JP5231371B2 - Resistance welding method - Google Patents

Resistance welding method Download PDF

Info

Publication number
JP5231371B2
JP5231371B2 JP2009236669A JP2009236669A JP5231371B2 JP 5231371 B2 JP5231371 B2 JP 5231371B2 JP 2009236669 A JP2009236669 A JP 2009236669A JP 2009236669 A JP2009236669 A JP 2009236669A JP 5231371 B2 JP5231371 B2 JP 5231371B2
Authority
JP
Japan
Prior art keywords
aluminum
iron
based member
energization
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009236669A
Other languages
Japanese (ja)
Other versions
JP2011083783A (en
Inventor
泰成 脇坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009236669A priority Critical patent/JP5231371B2/en
Publication of JP2011083783A publication Critical patent/JP2011083783A/en
Application granted granted Critical
Publication of JP5231371B2 publication Critical patent/JP5231371B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Welding (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、鉄系部材とアルミニウム系部材とを強固に接合するための抵抗溶接方法に関する。   The present invention relates to a resistance welding method for firmly joining an iron-based member and an aluminum-based member.

従来、自動車等の車体には鋼板等の鉄系材料が多く用いられている。しかしながら、燃料消費率の向上や排気ガス規制の強化に対応するため車体の軽量化が望まれており、近年、アルミニウム合金等の軽量な材料を一部に用いるようになってきている。このため、鉄系材料とアルミニウム系材料との異材接合を行う場合が増えている。例えば、特許文献1には、鉄とアルミニウムとをスポット溶接する方法が開示されており、鉄側に陰極電極を、アルミニウム側に陽極電極を配置して溶接を行うことで、熱伝導率の異なる両部材の間のナゲット生成位置に偏りを無くし、接合強度の向上を図っている。   Conventionally, many iron-based materials such as steel plates have been used for automobile bodies. However, it is desired to reduce the weight of the vehicle body in order to cope with the improvement in fuel consumption rate and the strengthening of exhaust gas regulations, and in recent years, a light material such as an aluminum alloy has been partially used. For this reason, the case where the dissimilar material joining of an iron-type material and an aluminum-type material is increasing is increasing. For example, Patent Document 1 discloses a method in which iron and aluminum are spot-welded. The welding is performed by disposing a cathode electrode on the iron side and an anode electrode on the aluminum side, so that the thermal conductivity is different. There is no bias in the nugget generation position between both members to improve the bonding strength.

特開平5−111776号公報Japanese Patent Laid-Open No. 5-111176 特開平9−298318号公報Japanese Patent Laid-Open No. 9-298318

しかしながら、鉄系材料とアルミニウム系材料との異材溶接においては、鉄とアルミニウムからなる脆い金属間化合物が生成することがあり、見かけ上接合されていても十分な接合強度が得られていない場合がある。また、通常のスポット溶接では、鉄およびアルミニウムの両部材が高温となるため、鉄よりも融点の低いアルミニウムが過度に溶融し、電極の加圧力によってアルミニウム部材の板厚が減少するという問題がある。   However, in dissimilar welding of iron-based materials and aluminum-based materials, brittle intermetallic compounds composed of iron and aluminum may be generated, and even if apparently bonded, sufficient bonding strength may not be obtained. is there. In addition, in ordinary spot welding, both the iron and aluminum members are heated to a high temperature, so that aluminum having a melting point lower than that of iron is excessively melted, and the plate thickness of the aluminum member is reduced by the applied pressure of the electrode. .

したがって、本発明は、鉄系部材とアルミニウム系部材との異材溶接において、十分な接合強度が確実に得られ、アルミニウム系部材の板厚減少の少ない抵抗溶接方法を提供することを目的としている。   Accordingly, an object of the present invention is to provide a resistance welding method in which sufficient joining strength can be reliably obtained and a reduction in the thickness of an aluminum-based member is small in the welding of different materials between an iron-based member and an aluminum-based member.

本発明は、鉄系部材とアルミニウム系部材とを抵抗溶接する方法であって、鉄系部材側に陽極電極を、アルミニウム系部材側に陰極電極を配置し、鉄系部材の外側表面からアルミニウム系部材の外側表面に至るまでの層が、(1)鉄系部材(固体)、(2)Fe−Al(Fe固溶体)、(3)Al(液体)、(4)アルミニウム系部材(固体)、の順に並んだ状態において通電を行うことを特徴とする。   The present invention is a method of resistance welding an iron-based member and an aluminum-based member, wherein an anode electrode is disposed on the iron-based member side, a cathode electrode is disposed on the aluminum-based member side, and an aluminum-based material is formed from the outer surface of the iron-based member. The layers leading to the outer surface of the member are (1) iron-based member (solid), (2) Fe-Al (Fe solid solution), (3) Al (liquid), (4) aluminum-based member (solid), It is characterized in that energization is performed in a state in which they are arranged in this order.

図1は本発明の作用を説明するための図であり、(1)鉄系部材(固体)、(2)Fe−Al(Fe固溶体)、(3)Al(液体)、(4)アルミニウム系部材(固体)の積層状態を示している。Fe/Fe−Al合金の積層構造は熱電変換素子として知られており(特許文献2等参照)、上記層においては(1)および(2)に対応する。Fe/Fe−Al合金の積層構造においてFe側からFe−Al合金側へと電流を流すとぺルチェ効果が得られ、Fe−Al合金が放熱し、Feが吸熱する。すなわち、図1に示すように鉄系部材側に陽極電極を、アルミニウム系部材側に陰極電極を配置して通電を行うと、鉄系部材側が高温となり、アルミニウム系部材側が低温となる。したがって、アルミニウム系部材が高温になり難いため、アルミリッチの脆い金属間化合物が接合部に生成することを防ぐことができ、接合強度を向上させることができる。また、アルミニウム系部材が過度に溶融しないため、電極の加圧力によるアルミニウム系部材の板厚減少を防ぐことができる。なお、連続的に通電を行うと鉄系部材の温度が上昇し過ぎてしまい、Fe−Al(Fe固溶体)が形成され難い。このため、パルス通電を行うことが好ましい。パルス通電を行うことにより、鉄系部材とアルミニウム系部材の接合部の温度制御を行いやすくなり、図1に示した(1)〜(4)の順に並んだ層を容易に得られる。   FIG. 1 is a diagram for explaining the operation of the present invention. (1) Iron-based member (solid), (2) Fe—Al (Fe solid solution), (3) Al (liquid), (4) Aluminum-based The lamination | stacking state of a member (solid) is shown. A laminated structure of Fe / Fe—Al alloy is known as a thermoelectric conversion element (see Patent Document 2 etc.), and corresponds to (1) and (2) in the above layer. In an Fe / Fe—Al alloy laminated structure, when a current is passed from the Fe side to the Fe—Al alloy side, a Peltier effect is obtained, the Fe—Al alloy dissipates heat, and Fe absorbs heat. That is, as shown in FIG. 1, when an anode electrode is disposed on the iron-based member side and a cathode electrode is disposed on the aluminum-based member side and energization is performed, the iron-based member side becomes high temperature and the aluminum-based member side becomes low temperature. Therefore, since the aluminum-based member does not easily reach a high temperature, it is possible to prevent an aluminum-rich brittle intermetallic compound from being generated at the joint, and to improve the joint strength. In addition, since the aluminum-based member does not melt excessively, it is possible to prevent a reduction in the plate thickness of the aluminum-based member due to the applied pressure of the electrode. In addition, when it supplies with electricity continuously, the temperature of an iron-type member will rise too much and it is difficult to form Fe-Al (Fe solid solution). For this reason, it is preferable to perform pulse energization. By performing pulse energization, it becomes easy to control the temperature of the joint between the iron-based member and the aluminum-based member, and the layers arranged in the order of (1) to (4) shown in FIG. 1 can be easily obtained.

また、通電を行う前の低温状態においてはアルミニウムに比べて鉄のほうが電気抵抗率が大きい。したがって、低温状態においては、鉄系部材を急激に加熱しながらも、アルミニウム系部材を低温のままとすることができる。この特徴を利用して、1回目のパルス通電で、層が図1に示すように(1)〜(4)の順に並んだ状態となるように溶接を行うことが好ましい。これにより、鉄系部材を加熱しながらもアルミニウム系部材を低温に保つことができ、アルミリッチの脆い金属間化合物の生成を効果的に防ぐことができる。さらに、層が(1)〜(4)の順に並んだ状態において通電を停止させて溶接を終了することが好ましい。これにより、(1)〜(4)の順に並んだ層を維持した状態で鉄系部材およびアルミニウム系部材が急冷されるため、脆い金属間化合物の生成をさらに効果的に防ぐことができる。   Further, in a low temperature state before energization, iron has a higher electrical resistivity than aluminum. Therefore, in the low temperature state, the aluminum-based member can be kept at a low temperature while the iron-based member is rapidly heated. It is preferable to perform welding so that the layers are arranged in the order of (1) to (4) as shown in FIG. Thereby, while heating an iron-type member, an aluminum-type member can be kept at low temperature, and the production | generation of the aluminum rich brittle intermetallic compound can be prevented effectively. Furthermore, it is preferable to stop welding in a state where the layers are arranged in the order of (1) to (4) to end the welding. Thereby, since an iron-type member and an aluminum-type member are rapidly cooled in the state which maintained the layer arranged in order of (1)-(4), the production | generation of a brittle intermetallic compound can be prevented more effectively.

本発明によれば、鉄系部材とアルミニウム系部材との異材溶接において十分な接合強度が確実に得られ、アルミニウム系部材の板厚減少を防ぐことができる。   ADVANTAGE OF THE INVENTION According to this invention, sufficient joining strength is reliably acquired in the dissimilar material welding of an iron-type member and an aluminum-type member, and the plate | board thickness reduction | decrease of an aluminum-type member can be prevented.

本発明の層構造を示す図である。It is a figure which shows the layer structure of this invention. 鉄とアルミニウムの2元系平衡状態図である。It is a binary system equilibrium state diagram of iron and aluminum. 鉄およびアルミニウムの相互拡散係数と温度との関係を示すグラフである。It is a graph which shows the relationship between the mutual diffusion coefficient of iron and aluminum, and temperature. 鉄およびアルミニウムの電気抵抗率と温度との関係を示すグラフである。It is a graph which shows the relationship between the electrical resistivity of iron and aluminum, and temperature. 実施例における鉄系部材およびアルミニウム系部材への通電条件を示しており、図5(a)はパルス通電の場合、図5(b)は連続通電の場合のグラフである。The energization conditions for the iron-based member and the aluminum-based member in the examples are shown. FIG. 5A is a graph in the case of pulse energization, and FIG. 5B is a graph in the case of continuous energization. 実施例における鉄系部材およびアルミニウム系部材の温度測定結果を示しており、図6(a)はパルス通電の場合、図6(b)は連続通電の場合のグラフである。The temperature measurement result of the iron-type member and aluminum-type member in an Example is shown, Fig.6 (a) is a graph in the case of pulse energization, FIG.6 (b) is a graph in the case of continuous energization. 実施例における鉄系部材とアルミニウム系部材の接合部を示しており、図7(a)はパルス通電の場合、図7(b)は連続通電の場合の断面図である。FIG. 7 (a) is a cross-sectional view in the case of pulse energization and FIG. 7 (b) is a case of continuous energization.

図2を参照して本発明におけるFe−Al(Fe固溶体)が生成される理由を説明する。図2は鉄とアルミニウムの2元系平衡状態図である。図2に示すように、本発明で用いる鉄系部材およびアルミニウム系部材との間にFe−Al(Fe固溶体)が生成するのは、1538℃以下の場合である。また、1171℃以下ではアルミリッチの脆い金属間化合物が生成するため、鉄系部材とアルミニウム系部材との接合強度が低下する。したがって、鉄系部材側からアルミニウム系部材側へ電流を流して加熱し、両部材の接合部の温度を1171〜1538℃の間に保つことによりFe−Al(Fe固溶体)を生成させる。この結果、Fe/Fe−Al合金の積層構造のぺルチェ効果により鉄系部材側が高温に、アルミニウム系部材側が低温となり、鉄系部材の入熱不足を防ぐことや、アルミニウム系部材の過度の溶融による板厚減少を防ぐことができる。   The reason why Fe-Al (Fe solid solution) in the present invention is generated will be described with reference to FIG. FIG. 2 is a binary equilibrium diagram of iron and aluminum. As shown in FIG. 2, Fe—Al (Fe solid solution) is generated between the iron-based member and the aluminum-based member used in the present invention at 1538 ° C. or lower. Further, at 1171 ° C. or lower, an aluminum-rich brittle intermetallic compound is generated, so that the bonding strength between the iron-based member and the aluminum-based member is lowered. Therefore, an electric current is passed from the iron-based member side to the aluminum-based member side and heated, and Fe—Al (Fe solid solution) is generated by keeping the temperature of the joint between both members between 1171 and 1538 ° C. As a result, due to the Peltier effect of the Fe / Fe-Al alloy laminated structure, the iron-based member side becomes high temperature and the aluminum-based member side becomes low temperature, preventing insufficient heat input of the iron-based member, and excessive melting of the aluminum-based member It is possible to prevent the plate thickness from being reduced.

図3に、鉄およびアルミニウムの相互拡散係数と温度との関係を示す。図3より、アルミニウムの温度が低い(約600℃以下)場合は、鉄がアルミニウム中に拡散する速度が小さく、溶融したアルミニウムへ鉄が拡散し難いため、アルミリッチの脆い金属間化合物は生成し難い。一方、鉄の温度が高い(約1000℃以上)場合は、アルミニウムが鉄中に拡散する速度が大きく、溶融した鉄にアルミニウムが拡散するため、鉄リッチの延性な金属間化合物が生成しやすい。本発明者の実験によると、極短時間(20msec)の通電後、抵抗発熱している部材にさらに電流を流す(パルス通電を行う)ことによって上記のぺルチェ効果が得られ、鉄系部材を1000℃以上に加熱しながらも、アルミニウム系部材を融点付近の600℃程度に保持できることがわかった。したがって、本発明においては、パルス通電を行い、鉄系部材およびアルミニウム系部材の温度制御を行いながら接合を実施する。これにより、接合部に鉄リッチの延性な金属間化合物を形成して接合強度を向上することができる。なお、連続的に通電を行うと両部材の温度が上昇し過ぎてしまい、Fe−Al(Fe固溶体)が得られ難く、アルミニウム系部材が過度に溶融して板厚が減少し易い。   FIG. 3 shows the relationship between the interdiffusion coefficient of iron and aluminum and the temperature. As shown in FIG. 3, when the temperature of aluminum is low (about 600 ° C. or less), the rate at which iron diffuses into the aluminum is small and iron hardly diffuses into the molten aluminum, so that an aluminum-rich brittle intermetallic compound is formed. hard. On the other hand, when the temperature of iron is high (about 1000 ° C. or higher), the rate at which aluminum diffuses into the iron is high and the aluminum diffuses into the molten iron, so that an iron-rich ductile intermetallic compound is likely to be generated. According to the experiment of the present inventor, after energizing for an extremely short time (20 msec), the above-mentioned Peltier effect can be obtained by applying a current to the member that is generating resistance heat (performing pulse energization). It was found that the aluminum-based member can be maintained at about 600 ° C. near the melting point while being heated to 1000 ° C. or higher. Therefore, in the present invention, pulse energization is performed and bonding is performed while controlling the temperature of the iron-based member and the aluminum-based member. Thereby, an iron-rich ductile intermetallic compound can be formed at the joint, thereby improving the joint strength. In addition, when energized continuously, the temperature of both members rises too much, and it is difficult to obtain Fe—Al (Fe solid solution), and the aluminum-based member is excessively melted and the plate thickness is likely to decrease.

次に、鉄およびアルミニウムの各温度における電気抵抗率を表1および図4に示す。表1および図4より、鉄とアルミニウムの抵抗比が低温領域において大きいことがわかる。例えば、アルミニウム固相温度領域(600℃以下)において通電を行うと、鉄がアルミニウムに比べて6〜7倍の速度で温度上昇する。この特徴を利用して、両部材が低温の状態において短時間通電を行うと、アルミニウム系部材を高温にせずに、鉄系部材のみを高温とすることができる。この結果、アルミニウム系部材を過度に溶融しないため、アルミリッチの脆い金属間化合物の生成を防ぎながら、上記(1)〜(4)の順に並んだ層が得られる。このため、本発明においては1回目のパルス通電で層が上記(1)〜(4)の順に並んだ状態となるように抵抗溶接を行う。   Next, the electrical resistivity at each temperature of iron and aluminum is shown in Table 1 and FIG. From Table 1 and FIG. 4, it can be seen that the resistance ratio between iron and aluminum is large in the low temperature region. For example, when energization is performed in an aluminum solid phase temperature region (600 ° C. or lower), the temperature of iron rises at a rate 6 to 7 times that of aluminum. Using this feature, when both members are energized for a short time in a low temperature state, only the iron-based member can be heated to a high temperature without increasing the temperature of the aluminum-based member. As a result, since the aluminum-based member is not excessively melted, layers arranged in the order of (1) to (4) can be obtained while preventing the formation of aluminum-rich brittle intermetallic compounds. For this reason, in the present invention, resistance welding is performed so that the layers are arranged in the order of (1) to (4) in the first pulse energization.

Figure 0005231371
Figure 0005231371

また、接合終了時に両部材を1171〜1538℃の状態から急冷することにより液体状態のアルミニウムを急激に固化し、アルミニウムの鉄への拡散を防ぐことができる。これにより、アルミリッチの脆い金属間化合物の生成をさらに効果的に防ぐことができる。さらに、鉄系部材とアルミニウム系部材との接合部においてFe−Al(Fe固溶体)の割合を増加させることができる。   Moreover, by rapidly cooling both members from a temperature of 1171 to 1538 ° C. at the end of joining, liquid aluminum can be rapidly solidified, and diffusion of aluminum into iron can be prevented. Thereby, the production | generation of an aluminum rich brittle intermetallic compound can be prevented further effectively. Furthermore, the proportion of Fe—Al (Fe solid solution) can be increased at the joint between the iron-based member and the aluminum-based member.

以下、具体的な実施例により本発明をさらに詳細に説明する。
鉄系部材(JAC270;合金化溶融亜鉛メッキ鋼板、1.0mm厚)およびアルミニウム系部材(A6022合金、1.2mm厚)を互いに重ね合わせ、鉄系部材側に陽極電極を、アルミニウム系部材側に陰極電極を配置して電極加圧力350kgfにおいて通電を行った。溶接終了時には、両部材が加熱されている状態において通電を停止させて両部材を急冷した。通電条件は図5の通りである。図5(a)はパルス通電の場合であり、図5(b)は連続通電の場合の電流と通電時間とを示している。通電時に光ファイバー型温度測定装置を用いて鉄系部材およびアルミニウム系部材の接合部付近の温度測定を行い、各部材の温度変化について調べた。この結果を図6に示す。また、溶接終了後の鉄系部材およびアルミニウム系部材の接合状態を調べるため、接合部の断面を観察した。この結果を図7に示す。
Hereinafter, the present invention will be described in more detail with reference to specific examples.
An iron-based member (JAC270; alloyed hot-dip galvanized steel sheet, 1.0 mm thick) and an aluminum-based member (A6022 alloy, 1.2 mm thick) are stacked on top of each other, with the anode electrode on the iron-based member side and the aluminum-based member side The cathode electrode was arranged and energized at an electrode pressure of 350 kgf. At the end of welding, energization was stopped while both members were heated, and both members were rapidly cooled. The energization conditions are as shown in FIG. FIG. 5A shows the case of pulse energization, and FIG. 5B shows the current and energization time in the case of continuous energization. During energization, the temperature near the joint between the iron-based member and the aluminum-based member was measured using an optical fiber temperature measuring device, and the temperature change of each member was examined. The result is shown in FIG. Moreover, in order to investigate the joining state of the iron-type member and aluminum-type member after completion | finish of welding, the cross section of the junction part was observed. The result is shown in FIG.

図6(a)はパルス通電を行った場合であり、図6(b)は連続通電を行った場合の鉄系部材およびアルミニウム系部材の温度変化を示すグラフである。図6(a)より、パルス通電を行った場合は、鉄系部材のみを1171〜1538℃に加熱することができ、鉄系部材がこの温度範囲にある間、アルミニウム系部材は約600℃付近に維持されている。一方、図6(b)より、連続通電を行った場合は、鉄系部材が1171〜1538℃の温度範囲にある間、アルミニウム系部材も加熱されて約1000℃程度となっている。このような溶接を行った後の鉄系部材およびアルミニウム系部材の接合部を図7に示す。図7(a)はパルス通電を行った試料、図7(b)は連続通電を行った試料の断面図である。図7(a)および(b)より、パルス通電を行った試料と比べて、連続通電を行った試料はアルミニウム系部材が減肉していることがわかる。これらのことから、連続通電を行うとアルミニウム系部材が高温となって過度に溶融し、接合時に減肉することがわかる。また、連続通電を行った試料の接合強度は1.53kNであったのに対し、パルス通電を行った試料では接合強度が向上し、2.54kNであった。これは、接合部において脆い金属間化合物の生成を防ぐことができたためと考えられる。したがって、パルス通電により溶接を行うことにより、アルミニウム系部材の板厚減少を低減し、十分な接合強度を得られることを確認できた。   FIG. 6A shows a case where pulse energization is performed, and FIG. 6B is a graph showing temperature changes of the iron-based member and the aluminum-based member when continuous energization is performed. As shown in FIG. 6A, when pulse energization is performed, only the iron-based member can be heated to 1171 to 1538 ° C., and while the iron-based member is in this temperature range, the aluminum-based member is about 600 ° C. Is maintained. On the other hand, as shown in FIG. 6B, when continuous energization is performed, the aluminum-based member is also heated to about 1000 ° C. while the iron-based member is in a temperature range of 1171 to 1538 ° C. FIG. 7 shows the joint between the iron-based member and the aluminum-based member after such welding. FIG. 7A is a cross-sectional view of a sample subjected to pulse energization, and FIG. 7B is a cross-sectional view of the sample subjected to continuous energization. 7 (a) and 7 (b), it can be seen that the aluminum member is thinned in the sample subjected to continuous energization compared to the sample subjected to pulse energization. From these facts, it can be seen that, when continuous energization is performed, the aluminum-based member becomes high temperature and melts excessively, resulting in thinning during bonding. The bonding strength of the sample subjected to continuous energization was 1.53 kN, whereas the bonding strength of the sample subjected to pulse energization was improved to 2.54 kN. This is probably because the formation of brittle intermetallic compounds at the joint could be prevented. Therefore, it has been confirmed that by performing welding by pulse energization, the reduction in the thickness of the aluminum-based member can be reduced and sufficient bonding strength can be obtained.

Claims (4)

鉄系部材とアルミニウム系部材とを抵抗溶接する方法であって、
前記鉄系部材側に陽極電極を、前記アルミニウム系部材側に陰極電極を配置し、
前記鉄系部材の外側表面から前記アルミニウム系部材の外側表面に至るまでの層が、
(1)前記鉄系部材(固体)
(2)Fe−Al(Fe固溶体)
(3)Al(液体)
(4)前記アルミニウム系部材(固体)
の順に並んだ状態において通電を行うことを特徴とする抵抗溶接方法。
A method of resistance welding an iron-based member and an aluminum-based member,
An anode electrode is disposed on the iron-based member side, and a cathode electrode is disposed on the aluminum-based member side,
A layer from the outer surface of the iron-based member to the outer surface of the aluminum-based member is
(1) Iron-based member (solid)
(2) Fe-Al (Fe solid solution)
(3) Al (liquid)
(4) The aluminum-based member (solid)
The resistance welding method characterized by performing electricity supply in the state arranged in order.
前記通電はパルス通電であることを特徴とする請求項1に記載の抵抗溶接方法。   The resistance welding method according to claim 1, wherein the energization is pulse energization. 1回目のパルス通電で層が前記(1)〜(4)の順に並んだ状態となるように溶接を行うことを特徴とする請求項1または2に記載の抵抗溶接方法。   The resistance welding method according to claim 1 or 2, wherein welding is performed such that the layers are arranged in the order of (1) to (4) by the first pulse energization. 前記層が前記(1)〜(4)の順に並んだ状態において前記通電を停止させて溶接を終了することを特徴とする請求項1〜3のいずれかに記載の抵抗溶接方法。   The resistance welding method according to any one of claims 1 to 3, wherein the energization is stopped and the welding is terminated in a state where the layers are arranged in the order of (1) to (4).
JP2009236669A 2009-10-13 2009-10-13 Resistance welding method Active JP5231371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009236669A JP5231371B2 (en) 2009-10-13 2009-10-13 Resistance welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009236669A JP5231371B2 (en) 2009-10-13 2009-10-13 Resistance welding method

Publications (2)

Publication Number Publication Date
JP2011083783A JP2011083783A (en) 2011-04-28
JP5231371B2 true JP5231371B2 (en) 2013-07-10

Family

ID=44077132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009236669A Active JP5231371B2 (en) 2009-10-13 2009-10-13 Resistance welding method

Country Status (1)

Country Link
JP (1) JP5231371B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05111776A (en) * 1991-10-14 1993-05-07 Kawasaki Steel Corp Resistance spot welding method for steel sheet and aluminum alloy sheet
JPH09298318A (en) * 1996-05-02 1997-11-18 Katsutoshi Ono Thermoelectric conversion element
JP4476016B2 (en) * 2004-05-10 2010-06-09 日新製鋼株式会社 Manufacturing method of steel / aluminum joint structure
JP4555160B2 (en) * 2005-06-01 2010-09-29 株式会社神戸製鋼所 Steel plate for dissimilar welding with aluminum material and dissimilar material joint
JP2008105087A (en) * 2006-10-27 2008-05-08 Honda Motor Co Ltd Joining method of iron member with aluminum member, and iron-aluminum joined structure
JP2009226467A (en) * 2008-03-25 2009-10-08 Mazda Motor Corp Spot welding method of dissimilar plates, and its apparatus

Also Published As

Publication number Publication date
JP2011083783A (en) 2011-04-28

Similar Documents

Publication Publication Date Title
US20210260704A1 (en) Multi component solid solution high-entropy alloys
Kah et al. Trends in joining dissimilar metals by welding
Liu et al. The mechanisms of resistance spot welding of magnesium to steel
US20210101226A1 (en) Uam transition for fusion welding of dissimilar metal parts
US20150352659A1 (en) Cover plate with intruding feature to improve al-steel spot welding
US20160288242A1 (en) Conical shaped current flow to facilitate dissimilar metal spot welding
JP4502873B2 (en) Resistance spot welding method for aluminum and iron materials
JP5315207B2 (en) Dissimilar material joined body and dissimilar material resistance spot welding method
JP2008200687A (en) Different material joining method of steel and aluminum material
JP2008284570A (en) Method and apparatus for joining different kinds of metal
JP4322081B2 (en) Joining method of aluminum alloy die-casting member
KR102276817B1 (en) Method of Manufacturing Resistance Spot Welded Joints
JP2006224127A (en) Method for manufacturing steel/aluminum joined structure
JP2009226425A (en) Spot welding method of dissimilar plates
JP2012179630A (en) Welded joint of aluminum plate or aluminum alloy plate and steel plate, and method for welding aluminum plate or aluminum alloy plate to steel plate
JP5231371B2 (en) Resistance welding method
JP6153744B2 (en) Manufacturing method of welded joint
JP6094440B2 (en) Resistance welding method of different metal materials and vehicle parts
US20210107086A1 (en) Pretreatment of weld flanges to mitigate liquid metal embrittlement cracking in resistance welding of galvanized steels
JP7003806B2 (en) Joined structure and its manufacturing method
JP2017047449A (en) Metal joint article and manufacturing method of the same
CN113453838A (en) Multi-material component and method for producing same
JP3941001B2 (en) Bonding method of dissimilar metal materials
JP7047543B2 (en) Joined structure and its manufacturing method
JP7003805B2 (en) Joined structure and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5231371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150