JP5231033B2 - Auto tensioner - Google Patents

Auto tensioner Download PDF

Info

Publication number
JP5231033B2
JP5231033B2 JP2008017630A JP2008017630A JP5231033B2 JP 5231033 B2 JP5231033 B2 JP 5231033B2 JP 2008017630 A JP2008017630 A JP 2008017630A JP 2008017630 A JP2008017630 A JP 2008017630A JP 5231033 B2 JP5231033 B2 JP 5231033B2
Authority
JP
Japan
Prior art keywords
cylindrical portion
boss portion
damping
movable member
coil spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008017630A
Other languages
Japanese (ja)
Other versions
JP2009180245A (en
Inventor
滋 河本
Original Assignee
滋 河本
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 滋 河本 filed Critical 滋 河本
Priority to JP2008017630A priority Critical patent/JP5231033B2/en
Publication of JP2009180245A publication Critical patent/JP2009180245A/en
Application granted granted Critical
Publication of JP5231033B2 publication Critical patent/JP5231033B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)

Description

本発明は、ベルトの張力を自動的に適度に保つためのオートテンショナに関する。   The present invention relates to an auto tensioner for automatically maintaining a belt tension appropriately.

例えば自動車エンジンの補機駆動のためのベルトにおいては、エンジン燃焼に起因する回転変動によりベルト張力が変動する。このようなベルト張力の変動に起因してベルトスリップが発生し、そのスリップ音や摩耗などの問題が生じている。これを解決するために、従来から、ベルト張力が変動してもベルトスリップの発生を抑える機構として、オートテンショナが採用されている。   For example, in a belt for driving an auxiliary machine of an automobile engine, the belt tension fluctuates due to rotational fluctuation caused by engine combustion. Belt slip occurs due to such belt tension fluctuations, and problems such as slip noise and wear occur. In order to solve this problem, an auto tensioner has been conventionally employed as a mechanism for suppressing the occurrence of belt slip even when the belt tension varies.

このようなオートテンショナは、エンジンブロック等に固定される固定部材と、ベルトが巻き掛けられるプーリが取り付けられた可動部材と、可動部材を固定部材に対して回動付勢するための捩りコイルスプリングと、固定部材又は可動部材の何れか一方に係合し、他方に摺動可能なダンピング部材とを備えている。可動部材が回動したとき、ダンピング部材と固定部材又は可動部材とが摺動することにより、摩擦力を生じさせて、可動部材(プーリ)の揺動を減衰させている(ダンピング機能)。   Such an auto tensioner includes a fixed member fixed to an engine block and the like, a movable member to which a pulley around which a belt is wound is attached, and a torsion coil spring for biasing the movable member to the fixed member. And a damping member that engages with one of the fixed member and the movable member and is slidable on the other. When the movable member rotates, the damping member and the fixed member or the movable member slide to generate a frictional force to attenuate the swing of the movable member (pulley) (damping function).

また、ベルトの張力が大幅に増加し、可動部材が大きく揺動する場合には、大きな摩擦力を発生させて可動部材の揺動を減衰させることが望ましい。しかし、摩擦力が大きいと、ベルトの張力が減少して可動部材が揺動するとき、捩りコイルスプリングの付勢力が摩擦力によって大幅に減少されるため、可動部材の揺動をベルトの張力変動に追従させることができなくなる。   Further, when the belt tension is greatly increased and the movable member swings greatly, it is desirable to generate a large frictional force to attenuate the swing of the movable member. However, if the frictional force is large, the biasing force of the torsion coil spring is greatly reduced by the frictional force when the belt tension decreases and the movable member swings. Can no longer follow.

このような問題に対しては、可動部材の回動方向に応じて、ダンピング性能を不均衡(非対称)とするようなオートテンショナも提案されてきている。例えば、特許文献1には、固定部材に対して摺動可能な2つの弧状部材からなるダンピング機構を備えたオートテンショナが開示されている。2つの弧状部材の一方は、捩りコイルスプリングに連結されており、他方は、可動部材の回転力が伝達されるように構成されている。また、2つの弧状部材同士は、周方向に関してピボット状に接触している。この構成により、2つの弧状部材と固定部材との間で生じる摩擦力と捩りコイルスプリングの付勢力とからなるダンピング力の大きさが、可動部材の回動方向に応じて異なるようになっている。さらに、2つの弧状部材の接触端の位置を、径方向に関して移動させることにより、2つのダンピングトルクの比(非対称ダンピング係数)を調整することができる。   In order to solve such a problem, an auto tensioner has been proposed in which the damping performance is unbalanced (asymmetric) according to the rotating direction of the movable member. For example, Patent Document 1 discloses an auto tensioner that includes a damping mechanism including two arc-shaped members that are slidable with respect to a fixed member. One of the two arcuate members is connected to a torsion coil spring, and the other is configured to transmit the rotational force of the movable member. Further, the two arc-shaped members are in pivot contact with each other in the circumferential direction. With this configuration, the magnitude of the damping force composed of the frictional force generated between the two arc-shaped members and the fixed member and the biasing force of the torsion coil spring is different depending on the rotation direction of the movable member. . Further, the ratio of the two damping torques (asymmetric damping coefficient) can be adjusted by moving the positions of the contact ends of the two arcuate members in the radial direction.

特表2005−520104号公報JP 2005-520104 A

しかしながら、摩擦力は、摺動面の摩擦係数と摺動面に作用する垂直荷重との積で決まるため、特許文献1のオートテンショナの場合、たとえ非対称ダンピング係数が最大となる位置に2つの弧状部材の接触端の位置を設定したとしても、2つの弧状部材が固定部材に対して摺動する際、2つの弧状部材の摺動面に作用する垂直荷重はそれぞれ一定であるため、一定の摩擦力しか生じさせることができない。そのため、ベルトの張力が大幅に急激に増加した場合に、可動部材の揺動を速やかに減衰させるような大きな減衰力(ダンピング力)を発生させることができない。   However, since the frictional force is determined by the product of the friction coefficient of the sliding surface and the vertical load acting on the sliding surface, in the case of the autotensioner disclosed in Patent Document 1, two arc shapes are provided at the position where the asymmetric damping coefficient is maximized. Even if the position of the contact end of the member is set, the vertical load acting on the sliding surfaces of the two arc-shaped members is constant when the two arc-shaped members slide with respect to the fixed member. Only power can be generated. Therefore, when the belt tension increases drastically, it is impossible to generate a large damping force (damping force) that quickly attenuates the swing of the movable member.

そこで、本発明は、張力変動幅の大きな伝動ベルトにも適用可能な大きな減衰力(ダンピング力)を発生させることができるオートテンショナを提供することを目的とする。   Therefore, an object of the present invention is to provide an auto tensioner that can generate a large damping force (damping force) that can be applied to a transmission belt having a large tension fluctuation range.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

請求項1のオートテンショナは、筒部を有する固定部材と、前記筒部の内側に配置されるボス部を有するとともに、前記ボス部において固定部材に回動自在に支持される可動部材と、前記可動部材における前記ボス部とは反対側の端部に回転自在に設けられ、前記ボス部の軸心を揺動中心として揺動可能であり、且つ、ベルトが巻き掛けられるプーリと、前記筒部と前記ボス部との間に設けられるとともに、その一端が前記固定部材に連結され、前記可動部材を前記固定部材に対して所定方向に回動付勢するための捩りコイルスプリングと、前記捩りコイルスプリングの他端と前記可動部材との間に介在するとともに、前記筒部の内周面に摺動可能なダンピング部材と、を備え、前記ダンピング部材が、前記筒部の周方向に関して並んだ複数の構成部材からなり、前記構成部材の隣接する別の前記構成部材との対向面が、前記筒部の径方向に交差する傾斜面であって、隣接する2つの前記構成部材の前記傾斜面同士が直接接触していることを特徴とする。 The autotensioner according to claim 1 includes a fixed member having a cylindrical portion, a boss portion disposed inside the cylindrical portion, a movable member rotatably supported by the fixed member at the boss portion, A pulley that is rotatably provided at an end portion of the movable member opposite to the boss portion, is swingable about the axis of the boss portion as a swing center, and on which a belt is wound, and the cylindrical portion A torsion coil spring that is provided between the boss portion and one end of which is connected to the fixed member, and that urges the movable member to rotate in a predetermined direction with respect to the fixed member, and the torsion coil A damping member that is interposed between the other end of the spring and the movable member and that is slidable on the inner peripheral surface of the cylindrical portion, and the plurality of damping members are arranged in the circumferential direction of the cylindrical portion. Made components, the surface facing the adjacent other of said components of said structure member, an inclined surface which intersects the radial direction of the cylindrical portion, said inclined faces of two adjacent components It is characterized by direct contact.

この構成によると、ベルト張力が増加することにより、可動部材が回動すると、コイルスプリングと可動部材との間に介在するダンピング部材が筒部の内周面に対して摺動し、ダンピング部材と筒部の内周面との間で摩擦力が発生する。隣接する2つの構成部材の対向する面が傾斜面であるため、ダンピング部材に筒部の周方向の力が作用したとき、筒部の内周面は隣接する2つの構成部材のうちの一方から径方向の力を受ける。これにより、構成部材と筒部との間に生じる摩擦力が増大する。従って、本発明のオートテンショナは、たとえベルトの張力が急激に大幅に増加した場合であっても、この張力の増加を十分に減衰させるような大きな減衰力を発生させることができる。   According to this configuration, when the movable member rotates due to the belt tension increasing, the damping member interposed between the coil spring and the movable member slides with respect to the inner peripheral surface of the cylindrical portion, and the damping member A frictional force is generated between the inner peripheral surface of the cylindrical portion. Since the opposing surfaces of two adjacent constituent members are inclined surfaces, when a circumferential force of the cylindrical portion acts on the damping member, the inner peripheral surface of the cylindrical portion is from one of the two adjacent constituent members. Receives radial force. Thereby, the frictional force which arises between a structural member and a cylinder part increases. Therefore, the auto tensioner of the present invention can generate a large damping force that sufficiently attenuates the increase in tension even when the belt tension increases drastically and greatly.

請求項2のオートテンショナは、筒部を有する固定部材と、前記筒部の内側に配置されるボス部を有するとともに、前記ボス部において固定部材に回動自在に支持される可動部材と、前記可動部材における前記ボス部とは反対側の端部に回転自在に設けられ、前記ボス部の軸心を揺動中心として揺動可能であり、且つ、ベルトが巻き掛けられるプーリと、前記筒部と前記ボス部との間に設けられるとともに、その一端が前記固定部材に連結され、前記可動部材を前記固定部材に対して所定方向に回動付勢するための捩りコイルスプリングと、前記捩りコイルスプリングの他端と前記可動部材との間に介在するとともに、前記筒部の内周面に摺動可能なダンピング部材と、を備え、前記ダンピング部材が、前記筒部の周方向に関して並んだ複数の構成部材からなり、前記構成部材の隣接する別の前記構成部材との対向面が、前記筒部の径方向に交差する傾斜面であって、対向する2つの前記傾斜面の間に、摩擦抵抗を低減するための低摩擦部材が介在していることを特徴とする。この構成によると、請求項1のオートテンションと同様の効果が得られる。また、隣接する2つの構成部材の傾斜面における摩擦抵抗が低いため、ダンピング部材に筒部の周方向の力が作用したとき、隣接する2つの構成部材のうちの一方から筒部の内周面に作用する径方向の力をより確実に発生させることができる。従って、ダンピング部材と筒部との間で生じる摩擦力を確実に増加させることができる。 The auto tensioner according to claim 2 has a fixed member having a cylindrical portion, a boss portion disposed inside the cylindrical portion, a movable member rotatably supported by the fixed member at the boss portion, A pulley that is rotatably provided at an end portion of the movable member opposite to the boss portion, is swingable about the axis of the boss portion as a swing center, and on which a belt is wound, and the cylindrical portion A torsion coil spring that is provided between the boss portion and one end of which is connected to the fixed member, and that urges the movable member to rotate in a predetermined direction with respect to the fixed member, and the torsion coil A damping member that is interposed between the other end of the spring and the movable member and that is slidable on the inner peripheral surface of the cylindrical portion, and the plurality of damping members are arranged in the circumferential direction of the cylindrical portion. The opposing surface of the constituent member, which is adjacent to the constituent member adjacent to the constituent member, is an inclined surface that intersects the radial direction of the cylindrical portion, and a frictional resistance between the two opposing inclined surfaces. A low-friction member for reducing the above is interposed. According to this configuration, the same effect as that of the auto tension according to the first aspect can be obtained. Further, since the frictional resistance at the inclined surfaces of the two adjacent constituent members is low, when the circumferential force of the cylindrical portion acts on the damping member, the inner peripheral surface of the cylindrical portion from one of the two adjacent constituent members It is possible to more reliably generate the radial force acting on the. Therefore, it is possible to reliably increase the frictional force generated between the damping member and the cylindrical portion.

請求項3のオートテンショナは、筒部を有する固定部材と、前記筒部の内側に配置されるボス部を有するとともに、前記ボス部において固定部材に回動自在に支持される可動部材と、前記可動部材における前記ボス部とは反対側の端部に回転自在に設けられ、前記ボス部の軸心を揺動中心として揺動可能であり、且つ、ベルトが巻き掛けられるプーリと、前記筒部と前記ボス部との間に設けられるとともに、その一端が前記固定部材に連結され、前記可動部材を前記固定部材に対して所定方向に回動付勢するための捩りコイルスプリングと、前記捩りコイルスプリングの他端と前記可動部材との間に介在するとともに、前記筒部の内周面に摺動可能なダンピング部材と、を備え、前記ダンピング部材が、前記筒部の周方向に関して並んだ複数の構成部材からなり、前記構成部材の隣接する別の前記構成部材との対向面が、前記筒部の径方向に交差する傾斜面であって、対向する2つの前記傾斜面が、弾性部材で連結されていることを特徴とする。この構成によると、請求項1のオートテンションと同様の効果が得られる。また、ダンピング部材に筒部の周方向の力が作用したとき、弾性部材が弾性変形することにより、隣接する2つの構成部材のうちの一方から筒部の内周面に作用する径方向の力をより確実に発生させることができる。従って、ダンピング部材と筒部との間で生じる摩擦力を確実に増加させることができる。 The autotensioner according to claim 3 includes a fixed member having a cylindrical portion, a boss portion disposed inside the cylindrical portion, a movable member rotatably supported by the fixed member at the boss portion, A pulley that is rotatably provided at an end portion of the movable member opposite to the boss portion, is swingable about the axis of the boss portion as a swing center, and on which a belt is wound, and the cylindrical portion A torsion coil spring that is provided between the boss portion and one end of which is connected to the fixed member, and that urges the movable member to rotate in a predetermined direction with respect to the fixed member, and the torsion coil A damping member that is interposed between the other end of the spring and the movable member and that is slidable on the inner peripheral surface of the cylindrical portion, and the plurality of damping members are arranged in the circumferential direction of the cylindrical portion. The opposing surface of the constituent member that is adjacent to the constituent member is an inclined surface that intersects the radial direction of the cylindrical portion, and the two opposing inclined surfaces are connected by an elastic member. It is characterized by being. According to this configuration, the same effect as that of the auto tension according to the first aspect can be obtained. In addition, when a circumferential force of the cylindrical portion acts on the damping member, a radial force that acts on the inner peripheral surface of the cylindrical portion from one of the two adjacent constituent members due to elastic deformation of the elastic member. Can be generated more reliably. Therefore, it is possible to reliably increase the frictional force generated between the damping member and the cylindrical portion.

請求項4のオートテンショナは、請求項1〜3の何れかにおいて、前記傾斜面が、前記可動部材の回動軸方向から見て円弧状に形成されていることを特徴とする。この構成によると、ダンピング部材に筒部の周方向の力が作用したとき、隣接する2つの構成部材のうちの一方から筒部の内周面に作用する径方向の力をより確実に発生させることができる。従って、ダンピング部材と筒部との間で生じる摩擦力を確実に増加させることができる。 According to a fourth aspect of the present invention , the autotensioner according to any one of the first to third aspects is characterized in that the inclined surface is formed in an arc shape when viewed from the rotational axis direction of the movable member. According to this configuration, when the circumferential force of the cylindrical portion acts on the damping member, the radial force acting on the inner peripheral surface of the cylindrical portion is more reliably generated from one of the two adjacent structural members. be able to. Therefore, it is possible to reliably increase the frictional force generated between the damping member and the cylindrical portion.

請求項5のオートテンショナは、請求項1〜4の何れかにおいて、前記ダンピング部材が、前記筒部の内周面と前記ボス部の外周面との間に配置されており、前記ダンピング部材に力が作用していない状態において、前記筒部の径方向に関して、前記筒部の内周面及び前記ボス部の外周面の何れかと、前記ダンピング部材との間に隙間が形成されることを特徴とする。この構成によると、構成部材は、隣接する別の構成部材に対して、筒部の径方向に関して相対移動することができる。そのため、ダンピング部材に筒部の周方向の力が作用したとき、隣接する2つの構成部材のうちの一方から筒部の内周面に作用する径方向の力をより確実に発生させることができる。従って、ダンピング部材と筒部との間で生じる摩擦力を確実に増加させることができる。 An auto tensioner according to a fifth aspect is the auto tensioner according to any one of the first to fourth aspects, wherein the damping member is disposed between an inner peripheral surface of the cylindrical portion and an outer peripheral surface of the boss portion. In a state where no force is applied, a gap is formed between the damping member and either the inner peripheral surface of the cylindrical portion or the outer peripheral surface of the boss portion with respect to the radial direction of the cylindrical portion. And According to this structure, a structural member can move relatively with respect to another adjacent structural member regarding the radial direction of a cylinder part. Therefore, when the circumferential force of the cylindrical portion acts on the damping member, the radial force acting on the inner peripheral surface of the cylindrical portion can be more reliably generated from one of the two adjacent components. . Therefore, it is possible to reliably increase the frictional force generated between the damping member and the cylindrical portion.

請求項のオートテンショナは、請求項1〜の何れかにおいて、前記複数の構成部材のうち、前記捩りコイルスプリング側の構成部材には、前記周方向に延びた溝部が形成され、前記捩りコイルスプリングの前記他端が、前記溝部に圧入固定されていることを特徴とする。この構成によると、捩りコイルスプリングの付勢力をダンピング部材に確実に伝達することができる。従って、捩りコイルスプリングの付勢力を、可動部材に確実に伝達することができる。 The autotensioner according to a sixth aspect of the present invention is the autotensioner according to any one of the first to fifth aspects, wherein a groove portion extending in the circumferential direction is formed in the constituent member on the torsion coil spring side among the plurality of constituent members, The other end of the coil spring is press-fitted and fixed in the groove. According to this configuration, the urging force of the torsion coil spring can be reliably transmitted to the damping member. Therefore, the urging force of the torsion coil spring can be reliably transmitted to the movable member.

次に、本発明の実施の形態について説明する。本実施形態は、特に、自動車用エンジンの補機を駆動する伝動ベルトの弛み側張力を一定に保つオートテンショナに本発明を適用した一例である。   Next, an embodiment of the present invention will be described. This embodiment is an example in which the present invention is applied to an auto tensioner that keeps the slack side tension of a transmission belt that drives an auxiliary machine of an automobile engine constant.

本実施形態のオートテンショナ1は、自動車用エンジンのクランクシャフトに連結された駆動プーリ(図示省略)と、オルタネータ等の補機を駆動する従動プーリ(図示省略)とにわたって伝動ベルトが巻き掛けられている補機駆動システムに用いられている。詳細には、オートテンショナ1の後述するプーリは、伝動ベルトの弛み側に接触するように配置されている。この補機駆動システムは、クランクシャフトの回転が伝動ベルトを介して従動プーリに伝達されて、補機が駆動されるようになっている。   In the auto tensioner 1 of this embodiment, a transmission belt is wound around a drive pulley (not shown) connected to a crankshaft of an automobile engine and a driven pulley (not shown) that drives an auxiliary machine such as an alternator. It is used in the auxiliary drive system. Specifically, a pulley, which will be described later, of the auto tensioner 1 is disposed so as to contact the slack side of the transmission belt. In this accessory drive system, the rotation of the crankshaft is transmitted to the driven pulley via the transmission belt, and the accessory is driven.

図1に示すように、本実施形態のオートテンショナ1は、図1中二点鎖線で示すエンジンブロック100に固定されるハウジング(固定部材)2と、このハウジング2に回動自在に支持された可動部材3と、この可動部材3に回転自在に設けられたプーリ4と、可動部材3をハウジング2に対して所定方向に回動付勢する捩りコイルスプリング5と、ダンピング部材6とを備えている。
尚、図1中の上下方向を上下方向、図1中の左右方向を前後方向と定義する。また、図1に示す軸Rを中心とした径方向を単に径方向、軸Rを中心とした周方向を単に周方向と定義する。
As shown in FIG. 1, the auto tensioner 1 of the present embodiment is supported by a housing (fixing member) 2 fixed to an engine block 100 indicated by a two-dot chain line in FIG. A movable member 3, a pulley 4 rotatably provided on the movable member 3, a torsion coil spring 5 that urges the movable member 3 to rotate in a predetermined direction with respect to the housing 2, and a damping member 6 are provided. Yes.
Note that the vertical direction in FIG. 1 is defined as the vertical direction, and the horizontal direction in FIG. 1 is defined as the front-rear direction. Further, the radial direction centered on the axis R shown in FIG. 1 is simply defined as the radial direction, and the circumferential direction centered on the axis R is simply defined as the circumferential direction.

ハウジング2は、例えば、アルミニウム合金鋳物等からなる金属部品であり、エンジンブロック100に固着される環状の固着部20と、固着部の中央部近傍から前方に延びる短円筒状の軸取付部21と、固着部20の外縁部から前方に延びる外筒部(筒部)22とを備えている。また、固着部20の前面には、収容溝20aが形成されている。   The housing 2 is a metal part made of, for example, an aluminum alloy casting or the like, and includes an annular fixing portion 20 fixed to the engine block 100, and a short cylindrical shaft mounting portion 21 extending forward from the vicinity of the central portion of the fixing portion. The outer cylinder part (cylinder part) 22 extended ahead from the outer edge part of the adhering part 20 is provided. An accommodation groove 20 a is formed on the front surface of the fixing portion 20.

軸取付部21には、前後方向に延びた筒状の軸部材7が固定的に取り付けられている。軸部材7には、軸受け8を介して、可動部材3の後述するボス部30が回動自在に外挿されている。軸部材7の前端部には、鍔部7aが形成されている。鍔部7aによって、可動部材3の後述するボス部30が前方に抜け出すのを防止する。   A cylindrical shaft member 7 extending in the front-rear direction is fixedly attached to the shaft attachment portion 21. A boss portion 30 (described later) of the movable member 3 is rotatably inserted into the shaft member 7 via a bearing 8. A flange 7 a is formed at the front end of the shaft member 7. The flange portion 7a prevents a boss portion 30 (described later) of the movable member 3 from coming out forward.

可動部材3は、前後方向に延びたボス部30と、ボス部30の前端に連結された円板状の前壁部31と、前壁部31の外縁の一部から張り出して形成されたプーリ支持部32とを備えている。この可動部材3も、前述のハウジング2と同様に、アルミニウム合金鋳物等からなる金属部品である。   The movable member 3 includes a boss part 30 extending in the front-rear direction, a disk-shaped front wall part 31 connected to the front end of the boss part 30, and a pulley formed by protruding from a part of the outer edge of the front wall part 31. And a support portion 32. This movable member 3 is also a metal part made of an aluminum alloy casting or the like, like the housing 2 described above.

ボス部30は、外筒部22の内側に配置されており、軸受け8を介して軸部材7に回動自在に外挿されている。即ち、可動部材3は、ボス部30において、ハウジング2に回動自在に支持されている。可動部材3の回動の中心は、図2に示す軸Rである。また、ボス部30は、小径部30aと、小径部30aの前端に設けられ、小径部30aよりも外径の大きい大径部30bとからなる。また、図2に示すように、大径部30bの外周面の一部には、径方向に沿って外周側に突出する凸部30cが形成されている。凸部30cと外筒部22の内周面との間には、隙間が形成されている。また、図1に示すように、凸部30cの前面は、前壁部31の後面に連結されている。   The boss portion 30 is disposed inside the outer cylinder portion 22 and is rotatably inserted into the shaft member 7 via the bearing 8. That is, the movable member 3 is rotatably supported by the housing 2 at the boss portion 30. The center of rotation of the movable member 3 is an axis R shown in FIG. The boss portion 30 includes a small-diameter portion 30a and a large-diameter portion 30b that is provided at the front end of the small-diameter portion 30a and has a larger outer diameter than the small-diameter portion 30a. Further, as shown in FIG. 2, a convex portion 30c is formed on a part of the outer peripheral surface of the large-diameter portion 30b so as to protrude to the outer peripheral side along the radial direction. A gap is formed between the convex portion 30 c and the inner peripheral surface of the outer cylinder portion 22. Further, as shown in FIG. 1, the front surface of the convex portion 30 c is connected to the rear surface of the front wall portion 31.

プーリ支持部32は、可動部材3におけるボス部30とは反対側の端部に設けられている。プーリ支持部32には、プーリ4が回転自在に取り付けられている。プーリ4には、伝動ベルト101が巻き掛けられている。伝動ベルト101の張力の増減に伴って、プーリ4は、軸R(ボス部30の軸心)を揺動中心として揺動する。尚、図1中、プーリ4の内部構造は省略して表示している。   The pulley support portion 32 is provided at the end of the movable member 3 on the side opposite to the boss portion 30. A pulley 4 is rotatably attached to the pulley support portion 32. A transmission belt 101 is wound around the pulley 4. As the tension of the transmission belt 101 increases or decreases, the pulley 4 swings about the shaft R (the axis of the boss portion 30) as the swing center. In FIG. 1, the internal structure of the pulley 4 is omitted.

図1に示すように、外筒部22とボス部30との間には、スプリング収容室9が形成されている。スプリング収容室9には、捩りコイルスプリング5が配置されている。捩りコイルスプリング5の一端部(後端)は固着部20の収容溝20aに収容された状態で固定されており、他端部(前端)はダンピング部材6に固定されている。また、詳細については後述するが、ダンピング部材6は、捩りコイルスプリング5と可動部材3の凸部30cとの間に介在している。そのため、捩りコイルスプリング5は、ダンピング部材6を介して、可動部材3をハウジング2に対して所定の方向(図2中矢印Bの方向)、即ち、プーリ4を伝動ベルト101に押し付けて伝動ベルト101の張力を増加させる方向に、回動付勢している。従って、伝動ベルト101の張力が一時的に低下すると、捩りコイルスプリング5の付勢力によって、可動部材3が矢印B方向に回動し、プーリ4が伝動ベルト101の張力を増加させるように揺動する。   As shown in FIG. 1, a spring accommodating chamber 9 is formed between the outer cylinder portion 22 and the boss portion 30. A torsion coil spring 5 is disposed in the spring accommodating chamber 9. One end (rear end) of the torsion coil spring 5 is fixed in a state of being accommodated in the accommodation groove 20 a of the fixing portion 20, and the other end (front end) is fixed to the damping member 6. Moreover, although mentioned later for details, the damping member 6 is interposed between the torsion coil spring 5 and the convex part 30c of the movable member 3. FIG. Therefore, the torsion coil spring 5 is configured such that the movable member 3 is pressed against the housing 2 in a predetermined direction (direction of arrow B in FIG. 2) via the damping member 6, that is, the pulley 4 is pressed against the transmission belt 101. Rotating bias is applied in the direction of increasing the tension of 101. Accordingly, when the tension of the transmission belt 101 temporarily decreases, the urging force of the torsion coil spring 5 causes the movable member 3 to rotate in the direction of arrow B, and the pulley 4 swings so as to increase the tension of the transmission belt 101. To do.

図2に示すように、ダンピング部材6は、軸Rを中心とした半ドーナツ形状に形成されている。ダンピング部材6は、捩りコイルスプリング5の前端部5aと凸部30cとの間に介在しており、且つ、大径部30bの外周面と外筒部22の内周面との間に配置されている。ダンピング部材6の外周面は、外筒部22の内周面と摺動可能となっている。また、ダンピング部材6の前後方向長さは、全てほぼ同じである。   As shown in FIG. 2, the damping member 6 is formed in a half donut shape with the axis R as the center. The damping member 6 is interposed between the front end portion 5a of the torsion coil spring 5 and the convex portion 30c, and is disposed between the outer peripheral surface of the large diameter portion 30b and the inner peripheral surface of the outer cylindrical portion 22. ing. The outer peripheral surface of the damping member 6 is slidable with the inner peripheral surface of the outer cylinder portion 22. Further, the length of the damping member 6 in the front-rear direction is almost the same.

また、ダンピング部材6は、軸Rを中心とする周方向に並んだ第1摩擦部材61と第2摩擦部材62とから構成されている。第1摩擦部材61及び第2摩擦部材62は、剛性の低い材料で形成されている。具体的には、例えば、主成分としてナイロン樹脂を用いた合成樹脂により形成されるが、主成分として、ポリテトラフルオロエチレン樹脂、超高分子量ポリエチレン樹脂、ポリアセタール樹脂及びポリアリレート樹脂等を用いた合成樹脂により形成されてもよい。尚、ダンピング部材6の前面と前壁部31との間には、樹脂フィルム等の低摩擦部材(図示省略)を介在させてもよく、また介在させなくてもよい。   The damping member 6 includes a first friction member 61 and a second friction member 62 that are arranged in the circumferential direction around the axis R. The first friction member 61 and the second friction member 62 are made of a material having low rigidity. Specifically, for example, it is formed of a synthetic resin using a nylon resin as a main component, but a synthesis using a polytetrafluoroethylene resin, an ultrahigh molecular weight polyethylene resin, a polyacetal resin, a polyarylate resin, or the like as a main component. You may form with resin. A low-friction member (not shown) such as a resin film may or may not be interposed between the front surface of the damping member 6 and the front wall portion 31.

第1摩擦部材61には、周方向に延びた溝部61aが形成されており、この溝部61aに捩りコイルスプリング5の前端部5aが圧入固定されている。また、第2摩擦部材62の周方向に関して第1摩擦部材61側と反対側の端面62aは、可動部材3の凸部30cに当接もしくは接着剤等によって固定されている。   A groove 61a extending in the circumferential direction is formed in the first friction member 61, and the front end 5a of the torsion coil spring 5 is press-fitted and fixed to the groove 61a. Further, the end surface 62a opposite to the first friction member 61 side in the circumferential direction of the second friction member 62 is fixed to the convex portion 30c of the movable member 3 by contact or adhesive.

第1摩擦部材61の第2摩擦部材62に対向する面は、径方向に交差する傾斜面61bである。また、第2摩擦部材62の第1摩擦部材61に対向する面は、径方向に交差する傾斜面62bである。第1摩擦部材61と第2摩擦部材62は、この傾斜面61b、62bにおいて直接接触している。つまり、第1摩擦部材61と第2摩擦部材62は、周方向に関して直接接触している。傾斜面61b、62bは、軸R方向から見て径方向に交差するように傾斜しており、さらに、その傾斜方向は、外筒部22の内周面側に向かうにつれて捩りコイルスプリング5に近づく方向である。また、傾斜面61b、62bは、軸R方向から見て、外周側に膨らんだ円弧状曲面に形成されている。傾斜面61b、62bの円弧の中心は、軸Rに対して偏心している。   The surface of the first friction member 61 that faces the second friction member 62 is an inclined surface 61b that intersects the radial direction. The surface of the second friction member 62 that faces the first friction member 61 is an inclined surface 62b that intersects in the radial direction. The first friction member 61 and the second friction member 62 are in direct contact with each other on the inclined surfaces 61b and 62b. That is, the first friction member 61 and the second friction member 62 are in direct contact with each other in the circumferential direction. The inclined surfaces 61b and 62b are inclined so as to intersect the radial direction when viewed from the axis R direction, and the inclined direction approaches the torsion coil spring 5 toward the inner peripheral surface side of the outer cylindrical portion 22. Direction. In addition, the inclined surfaces 61b and 62b are formed in an arcuate curved surface that swells to the outer peripheral side when viewed from the axis R direction. The centers of the arcs of the inclined surfaces 61b and 62b are eccentric with respect to the axis R.

また、図示は省略するが、ダンピング部材6に力が作用していない状態において、ダンピング部材6の径方向長さは、外筒部22の内周面と大径部30bの外周面との間隔よりも僅かに小さい。つまり、ダンピング部材6に力が作用していない状態において、径方向に関して、外筒部22の内周面及び大径部30bの外周面の何れかと、ダンピング部材6との間には、隙間が形成されている。そのため、第1摩擦部材61及び第2摩擦部材62は、傾斜面61b、62bにおいて、互いにスライド移動可能となっている。   Although not shown, in the state where no force is applied to the damping member 6, the radial length of the damping member 6 is the distance between the inner peripheral surface of the outer cylindrical portion 22 and the outer peripheral surface of the large diameter portion 30b. Slightly smaller than. That is, in a state where no force is applied to the damping member 6, there is a gap between the damping member 6 and either the inner peripheral surface of the outer cylindrical portion 22 or the outer peripheral surface of the large diameter portion 30 b in the radial direction. Is formed. Therefore, the first friction member 61 and the second friction member 62 are slidable relative to each other on the inclined surfaces 61b and 62b.

また、第1摩擦部材61及び第2摩擦部材62の周方向長さは長い方が好ましい。具体的には、第1摩擦部材61の内周面、及び、第2摩擦部材62の外周面の軸Rを中心とした角度範囲は、例えば60〜150°であることが好ましい。   Moreover, the one where the circumferential direction length of the 1st friction member 61 and the 2nd friction member 62 is longer is preferable. Specifically, the angle range around the axis R of the inner peripheral surface of the first friction member 61 and the outer peripheral surface of the second friction member 62 is preferably 60 to 150 °, for example.

次に、傾斜面61b、62bの形状について詳細に説明する。
図3に示すように、軸R(図2参照)から放射状に延びた任意の3つの直線をR1、R2、R3とする。直線R1上に任意の点A1を設定し、この点A1を通り、直線R1に直交する直線をLとする。そして、直線Lに対して角度α傾いた直線を傾斜線M1とする。また、直線R2、R3についても同様に、任意の点A2、A3をそれぞれ設定し、この点A2、A3から傾斜線M2、M3を設定する。これら傾斜線M1、M2、M3に略接する円弧が、傾斜面61b、62bの円弧である。角度αは、例えば、15〜35°の範囲内に設定される。
Next, the shape of the inclined surfaces 61b and 62b will be described in detail.
As shown in FIG. 3, arbitrary three straight lines extending radially from the axis R (see FIG. 2) are R1, R2, and R3. An arbitrary point A1 is set on the straight line R1, and a straight line passing through the point A1 and orthogonal to the straight line R1 is set to L. A straight line inclined by an angle α with respect to the straight line L is defined as an inclined line M1. Similarly, arbitrary points A2 and A3 are set for the straight lines R2 and R3, and inclined lines M2 and M3 are set from these points A2 and A3. Arcs that are substantially in contact with the inclined lines M1, M2, and M3 are arcs of the inclined surfaces 61b and 62b. For example, the angle α is set within a range of 15 to 35 °.

次に、オートテンショナ1の動作について説明する。
伝動ベルト101の張力が増加した場合、可動部材3は、図2に示す矢印A方向に回動する。そのため、図4(a)に示すように、ダンピング部材6は凸部30cから力Fa0を受け、ダンピング部材6は矢印A方向に回動し、ダンピング部材6の外周面と外筒部22の内周面との間には摩擦力が生じる。このとき、第2摩擦部材62が矢印A方向の力を受けることにより、第2摩擦部材62の傾斜面62bは、傾斜面61bに沿って外筒部22側へスライド移動し、第2摩擦部材62の外周面は、外筒部22の内周面に押し付けられる。つまり、外筒部22の内周面は、第2摩擦部材62から径方向の力Fa2を受ける。この力Fa2により、第2摩擦部材62と外筒部22との間に作用する摩擦力が増大する。このように、可動部材3が矢印A方向に回動すると、ダンピング部材6とハウジング2との間に大きな摩擦力が発生し、可動部材3の回動にブレーキが掛かる。従って、たとえ伝動ベルト101の張力が急激に大幅に増加した場合であっても、この張力の増加を十分に減衰させるような大きな減衰力を発生させることができる。
Next, the operation of the auto tensioner 1 will be described.
When the tension of the transmission belt 101 increases, the movable member 3 rotates in the direction of arrow A shown in FIG. Therefore, as shown in FIG. 4A, the damping member 6 receives the force Fa0 from the convex portion 30c, the damping member 6 rotates in the direction of arrow A, and the outer peripheral surface of the damping member 6 and the inner cylindrical portion 22 A frictional force is generated between the peripheral surface. At this time, when the second friction member 62 receives the force in the direction of arrow A, the inclined surface 62b of the second friction member 62 slides toward the outer cylinder portion 22 along the inclined surface 61b, and the second friction member The outer peripheral surface of 62 is pressed against the inner peripheral surface of the outer cylindrical portion 22. That is, the inner peripheral surface of the outer cylindrical portion 22 receives the radial force Fa <b> 2 from the second friction member 62. By this force Fa2, the frictional force acting between the second friction member 62 and the outer cylinder part 22 increases. As described above, when the movable member 3 rotates in the direction of arrow A, a large frictional force is generated between the damping member 6 and the housing 2, and a brake is applied to the rotation of the movable member 3. Therefore, even if the tension of the transmission belt 101 increases drastically and greatly, a large damping force that sufficiently attenuates the increase in tension can be generated.

逆に、伝動ベルト101の張力が減少した場合、捩りコイルスプリング5の付勢力により、可動部材3が図2に示す矢印Bの方向に回動する。この場合、図4(b)に示すように、ダンピング部材6は捩りコイルスプリング5から力Fb0を受け、ダンピング部材6は矢印B方向に回動し、ダンピング部材6の外周面と外筒部22の内周面との間には摩擦力が生じる。このとき、第1摩擦部材61が矢印B方向の力を受けることにより、第1摩擦部材61の傾斜面61bは、傾斜面62bに沿って大径部30b側へスライド移動し、大径部30bの外周面は、第1摩擦部材61から径方向の力Fb1を受ける。一方、第1摩擦部材61の外筒部22の内周面への押し付け力は弱められ、第1摩擦部材61と外筒部22との間に作用する摩擦力が低減する。このように、可動部材3が矢印B方向に回動すると、ダンピング部材6とハウジング2との間には、可動部材3が矢印A方向に回動した場合に比べて小さい摩擦力が発生する。そのため、可動部材3は捩りコイルスプリング5の付勢力を十分に受けることができ、たとえ伝動ベルト101の張力が急激に大幅に減少した場合であっても、可動部材3の揺動をこの張力の減少に対して十分に追従させることができる。   On the contrary, when the tension of the transmission belt 101 decreases, the movable member 3 rotates in the direction of arrow B shown in FIG. 2 by the urging force of the torsion coil spring 5. In this case, as shown in FIG. 4B, the damping member 6 receives the force Fb0 from the torsion coil spring 5, and the damping member 6 rotates in the direction of arrow B, so that the outer peripheral surface of the damping member 6 and the outer cylinder portion 22 are rotated. A frictional force is generated between the inner peripheral surface of the member. At this time, when the first friction member 61 receives a force in the direction of arrow B, the inclined surface 61b of the first friction member 61 slides toward the large diameter portion 30b along the inclined surface 62b, and the large diameter portion 30b. The outer peripheral surface receives a radial force Fb <b> 1 from the first friction member 61. On the other hand, the pressing force of the first friction member 61 against the inner peripheral surface of the outer cylinder portion 22 is weakened, and the friction force acting between the first friction member 61 and the outer cylinder portion 22 is reduced. Thus, when the movable member 3 rotates in the arrow B direction, a smaller frictional force is generated between the damping member 6 and the housing 2 than when the movable member 3 rotates in the arrow A direction. For this reason, the movable member 3 can sufficiently receive the urging force of the torsion coil spring 5, and even if the tension of the transmission belt 101 is drastically reduced, the swing of the movable member 3 is controlled by this tension. It is possible to sufficiently follow the decrease.

また、上述したように、捩りコイルスプリング5の前端部5aは、第1構成部材に形成された溝部61aに圧入固定されている。この構成により、捩りコイルスプリング5の付勢力をダンピング部材6に確実に伝達することができる。従って、捩りコイルスプリング5の付勢力を可動部材3に確実に伝達することができる。   As described above, the front end portion 5a of the torsion coil spring 5 is press-fitted and fixed to the groove portion 61a formed in the first component member. With this configuration, the urging force of the torsion coil spring 5 can be reliably transmitted to the damping member 6. Therefore, the urging force of the torsion coil spring 5 can be reliably transmitted to the movable member 3.

また、上述したように第1摩擦部材61及び第2摩擦部材62は曲げ剛性の低い合成樹脂材料で形成されているが、仮に、曲げ剛性の高い材料で形成された場合、ダンピング部材6の回動方向(周方向)と、スライド移動方向(傾斜面61b、62bの方向)とは互いに異なるため、第1摩擦部材61及び第2摩擦部材62は、異なる2方向に同時に動くことが困難となる。本実施形態では、第1摩擦部材61及び第2摩擦部材62は曲げ剛性の低い合成樹脂材料で形成されているため、第1摩擦部材61及び第2摩擦部材62は異なる2方向(回動方向とスライド移動方向)に同時に動くことが可能である。   Further, as described above, the first friction member 61 and the second friction member 62 are formed of a synthetic resin material having a low bending rigidity. However, if the first friction member 61 and the second friction member 62 are formed of a material having a high bending rigidity, the damping member 6 is rotated. Since the movement direction (circumferential direction) and the slide movement direction (directions of the inclined surfaces 61b and 62b) are different from each other, it is difficult for the first friction member 61 and the second friction member 62 to move simultaneously in two different directions. . In the present embodiment, since the first friction member 61 and the second friction member 62 are formed of a synthetic resin material having low bending rigidity, the first friction member 61 and the second friction member 62 are in two different directions (rotating directions). And slide movement direction) at the same time.

また、上述したように、傾斜面61b、62bは外周側に膨らんだ円弧状曲面に形成されている。そのため、傾斜面が平面に形成されている場合に比べて、スライド移動方向が回動方向に近くなるため、第1摩擦部材61及び第2摩擦部材62が、回動方向とスライド移動方向に同時に移動しやすくなる。   Further, as described above, the inclined surfaces 61b and 62b are formed into arcuate curved surfaces that swell toward the outer periphery. Therefore, compared with the case where the inclined surface is formed as a flat surface, the slide movement direction is closer to the rotation direction, so that the first friction member 61 and the second friction member 62 are simultaneously in the rotation direction and the slide movement direction. It becomes easy to move.

また、傾斜面61b、62bの図3に示す角度αが15°未満の場合、第1摩擦部材61又は第2摩擦部材62が傾斜面61b、62bにおいてスライドしやすいため、傾斜面61b、62bが摩耗し過ぎる。逆に、角度αが35°を超える場合、傾斜が小さいため、スライドしにくくなる。そのため、角度αは、15〜35°の範囲内の値に設定することが好ましい。   Further, when the angle α shown in FIG. 3 of the inclined surfaces 61b and 62b is less than 15 °, the first friction member 61 or the second friction member 62 easily slides on the inclined surfaces 61b and 62b. Wear too much. On the other hand, when the angle α exceeds 35 °, the inclination is small, and it becomes difficult to slide. For this reason, the angle α is preferably set to a value within the range of 15 to 35 °.

次に、第2摩擦部材62の周方向長さが長い方が好ましい理由について説明する。図4(a)に示すように、第2摩擦部材62が凸部30cから直接受ける力Fa0は、端面62bにおける接線方向の力(直線方向の力)である。力Fa0の一部の力Fa1が、外筒部22の内周面に作用することにより、第2摩擦部材62に作用する力の方向が力Fa0の方向から周方向に変えられて、第2摩擦部材62は周方向に回動する。このとき、力Fa1によって、第2摩擦部材62と外筒部22との間に作用する摩擦力が増大する。第2摩擦部材62の長さが短い場合、第2摩擦部材62を回動させるための力Fa1は不要となる、もしくは、その大きさが小さくなる。従って、第2摩擦部材62の周方向長さが長いほど、第2摩擦部材62と外筒部22との間で生じる摩擦力を増加させることができる。従って、第2摩擦部材62の周方向長さは長い方が好ましい。具体的には、第2摩擦部材62の外周面の軸Rを中心とした角度が、60〜150°の範囲内であるような周方向長さであることが好ましい。   Next, the reason why a longer circumferential direction length of the second friction member 62 is preferable will be described. As shown in FIG. 4A, the force Fa0 directly received by the second friction member 62 from the convex portion 30c is a tangential force (linear force) at the end face 62b. When a part of the force Fa0 acts on the inner peripheral surface of the outer cylindrical portion 22, the direction of the force acting on the second friction member 62 is changed from the direction of the force Fa0 to the circumferential direction. The friction member 62 rotates in the circumferential direction. At this time, the frictional force acting between the second friction member 62 and the outer cylindrical portion 22 is increased by the force Fa1. When the length of the second friction member 62 is short, the force Fa1 for rotating the second friction member 62 becomes unnecessary or the size thereof becomes small. Therefore, the longer the circumferential length of the second friction member 62 is, the more the friction force generated between the second friction member 62 and the outer cylinder portion 22 can be increased. Therefore, it is preferable that the circumferential length of the second friction member 62 is long. Specifically, the circumferential length is preferably such that the angle around the axis R of the outer peripheral surface of the second friction member 62 is in the range of 60 to 150 °.

次に、第1摩擦部材61の周方向長さが長い方が好ましい理由について説明する。図4(b)に示すように、第1摩擦部材61が捩りコイルスプリング5から力Fb0を受けたとき、第1摩擦部材61から大径部30bに向けて径方向の力Fb1が生じる。第1摩擦部材61の周方向長さが長いほど、周方向に関して、捩りコイルスプリング5の前端部5aと力Fb1との位置が離れることとなる。捩りコイルスプリング5の前端部5aと力Fb1との位置がある程度離れている場合、力Fb1の一部を、捩りコイルスプリング5を矢印Bの方向に変形(回転)させるために利用することができ、結果的に、捩りコイルスプリング5の変形をスムーズに行うことができる。従って、第1摩擦部材61の周方向長さは、長い方が好ましい。具体的には、第1摩擦部材61の内周面の軸Rを中心とした角度が、60〜150°の範囲内であるような周方向長さであることが好ましい。   Next, the reason why a longer circumferential length of the first friction member 61 is preferable will be described. As shown in FIG. 4B, when the first friction member 61 receives a force Fb0 from the torsion coil spring 5, a radial force Fb1 is generated from the first friction member 61 toward the large diameter portion 30b. As the circumferential direction length of the first friction member 61 is longer, the positions of the front end portion 5a of the torsion coil spring 5 and the force Fb1 are separated in the circumferential direction. When the position of the front end portion 5a of the torsion coil spring 5 and the force Fb1 is somewhat apart, a part of the force Fb1 can be used to deform (rotate) the torsion coil spring 5 in the direction of arrow B. As a result, the torsion coil spring 5 can be smoothly deformed. Therefore, it is preferable that the circumferential length of the first friction member 61 is long. Specifically, the circumferential length is preferably such that the angle around the axis R of the inner peripheral surface of the first friction member 61 is in the range of 60 to 150 °.

また、ダンピング部材6の前面と前壁部31との間に、樹脂フィルム等の低摩擦部材(図示省略)を介在させた場合、第1摩擦部材61及び第2摩擦部材62と前壁部31との間の摩擦抵抗がそれぞれ低減する。そのため、このような低摩擦部材を介在させていない場合に比べて、第1摩擦部材61及び第2摩擦部材62が、それぞれ傾斜面62b、61bに沿ってスライド移動しやすくなる。   Further, when a low friction member (not shown) such as a resin film is interposed between the front surface of the damping member 6 and the front wall portion 31, the first friction member 61 and the second friction member 62 and the front wall portion 31. The frictional resistance between the two decreases. Therefore, compared with the case where such a low friction member is not interposed, the first friction member 61 and the second friction member 62 are easily slid along the inclined surfaces 62b and 61b, respectively.

次に、前記実施形態に種々の変更を加えた変更形態について説明する。但し、前記実施形態と同様の構成を有するものについては、同じ符号を用いて適宜その説明を省略する。   Next, modified embodiments in which various modifications are made to the embodiment will be described. However, about the thing which has the structure similar to the said embodiment, the description is abbreviate | omitted suitably using the same code | symbol.

1]ダンピング部材としては、第1摩擦部材61と第2摩擦部材62とが、傾斜面61b、62bにおいて、直接接触するように構成されていなくてもよい。例えば、図5(a)に示すように、傾斜面61b、62bの間に、摩擦抵抗を低減するための低摩擦部材63が介在しているダンピング部材106であってもよい(第1変更形態)。低摩擦部材63としては、図5(b)に示すように、複数の直方体形状の袋体63aが連結されたものを用いることができる。袋体63aは、樹脂フィルムで形成され、空気を内包している。樹脂フィルムの樹脂材料としては、例えば、ポリアミド、ポリテロラフルオロエチレン、ポリエ
チレンテレフタレート等を用いることができる。また、低摩擦部材63が介在した状態での傾斜面61b、62b間の摩擦係数は、0.01〜0.06の範囲内に設定することが好ましい。尚、低摩擦部材としては、1枚又は複数枚を積層した樹脂フィルムを用いてもよい。
1] As a damping member, the 1st friction member 61 and the 2nd friction member 62 do not need to be comprised so that it may contact directly in the inclined surfaces 61b and 62b. For example, as shown to Fig.5 (a), the damping member 106 in which the low friction member 63 for reducing frictional resistance is interposed between the inclined surfaces 61b and 62b may be sufficient (1st modification). ). As the low friction member 63, as shown in FIG. 5B, a member in which a plurality of rectangular parallelepiped bag bodies 63a are connected can be used. The bag body 63a is formed of a resin film and encloses air. As the resin material of the resin film, for example, polyamide, polyterafluoroethylene, polyethylene terephthalate, or the like can be used. The friction coefficient between the inclined surfaces 61b and 62b with the low friction member 63 interposed is preferably set within a range of 0.01 to 0.06. In addition, as a low friction member, you may use the resin film which laminated | stacked 1 sheet or several sheets.

傾斜面61b、62b間に低摩擦部材63を介在させることにより、第2摩擦部材62が図2に示す矢印A方向の力を受けたとき、第2摩擦部材62は、傾斜面61bに沿って外筒部22側へより確実にスライド移動することができ、第2摩擦部材62から外筒部22の内周面に作用する径方向の力を確実に生じさせることができる。従って、第2摩擦部材62と外筒部22との間に作用する摩擦力を確実に増加させることができる。但し、前記実施形態のように、傾斜面61b、62b同士が直接接触している場合、ダンピング部材6の構成を比較的簡易に実現することができる。この点においては、本変更形態よりも前記実施形態の方が好ましい。   By interposing the low friction member 63 between the inclined surfaces 61b and 62b, when the second friction member 62 receives a force in the direction of arrow A shown in FIG. 2, the second friction member 62 is moved along the inclined surface 61b. The sliding movement to the outer cylinder part 22 side can be performed more reliably, and the radial force acting on the inner peripheral surface of the outer cylinder part 22 from the second friction member 62 can be generated reliably. Therefore, the frictional force acting between the second friction member 62 and the outer cylinder portion 22 can be reliably increased. However, when the inclined surfaces 61b and 62b are in direct contact with each other as in the above-described embodiment, the configuration of the damping member 6 can be realized relatively easily. In this respect, the embodiment is more preferable than the modified embodiment.

2]また、例えば、傾斜面61b、62bとが、複数の板バネ(弾性部材)64で連結されているダンピング部材206であってもよい(第2変更形態)。板バネ64は、周方向における両端部が、傾斜面61b、62bにそれぞれ圧入固定されている。第2摩擦部材62が図2に示す矢印A方向の力を受けたとき、板バネ64が弾性変形することにより、第2摩擦部材62は、第1摩擦部材61に対して外筒部22側へ相対移動しやすい。従って、第2摩擦部材62から外筒部22の内周面に作用する径方向の力を確実に生じさせることができる。これにより、第2摩擦部材62と外筒部22との間に作用する摩擦力を確実に増加させることができる。そして、第1摩擦部材61と外筒部22との間に作用する摩擦力を確実に減少させることができる。尚、本変更形態では、弾性部材として複数の板バネを用いたが、例えば、ゴム材料で形成された弾性部材を用いてもよい。 2] Further, for example, the damping members 206 may be connected to the inclined surfaces 61b and 62b by a plurality of leaf springs (elastic members) 64 (second modified embodiment). Both ends of the leaf spring 64 in the circumferential direction are press-fitted and fixed to the inclined surfaces 61b and 62b, respectively. When the second friction member 62 receives a force in the direction of arrow A shown in FIG. 2, the leaf spring 64 is elastically deformed so that the second friction member 62 is closer to the outer cylinder portion 22 side than the first friction member 61. Easy to move relative to. Therefore, a radial force acting on the inner peripheral surface of the outer cylinder portion 22 from the second friction member 62 can be generated reliably. As a result, the frictional force acting between the second friction member 62 and the outer cylindrical portion 22 can be reliably increased. And the frictional force which acts between the 1st friction member 61 and the outer cylinder part 22 can be reduced reliably. In this modification, a plurality of leaf springs are used as the elastic member. However, for example, an elastic member formed of a rubber material may be used.

3]ダンピング部材は、2つの摩擦部材(第1摩擦部材61と第2摩擦部材)からなるものに限定されず、3つ以上の摩擦部材からなるものであってもよい。例えば、図7に示すように、周方向に並んだ第1摩擦部材65と第2摩擦部材66と第3摩擦部材67からなるダンピング部材306であってもよい(第3変更形態)。第1摩擦部材65には、溝部65aが形成されており、この溝部65aに捩りコイルスプリング5の前端部5aが圧入固定されている。また、第3摩擦部材67の周方向における端面67aは、凸部30cに当接又は接着されている。また、第1摩擦部材65と第2摩擦部材66とは、対向する傾斜面65b、66aをそれぞれ有しており、この傾斜面65b、66aにおいて直接接触している。また、第2摩擦部材66と第3摩擦部材67とは、対向する傾斜面66b、67bをそれぞれ有しており、傾斜面66b、67bにおいて直接接触している。 3] The damping member is not limited to the one composed of two friction members (the first friction member 61 and the second friction member), and may be composed of three or more friction members. For example, as shown in FIG. 7, the damping member 306 which consists of the 1st friction member 65, the 2nd friction member 66, and the 3rd friction member 67 which were located in a line with the circumferential direction may be sufficient (3rd modification form). A groove 65a is formed in the first friction member 65, and the front end 5a of the torsion coil spring 5 is press-fitted and fixed to the groove 65a. Moreover, the end surface 67a in the circumferential direction of the third friction member 67 is in contact with or bonded to the convex portion 30c. Moreover, the 1st friction member 65 and the 2nd friction member 66 have the inclined surfaces 65b and 66a which oppose, respectively, and are contacting directly in these inclined surfaces 65b and 66a. The second friction member 66 and the third friction member 67 have inclined surfaces 66b and 67b facing each other, and are in direct contact with each other on the inclined surfaces 66b and 67b.

この構成によると、伝動ベルト101の張力が増加し、凸部30cによって、第3摩擦部材67が図7に示す矢印A方向の力を受けたとき、第3摩擦部材67の傾斜面67bは、傾斜面66bに沿って外筒部22側へスライド移動し、第3摩擦部材67と外筒部22との間に作用する摩擦力が増大する。さらに、第2摩擦部材66は、第3摩擦部材から矢印A方向の力を受けるため、第2摩擦部材66の傾斜面66aは、傾斜面65bに沿って外筒部22側へスライド移動し、第2摩擦部材66と外筒部22との間に作用する摩擦力が増大する。このように、伝動ベルト101の張力が増加したとき、ダンピング部材6とハウジング2との間に大きな摩擦力を発生させ、ベルト張力の変動を減衰させることができる。
また、逆に、伝動ベルト101の張力が減少し、捩りコイルスプリング5によって、第1摩擦部材65が矢印B方向の力を受けたとき、第1摩擦部材65の傾斜面65bは、傾斜面66aに沿って大径部30b側へスライド移動し、第1摩擦部材65と外筒部22との間に作用する摩擦力が低減する。さらに、第2摩擦部材66は、第1摩擦部材65から矢印B方向の力を受けるため、第2摩擦部材66の傾斜面66bは、傾斜面67bに沿って大径部30b側へスライド移動し、第2摩擦部材66と外筒部22との間には作用する摩擦力が低減する。このように、伝動ベルト101の張力が減少したときは、ダンピング部材6とハウジング2との間に、張力が増加した場合に比べて小さい摩擦力を発生させ、捩りコイルスプリング5の付勢力を可動部材3に確実に伝達することができる。
According to this configuration, when the tension of the transmission belt 101 increases and the third friction member 67 receives a force in the direction of arrow A shown in FIG. 7 by the convex portion 30c, the inclined surface 67b of the third friction member 67 is The sliding movement to the outer cylinder part 22 side along the inclined surface 66b increases the frictional force acting between the third friction member 67 and the outer cylinder part 22. Furthermore, since the second friction member 66 receives a force in the direction of arrow A from the third friction member, the inclined surface 66a of the second friction member 66 slides toward the outer cylinder portion 22 along the inclined surface 65b, The frictional force acting between the second friction member 66 and the outer cylinder part 22 increases. As described above, when the tension of the transmission belt 101 increases, a large frictional force is generated between the damping member 6 and the housing 2, and the fluctuation of the belt tension can be attenuated.
Conversely, when the tension of the transmission belt 101 decreases and the first friction member 65 receives a force in the direction of the arrow B by the torsion coil spring 5, the inclined surface 65b of the first friction member 65 becomes the inclined surface 66a. And the frictional force acting between the first friction member 65 and the outer cylindrical portion 22 is reduced. Further, since the second friction member 66 receives a force in the direction of arrow B from the first friction member 65, the inclined surface 66b of the second friction member 66 slides toward the large diameter portion 30b along the inclined surface 67b. The frictional force acting between the second friction member 66 and the outer cylinder portion 22 is reduced. Thus, when the tension of the transmission belt 101 decreases, a smaller frictional force is generated between the damping member 6 and the housing 2 than when the tension increases, and the urging force of the torsion coil spring 5 is movable. Transmission to the member 3 can be ensured.

本発明の実施形態のオートテンショナの断面図である。It is sectional drawing of the auto tensioner of embodiment of this invention. 図1のII-II線断面図である。It is the II-II sectional view taken on the line of FIG. 図2の傾斜面近傍の拡大断面図である。FIG. 3 is an enlarged sectional view in the vicinity of an inclined surface in FIG. 2. (a)はベルト張力が増加したときにダンピング部材に作用する力を示した図であり、(b)はベルト張力が減少したときにダンピング部材に作用する力を示した図である。(A) is the figure which showed the force which acts on a damping member when belt tension increases, (b) is the figure which showed the force which acts on a damping member when belt tension reduces. 本発明の第1変更形態における、(a)はダンピング部材の一部拡大断面図であり、(b)は低摩擦部材の斜視図である。In the 1st modification of this invention, (a) is a partially expanded sectional view of a damping member, (b) is a perspective view of a low friction member. 本発明の第2変更形態におけるダンピング部材の一部拡大断面図である。It is a partial expanded sectional view of the damping member in the 2nd modification of the present invention. 本発明の第3変更形態におけるオートテンショナの断面図であり、図2に相当する図である。It is sectional drawing of the auto tensioner in the 3rd modification of this invention, and is a figure equivalent to FIG.

符号の説明Explanation of symbols

1 オートテンショナ
2 ハウジング(固定部材)
3 可動部材
4 プーリ
5 捩りコイルスプリング
6、106、206、306 ダンピング部材
22 外筒部(筒部)
30 ボス部
30b 大径部
61 第1摩擦部材
61a 溝部
61b 傾斜面
62 第2摩擦部材
62b 傾斜面
63 低摩擦部材
64 板バネ(弾性部材)
65 第1摩擦部材
65a 溝部
65b 傾斜面
66 第2摩擦部材
66a 傾斜面
66b 傾斜面
67 第3摩擦部材
67b 傾斜面
1 Auto tensioner 2 Housing (fixing member)
3 Movable member 4 Pulley 5 Torsion coil spring 6, 106, 206, 306 Damping member 22 Outer cylinder part (cylinder part)
30 Boss portion 30b Large diameter portion 61 First friction member 61a Groove portion 61b Inclined surface 62 Second friction member 62b Inclined surface 63 Low friction member 64 Leaf spring (elastic member)
65 First friction member 65a Groove portion 65b Inclined surface 66 Second friction member 66a Inclined surface 66b Inclined surface 67 Third friction member 67b Inclined surface

Claims (6)

筒部を有する固定部材と、
前記筒部の内側に配置されるボス部を有するとともに、前記ボス部において固定部材に回動自在に支持される可動部材と、
前記可動部材における前記ボス部とは反対側の端部に回転自在に設けられ、前記ボス部の軸心を揺動中心として揺動可能であり、且つ、ベルトが巻き掛けられるプーリと、
前記筒部と前記ボス部との間に設けられるとともに、その一端が前記固定部材に連結され、前記可動部材を前記固定部材に対して所定方向に回動付勢するための捩りコイルスプリングと、
前記捩りコイルスプリングの他端と前記可動部材との間に介在するとともに、前記筒部の内周面に摺動可能なダンピング部材と、を備え、
前記ダンピング部材が、前記筒部の周方向に関して並んだ複数の構成部材からなり、
前記構成部材の隣接する別の前記構成部材との対向面が、前記筒部の径方向に交差する傾斜面であって、隣接する2つの前記構成部材の前記傾斜面同士が直接接触していることを特徴とするオートテンショナ。
A fixing member having a cylindrical portion;
A movable member that has a boss portion arranged inside the cylindrical portion and is rotatably supported by a fixed member in the boss portion;
A pulley that is rotatably provided at an end of the movable member opposite to the boss portion, is swingable about the axis of the boss portion as a swing center, and on which a belt is wound;
A torsion coil spring provided between the cylindrical portion and the boss portion, one end of which is connected to the fixed member, and for urging the movable member in a predetermined direction with respect to the fixed member;
A damping member interposed between the other end of the torsion coil spring and the movable member, and slidable on the inner peripheral surface of the cylindrical portion,
The damping member is composed of a plurality of constituent members arranged in the circumferential direction of the cylindrical portion,
The opposing surface of the constituent member facing another constituent member is an inclined surface that intersects the radial direction of the cylindrical portion, and the inclined surfaces of the two adjacent constituent members are in direct contact with each other. An auto tensioner characterized by that.
筒部を有する固定部材と、  A fixing member having a cylindrical portion;
前記筒部の内側に配置されるボス部を有するとともに、前記ボス部において固定部材に回動自在に支持される可動部材と、  A movable member that has a boss portion arranged inside the cylindrical portion and is rotatably supported by a fixed member in the boss portion;
前記可動部材における前記ボス部とは反対側の端部に回転自在に設けられ、前記ボス部の軸心を揺動中心として揺動可能であり、且つ、ベルトが巻き掛けられるプーリと、  A pulley that is rotatably provided at an end of the movable member opposite to the boss portion, is swingable about the axis of the boss portion as a swing center, and on which a belt is wound;
前記筒部と前記ボス部との間に設けられるとともに、その一端が前記固定部材に連結され、前記可動部材を前記固定部材に対して所定方向に回動付勢するための捩りコイルスプリングと、  A torsion coil spring provided between the cylindrical portion and the boss portion, one end of which is connected to the fixed member, and for urging the movable member in a predetermined direction with respect to the fixed member;
前記捩りコイルスプリングの他端と前記可動部材との間に介在するとともに、前記筒部の内周面に摺動可能なダンピング部材と、を備え、  A damping member interposed between the other end of the torsion coil spring and the movable member, and slidable on the inner peripheral surface of the cylindrical portion,
前記ダンピング部材が、前記筒部の周方向に関して並んだ複数の構成部材からなり、  The damping member is composed of a plurality of constituent members arranged in the circumferential direction of the cylindrical portion,
前記構成部材の隣接する別の前記構成部材との対向面が、前記筒部の径方向に交差する傾斜面であって、  The facing surface of the constituent member adjacent to another constituent member is an inclined surface that intersects the radial direction of the cylindrical portion,
対向する2つの前記傾斜面の間に、摩擦抵抗を低減するための低摩擦部材が介在していることを特徴とするオートテンショナ。  An auto tensioner, wherein a low friction member for reducing frictional resistance is interposed between the two inclined surfaces facing each other.
筒部を有する固定部材と、  A fixing member having a cylindrical portion;
前記筒部の内側に配置されるボス部を有するとともに、前記ボス部において固定部材に回動自在に支持される可動部材と、  A movable member that has a boss portion arranged inside the cylindrical portion and is rotatably supported by a fixed member in the boss portion;
前記可動部材における前記ボス部とは反対側の端部に回転自在に設けられ、前記ボス部の軸心を揺動中心として揺動可能であり、且つ、ベルトが巻き掛けられるプーリと、  A pulley that is rotatably provided at an end of the movable member opposite to the boss portion, is swingable about the axis of the boss portion as a swing center, and on which a belt is wound;
前記筒部と前記ボス部との間に設けられるとともに、その一端が前記固定部材に連結され、前記可動部材を前記固定部材に対して所定方向に回動付勢するための捩りコイルスプリングと、  A torsion coil spring provided between the cylindrical portion and the boss portion, one end of which is connected to the fixed member, and for urging the movable member in a predetermined direction with respect to the fixed member;
前記捩りコイルスプリングの他端と前記可動部材との間に介在するとともに、前記筒部の内周面に摺動可能なダンピング部材と、を備え、  A damping member interposed between the other end of the torsion coil spring and the movable member, and slidable on the inner peripheral surface of the cylindrical portion,
前記ダンピング部材が、前記筒部の周方向に関して並んだ複数の構成部材からなり、  The damping member is composed of a plurality of constituent members arranged in the circumferential direction of the cylindrical portion,
前記構成部材の隣接する別の前記構成部材との対向面が、前記筒部の径方向に交差する傾斜面であって、  The facing surface of the constituent member adjacent to another constituent member is an inclined surface that intersects the radial direction of the cylindrical portion,
対向する2つの前記傾斜面が、弾性部材で連結されていることを特徴とするオートテンショナ。  An auto tensioner, wherein the two inclined surfaces facing each other are connected by an elastic member.
前記傾斜面が、前記可動部材の回動軸方向から見て円弧状に形成されていることを特徴とする請求項1〜3のいずれかに記載のオートテンショナ。 The autotensioner according to any one of claims 1 to 3, wherein the inclined surface is formed in an arc shape when viewed from the rotation axis direction of the movable member. 前記ダンピング部材が、前記筒部の内周面と前記ボス部の外周面との間に配置されており、
前記ダンピング部材に力が作用していない状態において、前記筒部の径方向に関して、前記筒部の内周面及び前記ボス部の外周面の何れかと、前記ダンピング部材との間に隙間が形成されることを特徴とする請求項1〜4のいずれかに記載のオートテンショナ。
The damping member is disposed between an inner peripheral surface of the cylindrical portion and an outer peripheral surface of the boss portion;
In a state where no force is applied to the damping member, a gap is formed between the damping member and one of the inner peripheral surface of the cylindrical portion and the outer peripheral surface of the boss portion with respect to the radial direction of the cylindrical portion. The auto tensioner according to any one of claims 1 to 4, wherein:
前記複数の構成部材のうち、前記捩りコイルスプリング側の構成部材には、前記周方向に延びた溝部が形成され、
前記捩りコイルスプリングの前記他端が、前記溝部に圧入固定されていることを特徴とする請求項1〜の何れかに記載のオートテンショナ。
Of the plurality of constituent members, a groove portion extending in the circumferential direction is formed in the constituent member on the torsion coil spring side,
The auto tensioner according to any one of claims 1 to 5 , wherein the other end of the torsion coil spring is press-fitted and fixed in the groove.
JP2008017630A 2008-01-29 2008-01-29 Auto tensioner Active JP5231033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008017630A JP5231033B2 (en) 2008-01-29 2008-01-29 Auto tensioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008017630A JP5231033B2 (en) 2008-01-29 2008-01-29 Auto tensioner

Publications (2)

Publication Number Publication Date
JP2009180245A JP2009180245A (en) 2009-08-13
JP5231033B2 true JP5231033B2 (en) 2013-07-10

Family

ID=41034399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008017630A Active JP5231033B2 (en) 2008-01-29 2008-01-29 Auto tensioner

Country Status (1)

Country Link
JP (1) JP5231033B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106030153A (en) * 2014-02-18 2016-10-12 三之星机带株式会社 Auto tensioner

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5291550B2 (en) * 2009-06-26 2013-09-18 滋 河本 Auto tensioner
WO2015125691A1 (en) * 2014-02-18 2015-08-27 三ツ星ベルト株式会社 Auto tensioner
JP6367128B2 (en) * 2015-01-27 2018-08-01 バンドー化学株式会社 Auto tensioner
JP7300549B1 (en) * 2021-12-23 2023-06-29 三ツ星ベルト株式会社 auto tensioner

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3253944B2 (en) * 1999-12-22 2002-02-04 ユニッタ株式会社 Auto tensioner
JP4139128B2 (en) * 2002-04-26 2008-08-27 三ツ星ベルト株式会社 Auto tensioner and engine equipped with the same
JP3750813B2 (en) * 2002-12-13 2006-03-01 株式会社椿本チエイン Chain tensioning device
JP2006125439A (en) * 2004-10-26 2006-05-18 Mitsuboshi Belting Ltd Auto tensioner
JP4420801B2 (en) * 2004-12-02 2010-02-24 株式会社オティックス Auto tensioner device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106030153A (en) * 2014-02-18 2016-10-12 三之星机带株式会社 Auto tensioner
US10281014B2 (en) 2014-02-18 2019-05-07 Mitsuboshi Belting Ltd. Auto tensioner

Also Published As

Publication number Publication date
JP2009180245A (en) 2009-08-13

Similar Documents

Publication Publication Date Title
JP5291550B2 (en) Auto tensioner
JP6625407B2 (en) Belt tensioning device
JP3792160B2 (en) Tensioner
US6264578B1 (en) Belt tensioner with vibration damping function
EP2831468B1 (en) Tensioner and endless drive arrangement
CN103249967B (en) Isolator decoupler
JP5231033B2 (en) Auto tensioner
US10059366B2 (en) Electrically driven power steering device
JP6690059B2 (en) Tensioner
CN1246607C (en) Tensioning idler
CN108350999B (en) Play-free pivot bearing on a decoupling tensioner
JP2017524879A (en) Orbit tensioner assembly
JP6162162B2 (en) Auto tensioner
WO2010041747A1 (en) Auto-tensioner
KR102549866B1 (en) isolation decoupler
US6637570B2 (en) Over-running clutch pulley with composite sealing member
JP2009008109A (en) Pulley structure body and accessary drive system using it
CN109154327B (en) Isolation decoupler
JP6774859B2 (en) Auto tensioner
JP2003120770A (en) Auto-tensioner
JP4807102B2 (en) One-way clutch built-in pulley device
WO2015125691A1 (en) Auto tensioner
JP6367128B2 (en) Auto tensioner
CN112065923A (en) Belt pulley decoupler having a rotational axis for a belt drive of an internal combustion engine
CN109690133B (en) Endless drive and improved two-arm tensioning system for an endless drive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5231033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250