JP5229766B2 - Vertical alignment type super twist liquid crystal display element and manufacturing method thereof - Google Patents

Vertical alignment type super twist liquid crystal display element and manufacturing method thereof Download PDF

Info

Publication number
JP5229766B2
JP5229766B2 JP2006151655A JP2006151655A JP5229766B2 JP 5229766 B2 JP5229766 B2 JP 5229766B2 JP 2006151655 A JP2006151655 A JP 2006151655A JP 2006151655 A JP2006151655 A JP 2006151655A JP 5229766 B2 JP5229766 B2 JP 5229766B2
Authority
JP
Japan
Prior art keywords
liquid crystal
display element
crystal display
vertical alignment
twist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006151655A
Other languages
Japanese (ja)
Other versions
JP2007322639A (en
Inventor
和則 丸山
靖文 飯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
DIC Corp
Original Assignee
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY, DIC Corp filed Critical NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Priority to JP2006151655A priority Critical patent/JP5229766B2/en
Publication of JP2007322639A publication Critical patent/JP2007322639A/en
Application granted granted Critical
Publication of JP5229766B2 publication Critical patent/JP5229766B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Description

本発明は垂直配向型超ねじれ液晶表示素子に関する。   The present invention relates to a vertical alignment type super twist liquid crystal display element.

TFT等のアクティブ素子を使用せずに高走査線本数の画像表示を行うLCDとして、STN−LCD(スーパツイストネマチック型液晶表示素子)がある。STN―LCDは、電圧変化に対する透過率変化の割合を示す急峻性が良好であり、明状態の透過光強度が高いので、高いコントラスト特性が得られる。   There is a STN-LCD (super twisted nematic liquid crystal display element) as an LCD that displays an image with a high number of scanning lines without using an active element such as a TFT. The STN-LCD has good steepness indicating the rate of change in transmittance with respect to voltage change and high transmitted light intensity in the bright state, so that high contrast characteristics can be obtained.

しかし、STN−LCDは1層のみでは黒表示が難しい。従って白黒表示を行う方法として通常は、液晶のねじれ方向が異なる2つのセルを積層し一方のセルを駆動する2層STN−LCD方式や、液晶セルに正の一軸性フィルムを1枚または複数枚重ねたフィルム補償STN−LCD方式を使用している。しかし、前者の2層STN−LCD方式は液晶セルを2枚用いるので、厚さの増加、重量の増加を生じる。また、後者のフィルム補償STN−LCD方式は、実用レベルの黒表示を得ることができず、電極内で黒表示が可能であっても電極外では黒が浮き、コントラストを高くすることは困難であった。   However, it is difficult for the STN-LCD to display black only with one layer. Therefore, as a method for performing black and white display, the two-layer STN-LCD method in which two cells having different twist directions of liquid crystal are stacked and one cell is driven, or one or a plurality of positive uniaxial films in a liquid crystal cell are usually used. The stacked film compensation STN-LCD method is used. However, since the former two-layer STN-LCD method uses two liquid crystal cells, the thickness and weight increase. Further, the latter film compensation STN-LCD system cannot obtain a practical level of black display, and even if black display is possible within the electrode, black floats outside the electrode and it is difficult to increase the contrast. there were.

一方、STN―LCDと同様に急峻性が良く、かつ明状態での透過率が高いLCDとして、垂直配向型ECB(Electrically Controlled Birefringence)モード液晶表示素子が提案されている(例えば、特許文献1参照)。
垂直配向型ECBモード液晶表示素子は、急峻性を高くする目的で、垂直配向膜のプレチルト角を小さくしており、例えば85°より小さなプレチルト角を与える垂直配向膜を使用する。
しかしこのようなプレチルト角の小さい垂直配向膜は、基板の表示面内でプレチルト角のバラツキが生じ易く、表示面内に均一なプレチルト角を発生させることが困難である。即ちプレチルト角が安定しないので、動作時、表示面内で電圧無印加の黒表示に光抜け部分が発生し、コントラストの低下を生じさせる。また、任意の値のプレチルト角を生じさせる垂直配向膜が安定して得られないため、閾値電圧や急峻性等の電気光学特性が異なり、製作ロットによりぶれが生じるといった問題もある。
On the other hand, a vertical alignment type ECB (Electrically Controlled Birefringence) mode liquid crystal display element has been proposed as an LCD having high steepness and high transmittance in a bright state like the STN-LCD (see, for example, Patent Document 1). ).
In the vertical alignment type ECB mode liquid crystal display element, the pretilt angle of the vertical alignment film is reduced for the purpose of increasing the steepness, and for example, a vertical alignment film giving a pretilt angle smaller than 85 ° is used.
However, such a vertical alignment film with a small pretilt angle tends to cause variations in the pretilt angle within the display surface of the substrate, and it is difficult to generate a uniform pretilt angle within the display surface. That is, since the pretilt angle is not stable, a light missing portion is generated in black display with no voltage applied in the display surface during operation, resulting in a decrease in contrast. In addition, since a vertical alignment film that generates a pretilt angle of an arbitrary value cannot be stably obtained, there is a problem in that electro-optical characteristics such as threshold voltage and steepness are different and blurring occurs depending on a production lot.

プレチルト角を安定化させる方法としては、配向処理を行った液晶配向膜に重合性液晶モノマーを塗布、偏光方向を垂直方向に重合性液晶モノマーを配向させた後、光重合させて、配向状態を安定化する方法が知られている(例えば、特許文献2、段落0042参照)。該方法によれば、液晶配向膜固有値のプレチルト角を固定化することができる。
特開2004−355032号公報 特開平09−197407号公報
As a method for stabilizing the pretilt angle, a polymerizable liquid crystal monomer is applied to a liquid crystal alignment film that has been subjected to an alignment treatment, and the polymerizable liquid crystal monomer is aligned in the vertical direction and then photopolymerized to change the alignment state. A stabilization method is known (see, for example, Patent Document 2, paragraph 0042). According to this method, the pretilt angle of the eigenvalue of the liquid crystal alignment film can be fixed.
JP 2004-355032 A JP 09-197407 A

本発明の課題は、急峻性が高く、具体的には、Tを0%とし、Tmaxを100%とし、電圧を印加して、透過率が0.9%となる印加電圧Vr0.9(Vrms)と、Tminを0%とし、Tmaxを100%とし、電圧を印加して、透過率が90%となる印加電圧Vr90:Vrmsの比、Vr90/Vr0.9が1.2未満であり、ヒステリシスが少なく、且つ、安定した低いプレチルト角を有する垂直配向型超ねじれ液晶表示素子を提供することにある。 The problem of the present invention is that the steepness is high. Specifically, when T 0 is set to 0%, Tmax is set to 100%, and a voltage is applied, the applied voltage Vr 0.9 (the transmittance becomes 0.9%) Vrms), Tmin is 0%, Tmax is 100%, voltage is applied, and the ratio of applied voltage Vr90: Vrms at which transmittance is 90%, Vr90 / Vr0.9 is less than 1.2, An object of the present invention is to provide a vertical alignment type super-twisted liquid crystal display element having a low hysteresis and a stable low pretilt angle.

本発明者らは、使用する負の誘電異方性を有する液晶材料のプレチルト角とねじれ角とを制御することで、急峻性が高く、ヒステリシスの少ない垂直配向型超ねじれ液晶表示素子が得られることを見いだした。
更に本発明者らは、プレチルト角は電圧を印加することでより小さくできることを利用し、液晶材料に少量の重合性モノマーを添加し、電圧をかけて液晶材料をなす液晶分子を配向させた状態(即ちこの状態のプレチルト角は、電圧印加により無印加時より小さい状態である)で、重合性モノマーを重合させることにより、プレチルト角をより小さく固定化させることができることを見いだした。特許文献2の方法と異なり、使用する液晶配向膜固有のプレチルト角よりもより小さなプレチルト角で液晶分子を常に配向できるので、より急峻性が高くヒステリシスの少ない垂直配向型超ねじれ液晶表示素子を提供することができる。またこの方法は任意の値のプレチルト角が安定して得られるため、製作ロットによる特性のぶれも解消することができる。さらに、重合性モノマーの重合によりプレチルトを固定化できるので、温度に対するプレチルト角の変化を非常に小さくすることができる。
By controlling the pretilt angle and twist angle of the liquid crystal material having negative dielectric anisotropy to be used, the present inventors can obtain a vertical alignment type super twist liquid crystal display element having high steepness and little hysteresis. I found out.
Further, the present inventors have made use of the fact that the pretilt angle can be made smaller by applying a voltage, and a state in which a small amount of a polymerizable monomer is added to the liquid crystal material and the liquid crystal molecules forming the liquid crystal material are aligned by applying a voltage. (In other words, the pretilt angle in this state is smaller than that when no voltage is applied by applying a voltage), and it has been found that the pretilt angle can be fixed smaller by polymerizing the polymerizable monomer. Unlike the method of Patent Document 2, the liquid crystal molecules can always be aligned with a pretilt angle smaller than the pretilt angle unique to the liquid crystal alignment film to be used, thereby providing a vertical alignment type super-twisted liquid crystal display element with higher steepness and less hysteresis. can do. In addition, since this method can stably obtain an arbitrary pretilt angle, it is possible to eliminate characteristic fluctuations due to production lots. Furthermore, since the pretilt can be fixed by polymerization of the polymerizable monomer, the change in the pretilt angle with respect to the temperature can be made extremely small.

即ち、本発明は、基材の片面に電極と配向膜とを順に重ねて設け、該配向膜が相互に対向するように配してなる一対の基板と、該一対の基板の間に挟持されるように設けられた負の誘電異方性を有する液晶材料とを少なくとも備えてなる液晶表示素子であって、前記液晶材料は少なくとも一種のカイラル剤を含有し、前記一対の基板の相互に対向するように配してなる配向膜によって規定されるねじれ角は180°以上290°以下であり、且つ、前記配向膜は表面に重合性モノマーを重合させたポリマーを有しており、前記液晶材料をなす液晶分子に対して75°〜85°のプレチルト角を与える配向制御能を有する垂直配向型超ねじれ液晶表示素子を提供する。   That is, in the present invention, an electrode and an alignment film are sequentially stacked on one side of a base material, and the pair of substrates are arranged so that the alignment films face each other, and are sandwiched between the pair of substrates. A liquid crystal display element having at least a negative dielectric anisotropy provided so that the liquid crystal material contains at least one chiral agent, and the pair of substrates face each other. The twist angle defined by the alignment film thus arranged is 180 ° or more and 290 ° or less, and the alignment film has a polymer obtained by polymerizing a polymerizable monomer on the surface thereof, and the liquid crystal material A vertical alignment type super twisted liquid crystal display element having an alignment control ability that gives a pretilt angle of 75 ° to 85 ° with respect to liquid crystal molecules forming the above.

また、本発明は、上記記載の垂直配向型超ねじれ液晶表示素子の製造方法であって、基材の片面に電極と配向膜とを順に重ねて設け、該配向膜が相互に対向するように配してなる一対の基板に、負の誘電異方性を有する液晶材料と、カイラル剤と、重合性モノマーとを含有する液晶組成物を挟持させ、前記液晶材料をねじれ角180°以上290°以下の範囲内でツイスト配向させた状態で、前記一対の基板間に電圧を印加しながら前記液晶組成物に光を照射し、前記重合性モノマーを重合させる垂直配向型超ねじれ液晶表示素子の製造方法を提供する。   Further, the present invention is a method for manufacturing a vertical alignment type super twisted liquid crystal display element as described above, wherein an electrode and an alignment film are sequentially stacked on one side of a substrate so that the alignment films face each other. A liquid crystal composition containing a liquid crystal material having negative dielectric anisotropy, a chiral agent, and a polymerizable monomer is sandwiched between a pair of substrates arranged, and the liquid crystal material is twisted at an angle of 180 ° to 290 °. Production of a vertical alignment type super twisted liquid crystal display element in which light is applied to the liquid crystal composition while applying a voltage between the pair of substrates in a state in which twist alignment is performed within the following range, and the polymerizable monomer is polymerized. Provide a method.

本発明により、急峻性が高く、具体的にはVr90/Vr0.9が1.2未満であり、且つ、ヒステリシスの少ない垂直配向型超ねじれ液晶表示素子が得られる。
本発明の垂直配向型超ねじれ液晶表示素子は、直交ニコル配置の偏光板で挟持して表示面を観察すると、電圧無印加時には、液晶のプレチルト角が75°〜85°で配向しているため、良好な黒表示が得られる。
一方、電圧を印加すると、液晶分子は長軸方向を変化させるねじれ構造(螺旋配列)を取りながら倒れてリターデーションが大きくなり、光が透過する状態(明状態)となる。このとき、プレチルト角が75°〜85°の範囲であり、且つ液晶材料のねじれ角が180°〜290°の範囲であるので、急峻性が良好となり、具体的には1.2以下の急峻性を与えることができる。
また、本発明の垂直配向型超ねじれ液晶表示素子は、安定した低いプレチルト角を有するので、製作ロットによる特性のぶれも解消することができる。さらに、温度に対するプレチルト角の変化を非常に小さくすることができる。
According to the present invention, a vertical alignment type super twisted liquid crystal display element having high steepness, specifically, Vr90 / Vr0.9 of less than 1.2 and low hysteresis can be obtained.
When the vertical alignment type super twist liquid crystal display element of the present invention is sandwiched between polarizing plates arranged in crossed Nicols and the display surface is observed, the pretilt angle of the liquid crystal is aligned at 75 ° to 85 ° when no voltage is applied. Good black display can be obtained.
On the other hand, when a voltage is applied, the liquid crystal molecules fall while taking a twisted structure (helical arrangement) that changes the major axis direction, and the retardation becomes large and light is transmitted (bright state). At this time, since the pretilt angle is in the range of 75 ° to 85 ° and the twist angle of the liquid crystal material is in the range of 180 ° to 290 °, the steepness becomes good, specifically, the steepness of 1.2 or less. Can give sex.
In addition, since the vertical alignment type super twist liquid crystal display element of the present invention has a stable and low pretilt angle, it is possible to eliminate fluctuations in characteristics due to manufacturing lots. Furthermore, the change of the pretilt angle with respect to temperature can be made very small.

本発明に係る垂直配向型超ねじれ液晶表示素子は、基材の一面に電極と配向膜とを順に重ねて設け、該配向膜が相互に対向するように配してなる一対の基板と、該一対の基板の間に挟持されるように設けられた負の誘電異方性を有する液晶材料と、を少なくとも備えている。   A vertical alignment type super twisted liquid crystal display element according to the present invention comprises a pair of substrates formed by sequentially stacking an electrode and an alignment film on one surface of a base material, the alignment films being opposed to each other, And a liquid crystal material having negative dielectric anisotropy provided to be sandwiched between a pair of substrates.

(基板)
本発明で使用する基板は、基材の一面に電極と配向膜とを順に重ねて設けたものである。本発明で使用する配向膜は、電圧無印加の状態で液晶分子に対しある程度のプレチルト角を与える配向制御能を有する垂直配向膜が好ましい。
これらは例えば、基材の電極上にラビング法、射方蒸着法、光配向法等、斜方蒸着法等の公知の方法で配向膜を作製する方法により得ることができる。中でも、垂直配向膜に光を照射して配向制御能を付与する光配向法は、ラビング法のような光抜けを生じさせるようなキズが発生せず、容易に配向制御能を付与することができるので好ましい。
(substrate)
The substrate used in the present invention is obtained by sequentially stacking an electrode and an alignment film on one surface of a base material. The alignment film used in the present invention is preferably a vertical alignment film having an alignment control ability that gives a certain pretilt angle to the liquid crystal molecules in the state where no voltage is applied.
These can be obtained by, for example, a method of producing an alignment film on a substrate electrode by a known method such as a rubbing method, a radial deposition method, a photo-alignment method, or an oblique deposition method. Among them, the photo-alignment method that imparts alignment control ability by irradiating light to the vertical alignment film does not generate scratches that cause light leakage unlike the rubbing method, and can easily provide alignment control ability. It is preferable because it is possible.

光配向法の具体例としては、例えば、図1に示すように、透明性電極を有する基板上に垂直配向膜を形成し、基板に対してθの角度で直線偏光の紫外線を照射する方法が挙げられる。この時紫外線の照射角度θは20〜70°が好ましい。紫外線は垂直配向膜に液晶を配向させる機能を生じさせるものであればよく、無偏光光でも偏向光でも良いが、偏向光は配向機能を効率的に生じさせることができ好ましい。なお、図1におけるφは、直線偏光の偏波面がXY面(基板面)となす角度を表しており、通常90°に設定される。   As a specific example of the photo-alignment method, for example, as shown in FIG. 1, a method of forming a vertical alignment film on a substrate having a transparent electrode and irradiating linearly polarized ultraviolet rays at an angle θ with respect to the substrate. Can be mentioned. At this time, the ultraviolet irradiation angle θ is preferably 20 to 70 °. The ultraviolet rays are not particularly limited as long as they cause the function of aligning the liquid crystal in the vertical alignment film, and may be non-polarized light or deflected light. However, the deflected light is preferable because it can efficiently generate the alignment function. 1 represents the angle formed by the plane of polarization of linearly polarized light with the XY plane (substrate surface), and is usually set to 90 °.

基板を構成する基材の材質は通常LCDセルに使用するような材質であれば特に限定はないが、透明性を有する材質が望ましい。例えば、ガラス、プラスチック等の堅牢な材料の他、プラスチックフィルム等の柔軟性を有する材料を使用することもできる。
基材上に設ける電極としては、透明性を有し、抵抗が低い材質が望ましく、酸化インジウム膜、酸化スズ膜、酸化インジウム・酸化スズ(ITO)膜、酸化インジウム・酸化亜鉛膜等が挙げられる。電極をなす各膜は、蒸着法、スパッタ法などの一般的に用いられている方法によって形成し、必要に応じて、電極をパターニングしてもよい。電極をパターニングするには、例えば基材上にITO膜をマスクを介してスパッタリング法等で形成するか、ITO膜を全面に形成した後、フォトリソグラフィ法等でエッチングしてもよい。
The material of the base material constituting the substrate is not particularly limited as long as it is a material usually used for LCD cells, but a material having transparency is desirable. For example, in addition to a robust material such as glass and plastic, a flexible material such as a plastic film can also be used.
As the electrode provided on the base material, a material having transparency and low resistance is desirable, and examples thereof include an indium oxide film, a tin oxide film, an indium oxide / tin oxide (ITO) film, and an indium oxide / zinc oxide film. . Each film constituting the electrode may be formed by a commonly used method such as vapor deposition or sputtering, and the electrode may be patterned as necessary. In order to pattern the electrodes, for example, an ITO film may be formed on a substrate by a sputtering method or the like through a mask, or an ITO film may be formed on the entire surface and then etched by a photolithography method or the like.

(液晶材料)
本発明で使用する液晶材料は、負の誘電異方性を有する液晶材料であり、少なくとも一種のカイラル剤を含有し、前記配向膜によって規定されるねじれ角が180°以上290°以下であるものが用いられる。このような条件を満たせば、構造等に特に限定はない。具体的には、通常この技術分野で液晶材料として認識されるものであれば良く、単一の液晶性化合物でなくてもよく、2種以上の液晶化合物の組成物であっても良く、適宜選択、配合して用いることができる。具体的に、使用できる液晶材料としては、トラン系、フルオロ系、ナフタレン系等の液晶化合物が挙げられる。
(Liquid crystal material)
The liquid crystal material used in the present invention is a liquid crystal material having negative dielectric anisotropy, containing at least one chiral agent, and having a twist angle defined by the alignment film of 180 ° or more and 290 ° or less. Is used. If such conditions are satisfied, the structure and the like are not particularly limited. Specifically, it may be any material that is normally recognized as a liquid crystal material in this technical field, and may not be a single liquid crystal compound, but may be a composition of two or more liquid crystal compounds. It can be selected and blended. Specifically, liquid crystal materials that can be used include liquid crystal compounds such as tolan type, fluoro type, and naphthalene type.

液晶材料として、曲がりの弾性定数K33を広がりの弾性定数K11により除した値(K33/K11と表記)が1.25以上の液晶材料を使用すると、電圧変化に対する透過率変化の割合を示す急峻性が急峻になり、ひいては走査線本数の高い画像表示が可能となるのでなお好ましい。   When a liquid crystal material having a value obtained by dividing the bending elastic constant K33 by the expansion elastic constant K11 (denoted as K33 / K11) as the liquid crystal material is 1.25 or more, the steepness indicating the ratio of the transmittance change to the voltage change. Is more preferable because the image becomes steep, and as a result, an image with a high number of scanning lines can be displayed.

液晶材料にカイラル剤を含有させることにより、液晶材料は自然ねじれのピッチを発生させることが可能となる。
本発明に係る液晶表示素子においては、このような機能を有するカイラル剤を添加し、任意の自然ねじれのピッチを有する液晶材料を用いることにより、液晶表示素子の電圧変化に対する透過率変化の割合を示す急峻性がより良好となり、走査線本数の高い画像表示が可能となる。
なお、カイラル剤の添加量により、液晶材料の自然ねじれのピッチは変化するので、必要とする液晶のピッチに応じてカイラル剤の添加量は適宜調節すればよい。
By including a chiral agent in the liquid crystal material, the liquid crystal material can generate a natural twist pitch.
In the liquid crystal display element according to the present invention, by adding a chiral agent having such a function and using a liquid crystal material having an arbitrary natural twist pitch, the ratio of the transmittance change to the voltage change of the liquid crystal display element can be reduced. The steepness shown is better, and an image display with a high number of scanning lines is possible.
Note that since the pitch of the natural twist of the liquid crystal material changes depending on the amount of chiral agent added, the amount of chiral agent added may be appropriately adjusted according to the required liquid crystal pitch.

本発明の垂直配向型超ねじれ液晶表示素子において、液晶材料のねじれ角と急峻性との関係は、ねじれ角が小さいほど、急峻性が緩慢になり、ねじれ角が大きいほど、急峻性が急峻になる傾向を示す。しかしねじれ角が大きすぎると、電圧印加時にストライプドメインが発生したり、印加電圧の上昇時と下降時の電気光学特性の曲線が異なりヒステリシスが発生したりすることがある。従って、ねじれ角は180°以上290°以下の範囲とする。更に、ねじれ角を240°以上280°以下の範囲とすれば、電圧変化に対する透過率変化の割合を示す急峻性が急峻で、且つ安定的に不具合の生じない液晶素子を製作できることから、より好ましい。
本発明で使用するカイラル剤としては、特に限定はなく、公知慣用のものを使用できる。例えば、S―811、R811、CB―15、MLC6247、MLC6248、R1011、S1011(メルク社製)等が挙げられる。
In the vertical alignment type super twisted liquid crystal display element of the present invention, the relationship between the twist angle and the steepness of the liquid crystal material is such that the smaller the twist angle, the slower the steepness, and the steeper property becomes steeper as the twist angle increases. Show the trend. However, if the twist angle is too large, a stripe domain may occur when a voltage is applied, or a hysteresis may occur due to a difference in electro-optical characteristic curves when the applied voltage rises and falls. Therefore, the torsion angle is in the range of 180 ° to 290 °. Furthermore, it is more preferable that the twist angle is in the range of 240 ° or more and 280 ° or less, since the steepness indicating the ratio of the transmittance change with respect to the voltage change is steep, and a liquid crystal element that does not cause a problem stably can be manufactured. .
There is no limitation in particular as a chiral agent used by this invention, A well-known and usual thing can be used. For example, S-811, R811, CB-15, MLC6247, MLC6248, R1011, S1011 (made by Merck) etc. are mentioned.

(d/p)
前記液晶材料の自然ねじれピッチをp、前記一対の基板同士の間隔をdと定義したとき、dをpにより除した値(d/pと表記)が0.55以上0.81以下の範囲にある液晶材料は、電気光学特性の良好な急峻性をもたらす等の理由により、さらに好ましい。この(d/p)の値は、セルギャプを変化させる方法や、あるいは液晶に添加するカイラル剤の量を変化させる方法により、任意の値に設定することが可能となる。
(D / p)
When a natural twist pitch of the liquid crystal material is defined as p and a distance between the pair of substrates is defined as d, a value obtained by dividing d by p (denoted as d / p) is in a range of 0.55 or more and 0.81 or less. Some liquid crystal materials are more preferred for reasons such as providing good steepness in electro-optic characteristics. The value of (d / p) can be set to an arbitrary value by changing the cell gap or changing the amount of the chiral agent added to the liquid crystal.

(重合性モノマー)
本発明で使用する重合性モノマーとしては、例えば、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、イソステアリル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、メチルカルビトール(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、
イソボロニル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、フェノキシ(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、ジメチルアミノ(メタ)アクリレート、モルホリノエチル(メタ)アクリレート、ぺルフルオロアルキル(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリブチレングリコールジ(メタ)アクリレート、脂肪族ジ(メタ)アクリレート、エピクロルヒドリン変性1,6−ヘキサンジオールジ(メタ)アクリレート、ジシクロペンテニルジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート;
エピクロルヒドリン変性ビスフェノールAジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールAジ(メタ)アクリレート、プロピレンオキサイド変性ビスフェノールAジ(メタ)アクリレート、ブチレンオキサイド変性ビスフェノールAジ(メタ)アクリレート、3,3−ジメチロールペンタンジ(メタ)アクリレート、3,3−ジメチロールヘプタンジ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートの如きアクリルエステルモノマー;
N,N−ジメチルアクリルアミド、N,N−ジメチルアミノプロピルアクリルアミドの如きアクリルアミド化合物;
ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート、オリゴエステルアクリレート、ヒドロキシビバリン酸エステルネオペンチルグリコールジ(メタ)アクリレート、カプロラクトン変性ヒドロキシビバリン酸エステルネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、フッ素化アルキルジ(メタ)アクリレート、炭素数5〜25のアルキル基を側鎖に有する(メタ)アクリレート;
マレイミド化合物としては、脂肪族基によってマレイミド基が結合された化合物が好ましく、具体的には、N−へキシルマレイミドやN,N’−4,9−ジオキサ−1,12−ビスマレイミドドデカンのようなアルキル又はアルキルエーテルマレイミド、エチレングリコールビス(マレイミドアセテート)、ポリ(テトラメチレングリコール)ビス(マレイミドアセテート)、テトラ(エチレングリコール変性)ペンタエリスリトールテトラ(マレイミドアセテート)等のマレイミドカルボン酸(ポリ)アルキレングリコールエステル、ビス(2−マレイミドエチル)カーボネート等のカーボネートマレイミド、イソホロンビスウレタンビス(N−エチルマレイミド)等のウレタンマレイミド等などが挙げられるが、特にこれらに限定されるものではない。
また本発明で使用する重合性モノマーにおいて、液晶性を示すモノマーは、重合前の電圧印加時に、液晶のダイレクターと同じ方向に配向する事が可能であり、その状態で重合が行えるので、重合による液晶の配向を乱す影響が小さいと思われるため好ましい。
(Polymerizable monomer)
Examples of the polymerizable monomer used in the present invention include ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, lauryl (meth) acrylate, and stearyl (meth) acrylate. , Isomyristyl (meth) acrylate, isostearyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, methyl carbitol (meth) acrylate, ethyl carbitol (meth) acrylate, cyclohexyl (meth) acrylate ,
Isobornyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, phenoxy (meth) acrylate, methoxydipropylene glycol (meth) acrylate, trifluoroethyl (meth) acrylate, dimethylamino (meth) acrylate, morpholinoethyl (meth) Acrylate, perfluoroalkyl (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polybutylene glycol di (meth) acrylate, aliphatic di (meth) acrylate, epichlorohydrin modified 1,6- Hexanediol di (meth) acrylate, dicyclopentenyl di (meth) acrylate, bisphenol A di (meth) acrylate;
Epichlorohydrin modified bisphenol A di (meth) acrylate, ethylene oxide modified bisphenol A di (meth) acrylate, propylene oxide modified bisphenol A di (meth) acrylate, butylene oxide modified bisphenol A di (meth) acrylate, 3,3-dimethylolpentane Di (meth) acrylate, 3,3-dimethylol heptane di (meth) acrylate, caprolactone-modified dipentaerythritol hexa (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tetra Acrylic ester monomers such as (meth) acrylate, dipentaerythritol hexa (meth) acrylate;
Acrylamide compounds such as N, N-dimethylacrylamide and N, N-dimethylaminopropylacrylamide;
Urethane (meth) acrylate, polyester (meth) acrylate, epoxy (meth) acrylate, oligoester acrylate, hydroxybivalate ester neopentyl glycol di (meth) acrylate, caprolactone-modified hydroxybivalinate ester neopentyl glycol di (meth) Acrylate, trimethylolpropane tri (meth) acrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, propylene oxide modified trimethylolpropane tri (meth) acrylate, fluorinated alkyl di (meth) acrylate, alkyl having 5 to 25 carbon atoms (Meth) acrylates having groups in the side chain;
As the maleimide compound, a compound in which a maleimide group is bonded by an aliphatic group is preferable, and specifically, N-hexylmaleimide and N, N′-4,9-dioxa-1,12-bismaleimide dodecane are used. Maleimide carboxylic acid (poly) alkylene glycols such as alkyl or alkyl ether maleimide, ethylene glycol bis (maleimide acetate), poly (tetramethylene glycol) bis (maleimide acetate), tetra (ethylene glycol modified) pentaerythritol tetra (maleimide acetate) Examples include esters, carbonate maleimides such as bis (2-maleimidoethyl) carbonate, urethane maleimides such as isophorone bisurethane bis (N-ethylmaleimide), and the like. Not.
Further, in the polymerizable monomer used in the present invention, the monomer exhibiting liquid crystallinity can be aligned in the same direction as the director of the liquid crystal when a voltage is applied before polymerization, and polymerization can be performed in that state. It is preferable because the influence of disturbing the orientation of the liquid crystal due to is considered to be small.

液晶性を示す重合性モノマーとしては、例えば、特開平8−3111号公報に記載の重合性モノマー、特開2000−178233号公報に記載の重合性モノマー、特開2000−119222号公報に記載の重合性モノマー、特開2000−327632号公報に記載の重合性モノマー、特開2002−220421号公報に記載の重合性モノマー、特開2003−55661号公報に記載の重合性モノマー、特開2003−12762号公報に記載の重合性モノマー等を使用することができる。   Examples of the polymerizable monomer exhibiting liquid crystallinity include a polymerizable monomer described in JP-A-8-3111, a polymerizable monomer described in JP-A-2000-178233, and JP-A-2000-119222. Polymerizable monomer, polymerizable monomer described in JP-A No. 2000-327632, polymerizable monomer described in JP-A No. 2002-220421, polymerizable monomer described in JP-A No. 2003-55661, A polymerizable monomer described in Japanese Patent No. 12762 can be used.

本発明に用いる重合性モノマーの1分子における官能基の数は、特にその数を限定するものではないが、低チルト角の発現やチルト角の固定化が行えるよう適時選択すればよい。なかでも、1分子における官能基の数は2以上のものを含有することが好ましく、1分子における官能基の数が2以上の重合性モノマーのみを使用すると、さらに好ましい。
重合性モノマーの分子量は特に限定するものではないが、液晶と相溶性が良好で、液晶セルへ真空注入を行った時、揮発しにくい分子量であればよく、中でも分子量が200〜2000の重合性モノマーが好ましく、分子量が250〜1000の重合性モノマーはさらに好ましい。
The number of functional groups in one molecule of the polymerizable monomer used in the present invention is not particularly limited, but may be appropriately selected so that a low tilt angle can be expressed and a tilt angle can be fixed. Among them, the number of functional groups in one molecule is preferably 2 or more, and it is more preferable to use only a polymerizable monomer having 2 or more functional groups in one molecule.
The molecular weight of the polymerizable monomer is not particularly limited, but may be any molecular weight that has good compatibility with the liquid crystal and is difficult to volatilize when vacuum-injected into the liquid crystal cell, and in particular, has a molecular weight of 200 to 2000. Monomers are preferred, and polymerizable monomers having a molecular weight of 250 to 1000 are more preferred.

前記重合性モノマーの添加量は、本発明の効果が得られる範囲で、且つ、垂直配向型超ねじれ液晶表示素子において、重合性モノマーを使用しない以外は同じ構成を有する垂直配向型超ねじれ液晶表示素子と比較し、後述する閾値電圧の差が、絶対値にして0〜0.4Vの範囲となるような添加量であることが好ましい。重合性モノマーの添加量が多すぎると、重合性モノマーの重合後に液晶を動作させた場合、液晶の動きを阻害するため閾値電圧が上昇し、電圧変化に対する透過率変化の割合を示す急峻性が緩慢になるため好ましくなく、さらに重合性モノマーの量が多すぎると、重合性モノマーは架橋し、モノマーと液晶の屈折率の差や液晶の複屈折率により光散乱を発生させるため、電圧無印加時に良好な黒状態が得られず、コントラストの低下を起こすおそれがある。該添加量は、使用する重合性モノマーの官能基数や分子量により若干異なるため、指標としては、閾値電圧の差が好ましい。
具体的には、重合性モノマーの添加量は、液晶材料に対して、0.2〜2wt%の量が好ましい。
The amount of the polymerizable monomer added is within a range in which the effects of the present invention can be obtained, and the vertical alignment type super twisted liquid crystal display having the same configuration except that the polymerizable monomer is not used in the vertical alignment type super twist liquid crystal display device It is preferable that the amount of addition be such that the difference in threshold voltage, which will be described later, is in the range of 0 to 0.4 V in absolute value compared to the device. If the amount of the polymerizable monomer added is too large, when the liquid crystal is operated after polymerization of the polymerizable monomer, the threshold voltage increases to inhibit the movement of the liquid crystal, and the steepness indicating the ratio of the transmittance change to the voltage change is present. It is not preferable because it becomes slow, and if the amount of the polymerizable monomer is too large, the polymerizable monomer is crosslinked, and light scattering occurs due to the difference in refractive index between the monomer and the liquid crystal or the birefringence of the liquid crystal. Sometimes a good black state cannot be obtained and the contrast may be lowered. Since the addition amount varies slightly depending on the number of functional groups and molecular weight of the polymerizable monomer to be used, a difference in threshold voltage is preferable as an index.
Specifically, the amount of the polymerizable monomer added is preferably 0.2 to 2 wt% with respect to the liquid crystal material.

本発明に係る液晶表示素子は、具体的には、基材の片面に電極と配向膜とを順に重ねて設け該配向膜が相互に対向するように配してなる一対の基板に、負の誘電異方性を有する液晶材料と、カイラル剤と、重合性モノマーとを含有する組成物を挟持させ、前記液晶材料を、ねじれ角が180°以上290°以下の範囲内でツイスト配向させた状態で、前記一対の基板間に電圧を印加しながら前記液晶組成物に光を照射し、前記重合性モノマーを重合させることで得られる。   Specifically, the liquid crystal display element according to the present invention has a negative electrode formed on a pair of substrates in which an electrode and an alignment film are sequentially stacked on one side of a base material and the alignment films are arranged to face each other. A state in which a composition containing a liquid crystal material having dielectric anisotropy, a chiral agent, and a polymerizable monomer is sandwiched, and the liquid crystal material is twist-aligned within a range of a twist angle of 180 ° or more and 290 ° or less. Thus, the liquid crystal composition is irradiated with light while applying a voltage between the pair of substrates to polymerize the polymerizable monomer.

(電圧)
このときの、重合性モノマーを重合させる時に印加する電圧は、電圧無印加の状態の液晶材料の傾きよりも、より大きく傾きを与えることが可能な電界強度を有する電圧であればよく、好ましくは、重合性モノマーを重合させた後に目的とするプレチルト角を得ることが可能な電圧であればよい。
目的とするプレチルト角、重合性モノマーを重合させる前の液晶のプレチルト角、あるいは液晶材料の誘電異方性の大きさ等により、モノマー重合時に印可すべき最適な電界強度は異なるため、適宜選択することが好ましい。また印加する波形は、通常液晶の駆動に用いる矩形波やサイン波などの交流波形が好ましい。
(Voltage)
The voltage applied when polymerizing the polymerizable monomer at this time may be a voltage having an electric field strength capable of giving a larger inclination than the inclination of the liquid crystal material in a state where no voltage is applied, and preferably Any voltage can be used as long as the desired pretilt angle can be obtained after polymerizing the polymerizable monomer.
The optimum pre-tilt angle, the pretilt angle of the liquid crystal before polymerizing the polymerizable monomer, or the magnitude of the dielectric anisotropy of the liquid crystal material differs depending on the optimal electric field strength that should be applied during monomer polymerization, so it is selected as appropriate. It is preferable. The waveform to be applied is preferably an AC waveform such as a rectangular wave or a sine wave, which is usually used for driving a liquid crystal.

(プレチルト角)
本発明においては、前記重合性モノマーを重合させた後の配向膜のプレチルト角が、75〜85°となるように、電圧や液晶材料の誘電異方性の大きさ等を選択する。プレチルト角がこの範囲であれば急峻性の高い素子が得られる。プレチルト角が75°未満の垂直配向膜は現状の工法では得ることがほぼ不可能であり、一方、プレチルト角が85°を越える場合は急峻性が低い場合がある。
(Pretilt angle)
In the present invention, the voltage, the magnitude of the dielectric anisotropy of the liquid crystal material, and the like are selected so that the pretilt angle of the alignment film after polymerizing the polymerizable monomer is 75 to 85 °. If the pretilt angle is within this range, an element with high steepness can be obtained. A vertical alignment film having a pretilt angle of less than 75 ° is almost impossible to obtain with the current method, whereas if the pretilt angle exceeds 85 °, the steepness may be low.

具体的な製法の一例としては、例えば、トリクロロエチレン、イソプロピルアルコール、過酸化水素の苛性ソーダ溶液、過酸化水素水の塩酸溶液等を適宜用い、透明導電膜からなる電極を配した透明基板(以下、透明電極付き透明基板とも呼ぶ)を洗浄処理した後、さらに超純水等で洗浄処理を施す。
次に、プレキソ印刷法や、インクジェット法や、スピンコート法を用いて、透明電極付き透明基板上に垂直配向膜を形成し、焼成した後、この垂直配向膜を光配向処理する。
As an example of a specific manufacturing method, for example, a trichloroethylene, isopropyl alcohol, a caustic soda solution of hydrogen peroxide, a hydrochloric acid solution of hydrogen peroxide, or the like is appropriately used, and a transparent substrate (hereinafter referred to as transparent) on which an electrode made of a transparent conductive film is arranged. After cleaning the electrode substrate (also referred to as a transparent substrate with electrodes), the substrate is further cleaned with ultrapure water or the like.
Next, a vertical alignment film is formed on a transparent substrate with a transparent electrode by using a plexo printing method, an ink jet method, or a spin coating method, and baked, and then the vertical alignment film is subjected to photo-alignment treatment.

その後、上側の基板と下側の基板との間にスペーサーを介在させて基板間に均一な隙間を形成し、シール材で周囲を封じて固定する。この際、液晶の注入口となる部分は封止せずに開口した状態とする。
なお、スペーサーの材質は特に限定されるものではなく、スペーサーとしては、プラスチックビーズやシリカ粒子などを分散させたり、基板上の所定の位置にカラム状の構造物を形成しスペーサーとして用いても良い。また、シール材の材質についても特に限定されるものではなく、例えば、エポキシ樹脂やシリコン樹脂などに、ガラス繊維を粉砕して円柱状にしたスペーサを混ぜたものを用いることができる。
Thereafter, a spacer is interposed between the upper substrate and the lower substrate to form a uniform gap between the substrates, and the periphery is sealed and fixed with a sealing material. At this time, the portion serving as the liquid crystal injection port is opened without being sealed.
The material of the spacer is not particularly limited, and the spacer may be used as a spacer by dispersing plastic beads or silica particles, or forming a columnar structure at a predetermined position on the substrate. . Further, the material of the sealing material is not particularly limited. For example, a material obtained by mixing a glass fiber into a columnar spacer by mixing an epoxy resin or a silicon resin can be used.

次に、液晶セル内部を真空にした後、負の誘電異方性を有する液晶材料と、カイラル剤と、重合性モノマーとを含有する組成物を注入し、注入口を接着剤でシールして密閉する。
この後、前記一対の基板間に一定量の電圧を印加し、該液晶材料を、ねじれ角が180°以上290°以下の範囲内でツイスト配向させた状態で該組成物に光照射し、前記重合性モノマーを重合させることで、本発明に係る垂直配向型超ねじれ液晶表示素子が得られる。
Next, after the inside of the liquid crystal cell is evacuated, a liquid crystal material having negative dielectric anisotropy, a chiral agent and a polymerizable monomer are injected, and the injection port is sealed with an adhesive. Seal.
After that, a certain amount of voltage is applied between the pair of substrates, and the liquid crystal material is irradiated with light in a state where the liquid crystal material is twisted in a range of a twist angle of 180 ° or more and 290 ° or less, By polymerizing the polymerizable monomer, the vertical alignment type super twisted liquid crystal display element according to the present invention is obtained.

図4に示すように、本発明の製造方法により、配向膜上には、重合性モノマーが重合したポリマーが形成される。このように、少量のポリマーが配向膜の印加時におけるプレチルト角を固定するので、プレチルト角を75〜85°に固定することができ、より急峻性の高い液晶表示素子を得ることができる。   As shown in FIG. 4, a polymer obtained by polymerizing a polymerizable monomer is formed on the alignment film by the production method of the present invention. Thus, since a small amount of polymer fixes the pretilt angle when the alignment film is applied, the pretilt angle can be fixed to 75 to 85 °, and a liquid crystal display element with higher steepness can be obtained.

以下では、実施例に基づき、本発明に係る垂直配向型超ねじれ液晶表示素子を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   Below, based on an Example, the vertical alignment type | mold super twist liquid crystal display element which concerns on this invention is demonstrated in detail, However, This invention is not limited to these Examples.

<プレチルト角の測定>
本例では、プレチルト角は、配向膜を基板へ塗工する条件、焼成温度条件、配向処理条件の配向膜製作条件において、垂直配向型超ねじれ液晶表示素子を製作する場合と同一の条件で製作した、アンチパラレル型液晶配向素子の基板表面における、液晶分子のダイレクターと基板面間の角度をもってプレチルト角とした。
透明性電極層を有する基板上に、垂直配向型配向膜溶液(日産化学工業製SE―1211とRN1338の混合溶液)をスピンコーターにより塗布した後、焼成した。
次に、波長254nm付近に輝線スペクトルを持つ直線偏光紫外線を基板面に対し、θ=45°で1J/cm照射して、配向膜付の基板を作成した。
前記配向膜付きの基板に直径5.5μmのスチレンビーズを含んだ熱硬化性接着剤を、液晶注入口を残して塗布し、80℃で5分乾燥させた後、2枚の基板をアンチパラレル配向となるように配向膜を内側として重ね合わせて圧着し、接着剤を150℃で90分かけて硬化させた。接着剤の焼成温度及び時間、あるいは光配向時の光強度は、実施例又は比較例で作成する液晶セルA〜Cと同じ条件にした。
液晶注入口より、カイラル剤が入っていない液晶組成物に重合性モノマーと重合開始剤を添加した液晶材料を真空注入により充填させ、エポキシ系接着剤で液晶注入口を封止した。任意電圧の矩形波を印加しながら、波長365nm付近に輝線スペクトルを持つ紫外線を照射し、液晶セルを得た。該セルの液晶のプレチルト角を回転結晶法により測定し、プレチルト角とした。
<Measurement of pretilt angle>
In this example, the pretilt angle is manufactured under the same conditions as in the case of manufacturing a vertical alignment type super twist liquid crystal display element in the conditions for applying the alignment film to the substrate, the baking temperature condition, and the alignment film manufacturing condition. The angle between the director of the liquid crystal molecules and the substrate surface on the substrate surface of the antiparallel type liquid crystal alignment element was defined as the pretilt angle.
A vertical alignment type alignment film solution (mixed solution of SE-1211 and RN1338 manufactured by Nissan Chemical Industries, Ltd.) was applied on a substrate having a transparent electrode layer by a spin coater and then baked.
Next, linearly polarized ultraviolet light having an emission line spectrum in the vicinity of a wavelength of 254 nm was irradiated onto the substrate surface by 1 J / cm 2 at θ = 45 ° to produce a substrate with an alignment film.
A thermosetting adhesive containing styrene beads having a diameter of 5.5 μm was applied to the substrate with the alignment film, leaving a liquid crystal injection port and dried at 80 ° C. for 5 minutes, and then the two substrates were anti-parallel. The alignment film was laminated on the inner side so as to be aligned and pressure-bonded, and the adhesive was cured at 150 ° C. for 90 minutes. The firing temperature and time of the adhesive or the light intensity during photo-alignment were set to the same conditions as those of the liquid crystal cells A to C prepared in the examples or comparative examples.
From a liquid crystal injection port, a liquid crystal material containing a polymerizable monomer and a polymerization initiator was filled into the liquid crystal composition containing no chiral agent by vacuum injection, and the liquid crystal injection port was sealed with an epoxy adhesive. While applying a rectangular wave of an arbitrary voltage, an ultraviolet ray having an emission line spectrum in the vicinity of a wavelength of 365 nm was irradiated to obtain a liquid crystal cell. The pretilt angle of the liquid crystal in the cell was measured by the rotating crystal method, and was defined as the pretilt angle.

(電気光学特性(透過率、急峻性等))
透過率、急峻性等は、DMS501(オートロニック社製)を用いて測定した。具体的には、光路中に偏光板を1枚挿入した状態(空気のみ存在する状態)の光強度を100%とし、100Hzの矩形波を0Vrmsから徐々に高い電圧を印加して5Vrmsまで印加した後、0Vrmsまで、徐々に電圧を下げ、その各印加電圧における光透過率を測定した。
:電圧無印加時の透過率(%)
Tmax:0〜5Vrmsの電圧印加時の最大透過率(%)
Vr0.9(閾値電圧):Tを0%とし、Tmaxを100%とし、電圧を印加して、透過率が0.9%となる印加電圧(Vrms)
Vr90(飽和電圧):Tminを0%とし、Tmaxを100%とし、電圧を印加して、透過率が90%となる印加電圧(Vrms)
急峻性γ:Vr90/Vr0.9
(Electro-optical properties (transmittance, steepness, etc.))
The transmittance, steepness and the like were measured using DMS501 (manufactured by Autoronic). Specifically, the light intensity in a state where one polarizing plate is inserted in the optical path (a state where only air is present) is assumed to be 100%, and a 100 Hz rectangular wave is applied gradually from 0 Vrms to 5 Vrms. Thereafter, the voltage was gradually lowered to 0 Vrms, and the light transmittance at each applied voltage was measured.
T 0 : Transmittance when no voltage is applied (%)
Tmax: Maximum transmittance (%) when a voltage of 0 to 5 Vrms is applied
Vr0.9 (threshold voltage): The T 0 0%, the Tmax was 100%, by applying a voltage, the applied voltage at which the transmittance is 0.9% (Vrms)
Vr90 (saturation voltage): applied voltage (Vrms) at which Tmin is 0%, Tmax is 100%, voltage is applied, and transmittance is 90%
Steepness γ: Vr90 / Vr0.9

(実施例1)
透明性電極層を有する基板上に、垂直配向型配向膜溶液(日産化学工業製RN1338とSE1211=92.5/7.5wt%)の混合溶液を、スピンコーターにより塗布した後、200℃で1時間焼成した。次に、波長254nm付近に輝線スペクトルを持つ直線偏光紫外線を基板面に対し、θ=45°で1j/cm 照射し、配向膜付基板2枚を得た。
該基板に直径5.5μmのスチレンビーズを含んだ熱硬化性接着剤を、液晶注入口を残して塗布し、80℃で5分乾燥させた後、2枚の基板を、液晶を存在させた時のねじれ角が250°になるように配向膜を内側として重ね合わせて圧着し、接着剤を150℃で90分かけて硬化させ、空セルAを得た。
Example 1
On a substrate having a transparent electrode layer, a mixed solution of vertical alignment type alignment film solution (RN1338 manufactured by Nissan Chemical Industries, Ltd. and SE1211 = 92.5 / 7.5 wt%) was applied by a spin coater, and then 1 at 200 ° C. Baked for hours. Next, the substrate surface was irradiated with 1 j / cm 2 of linearly polarized ultraviolet light having an emission line spectrum near a wavelength of 254 nm at θ = 45 ° to obtain two substrates with alignment films.
A thermosetting adhesive containing styrene beads having a diameter of 5.5 μm was applied to the substrate, leaving a liquid crystal injection port and dried at 80 ° C. for 5 minutes, and then the two substrates were allowed to have liquid crystal present. The alignment film was placed on the inside so as to have a twist angle of 250 ° at the time, and pressure-bonded, and the adhesive was cured at 150 ° C. for 90 minutes to obtain an empty cell A.

また、誘電率異方性が負であり、Δn=0.235、K33/K11=1.237の液晶組成物(I)にカイラル剤(メルク社製S―811)を約1.12wt%、重合性モノマー(大日本インキ化学工業社製UCL008)を1.5wt%、重合開始剤イルガキュア907(チバガイギ社製)0.06wt%を添加して、液晶材料Aを得た。   The liquid crystal composition (I) having a negative dielectric anisotropy and Δn = 0.235, K33 / K11 = 1.237 was added with about 1.12 wt% of a chiral agent (S-811 manufactured by Merck), A liquid crystal material A was obtained by adding 1.5 wt% of a polymerizable monomer (UCL008 manufactured by Dainippon Ink and Chemicals, Inc.) and 0.06 wt% of a polymerization initiator Irgacure 907 (manufactured by Ciba-Gigi).

空セルAに、液晶材料Aを真空注入により充填させ、エポキシ系接着剤で液晶注入口を封止した。紫外線照射前のアンチパラレル型液晶素子Aのプレチルト角は約87.5°であった。次に20Vの矩形波を印加しながら、重合性モノマーを重合させるために、波長365nm付近に輝線スペクトルを持つ紫外線を18J/cm照射し、液晶セルA1を得た。
次いで、下側偏光板を、液晶セルAの下側基板の光配向処理時に照射した紫外線の入射方向と、偏光板の吸収軸の角度が一致するように、下側基板へ張り合わせた。下側偏光板の吸収軸が直交する角度で、上側基板へ上側偏光板を張り合わせることにより、液晶素子A1を作製した。
The empty cell A was filled with the liquid crystal material A by vacuum injection, and the liquid crystal injection port was sealed with an epoxy adhesive. The pretilt angle of the antiparallel liquid crystal element A before the ultraviolet irradiation was about 87.5 °. Next, in order to polymerize the polymerizable monomer while applying a rectangular wave of 20 V, ultraviolet light having an emission line spectrum near a wavelength of 365 nm was irradiated at 18 J / cm 2 to obtain a liquid crystal cell A1.
Next, the lower polarizing plate was bonded to the lower substrate so that the incident direction of ultraviolet rays irradiated during the photo-alignment treatment of the lower substrate of the liquid crystal cell A and the angle of the absorption axis of the polarizing plate coincided. The upper polarizing plate was bonded to the upper substrate at an angle at which the absorption axes of the lower polarizing plate were orthogonal to produce a liquid crystal element A1.

上記構成からなる液晶素子A1の電気光学特性を測定した結果、急峻性γは1.099であった。
また、アンチパラレル型液晶素子A2のプレチルト角は約81.5°であった。さらに、光路中に偏光板1枚挿入した状態(空気のみ存在する状態)の光強度を100%とした場合、電圧無印加時の液晶素子A1を光路中に設置した時の光透過率T0は0.13(%)であった。
なお、この光透過率が低いということは、液晶素子において光抜けが少なく、コントラストが大きいことを意味する。
液晶素子A1の電気光学特性測定時の温度を変化させた、電気光学特性の結果を図2と表1に示す。
As a result of measuring the electro-optical characteristics of the liquid crystal element A1 having the above structure, the steepness γ was 1.099.
The pretilt angle of the antiparallel liquid crystal element A2 was about 81.5 °. Further, when the light intensity in a state where one polarizing plate is inserted in the optical path (a state where only air is present) is 100%, the light transmittance T0 when the liquid crystal element A1 when no voltage is applied is installed in the optical path is It was 0.13 (%).
Note that the low light transmittance means that the liquid crystal element has little light leakage and high contrast.
FIG. 2 and Table 1 show the results of the electro-optical characteristics obtained by changing the temperature at the time of measuring the electro-optical characteristics of the liquid crystal element A1.

Figure 0005229766
Figure 0005229766

液晶素子A1は、温度変化に対して、T0、閾値電圧(Vr0.9)、飽和電圧(Vr90)、急峻性γの変化が小さいことが確認できる。
また、表示素子A1の基板を剥離し、液晶をイソプロピルアルコールで洗い流した後、基板表面を電子顕微鏡により観察した画像を図4に示す。図4より、該基板の配向膜上にはポリマーと思われる構造物が観察された。
It can be confirmed that the change in T 0, threshold voltage (Vr 0.9 ), saturation voltage (Vr 90 ), and steepness γ is small in the liquid crystal element A1 with respect to the temperature change.
FIG. 4 shows an image obtained by detaching the substrate of the display element A1 and washing the liquid crystal with isopropyl alcohol, and then observing the substrate surface with an electron microscope. From FIG. 4, a structure considered to be a polymer was observed on the alignment film of the substrate.

(比較例1)
実施例1において、誘電率異方性が負であり、Δn=0.235、K33/K11=1.237の液晶組成物(I)のみからなる液晶材料Bを使用し、重合性モノマーを重合する為の紫外線照射を行わない他は、液晶セルA1と同様にして液晶セルB1を製作し、実施例1と同様にして液晶素子B1を得た。
さらに、光路中に偏光板1枚挿入した状態(空気のみ存在する状態)の光強度を100%とした場合、電圧無印加時の液晶素子B1を光路中に設置した時の光透過率T0は0.068(%)であった。液晶素子B1の電気光学特性を測定した結果、急峻性γは1.21であった。また、アンチパラレル型液晶素子B2のプレチルト角は約87.7°であった。
(Comparative Example 1)
In Example 1, a liquid crystal material B composed only of the liquid crystal composition (I) having negative dielectric anisotropy and Δn = 0.235 and K33 / K11 = 1.237 was used to polymerize a polymerizable monomer. A liquid crystal cell B1 was produced in the same manner as in the liquid crystal cell A1 except that the ultraviolet ray was not irradiated, and a liquid crystal element B1 was obtained in the same manner as in Example 1.
Furthermore, when the light intensity in a state where one polarizing plate is inserted in the optical path (a state where only air is present) is 100%, the light transmittance T0 when the liquid crystal element B1 when no voltage is applied is installed in the optical path is 0.068 (%). As a result of measuring the electro-optical characteristics of the liquid crystal element B1, the steepness γ was 1.21. The pretilt angle of the antiparallel liquid crystal element B2 was about 87.7 °.

実施例1の液晶素子A1に比較して、液晶素子B1は、急峻性が大きく低下することが明らかである。
また、表示素子B1の基板を剥離し、液晶をイソプロピルアルコールで洗い流した後、基板表面を電子顕微鏡により観察した画像を図5に示す。図5より、該基板の配向膜上には何も観察されなかった。
As compared with the liquid crystal element A1 of Example 1, it is clear that the liquid crystal element B1 has a sharp decrease in sharpness.
FIG. 5 shows an image obtained by detaching the substrate of the display element B1 and washing the liquid crystal with isopropyl alcohol, and then observing the substrate surface with an electron microscope. From FIG. 5, nothing was observed on the alignment film of the substrate.

(比較例2)
垂直配向型配向膜溶液(日産化学工業製RN1338とSE1211=99/1wt%)の混合溶液および、誘電率異方性が負であり、Δn=0.235、K33/K11=1.237の液晶組成物(I)のみからなる液晶材料Bを使用し、重合性モノマーを重合する為の紫外線照射を行わない他は、実施例1の液晶セルA1と同様にして液晶セルC1−1を製作した。アンチパラレル型液晶素子B2のプレチルト角は約82.6°であった。
液晶素子C1の電気光学特性を測定した結果、急峻性γは1.065であり、またヒステリシスが観測された。
液晶素子C1の電気光学特性測定時の温度を変化させた時の電気光学特性の結果を図3と表2に示す。
(Comparative Example 2)
Mixed solution of vertical alignment type alignment film solution (RN1338 and SE1211 = 99/1 wt% manufactured by Nissan Chemical Industries) and liquid crystal having negative dielectric anisotropy, Δn = 0.235, K33 / K11 = 1.237 A liquid crystal cell C1-1 was produced in the same manner as in the liquid crystal cell A1 of Example 1 except that the liquid crystal material B consisting only of the composition (I) was used and ultraviolet irradiation for polymerizing the polymerizable monomer was not performed. . The pretilt angle of the antiparallel liquid crystal element B2 was about 82.6 °.
As a result of measuring the electro-optical characteristics of the liquid crystal element C1, the steepness γ was 1.065, and hysteresis was observed.
FIG. 3 and Table 2 show the results of the electro-optical characteristics when the temperature at the time of measuring the electro-optical characteristics of the liquid crystal element C1 is changed.

Figure 0005229766
Figure 0005229766

実施例1の液晶素子A1に比較して、液晶素子C1は、温度が高くなるとTが大きくなり、即ち光抜けが大きくなり、閾値電圧(Vr0.9)や飽和電圧(Vr90)の変化が大きく、温度が高くなると急峻性が大きく低下することが明らかである。 Compared with the liquid crystal element A1 of the first embodiment, the liquid crystal element C1 has a larger T 0 when the temperature is higher, that is, a larger light leakage, and has a threshold voltage (Vr 0.9 ) and a saturation voltage (Vr 90 ). It is clear that the steepness decreases greatly as the change is large and the temperature increases.

また、比較例2と全く同様にして、液晶素子C2−2、及びC2―3を得た。アンチパラレル型液晶素子C2―1は、液晶セルC1と同ロットで製作し、プレチルト角を測定した。液晶素子C2−2のプレチルト角は約81.8°であり、C2―3のプレチルト角は約79.6°であった。これより、全く同じ製法によっても、得られたプレチルト角にバラツキが生じることが明らかである。   In the same manner as in Comparative Example 2, liquid crystal elements C2-2 and C2-3 were obtained. The anti-parallel type liquid crystal element C2-1 was manufactured in the same lot as the liquid crystal cell C1, and the pretilt angle was measured. The pretilt angle of the liquid crystal element C2-2 was about 81.8 °, and the pretilt angle of C2-3 was about 79.6 °. From this, it is clear that the pretilt angle obtained varies even with exactly the same manufacturing method.

本発明に係る垂直配向型超ねじれ液晶表示素子は、急峻性が高く、ヒステリシスも少ないので、電圧無印加時の黒表示において光抜けが発生しにくく、コントラストの低下が抑制され、さらに温度に対しても電気光学特性が非常に安定であり、高精細かつ高品位なモニタ用途やテレビ用途などのディスプレイの提供に寄与する。   The vertical alignment type super-twisted liquid crystal display element according to the present invention has high steepness and little hysteresis, so that light is not easily lost in black display when no voltage is applied, and the decrease in contrast is suppressed. However, the electro-optic characteristics are very stable, contributing to the provision of high-definition and high-quality displays for monitors and televisions.

光配向法により垂直配向膜を形成する方法を説明する図である。It is a figure explaining the method of forming a vertical alignment film by the photo-alignment method. 実施例1の液晶素子A1の温度による電気光学特性の関係を示すグラフである。6 is a graph showing the relationship of electro-optical characteristics depending on the temperature of the liquid crystal element A1 of Example 1. 比較例1の液晶素子B1の温度による電気光学特性の関係を示すグラフである。6 is a graph showing the relationship of electro-optical characteristics depending on the temperature of the liquid crystal element B1 of Comparative Example 1. 実施例1の液晶素子A1の基板表面を電子顕微鏡により観察した画像である。It is the image which observed the substrate surface of liquid crystal element A1 of Example 1 with the electron microscope. 比較例1の液晶素子B1の基板表面を電子顕微鏡により観察した画像である。It is the image which observed the substrate surface of liquid crystal element B1 of the comparative example 1 with the electron microscope.

符号の説明Explanation of symbols

θ 基板に対して直線偏光の紫外線を照射する角度、φ 直線偏光の偏波面がXY面(基板面)となす角度。 θ The angle at which the substrate is irradiated with linearly polarized ultraviolet light, and φ The angle between the plane of polarization of the linearly polarized light and the XY plane (substrate surface).

Claims (4)

基材の片面に電極と配向膜とを順に重ねて設け、該配向膜が相互に対向するように配してなる一対の基板と、該一対の基板の間に挟持されるように設けられた負の誘電異方性を有する液晶材料とを少なくとも備えてなる液晶表示素子であって、
前記液晶材料は少なくとも一種のカイラル剤を含有し、
前記一対の基板の相互に対向するように配してなる配向膜によって規定されるねじれ角は180°以上290°以下であり、
且つ、前記配向膜は表面に重合性モノマーを重合させたポリマーを有しており、前記液晶材料をなす液晶分子に対して75°〜85°のプレチルト角を与える配向制御能を有することを特徴とする垂直配向型超ねじれ液晶表示素子。
An electrode and an alignment film are sequentially stacked on one side of the base material, and a pair of substrates are arranged so that the alignment films face each other, and are sandwiched between the pair of substrates. A liquid crystal display element comprising at least a liquid crystal material having negative dielectric anisotropy,
The liquid crystal material contains at least one chiral agent,
The twist angle defined by the alignment film formed so as to oppose the pair of substrates is 180 ° or more and 290 ° or less,
The alignment film has a polymer obtained by polymerizing a polymerizable monomer on the surface, and has an alignment control ability to give a pretilt angle of 75 ° to 85 ° to the liquid crystal molecules forming the liquid crystal material. A vertical alignment type super twist liquid crystal display element.
前記ねじれ角は240°以上280°以下である請求項1に記載の垂直配向型超ねじれ液晶表示素子。   The vertical alignment type super twist liquid crystal display element according to claim 1, wherein the twist angle is not less than 240 ° and not more than 280 °. 前記液晶材料の自然ねじれピッチをp、前記一対の基板同士の間隔をdと定義したとき、前記dを前記pにより除した値が0.55以上0.81以下である請求項1に記載の垂直配向型超ねじれ液晶表示素子。   2. The value according to claim 1, wherein when a natural twist pitch of the liquid crystal material is defined as p and an interval between the pair of substrates is defined as d, a value obtained by dividing the d by the p is 0.55 or more and 0.81 or less. Vertical alignment type super twist liquid crystal display element. 請求項1に記載の垂直配向型超ねじれ液晶表示素子の製造方法であって、
基材の片面に電極と配向膜とを順に重ねて設け、該配向膜が相互に対向するように配してなる一対の基板に、負の誘電異方性を有する液晶材料と、カイラル剤と、重合性モノマーとを含有する液晶組成物を挟持させ、前記液晶材料をねじれ角180°以上290°以下の範囲内でツイスト配向させた状態で、前記一対の基板間に電圧を印加しながら前記液晶組成物に光を照射し、前記重合性モノマーを重合させることを特徴とする垂直配向型超ねじれ液晶表示素子の製造方法。
It is a manufacturing method of the vertical alignment type super twist liquid crystal display element according to claim 1,
An electrode and an alignment film are sequentially stacked on one surface of a base material, and a liquid crystal material having negative dielectric anisotropy and a chiral agent are provided on a pair of substrates arranged so that the alignment films face each other. The liquid crystal composition containing a polymerizable monomer is sandwiched, and the liquid crystal material is twist-oriented within a range of a twist angle of 180 ° or more and 290 ° or less while applying a voltage between the pair of substrates. A method for producing a vertical alignment type super-twisted liquid crystal display element, wherein the liquid crystal composition is irradiated with light to polymerize the polymerizable monomer.
JP2006151655A 2006-05-31 2006-05-31 Vertical alignment type super twist liquid crystal display element and manufacturing method thereof Expired - Fee Related JP5229766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006151655A JP5229766B2 (en) 2006-05-31 2006-05-31 Vertical alignment type super twist liquid crystal display element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006151655A JP5229766B2 (en) 2006-05-31 2006-05-31 Vertical alignment type super twist liquid crystal display element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007322639A JP2007322639A (en) 2007-12-13
JP5229766B2 true JP5229766B2 (en) 2013-07-03

Family

ID=38855517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006151655A Expired - Fee Related JP5229766B2 (en) 2006-05-31 2006-05-31 Vertical alignment type super twist liquid crystal display element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5229766B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8614777B2 (en) 2008-08-20 2013-12-24 Sharp Kabushiki Kaisha Liquid crystal display device
JP6808916B2 (en) * 2015-08-11 2021-01-06 Dic株式会社 Liquid crystal display element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3520376B2 (en) * 1993-06-11 2004-04-19 セイコーエプソン株式会社 Liquid crystal display device and method of manufacturing the same
GB2329481A (en) * 1997-09-19 1999-03-24 Sharp Kk Supertwist nematic liquid crystal
JP2000292815A (en) * 1999-04-12 2000-10-20 Stanley Electric Co Ltd Perpendicularly aligned ecb mode liquid crystal display device
JP4064687B2 (en) * 2002-02-20 2008-03-19 シャープ株式会社 Liquid crystal display device and manufacturing method thereof
JP4744090B2 (en) * 2004-03-11 2011-08-10 富士通株式会社 Manufacturing method of liquid crystal display device

Also Published As

Publication number Publication date
JP2007322639A (en) 2007-12-13

Similar Documents

Publication Publication Date Title
JP6317582B2 (en) Liquid crystal display and manufacturing method thereof
KR0173803B1 (en) Lcd element and its manufacture
KR100816142B1 (en) Liquid crystal display device and fabrication method thereof
US20130271713A1 (en) Liquid crystal display device and method for manufacturing liquid crystal display device
US20090147200A1 (en) Vertical alignment film and method of manufacturing thereof, vertical alignment substrate and method of manufacturing thereof, and liquid crystal display device
WO2013031393A1 (en) Liquid-crystal display panel and liquid-crystal display device
JP5113869B2 (en) Liquid crystal display device and manufacturing method thereof
TWI705283B (en) Polymer containing scattering type va liquid crystal device
CN106873248B (en) Liquid crystal display panel and liquid crystal display device
TWI524116B (en) A liquid crystal display panel, a liquid crystal display device, and a liquid crystal display unit
WO2014045923A1 (en) Liquid crystal display device and method for manufacturing same
US20120268692A1 (en) Liquid crystal optical device and its production process
US7499124B2 (en) Polymer dispersed liquid crystal device conditioned with a predetermined anchoring energy, a predetermined polymer concentration by weight percent and a predetermined cell gap to enhance phase separation and to make smaller and more uniform liquid crystal droplets
JP5229766B2 (en) Vertical alignment type super twist liquid crystal display element and manufacturing method thereof
JP4632252B2 (en) Vertical alignment type super twist liquid crystal display element and manufacturing method thereof
JP2011164273A (en) Liquid crystal display element
JP2004109787A (en) Liquid crystal optical modulation film, its manufacturing method, liquid crystal display element, and liquid crystal display
JP2014021182A (en) Liquid crystal display element and method for manufacturing liquid crystal display element
Mizusaki et al. 66‐1: Invited Paper: Liquid‐Crystal Mixture with a Composition Including Highly Reliable Fluorinated Diluter and RM Monomer for PSVA and PI‐less IPS LCDs
JP2001072976A (en) Liquid crystal cell and its preparation
WO2012108313A1 (en) Liquid crystal display
JP3827937B2 (en) Liquid crystal display
JP4527507B2 (en) Liquid crystal display
JP2010122712A (en) Liquid crystal display and method for manufacturing same
JPH09152631A (en) Liquid crystal display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5229766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees