggregate (Floc) can be formed.
The ratio of the structural unit derived from each monomer is calculated from the charged amount of each monomer when producing the polymer.

両性高分子凝集剤は、単量体(a)と単量体(b)と必要に応じて他の単量体(c)とを共重合させることにより得られる。
重合方法としては、下記の方法(i)、(ii)が挙げられ、方法(ii)が好ましい。
(i)各単量体を水に溶解させた単量体水溶液を、熱によりラジカルを発生する開始剤(レドックス開始剤、アゾ系開始剤等。)を用いて共重合させる、水溶液断熱重合方法。
(ii)各単量体を水に溶解させた単量体水溶液を均一なシート状にし、光開始剤を用いて可視光または紫外光を照射して共重合させる、水溶液光重合方法。
方法(ii)では、通常、含水ゲル状の重合体(すなわち、両性高分子凝集剤の含水物。)が得られる。
The amphoteric polymer flocculant is obtained by copolymerizing the monomer (a), the monomer (b) and, if necessary, another monomer (c).
Examples of the polymerization method include the following methods (i) and (ii), and the method (ii) is preferable.
(I) An aqueous solution adiabatic polymerization method in which an aqueous monomer solution in which each monomer is dissolved in water is copolymerized using an initiator (a redox initiator, an azo-based initiator, etc.) that generates radicals by heat. .
(Ii) An aqueous solution photopolymerization method in which a monomer aqueous solution in which each monomer is dissolved in water is formed into a uniform sheet and copolymerized by irradiation with visible light or ultraviolet light using a photoinitiator.
In the method (ii), a hydrogel polymer (that is, a hydrous product of an amphoteric polymer flocculant) is usually obtained.

光開始剤としては、2−ヒドロキシ−2−メチル−1−フェニル−1−プロパノン(チバ(Ciba)社製、ダロキュア(DAROCUR)1173)等が挙げられる。
光開始剤の添加量は、単量体水溶液の100質量部に対して、0.001〜0.1質量部が好ましい。光開始剤の添加量が0.001質量部以上であれば、十分な共重合速度および共重合率を確保でき、生産性および品質を向上できる。光開始剤の添加量が0.1質量部以下であれば、共重合反応の暴走および共重合体の品質低下を防止できる。
Examples of the photoinitiator include 2-hydroxy-2-methyl-1-phenyl-1-propanone (manufactured by Ciba, DAROCUR 1173).
The addition amount of the photoinitiator is preferably 0.001 to 0.1 parts by mass with respect to 100 parts by mass of the monomer aqueous solution. If the addition amount of the photoinitiator is 0.001 part by mass or more, a sufficient copolymerization rate and copolymerization rate can be secured, and productivity and quality can be improved. If the addition amount of the photoinitiator is 0.1 parts by mass or less, runaway copolymerization and quality deterioration of the copolymer can be prevented.

各単量体を共重合させる際には、必要に応じて連鎖移動剤を添加してもよい。連鎖移動剤としては、次亜リン酸、ホスホン酸等が挙げられ、連鎖移動させやすい点から、次亜リン酸が好ましい。
連鎖移動剤の添加量は、単量体水溶液の100質量部に対して、0.001〜1質量部が好ましい。連鎖移動剤の添加量が0.001質量部以上であれば、水に不溶性の架橋した共重合体の生成を抑制できる。連鎖移動剤の添加量が1質量部以下であれば、十分な分子量を確保できるため、特に高分子量を必要とする高分子凝集剤用途において十分な凝集脱水性が得られる。
なお、水に不溶性の架橋した共重合体の生成量は、両性高分子凝集剤水溶液を、直径20cm、80メッシュの篩でろ過し、篩の上に残った不溶解分を定量することにより求めることができる。
When each monomer is copolymerized, a chain transfer agent may be added as necessary. Examples of the chain transfer agent include hypophosphorous acid and phosphonic acid, and hypophosphorous acid is preferred from the viewpoint of easy chain transfer.
The addition amount of the chain transfer agent is preferably 0.001 to 1 part by mass with respect to 100 parts by mass of the monomer aqueous solution. If the addition amount of the chain transfer agent is 0.001 part by mass or more, the production of a water-insoluble crosslinked copolymer can be suppressed. If the addition amount of the chain transfer agent is 1 part by mass or less, a sufficient molecular weight can be ensured, so that sufficient aggregation dehydrating properties can be obtained particularly in the use of a polymer flocculant that requires a high molecular weight.
The amount of crosslinked copolymer insoluble in water is determined by filtering an aqueous solution of an amphoteric polymer flocculant with a sieve having a diameter of 20 cm and an 80 mesh and quantifying the insoluble matter remaining on the sieve. be able to.

両性高分子凝集剤を、濃度0.5質量%の水溶液(以下、両性高分子凝集剤の水溶液をポリマー水溶液と記す。)とした際の塩粘度は、通常、5〜200mPa・sであり、10〜100mPa・sが好ましい。0.5質量%ポリマー水溶液とした際の塩粘度が5mPa・s以上であれば、特に高粘度を必要とする高分子凝集剤用途において十分な凝集性が得られる。0.5質量%ポリマー水溶液とした際の塩粘度が200mPa・s以下であれば、水に不溶性の架橋した共重合体の生成を抑制できる。   The salt viscosity when the amphoteric polymer flocculant is an aqueous solution having a concentration of 0.5% by mass (hereinafter, the aqueous solution of the amphoteric polymer flocculant is referred to as a polymer aqueous solution) is usually 5 to 200 mPa · s, 10 to 100 mPa · s is preferable. If the salt viscosity when the 0.5 mass% polymer aqueous solution is 5 mPa · s or more, sufficient cohesiveness can be obtained particularly in the use of a polymer flocculant requiring high viscosity. If the salt viscosity when it is 0.5 mass% polymer aqueous solution is 200 mPa * s or less, the production | generation of the crosslinked copolymer insoluble in water can be suppressed.

塩粘度は、両性高分子凝集剤を、4質量%の塩化ナトリウム水溶液に溶解させて0.5質量%ポリマー水溶液とした際の、B型粘度計にて測定した、25℃における粘度である。
両性高分子凝集剤の塩粘度は、両性高分子凝集剤の分子量、イオン性の割合、分子量分布、製造方法、組成分布、親水性・疎水性度合い等を調整することによって制御できる。例えば、分子量を高くする程、イオン性の割合を低くする程、塩粘度の値が増加する傾向にある。一方、分子量を低くする程、イオン性の割合を高くする程、塩粘度の値が減少する傾向にある。
The salt viscosity is a viscosity at 25 ° C. measured with a B-type viscometer when an amphoteric polymer flocculant is dissolved in a 4% by mass sodium chloride aqueous solution to form a 0.5% by mass polymer aqueous solution.
The salt viscosity of the amphoteric polymer flocculant can be controlled by adjusting the molecular weight, ionic ratio, molecular weight distribution, production method, composition distribution, hydrophilicity / hydrophobicity degree, etc. of the amphoteric polymer flocculant. For example, the value of salt viscosity tends to increase as the molecular weight increases or the ionic ratio decreases. On the other hand, the lower the molecular weight, the higher the ionic ratio, the lower the value of salt viscosity.

(工程(III))
脱水機16にて、凝集物を含む処理水を脱水して、無機質汚泥の脱水ケーキを得る。
脱水機としては、フィルタープレス型脱水機、スクリュープレス型脱水機、真空脱水機、ベルトプレス型脱水機、遠心脱水機等が挙げられ、比較的低い含水率の脱水ケーキが得ることができる点から、フィルタープレス型脱水機またはスクリュープレス型脱水機が好ましい。
(Process (III))
In the dehydrator 16, the treated water containing aggregates is dehydrated to obtain a dewatered cake of inorganic sludge.
Examples of the dehydrator include a filter press type dehydrator, a screw press type dehydrator, a vacuum dehydrator, a belt press type dehydrator, a centrifugal dehydrator, and the like, because a dehydrated cake having a relatively low water content can be obtained. A filter press dehydrator or a screw press dehydrator is preferred.

脱水ケーキの含水率は、30〜40質量%が好ましい。
脱水ケーキは、埋戻土、盛土として再利用できる。
脱水機16から排出されるろ水は、酸性化合物により中和した後、廃棄される。
The water content of the dehydrated cake is preferably 30 to 40% by mass.
Dehydrated cake can be reused as backfill and embankment.
The filtered water discharged from the dehydrator 16 is discarded after being neutralized with an acidic compound.

以上説明した本発明の、無機質汚泥を含む被処理水の処理方法にあっては、脱水剤として、水に塩基性化合物および特定の両性高分子凝集剤を溶解させたものを用いているため、下記の理由から、脱水剤の添加量を少なくできる。その結果、無機質汚泥を含む被処理水を、低コストで処理できる。
また、従来の(3)の方法のようにカチオン性高分子凝集剤とアニオン性高分子凝集剤とを別々に添加する必要がないため、無機質汚泥を含む被処理水を簡便に処理できる。
In the treatment method of the water to be treated containing inorganic sludge according to the present invention described above, since a dehydrating agent in which a basic compound and a specific amphoteric polymer flocculant are dissolved in water is used, For the following reasons, the amount of dehydrating agent added can be reduced. As a result, the water to be treated containing inorganic sludge can be treated at low cost.
Moreover, since it is not necessary to add a cationic polymer flocculant and an anionic polymer flocculant separately like the conventional method (3), the to-be-processed water containing an inorganic sludge can be processed simply.

土木・建設工事で発生する泥水のpHは、7〜12程度である。本発明における特定の両性高分子凝集剤は、pH9以上の塩基性化合物水溶液中にて溶解することにより、単量体(b)に由来する構成単位のカチオン性基の解離が抑制されている。該脱水剤を泥水に添加すると、特定の両性高分子凝集剤における単量体(a)に由来する構成単位のアニオン性基が、カチオン性基よりも先に無機質汚泥と反応し、ついで徐々に解離してくるカチオン性基が無機質汚泥と反応する。このように、特定の両性高分子凝集剤が無機質汚泥を含む被処理水に効果的に作用するため、少量の添加であっても、強固で疎水性の高い凝集物(フロック)が形成され、良好な脱水処理が可能となり、低含水率の脱水ケーキが得られる。   The pH of mud generated in civil engineering / construction work is about 7-12. The specific amphoteric polymer flocculant in the present invention is dissolved in a basic compound aqueous solution having a pH of 9 or more, so that dissociation of the cationic group of the structural unit derived from the monomer (b) is suppressed. When the dehydrating agent is added to the muddy water, the anionic group of the structural unit derived from the monomer (a) in the specific amphoteric polymer flocculant reacts with the inorganic sludge prior to the cationic group, and then gradually. Dissociated cationic groups react with inorganic sludge. Thus, since a specific amphoteric polymer flocculant effectively acts on the water to be treated containing inorganic sludge, a strong and highly hydrophobic aggregate (floc) is formed even with a small amount of addition, Good dehydration treatment is possible, and a dehydrated cake with a low water content can be obtained.

一方、カチオン性高分子凝集剤、アニオン性高分子凝集剤および水溶性塩からなる脱水剤を用いる従来の(1)、(2)の方法では、脱水剤を泥水に添加した際、無機質汚泥と反応する前に、カチオン性高分子凝集剤とアニオン性高分子凝集剤とが反応してしまい、凝集剤が有効に利用されないため、脱水剤の添加を増やす必要がある。   On the other hand, in the conventional methods (1) and (2) using a dehydrating agent comprising a cationic polymer flocculant, an anionic polymer flocculant and a water-soluble salt, when the dehydrating agent is added to the muddy water, Before the reaction, the cationic polymer flocculant reacts with the anionic polymer flocculant, and the flocculant is not effectively used. Therefore, it is necessary to increase the addition of the dehydrating agent.

なお、両性高分子凝集剤としては、式(1)で表される単量体(b1)および式(2)で表される単量体(b2)におけるアミド結合(−CONH−)を、エステル結合(−COO−)に置き換えたエステル系両性高分子凝集剤が知られている。しかし、エステル系両性高分子凝集剤は、本発明におけるアミド系両性高分子凝集剤に比べ、高pH域において加水分解されやすく、泥水の処理には適していない。   As the amphoteric polymer flocculant, the amide bond (—CONH—) in the monomer (b1) represented by the formula (1) and the monomer (b2) represented by the formula (2) is esterified. An ester-based amphoteric polymer flocculant substituted with a bond (—COO—) is known. However, ester-based amphoteric polymer flocculants are more likely to be hydrolyzed at high pH than the amide-based amphoteric polymer flocculants in the present invention, and are not suitable for the treatment of muddy water.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例中の「%」は、特に断らない限り、質量%を示す。   Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto. In the examples, “%” indicates mass% unless otherwise specified.

(0.5%塩粘度の測定)
粉末状の高分子凝集剤の2.38gを4%塩化ナトリウム水溶液に溶解し、0.5%ポリマー水溶液の500gを調製した。B型粘度計(東機産業社製)を用い、温度:25℃、回転速度:60rpmの条件で、5分後のポリマー水溶液の塩粘度を測定した。
(Measurement of 0.5% salt viscosity)
2.38 g of the powdery polymer flocculant was dissolved in a 4% sodium chloride aqueous solution to prepare 500 g of a 0.5% polymer aqueous solution. Using a B-type viscometer (manufactured by Toki Sangyo Co., Ltd.), the salt viscosity of the polymer aqueous solution after 5 minutes was measured under the conditions of temperature: 25 ° C. and rotation speed: 60 rpm.

(0.5%不溶解分量の測定)
前記0.5%ポリマー水溶液の全量(500g)を、直径:20cm、80メッシュの篩でろ過し、篩上の残留物(不溶解分)の水分を拭き取り、その質量を測定した。
(Measurement of 0.5% insoluble content)
The total amount (500 g) of the 0.5% polymer aqueous solution was filtered through a sieve having a diameter of 20 cm and 80 mesh, the moisture on the residue (insoluble matter) on the sieve was wiped off, and the mass was measured.

(脱水試験)
シールド工法によるトンネル掘削現場から排出されたベントナイト泥水(pH:7.86、TS(固形分濃度):23.0%)を用意した。
該泥水に水酸化カルシウムを添加し、pHを10.9に調整した。
500mLのビーカーに泥水(pH:10.9)の300mLを入れ、ついで、所定の添加率となるように脱水剤を添加し、スパチュラにて30秒間撹拌し、凝集物(フロック)を形成させた。形成したフロックの粒径を測定した後、フロックを加圧型脱水機で脱水し、脱水ケーキを得た。脱水ケーキの厚さおよび含水率を測定した。また、脱水機から排出されたろ水の量を測定し、下記式(3)からろ水率を求めた。
ろ水率(%)=ろ水量(mL)/(泥水の水の量(mL)+脱水剤の水の量(mL))×100 ・・・(3)。
(Dehydration test)
Bentonite mud water (pH: 7.86, TS (solid content concentration): 23.0%) discharged from a tunnel excavation site by the shield method was prepared.
Calcium hydroxide was added to the muddy water to adjust the pH to 10.9.
In a 500 mL beaker, 300 mL of muddy water (pH: 10.9) was added, then a dehydrating agent was added so as to achieve a predetermined addition rate, and the mixture was stirred with a spatula for 30 seconds to form aggregates (floc). . After measuring the particle size of the formed floc, the floc was dehydrated with a pressure-type dehydrator to obtain a dehydrated cake. The thickness and moisture content of the dehydrated cake were measured. Further, the amount of filtrate discharged from the dehydrator was measured, and the drainage rate was determined from the following formula (3).
Drainage rate (%) = Drainage amount (mL) / (Amount of muddy water (mL) + Amount of dehydrating agent water (mL)) × 100 (3).

(脱水条件)
加圧型脱水機による脱水条件は、0.05MPaで30秒、0.10MPaで30秒、0.20MPaで30秒、0.30MPaで30秒、0.40MPaで30秒、0.50MPaで30秒とした。
(Dehydration conditions)
Dehydration conditions using a pressure-type dehydrator are as follows: 0.05 MPa for 30 seconds, 0.10 MPa for 30 seconds, 0.20 MPa for 30 seconds, 0.30 MPa for 30 seconds, 0.40 MPa for 30 seconds, 0.50 MPa for 30 seconds It was.

(単量体)
単量体(a):
アクリル酸(以下、AAと記す。)、三菱化学社製、純度:50%。
単量体(b):
N,N−ジメチルアミノプロピルアクリルアミド(以下、DMAPAAと記す。)、興人社製、純度:100%。
メタクロイルアミノプロピルトリメチルアンモニウムクロライド(以下、MAPTACと記す。)、MRCユニテック社製、純度:98%。
他の単量体(c):
アクリルアミド(以下、AAMと記す。)、ダイヤニトリックス社製、純度:50%。
N,N−ジメチルアミノエチルメタクリレート硫酸塩(以下、DMZと記す。)、純度:70%。
N,N−ジメチルアミノエチルアクリレート塩化メチル4級塩(以下、DMEと記す。)、大阪有機化学工業社製、純度:80%。
(Monomer)
Monomer (a):
Acrylic acid (hereinafter referred to as AA), manufactured by Mitsubishi Chemical Corporation, purity: 50%.
Monomer (b):
N, N-dimethylaminopropylacrylamide (hereinafter referred to as DMAPAA), manufactured by Kojin Co., Ltd., purity: 100%.
Methacryloylaminopropyltrimethylammonium chloride (hereinafter referred to as MAPTAC), manufactured by MRC Unitech, purity: 98%.
Other monomer (c):
Acrylamide (hereinafter referred to as AAM), manufactured by Dianitics, purity: 50%.
N, N-dimethylaminoethyl methacrylate sulfate (hereinafter referred to as DMZ), purity: 70%.
N, N-dimethylaminoethyl acrylate methyl chloride quaternary salt (hereinafter referred to as DME), manufactured by Osaka Organic Chemical Industry Co., Ltd., purity: 80%.

(光開始剤)
DAROCUR 1173(以下、D−1173と記す。)、Ciba社製。
(連鎖移動剤)
次亜リン酸(以下、HAと記す。)、関東化学社製。
(Photoinitiator)
DAROCUR 1173 (hereinafter referred to as D-1173), manufactured by Ciba.
(Chain transfer agent)
Hypophosphorous acid (hereinafter referred to as HA), manufactured by Kanto Chemical Co., Inc.

〔製造例1〕
DMAPAAの38.7g、AAの77.0g、AAMの616.0gを、2000mLの褐色耐熱瓶に投入し、全単量体濃度:35%、総質量:1100gになるように蒸留水を加え、単量体水溶液を調製した。さらに、D−1173およびHAを、単量体水溶液の総質量に対して、それぞれ70ppmおよび50ppmとなるように投入し、これに窒素ガスを30分間吹き込みながら水溶液の温度を10℃に調節した。その後、単量体水溶液をステンレス反応容器に移し、容器の下方から17℃の水を噴霧しながら、ケミカルランプを用いて、容器の上方から7W/mの照射強度で、表面温度計が30℃になるまで光を照射した。表面温度計が30℃に到達した後は、0.5W/mの照射強度で45分間光を照射した。さらに単量体の残存量を低減させるために、照射強度を50W/mにして10分間光を照射した。これにより、含水ゲル状の重合体を得た。
[Production Example 1]
38.7 g of DMAPAA, 77.0 g of AA, and 616.0 g of AAM were put into a 2000 mL brown heat-resistant bottle, and distilled water was added so that the total monomer concentration was 35% and the total mass was 1100 g. A monomer aqueous solution was prepared. Furthermore, D-1173 and HA were added so as to be 70 ppm and 50 ppm, respectively, with respect to the total mass of the monomer aqueous solution, and the temperature of the aqueous solution was adjusted to 10 ° C. while blowing nitrogen gas for 30 minutes. Thereafter, the aqueous monomer solution was transferred to a stainless steel reaction vessel, and sprayed with 17 ° C. water from below the vessel, using a chemical lamp, the surface thermometer was 30 W from the upper side of the vessel with an irradiation intensity of 7 W / m 2. Light was irradiated until the temperature reached ℃. After the surface thermometer reached 30 ° C., light was irradiated for 45 minutes at an irradiation intensity of 0.5 W / m 2 . Further, in order to reduce the remaining amount of the monomer, irradiation was performed for 10 minutes at an irradiation intensity of 50 W / m 2 . Thereby, a hydrogel polymer was obtained.

含水ゲル状の重合体を容器から取り出し、小型ミートチョッパーを用いて解砕した。これを温度:60℃で16時間乾燥した後、粉砕して粉末状のアミド系両性高分子凝集剤(AAC−1)を得た。AAC−1における各単量体に由来する構成単位の割合を、各単量体の仕込み量から計算した。また、0.5%塩粘度、0.5%不溶解分量を測定した。結果を表1に示す。   The hydrogel polymer was taken out from the container and crushed using a small meat chopper. This was dried at a temperature of 60 ° C. for 16 hours and then pulverized to obtain a powdered amide-based amphoteric polymer flocculant (AAC-1). The proportion of structural units derived from each monomer in AAC-1 was calculated from the charged amount of each monomer. In addition, 0.5% salt viscosity and 0.5% insoluble content were measured. The results are shown in Table 1.

〔製造例2〕
MAPTACの39.3g、AAの77.0g、AAMの616.0gを、2000mLの褐色耐熱瓶に投入し、全単量体濃度:35%、総質量:1100gになるように蒸留水を加え、単量体水溶液を調製した。さらに、D−1173およびHAを、単量体水溶液の総質量に対して、それぞれ70ppmおよび40ppmとなるように投入した。以下、製造例1と同様の操作を行い、アミド系両性高分子凝集剤(AAC−2)を得た。AAC−2における各単量体に由来する構成単位の割合を、各単量体の仕込み量から計算した。また、0.5%塩粘度、0.5%不溶解分量を測定した。結果を表1に示す。
[Production Example 2]
39.3 g of MAPTAC, 77.0 g of AA and 616.0 g of AAM were put into a 2000 mL brown heat-resistant bottle, and distilled water was added so that the total monomer concentration was 35% and the total mass was 1100 g. A monomer aqueous solution was prepared. Furthermore, D-1173 and HA were added so as to be 70 ppm and 40 ppm, respectively, with respect to the total mass of the monomer aqueous solution. Thereafter, the same operation as in Production Example 1 was performed to obtain an amide-based amphoteric polymer flocculant (AAC-2). The proportion of structural units derived from each monomer in AAC-2 was calculated from the charged amount of each monomer. In addition, 0.5% salt viscosity and 0.5% insoluble content were measured. The results are shown in Table 1.

〔製造例3〜6〕
各単量体の割合を変更した以外は、製造例1と同様の操作を行い、アミド系両性高分子凝集剤(AAC−3〜6)を得た。AAC−3〜6における各単量体に由来する構成単位の割合を、各単量体の仕込み量から計算した。また、0.5%塩粘度、0.5%不溶解分量を測定した。結果を表1に示す。
[Production Examples 3 to 6]
Except having changed the ratio of each monomer, operation similar to manufacture example 1 was performed and the amide system amphoteric polymer flocculent (AAC-3-6) was obtained. The ratio of the structural unit derived from each monomer in AAC-3 to 6 was calculated from the charged amount of each monomer. In addition, 0.5% salt viscosity and 0.5% insoluble content were measured. The results are shown in Table 1.

〔製造例7〕
DMZの55.0g、AAの77.0g、AAMの616.0gを、2000mLの褐色耐熱瓶に投入し、全単量体濃度:35%、総質量:1100gになるように蒸留水を加え、単量体水溶液を調製した。さらに、D−1173およびHAを、単量体水溶液の総質量に対して、それぞれ70ppmおよび45ppmとなるように投入した。以下、製造例1と同様の操作を行い、エステル系両性高分子凝集剤(EAC−1)を得た。EAC−1における各単量体に由来する構成単位の割合を、各単量体の仕込み量から計算した。また、0.5%塩粘度、0.5%不溶解分量を測定した。結果を表1に示す。
[Production Example 7]
DMZ 55.0 g, AA 77.0 g and AAM 616.0 g were put into a 2000 mL brown heat-resistant bottle, and distilled water was added so that the total monomer concentration was 35% and the total mass was 1100 g. A monomer aqueous solution was prepared. Furthermore, D-1173 and HA were added so as to be 70 ppm and 45 ppm, respectively, with respect to the total mass of the monomer aqueous solution. Thereafter, the same operation as in Production Example 1 was performed to obtain an ester-based amphoteric polymer flocculant (EAC-1). The ratio of the structural unit derived from each monomer in EAC-1 was calculated from the charged amount of each monomer. In addition, 0.5% salt viscosity and 0.5% insoluble content were measured. The results are shown in Table 1.

〔製造例8〕
DMEの48.1g、AAの77.0g、AAMの616.0gを、2000mLの褐色耐熱瓶に投入し、全単量体濃度:35%、総質量:1100gになるように蒸留水を加え、単量体水溶液を調製した。さらに、D−1173およびHAを、単量体水溶液の総質量に対して、それぞれ70ppmおよび50ppmとなるように投入した。以下、製造例1と同様の操作を行い、エステル系両性高分子凝集剤(EAC−2)を得た。EAC−2における各単量体に由来する構成単位の割合を、各単量体の仕込み量から計算した。また、0.5%塩粘度、0.5%不溶解分量を測定した。結果を表1に示す。
[Production Example 8]
48.1 g of DME, 77.0 g of AA, and 616.0 g of AAM were put into a 2000 mL brown heat-resistant bottle, and distilled water was added so that the total monomer concentration was 35% and the total mass was 1100 g. A monomer aqueous solution was prepared. Furthermore, D-1173 and HA were added so as to be 70 ppm and 50 ppm, respectively, with respect to the total mass of the monomer aqueous solution. Thereafter, the same operation as in Production Example 1 was performed to obtain an ester-based amphoteric polymer flocculant (EAC-2). The proportion of structural units derived from each monomer in EAC-2 was calculated from the charged amount of each monomer. In addition, 0.5% salt viscosity and 0.5% insoluble content were measured. The results are shown in Table 1.

〔製造例9〕
AAの176.0g、AAMの704.0gを、2000mLの褐色耐熱瓶に投入し、全単量体濃度:40%、総質量:1100gになるように蒸留水を加え、単量体水溶液を調製した。さらに、D−1173およびHAを、単量体水溶液の総質量に対して、それぞれ70ppmおよび40ppmとなるように投入した。以下、製造例1と同様の操作を行い、アニオン性高分子凝集剤(A−1)を得た。A−1における各単量体に由来する構成単位の割合を、各単量体の仕込み量から計算した。また、0.5%塩粘度、0.5%不溶解分量を測定した。結果を表1に示す。
[Production Example 9]
176.0 g of AA and 704.0 g of AAM are put into a 2000 mL brown heat-resistant bottle, and distilled water is added so that the total monomer concentration is 40% and the total mass is 1100 g to prepare an aqueous monomer solution. did. Furthermore, D-1173 and HA were added so as to be 70 ppm and 40 ppm, respectively, with respect to the total mass of the monomer aqueous solution. Thereafter, the same operation as in Production Example 1 was performed to obtain an anionic polymer flocculant (A-1). The ratio of the structural unit derived from each monomer in A-1 was calculated from the charged amount of each monomer. In addition, 0.5% salt viscosity and 0.5% insoluble content were measured. The results are shown in Table 1.

〔製造例10〕
DMEの110.0g、AAMの704.0gを、2000mLの褐色耐熱瓶に投入し、全単量体濃度:40%、総質量:1100gになるように蒸留水を加え、単量体水溶液を調製した。さらに、D−1173およびHAを、単量体水溶液の総質量に対して、それぞれ70ppmおよび30ppmとなるように投入した。以下、製造例1と同様の操作を行い、カチオン性高分子凝集剤(C−1)を得た。C−1における各単量体に由来する構成単位の割合を、各単量体の仕込み量から計算した。また、0.5%塩粘度、0.5%不溶解分量を測定した。結果を表1に示す。
[Production Example 10]
110.0 g of DME and 704.0 g of AAM are put into a 2000 mL brown heat-resistant bottle, and distilled water is added so that the total monomer concentration is 40% and the total mass is 1100 g to prepare a monomer aqueous solution. did. Furthermore, D-1173 and HA were added so as to be 70 ppm and 30 ppm, respectively, with respect to the total mass of the monomer aqueous solution. Thereafter, the same operation as in Production Example 1 was performed to obtain a cationic polymer flocculant (C-1). The ratio of the structural unit derived from each monomer in C-1 was calculated from the charged amount of each monomer. In addition, 0.5% salt viscosity and 0.5% insoluble content were measured. The results are shown in Table 1.

Figure 0005232680
Figure 0005232680

〔実施例1〕
水の498.0mLに水酸化ナトリウムの0.5gを加え、pH:12.0のアルカリ水溶液を得た。該アルカリ水溶液に、アミド系両性高分子凝集剤(AAC−1)の1.5gを加え、十分に撹拌して溶解させ、脱水剤を得た。
該脱水剤を、凝集剤の添加率が表2に示す値となるように用いて脱水試験を行った。結果を表2に示す。
[Example 1]
0.59 g of sodium hydroxide was added to 498.0 mL of water to obtain an aqueous alkaline solution having a pH of 12.0. To the alkaline aqueous solution, 1.5 g of an amide-based amphoteric polymer flocculant (AAC-1) was added and dissolved with sufficient stirring to obtain a dehydrating agent.
A dehydration test was performed using the dehydrating agent so that the addition rate of the flocculant was a value shown in Table 2. The results are shown in Table 2.

〔実施例2〜6〕
アミド系両性高分子凝集剤(AAC−1)を、アミド系両性高分子凝集剤(AAC−2〜6)に変更した以外は、実施例1と同様にして脱水剤を得た。
該脱水剤を、凝集剤の添加率が表2に示す値となるように用いて脱水試験を行った。結果を表2に示す。
[Examples 2 to 6]
A dehydrating agent was obtained in the same manner as in Example 1 except that the amide-based amphoteric polymer flocculant (AAC-1) was changed to the amide-based amphoteric polymer flocculant (AAC-2 to 6).
A dehydration test was performed using the dehydrating agent so that the addition rate of the flocculant was a value shown in Table 2. The results are shown in Table 2.

〔比較例1、2〕
アミド系両性高分子凝集剤(AAC−1)を、エステル系両性高分子凝集剤(EAC−1)に変更した以外は、実施例1と同様にして脱水剤を得た。
該脱水剤を、凝集剤の添加率が表2に示す値となるように用いて脱水試験を行った。結果を表2に示す。
[Comparative Examples 1 and 2]
A dehydrating agent was obtained in the same manner as in Example 1 except that the amide amphoteric polymer flocculant (AAC-1) was changed to an ester amphoteric polymer flocculant (EAC-1).
A dehydration test was performed using the dehydrating agent so that the addition rate of the flocculant was a value shown in Table 2. The results are shown in Table 2.

〔比較例3、4〕
アミド系両性高分子凝集剤(AAC−1)を、エステル系両性高分子凝集剤(EAC−2)に変更した以外は、実施例1と同様にして脱水剤を得た。
該脱水剤を、凝集剤の添加率が表2に示す値となるように用いて脱水試験を行った。結果を表2に示す。
[Comparative Examples 3 and 4]
A dehydrating agent was obtained in the same manner as in Example 1 except that the amide amphoteric polymer flocculant (AAC-1) was changed to the ester amphoteric polymer flocculant (EAC-2).
A dehydration test was performed using the dehydrating agent so that the addition rate of the flocculant was a value shown in Table 2. The results are shown in Table 2.

〔比較例5〕
水の499.5mLに、アニオン性高分子凝集剤(A−1)の0.5gを加え、十分に撹拌して溶解させ、脱水剤(A)を得た。
これとは別に、水の498.35mLに、スルファミン酸の0.15gを加え、pH:2.0の酸水溶液を得た。該酸水溶液に、カチオン性高分子凝集剤(C−1)の1.5gを加え、十分に撹拌して溶解させ、脱水剤(C)を得た。
各凝集剤の添加率が表2に示す値となるように、脱水剤(A)、脱水剤(C)の順番に泥水に添加して脱水試験を行った。結果を表2に示す。
[Comparative Example 5]
To 499.5 mL of water, 0.5 g of the anionic polymer flocculant (A-1) was added and dissolved with sufficient stirring to obtain a dehydrating agent (A).
Separately from this, 0.15 g of sulfamic acid was added to 498.35 mL of water to obtain an acid aqueous solution having a pH of 2.0. To the acid aqueous solution, 1.5 g of the cationic polymer flocculant (C-1) was added and dissolved by sufficiently stirring to obtain a dehydrating agent (C).
A dehydration test was performed by adding the dehydrating agent (A) and the dehydrating agent (C) to the muddy water in this order so that the addition rate of each coagulant becomes the value shown in Table 2. The results are shown in Table 2.

Figure 0005232680
Figure 0005232680

本発明の、無機質汚泥を含む被処理水の処理方法は、ベントナイト泥水等の無機質汚泥が凝集しにくい被処理水の脱水処理方法として有用である。   The method for treating water to be treated containing inorganic sludge according to the present invention is useful as a method for dewatering water to be treated in which inorganic sludge such as bentonite mud hardly aggregates.

10 処理システム
12 貯泥槽
14 凝集反応槽
16 脱水機
18 脱水剤槽
DESCRIPTION OF SYMBOLS 10 Processing system 12 Mud storage tank 14 Coagulation reaction tank 16 Dehydrator 18 Dehydrating agent tank

Claims (3)

無機質汚泥を含む被処理水に脱水剤を添加し、前記無機質汚泥を凝集させて凝集物を含む処理水を得る工程を有する、無機質汚泥を含む被処理水の処理方法において、
さらに、前記無機質汚泥を含む被処理水のpHをあらかじめ7〜11に調整する工程を有し、
前記無機質汚泥を含む被処理水が、泥土調整剤を含む泥水であり、
前記脱水剤として、水に塩基性化合物および下記両性高分子凝集剤を溶解させたものを用いることを特徴とする、無機質汚泥を含む被処理水の処理方法。
両性高分子凝集剤:カルボキシ基を有する単量体(a)に由来する構成単位と、下記式(1)で表される単量体(b1)または下記式(2)で表される単量体(b2)に由来する構成単位とを有する重合体。
Figure 0005232680
式中、Rは、水素原子またはメチル基であり、Rは、水素原子または炭素数が1〜4のアルキル基であり、Rは、水素原子または炭素数が1〜4のアルキル基であり、Rは、炭素数が1〜4のアルキル基またはベンジル基であり、Zは、Clまたは1/2SO 2−である。
In a method for treating water to be treated containing inorganic sludge, the method includes adding a dehydrating agent to water to be treated containing inorganic sludge, and aggregating the inorganic sludge to obtain treated water containing aggregates.
Furthermore, it has the process of adjusting pH of the to-be-processed water containing the said inorganic sludge to 7-11 beforehand,
The treated water containing the inorganic sludge is muddy water containing a mud adjuster,
A method for treating water to be treated containing inorganic sludge, wherein the dehydrating agent is obtained by dissolving a basic compound and the following amphoteric polymer flocculant in water.
Amphoteric polymer flocculant: a structural unit derived from the monomer (a) having a carboxy group, and a monomer represented by the following formula (1) (b1) or the following formula (2) A polymer having a structural unit derived from the body (b2).
Figure 0005232680
In the formula, R 1 is a hydrogen atom or a methyl group, R 2 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 3 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. and a, R 4 is an alkyl group or a benzyl group having 1 to 4 carbon atoms, Z - is Cl - or 1 / 2SO 4 2-.
さらに、前記凝集物を含む処理水を脱水する工程を有する、請求項1に記載の、無機質汚泥を含む被処理水の処理方法。   Furthermore, the processing method of the to-be-processed water containing an inorganic sludge of Claim 1 which has the process of dehydrating the treated water containing the said aggregate. 前記両性高分子凝集剤が、前記単量体(a)に由来する構成単位の5〜20モル%と、前記単量体(b1)または前記単量体(b2)に由来する構成単位の2〜20モル%と、他の単量体(c)に由来する構成単位の60〜93モル%とを有する重合体である、請求項1または2に記載の、無機質汚泥を含む被処理水の処理方法。 The amphoteric polymer flocculant is 5 to 20 mol% of the structural unit derived from the monomer (a) and 2 of the structural unit derived from the monomer (b1) or the monomer (b2). Water to be treated containing inorganic sludge according to claim 1 or 2 , which is a polymer having -20 mol% and 60-93 mol% of structural units derived from other monomers (c). Processing method.
JP2009028561A 2009-02-10 2009-02-10 Method for treating treated water containing inorganic sludge Active JP5232680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009028561A JP5232680B2 (en) 2009-02-10 2009-02-10 Method for treating treated water containing inorganic sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009028561A JP5232680B2 (en) 2009-02-10 2009-02-10 Method for treating treated water containing inorganic sludge

Publications (2)

Publication Number Publication Date
JP2010184172A JP2010184172A (en) 2010-08-26
JP5232680B2 true JP5232680B2 (en) 2013-07-10

Family

ID=42765165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009028561A Active JP5232680B2 (en) 2009-02-10 2009-02-10 Method for treating treated water containing inorganic sludge

Country Status (1)

Country Link
JP (1) JP5232680B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2751152A1 (en) * 2011-09-01 2014-07-09 The Procter and Gamble Company Soil adsorption polymers
JP2014117625A (en) * 2012-12-13 2014-06-30 Hymo Corp Waste disposal method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214799A (en) * 1988-06-30 1990-01-18 Dia Furotsuku Kk Amphoteric sludge dehydrating agent
JP3977794B2 (en) * 2003-10-17 2007-09-19 三洋化成工業株式会社 Polymer flocculant
JP4616108B2 (en) * 2005-07-22 2011-01-19 三洋化成工業株式会社 Organic coagulant and wastewater or sludge treatment

Also Published As

Publication number Publication date
JP2010184172A (en) 2010-08-26

Similar Documents

Publication Publication Date Title
JP5528660B2 (en) Polymer flocculant
JP4021439B2 (en) Polymer flocculant
CN101648739B (en) Ampholytic macromolecular flocculant and preparation method thereof
JP2011139997A (en) Coagulation treatment method for waste water
JP5311391B2 (en) Method for treating treated water containing inorganic sludge
JP2007016086A (en) Water-soluble polymer dispersion and papermaking method using the same
JP2010240519A (en) Method of treating water to be treated containing inorganic sludge
JP5300012B2 (en) Method for treating treated water containing inorganic sludge
JP5232680B2 (en) Method for treating treated water containing inorganic sludge
JP5589430B2 (en) Treatment method of inorganic waste water
JP2001149703A (en) Amphoteric polymeric flocculant for pulp or paper manufacturing industry sludge and dehydrating method for pulp or paper manufacturing industry sludge
JP5461158B2 (en) Polymer flocculant
JP2010179248A (en) Method for treating livestock sludge
WO2006126674A1 (en) Process for production of water-soluble polymers and use thereof
JP2012086117A (en) Powdery flocculating and dehydrating agent, and method for flocculating and dehydrating organic sludge
JP5038587B2 (en) Dewatering method for sewage digested sludge
JP2014180648A (en) Polymer flocculant
JP5501122B2 (en) Method for producing powdered cationic water-soluble polymer compound, sludge dewatering agent, and sludge dewatering method
JP2008200597A (en) Amphoteric polymer flocculant and method for treating sludge by using the same
JP2011078882A (en) Polymer flocculant
JP4156441B2 (en) Polymer flocculant
JP2002249503A (en) Dispersion of amphoteric water-solble polymer
JP2015057272A (en) Polymer flocculant
JP6388329B2 (en) Water-soluble polymer dispersion containing low inorganic salt and process for producing the same
JP2014184406A (en) Powdery organic coagulant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5232680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250