JP4064687B2 - Liquid crystal display device and manufacturing method thereof - Google Patents

Liquid crystal display device and manufacturing method thereof Download PDF

Info

Publication number
JP4064687B2
JP4064687B2 JP2002043227A JP2002043227A JP4064687B2 JP 4064687 B2 JP4064687 B2 JP 4064687B2 JP 2002043227 A JP2002043227 A JP 2002043227A JP 2002043227 A JP2002043227 A JP 2002043227A JP 4064687 B2 JP4064687 B2 JP 4064687B2
Authority
JP
Japan
Prior art keywords
liquid crystal
display device
crystal display
light
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002043227A
Other languages
Japanese (ja)
Other versions
JP2003241195A (en
Inventor
克彦 岸田
洋平 仲西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2002043227A priority Critical patent/JP4064687B2/en
Priority to KR1020030010387A priority patent/KR100826735B1/en
Priority to TW092103451A priority patent/TWI275859B/en
Priority to US10/368,870 priority patent/US6903787B2/en
Priority to CNB2005100678311A priority patent/CN100447639C/en
Priority to CNB200510067828XA priority patent/CN100514160C/en
Priority to CNB031036724A priority patent/CN1225672C/en
Priority to CN 200910142647 priority patent/CN101661195B/en
Priority to CNB200510067835XA priority patent/CN100447648C/en
Priority to CNB2005100678307A priority patent/CN100405184C/en
Publication of JP2003241195A publication Critical patent/JP2003241195A/en
Priority to US11/099,403 priority patent/US7345719B2/en
Priority to US11/978,460 priority patent/US7847900B2/en
Priority to US11/980,236 priority patent/US8004640B2/en
Priority to US11/980,146 priority patent/US8045124B2/en
Application granted granted Critical
Publication of JP4064687B2 publication Critical patent/JP4064687B2/en
Priority to US13/238,949 priority patent/US8755009B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

The invention relates to a liquid crystal display device and method for manufacturing the same. The liquid crystal display device is a liquid crystal display device formed by jointing a first substrate having a first electrode and a second substrate having a second electrode through an orientation film and a liquid crystal layer, which is characterized in that the liquid crystal layer forms a polymer structure for orientating the liquid crystal molecules according to the appointed direction in the liquid crystal, and the liquid crystal molecules have the approximately identical pre-elevation angle at the display position and peripheral position of the liquid crystal layer.

Description

【0001】
【発明の属する技術分野】
本発明は、ポリマーを用いて液晶分子の駆動時の配向方向を規定する液晶表示装置及びその製造方法に関する。
【0002】
【従来の技術】
高輝度で高速応答可能なマルチドメイン垂直配向モード(Multi−domain Vertical Alignment mode)の液晶表示装置を実現するために、ポリマーを用いて液晶分子の駆動時の配向方向を規定する方法が提案されている。この方法では、液晶と光重合性モノマー等とを混合した液晶材料を2枚の基板間に封止する。基板間に所定の電圧を印加して液晶分子を傾斜させた状態で、液晶層にUV光を照射してモノマーを重合し、ポリマーを形成する。基板の表面近傍に形成されるポリマーにより、電圧印加を取り去っても所定の配向方向及びプレチルト角が規定された液晶層が得られる。このため、配向膜のラビング処理が不要になる。
【0003】
【発明が解決しようとする課題】
図7は、従来のMVAモードの液晶表示装置の表示領域を示している。モノマーを混合した液晶材料は、パネル一端部に形成された液晶注入口12から注入される。液晶材料は狭いセルギャップ内を拡散するうちに、表示領域10内でモノマーの分布が不均一になってしまう。特に、液晶注入口12に対向する側の2つの角部近傍の領域βでは、他の領域αに比較してモノマーの濃度が低くなっている。このため、領域βでは、UV光を照射してポリマーを形成した後に得られる液晶分子のプレチルト角が、他の領域αより大きくなってしまう。ここで、プレチルト角とは、液晶層に電圧が印加されていない状態での液晶分子の基板面からの傾斜角度である。すなわち、プレチルト角が90°であれば液晶分子は基板面に垂直に配向している。
【0004】
図8は、図7に示す液晶表示装置の表示画面のA−A’線上での輝度分布を示している。横軸はA−A’線上での位置を表し、縦軸は輝度を表している。A−A’線上の表示領域10左端部をA0とし、領域αと領域βとの境界をA1、表示領域10右端部をA2としている。なお、この液晶表示装置はノーマリーブラックモードであり、表示領域10全体に同一の階調を表示させているものとする。図8に示すように、領域αではほぼ均一な輝度分布が得られているが、領域βでは液晶分子のプレチルト角が領域αより大きい分だけ領域αと比較して輝度が低下している。このため、表示画面上では輝度むらとして視認される。
【0005】
また、従来のカラー液晶表示装置では、中間調(グレースケール)を表示したときに色付きが視認される。すなわち、白から黒への階調の変化において色度が変化してしまっている。この現象は無彩色だけでなく有彩色でも異なる色を再現していることを示しており、所望の表示画像が得られないという問題が生じている。これは、カラーフィルタ(CF;Color Filter)樹脂層の各色を透過した光の波長が異なるため、液晶層を含めたリタデーションの実質的な大きさが各色毎に異なり、透過率特性(T−V特性)が色毎に異なってしまうのが原因である。
【0006】
上記問題の対策として、色の異なる画素毎にセルギャップを変えて形成するマルチギャップという手法が提案されている。しかし、画素毎にセルギャップを制御して製造するのは、プロセスが複雑になってしまい製造コストが増加してしまうという問題を有している。
【0007】
また、他の対策として、入力信号をスケーラIC等の信号変換素子により変換し、色毎のT−V特性を調整する手法がある。しかし、フレームメモリを有するスケーラICは高価であり、汎用性に欠ける。
【0008】
本発明の目的は、良好な表示特性が得られる液晶表示装置及びその製造方法を提供することにある。
【0009】
【課題を解決するための手段】
上記目的は、光により重合する重合性成分を含有する液晶層を対向配置された2枚の基板間に封止し、前記液晶層に所定の電圧印加条件で電圧を印加しながら所定の光照射条件で前記光を照射して前記重合性成分を重合し、液晶分子のプレチルト角及び/又は駆動時の配向方向を規定する際、前記電圧印加条件又は前記光照射条件の少なくともいずれか一方を領域毎に変化させることを特徴とする液晶表示装置の製造方法によって達成される。
【0010】
【発明の実施の形態】
本発明の第1の実施の形態による液晶表示装置及びその製造方法について図1乃至図3を用いて説明する。本実施の形態では、駆動時の液晶分子の配向を規定するポリマーを形成する際に照射するUV光の照射強度を領域毎に異ならせることにより、表示領域全体で同一のプレチルト角を液晶層に付与している。これにより、表示領域全体で均一なT−V特性が得られる。
【0011】
まず、本実施の形態による液晶表示装置の製造方法の原理について説明する。図1は、UV光の照射強度と液晶分子のプレチルト角との関係を示すグラフである。横軸はUV光の照射強度(mW/cm2)を表し、縦軸はUV光を照射した後に得られる液晶分子のプレチルト角(deg.)を表している。なお、液晶層には、表示画面が白輝度になる電圧(例えば5V)が印加されている。また、UV光の照射時間は100秒である。図1に示すように、UV光を照射した後に得られる液晶分子のプレチルト角は、UV光の照射強度が高いほど小さくなる。ただし、液晶分子のプレチルト角は、50mW/cm2以上の照射強度ではほぼ一定になる。
【0012】
本実施の形態では、図7に示す領域αには照射強度BのUV光を照射し、領域βには照射強度Bより高い照射強度B’(B’>B)のUV光を照射してモノマーを重合化させる。これにより、モノマーの濃度が領域αより低い領域βにおいても、照射強度Bより高い照射強度B’のUV光を照射することにより、領域αとほぼ同一のプレチルト角が得られる。すなわち、領域αのT−V特性と領域βのT−V特性がほぼ同一になり、表示画面上に生じる輝度むらを低減できる。
【0013】
次に、本実施の形態による液晶表示装置の製造方法についてより具体的に説明する。図2は、本実施の形態に用いる液晶表示パネル1の概略の断面構成を示している。図2に示すように、液晶表示パネル1は、薄膜トランジスタ(TFT;Thin Film Transistor)基板2とTFT基板2に対向して配置されたCF基板4とで構成されている。TFT基板2は、ガラス基板16上の画素毎に形成された画素電極20を有している。CF基板4は、各画素を画定する遮光膜24をガラス基板17上に有している。各画素には、赤(R)、緑(G)、青(B)のいずれかのCF樹脂層が形成されている。CF樹脂層R、G、B上には共通電極22が形成されている。
【0014】
TFT基板2とCF基板4との間には、液晶と光重合性モノマーとが混合された液晶層6が封止されている。液晶層6は、液晶表示パネル1の一端部に形成された液晶注入口12(図2では図示せず)から注入されている。
【0015】
まず、TFT基板2上の画素電極20とCF基板4上の共通電極22との間に、表示画面が白輝度になる電圧を印加する。続いて、両電極20、22間に電圧を印加した状態で、所定のマスクを介してUV光を照射し、液晶層6内のモノマーを重合させる。マスクには、図7に示す領域βの透過率が領域αの透過率より高くなるようなグレーマスクの描画パターンが形成されている。これにより、液晶層6に照射されるUV光の強度は領域αより領域βの方が高くなる。以上の工程を経て液晶表示装置が完成する。
【0016】
図3は、本実施の形態による液晶表示装置の製造方法を用いて作製した液晶表示装置の輝度分布を図8に対応して示すグラフである。図3に示すように、本実施の形態によれば、領域βでの輝度が向上して表示領域10全体においてほぼ均一な輝度分布が得られる。したがって、輝度むらのない良好な表示特性の液晶表示装置が得られる。
【0017】
また、本実施の形態によれば、セルギャップが他の領域と異なる例えば液晶注入口12近傍やシール材近傍等の領域においても、液晶分子のプレチルト角を異ならせることにより、T−V特性を他の領域とほぼ同一にできる。したがって、表示領域10の液晶注入口12近傍や額縁近傍に輝度むらのない良好な表示特性が得られる。
【0018】
なお、本実施の形態による液晶表示装置の製造方法を用いれば、バックライトユニット等の光源装置の輝度分布により生じる表示領域10の輝度むらを低減することもできる。光源装置の表示領域10上での輝度分布があらかじめ把握されていれば、当該輝度分布に対応して、相対的に輝度の高い領域には液晶分子のプレチルト角が小さくなるように高い照射強度のUV光を照射する。相対的に輝度の低い領域には、液晶分子のプレチルト角が大きくなるように低い照射強度のUV光を照射する。このように、光源装置の輝度分布に対応させて、液晶表示パネル1の領域毎のT−V特性を意図的に異ならせることにより、表示画面上に生じる輝度むらを低減でき、良好な表示特性が得られる。
【0019】
次に、本発明の第2の実施の形態による液晶表示装置の製造方法について図4を用いて説明する。本実施の形態では、RのCF樹脂層が形成された画素(以下R画素という)、GのCF樹脂層が形成された画素(以下G画素という)、及びBのCF樹脂層が形成された画素(以下B画素という)の液晶分子にそれぞれ異なるプレチルト角を付与するために、UV光を照射してモノマーを重合させる際に、色毎に異なる電圧を液晶層6に印加する。
【0020】
図4は、印加電圧と液晶分子のプレチルト角との関係を示すグラフである。横軸は液晶層6への印加電圧(V)を表し、縦軸は所定の照射量のUV光を照射した後に得られる液晶分子のプレチルト角(deg.)を表している。図4に示すように、UV光を照射する際の液晶層6への印加電圧が大きくなるにしたがって、液晶分子のプレチルト角は小さくなる。
【0021】
本実施の形態では、R画素の液晶層6に例えば所定の電圧Vrを印加し、G画素の液晶層6に電圧Vrより絶対値の小さい電圧Vgを印加し、B画素の液晶層6に電圧Vgより絶対値の小さい電圧Vbを印加する(|Vr|>|Vg|>|Vb|)。この状態でUV光を照射してモノマーを重合させると、R画素の液晶分子のプレチルト角が相対的に小さくなり、G画素、B画素の順に液晶分子のプレチルト角が大きくなる。これにより、相対的に緑より小さい屈折率を感じる赤色光が透過するR画素の液晶層6に生じるリタデーションが増加し、相対的に緑より大きい屈折率を感じる青色光が透過するB画素の液晶層6に生じるリタデーションが減少する。このように各色毎に異なる光の屈折率を補正することにより、各画素の液晶層6で生じるリタデーションの実質的な大きさをほぼ同一にできる。したがって、表示領域でのT−V特性を均一にでき、所望の表示画像が得られる。
【0022】
次に、本実施の形態による液晶表示装置の製造方法について図2を参照しつつより具体的に説明する。まず、図2に示すように、R、G、Bの各画素の液晶層6に電圧Vr、Vg、Vb(|Vr|>|Vg|>|Vb|)をそれぞれ印加する。続いて、液晶層6に電圧を印加した状態で所定の照射量のUV光を照射し、液晶層6内のモノマーを重合させる。以上の工程を経て液晶表示装置が完成する。
【0023】
次に、本実施の形態による液晶表示装置の製造方法の変形例及びそれに用いる液晶表示装置について説明する。本変形例に用いるCF基板4は、例えばCF樹脂層R、G、Bがそれぞれ異なる形成材料又は膜厚で形成されている。CF基板4のR、G、Bの各画素での透過率をそれぞれTr、Tg、Tbとすると、Tr>Tg>Tbになっている。UV光をCF基板2側から液晶層6に照射すると、液晶層6へのUV光の照射強度はR画素が相対的に大きくなり、G画素、B画素の順に小さくなる。このため、図1に示すように、R画素の液晶分子のプレチルト角が相対的に小さくなり、G画素、B画素の順に液晶分子のプレチルト角が大きくなる。したがって、本変形例によっても上記実施の形態と同様の効果が得られる。
【0024】
上記第1及び第2の実施の形態では、UV光の照射強度や印加電圧を領域毎に変えることにより表示領域でのT−V特性を均一にしているが、他の方法を用いることもできる。
【0025】
図5は、UV光の照射波長と液晶分子のプレチルト角との関係を示すグラフである。横軸はUV光の照射波長(nm)を表し、縦軸はUV光を照射した後に得られる液晶分子のプレチルト角(deg.)を表している。なお、液晶層6には所定の電圧を印加しており、所定の照射量のUV光を照射している。図5に示すように、約365nmの照射波長のUV光を照射したときに、液晶分子のプレチルト角が最も小さくなる。なお、液晶分子のプレチルト角が最も小さくなる照射波長は、液晶に混合するモノマーにより異なる。
【0026】
UV光を照射する際に、領域により異なる照射波長の光が透過するフィルターを用いることにより、液晶層6に照射されるUV光の照射波長を制御できる。以上のように、UV光の照射波長を領域毎に変えることにより、上記第1及び第2の実施の形態と同様の効果を得ることができる。
【0027】
また図6は、UV光の照射時間と液晶分子のプレチルト角との関係を示している。横軸は光の照射時間(sec)を表し、縦軸はUV光を照射した後に得られる液晶分子のプレチルト角(deg.)を表している。なお、液晶層6には所定の電圧を印加しており、所定の照射強度のUV光を照射している。図6に示すように、液晶分子のプレチルト角は、100秒程度までは照射時間が長くなるにしたがって小さくなる。ただし、液晶分子のプレチルト角は、照射時間が100秒を超えるとほとんど変化しない。
【0028】
所定の描画パターンで形成されたマスクを移動させながらUV光を照射することにより、照射時間を領域により変えることができ、しかも完成した液晶表示装置の表示画面上で境界部が目立ってしまうことがない。以上のように、UV光の照射時間を領域毎に変えることにより、上記第1及び第2の実施の形態と同様の効果を得ることができる。
【0029】
本発明は、上記実施の形態に限らず種々の変形が可能である。
例えば、上記実施の形態では、ノーマリブラックモードの液晶表示装置を例に挙げたが、本発明はこれに限らず、ノーマリホワイトモードの液晶表示装置にも適用できる。
【0030】
また、上記実施の形態では、透過型の液晶表示装置を例に挙げたが、本発明はこれに限らず、反射型や半透過型等の他の液晶表示装置にも適用できる。
また、上記実施の形態では、重合性成分としてモノマーを例にとって説明したが、オリゴマーを重合性成分として液晶層に含有させてももちろんよい。
【0031】
以上説明した実施の形態による液晶表示装置の製造方法は、以下のようにまとめられる。
(付記1)
光により重合する重合性成分を含有する液晶層を対向配置された2枚の基板間に封止し、
前記液晶層に所定の電圧印加条件で電圧を印加しながら所定の光照射条件で前記光を照射して前記重合性成分を重合し、液晶分子のプレチルト角及び/又は駆動時の配向方向を規定する際、前記電圧印加条件又は前記光照射条件の少なくともいずれか一方を領域毎に変化させること
を特徴とする液晶表示装置の製造方法。
【0032】
(付記2)
付記1記載の液晶表示装置の製造方法において、
前記光照射条件は、前記光の照射強度を含んでいること
を特徴とする液晶表示装置の製造方法。
【0033】
(付記3)
付記1又は2に記載の液晶表示装置の製造方法において、
前記光照射条件は、前記光の照射時間を含んでいること
を特徴とする液晶表示装置の製造方法。
【0034】
(付記4)
付記1乃至3のいずれか1項に記載の液晶表示装置の製造方法において、
前記光照射条件は、前記光の照射波長を含んでいること
を特徴とする液晶表示装置の製造方法。
【0035】
(付記5)
付記1乃至4のいずれか1項に記載の液晶表示装置の製造方法において、
前記電圧印加条件又は前記光照射条件の少なくともいずれか一方を各画素に形成されたカラーフィルタ毎に変化させること
を特徴とする液晶表示装置の製造方法。
【0036】
(付記6)
付記1乃至5のいずれか1項に記載の液晶表示装置の製造方法において、
前記電圧印加条件又は前記光照射条件の少なくともいずれか一方を液晶注入口に対向する側の角部領域と他の領域とで変化させること
を特徴とする液晶表示装置の製造方法。
【0037】
(付記7)
付記1乃至6のいずれか1項に記載の液晶表示装置の製造方法において、
前記光は紫外光であること
を特徴とする液晶表示装置の製造方法。
【0038】
(付記8)
液晶分子のプレチルト角及び/又は駆動時の配向方向を規定するように紫外光により重合したポリマーを含んだ液晶層を対向配置される基板とともに挟持する基板と、
前記基板上に形成されたカラーフィルタ樹脂層と、
前記基板上にマトリクス状に配置され、前記カラーフィルタ樹脂層の色毎に前記紫外光の透過率が異なる画素領域と
を有することを特徴とする液晶表示装置用基板。
【0039】
(付記9)
付記8記載の液晶表示装置用基板において、
前記画素領域は、赤色画素の前記透過率をTr、緑色画素の前記透過率をTg、青色画素の前記透過率をTbとすると、Tr>Tg>Tbであること
を特徴とする液晶表示装置用基板。
【0040】
(付記10)
付記8又は9に記載の液晶表示装置用基板において、
前記カラーフィルタ樹脂層は、色毎に形成材料が異なること
を特徴とする液晶表示装置用基板。
【0041】
(付記11)
付記8乃至10のいずれか1項に記載の液晶表示装置用基板において、
前記カラーフィルタ樹脂層は、色毎に膜厚が異なること
を特徴とする液晶表示装置用基板。
【0042】
(付記12)
対向配置された2枚の基板と、前記基板間に封止された液晶層とを有する液晶表示装置において、
前記基板の一方に、付記8乃至11のいずれか1項に記載の液晶表示装置用基板が用いられていること
を特徴とする液晶表示装置。
【0043】
【発明の効果】
以上の通り、本発明によれば、良好な表示特性が得られる液晶表示装置の製造方法を実現できる。
【図面の簡単な説明】
【図1】UV光の照射強度と液晶分子のプレチルト角との関係を示すグラフである。
【図2】本発明の第1の実施の形態による液晶表示装置の概略構成を示す断面図である。
【図3】本発明の第1の実施の形態による液晶表示装置の表示領域の輝度分布を示すグラフである。
【図4】印加電圧と液晶分子のプレチルト角との関係を示すグラフである。
【図5】UV光の照射波長と液晶分子のプレチルト角との関係を示すグラフである。
【図6】UV光の照射時間と液晶分子のプレチルト角との関係を示すグラフである。
【図7】従来の液晶表示装置の表示領域を示す図である。
【図8】従来の液晶表示装置の表示領域の輝度分布を示すグラフである。
【符号の説明】
2 TFT基板
4 CF基板
6 液晶層
10 表示領域
12 液晶注入口
16、17 ガラス基板
20 画素電極
22 共通電極
24 遮光膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid crystal display device that uses a polymer to define the alignment direction when driving liquid crystal molecules, and a method for manufacturing the same.
[0002]
[Prior art]
In order to realize a multi-domain vertical alignment mode liquid crystal display device capable of high-intensity and high-speed response, a method for defining the alignment direction when driving liquid crystal molecules using a polymer has been proposed. Yes. In this method, a liquid crystal material in which liquid crystal and a photopolymerizable monomer are mixed is sealed between two substrates. In a state where a predetermined voltage is applied between the substrates to tilt the liquid crystal molecules, the liquid crystal layer is irradiated with UV light to polymerize the monomer to form a polymer. The polymer formed in the vicinity of the surface of the substrate can provide a liquid crystal layer having a predetermined alignment direction and a pretilt angle even when voltage application is removed. For this reason, the rubbing process of an alignment film becomes unnecessary.
[0003]
[Problems to be solved by the invention]
FIG. 7 shows a display area of a conventional MVA mode liquid crystal display device. The liquid crystal material mixed with the monomer is injected from a liquid crystal injection port 12 formed at one end of the panel. As the liquid crystal material diffuses in the narrow cell gap, the monomer distribution in the display region 10 becomes non-uniform. In particular, in the region β in the vicinity of the two corners on the side facing the liquid crystal injection port 12, the monomer concentration is lower than in the other regions α. For this reason, in the region β, the pretilt angle of the liquid crystal molecules obtained after irradiating UV light to form a polymer is larger than that in the other regions α. Here, the pretilt angle is an inclination angle of the liquid crystal molecules from the substrate surface when no voltage is applied to the liquid crystal layer. That is, when the pretilt angle is 90 °, the liquid crystal molecules are aligned perpendicular to the substrate surface.
[0004]
FIG. 8 shows the luminance distribution on the line AA ′ of the display screen of the liquid crystal display device shown in FIG. The horizontal axis represents the position on the AA ′ line, and the vertical axis represents the luminance. The left end of the display area 10 on the line AA ′ is A0, the boundary between the area α and the area β is A1, and the right end of the display area 10 is A2. This liquid crystal display device is in a normally black mode, and the same gradation is displayed on the entire display area 10. As shown in FIG. 8, a substantially uniform luminance distribution is obtained in the region α, but the luminance is lowered in the region β as compared with the region α by the amount that the pretilt angle of the liquid crystal molecules is larger than the region α. For this reason, it is visually recognized as luminance unevenness on the display screen.
[0005]
Further, in a conventional color liquid crystal display device, coloring is visually recognized when a halftone (grayscale) is displayed. That is, the chromaticity has changed due to the change in gradation from white to black. This phenomenon indicates that different colors are reproduced not only for achromatic colors but also for chromatic colors, and there is a problem that a desired display image cannot be obtained. This is because the wavelength of the light transmitted through each color of the color filter (CF) resin layer is different, so that the substantial size of the retardation including the liquid crystal layer is different for each color, and the transmittance characteristic (T-V This is because the characteristics are different for each color.
[0006]
As a countermeasure against the above-described problem, a multi-gap technique has been proposed in which a cell gap is changed for each pixel having a different color. However, manufacturing by controlling the cell gap for each pixel has a problem that the process becomes complicated and the manufacturing cost increases.
[0007]
As another countermeasure, there is a method in which an input signal is converted by a signal conversion element such as a scaler IC to adjust a TV characteristic for each color. However, a scaler IC having a frame memory is expensive and lacks versatility.
[0008]
An object of the present invention is to provide a liquid crystal display device capable of obtaining good display characteristics and a method for manufacturing the same.
[0009]
[Means for Solving the Problems]
The purpose is to seal a liquid crystal layer containing a polymerizable component that is polymerized by light between two substrates disposed opposite to each other, and irradiate a predetermined light while applying a voltage to the liquid crystal layer under a predetermined voltage application condition. When irradiating the light under conditions to polymerize the polymerizable component and defining the pretilt angle of liquid crystal molecules and / or the alignment direction during driving, at least one of the voltage application condition and the light irradiation condition is a region. It is achieved by a manufacturing method of a liquid crystal display device characterized by being changed every time.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
A liquid crystal display device and a manufacturing method thereof according to a first embodiment of the present invention will be described with reference to FIGS. In this embodiment, the same pretilt angle is applied to the liquid crystal layer in the entire display region by varying the irradiation intensity of the UV light irradiated when forming a polymer that defines the alignment of liquid crystal molecules during driving. Has been granted. Thereby, uniform TV characteristics can be obtained over the entire display area.
[0011]
First, the principle of the manufacturing method of the liquid crystal display device according to the present embodiment will be described. FIG. 1 is a graph showing the relationship between the irradiation intensity of UV light and the pretilt angle of liquid crystal molecules. The horizontal axis represents the UV light irradiation intensity (mW / cm 2 ), and the vertical axis represents the pretilt angle (deg.) Of the liquid crystal molecules obtained after the UV light irradiation. Note that a voltage (for example, 5 V) is applied to the liquid crystal layer so that the display screen has white luminance. Moreover, the irradiation time of UV light is 100 seconds. As shown in FIG. 1, the pretilt angle of the liquid crystal molecules obtained after UV light irradiation becomes smaller as the UV light irradiation intensity increases. However, the pretilt angle of the liquid crystal molecules becomes almost constant at an irradiation intensity of 50 mW / cm 2 or more.
[0012]
In this embodiment, the region α shown in FIG. 7 is irradiated with UV light having an irradiation intensity B, and the region β is irradiated with UV light having an irradiation intensity B ′ (B ′> B) higher than the irradiation intensity B. The monomer is polymerized. As a result, even in the region β where the monomer concentration is lower than the region α, by irradiating UV light having an irradiation intensity B ′ higher than the irradiation intensity B, a pretilt angle almost the same as that in the region α can be obtained. That is, the TV characteristic of the region α and the TV characteristic of the region β are almost the same, and the luminance unevenness generated on the display screen can be reduced.
[0013]
Next, the manufacturing method of the liquid crystal display device according to the present embodiment will be described more specifically. FIG. 2 shows a schematic cross-sectional configuration of the liquid crystal display panel 1 used in the present embodiment. As shown in FIG. 2, the liquid crystal display panel 1 includes a thin film transistor (TFT) substrate 2 and a CF substrate 4 disposed to face the TFT substrate 2. The TFT substrate 2 has a pixel electrode 20 formed for each pixel on the glass substrate 16. The CF substrate 4 has a light shielding film 24 for defining each pixel on the glass substrate 17. Each pixel is formed with one of red (R), green (G), and blue (B) CF resin layers. A common electrode 22 is formed on the CF resin layers R, G, and B.
[0014]
A liquid crystal layer 6 in which a liquid crystal and a photopolymerizable monomer are mixed is sealed between the TFT substrate 2 and the CF substrate 4. The liquid crystal layer 6 is injected from a liquid crystal injection port 12 (not shown in FIG. 2) formed at one end of the liquid crystal display panel 1.
[0015]
First, a voltage that causes the display screen to have white luminance is applied between the pixel electrode 20 on the TFT substrate 2 and the common electrode 22 on the CF substrate 4. Subsequently, in a state where a voltage is applied between both electrodes 20 and 22, UV light is irradiated through a predetermined mask to polymerize the monomer in the liquid crystal layer 6. A gray mask drawing pattern is formed on the mask such that the transmittance of the region β shown in FIG. 7 is higher than the transmittance of the region α. As a result, the intensity of the UV light applied to the liquid crystal layer 6 is higher in the region β than in the region α. A liquid crystal display device is completed through the above steps.
[0016]
FIG. 3 is a graph corresponding to FIG. 8 showing the luminance distribution of a liquid crystal display device manufactured using the method for manufacturing a liquid crystal display device according to the present embodiment. As shown in FIG. 3, according to the present embodiment, the luminance in the region β is improved, and a substantially uniform luminance distribution is obtained in the entire display region 10. Therefore, a liquid crystal display device having good display characteristics without uneven brightness can be obtained.
[0017]
In addition, according to the present embodiment, the TV characteristics can be improved by changing the pretilt angle of the liquid crystal molecules even in a region where the cell gap is different from other regions, for example, in the vicinity of the liquid crystal injection port 12 or the vicinity of the sealing material. Can be almost the same as other areas. Therefore, good display characteristics with no luminance unevenness can be obtained in the vicinity of the liquid crystal inlet 12 or the frame in the display area 10.
[0018]
If the method for manufacturing a liquid crystal display device according to the present embodiment is used, luminance unevenness in the display region 10 caused by the luminance distribution of a light source device such as a backlight unit can be reduced. If the luminance distribution on the display region 10 of the light source device is grasped in advance, a high irradiation intensity corresponding to the luminance distribution has a high irradiation intensity so that the pretilt angle of the liquid crystal molecules is small in the relatively high luminance region. Irradiate with UV light. A region having a relatively low luminance is irradiated with UV light having a low irradiation intensity so that the pretilt angle of the liquid crystal molecules is increased. As described above, by intentionally changing the TV characteristic for each region of the liquid crystal display panel 1 in accordance with the luminance distribution of the light source device, the luminance unevenness generated on the display screen can be reduced, and good display characteristics can be obtained. Is obtained.
[0019]
Next, a method for manufacturing a liquid crystal display device according to the second embodiment of the present invention will be described with reference to FIGS. In this embodiment, a pixel in which an R CF resin layer is formed (hereinafter referred to as an R pixel), a pixel in which a G CF resin layer is formed (hereinafter referred to as a G pixel), and a B CF resin layer are formed. In order to give different pretilt angles to the liquid crystal molecules of the pixels (hereinafter referred to as B pixels), different voltages are applied to the liquid crystal layer 6 for each color when the monomers are polymerized by irradiating UV light.
[0020]
FIG. 4 is a graph showing the relationship between the applied voltage and the pretilt angle of the liquid crystal molecules. The horizontal axis represents the voltage (V) applied to the liquid crystal layer 6, and the vertical axis represents the pretilt angle (deg.) Of liquid crystal molecules obtained after irradiation with a predetermined amount of UV light. As shown in FIG. 4, the pretilt angle of the liquid crystal molecules decreases as the voltage applied to the liquid crystal layer 6 when UV light is irradiated increases.
[0021]
In the present embodiment, for example, a predetermined voltage Vr is applied to the liquid crystal layer 6 of the R pixel, a voltage Vg having an absolute value smaller than the voltage Vr is applied to the liquid crystal layer 6 of the G pixel, and a voltage is applied to the liquid crystal layer 6 of the B pixel. A voltage Vb having an absolute value smaller than Vg is applied (| Vr |> | Vg |> | Vb |). When the monomer is polymerized by irradiating with UV light in this state, the pretilt angle of the liquid crystal molecules of the R pixel becomes relatively small, and the pretilt angle of the liquid crystal molecules becomes larger in the order of the G pixel and B pixel. This increases the retardation generated in the liquid crystal layer 6 of the R pixel that transmits red light that has a refractive index relatively smaller than green, and the liquid crystal of B pixel that transmits blue light that has a refractive index relatively larger than green. The retardation that occurs in layer 6 is reduced. In this way, by correcting the refractive index of light different for each color, the substantial size of retardation generated in the liquid crystal layer 6 of each pixel can be made substantially the same. Therefore, the TV characteristics in the display area can be made uniform, and a desired display image can be obtained.
[0022]
Next, the manufacturing method of the liquid crystal display device according to the present embodiment will be described more specifically with reference to FIG. First, as shown in FIG. 2, voltages Vr, Vg, and Vb (| Vr |> | Vg |> | Vb |) are respectively applied to the liquid crystal layers 6 of the R, G, and B pixels. Subsequently, with a voltage applied to the liquid crystal layer 6, a predetermined amount of UV light is irradiated to polymerize the monomer in the liquid crystal layer 6. A liquid crystal display device is completed through the above steps.
[0023]
Next, a modification of the method for manufacturing the liquid crystal display device according to the present embodiment and a liquid crystal display device used therefor will be described. In the CF substrate 4 used in this modification, for example, the CF resin layers R, G, and B are formed with different formation materials or film thicknesses. When the transmissivities of the R, G, and B pixels of the CF substrate 4 are Tr, Tg, and Tb, Tr>Tg> Tb. When the liquid crystal layer 6 is irradiated with UV light from the CF substrate 2 side, the irradiation intensity of the UV light to the liquid crystal layer 6 is relatively increased in the R pixel and is decreased in the order of the G pixel and the B pixel. For this reason, as shown in FIG. 1, the pretilt angle of the liquid crystal molecules of the R pixel becomes relatively small, and the pretilt angle of the liquid crystal molecules becomes large in the order of the G pixel and the B pixel. Therefore, the effect similar to the said embodiment is acquired also by this modification.
[0024]
In the first and second embodiments, the UV characteristics in the display region are made uniform by changing the irradiation intensity of UV light and the applied voltage for each region, but other methods can also be used. .
[0025]
FIG. 5 is a graph showing the relationship between the irradiation wavelength of UV light and the pretilt angle of liquid crystal molecules. The horizontal axis represents the irradiation wavelength (nm) of UV light, and the vertical axis represents the pretilt angle (deg.) Of liquid crystal molecules obtained after irradiation with UV light. A predetermined voltage is applied to the liquid crystal layer 6 to irradiate a predetermined amount of UV light. As shown in FIG. 5, when UV light having an irradiation wavelength of about 365 nm is irradiated, the pretilt angle of the liquid crystal molecules becomes the smallest. Note that the irradiation wavelength at which the pretilt angle of the liquid crystal molecules becomes the smallest varies depending on the monomer mixed in the liquid crystal.
[0026]
When irradiating the UV light, the irradiation wavelength of the UV light applied to the liquid crystal layer 6 can be controlled by using a filter that transmits light having different irradiation wavelengths depending on the region. As described above, the same effects as those of the first and second embodiments can be obtained by changing the irradiation wavelength of the UV light for each region.
[0027]
FIG. 6 shows the relationship between the UV light irradiation time and the pretilt angle of the liquid crystal molecules. The horizontal axis represents the light irradiation time (sec), and the vertical axis represents the pretilt angle (deg.) Of the liquid crystal molecules obtained after the UV light irradiation. Note that a predetermined voltage is applied to the liquid crystal layer 6 and UV light having a predetermined irradiation intensity is irradiated. As shown in FIG. 6, the pretilt angle of the liquid crystal molecules decreases with increasing irradiation time up to about 100 seconds. However, the pretilt angle of the liquid crystal molecules hardly changes when the irradiation time exceeds 100 seconds.
[0028]
By irradiating UV light while moving a mask formed with a predetermined drawing pattern, the irradiation time can be changed depending on the region, and the boundary portion may be conspicuous on the display screen of the completed liquid crystal display device. Absent. As described above, the same effects as those of the first and second embodiments can be obtained by changing the irradiation time of the UV light for each region.
[0029]
The present invention is not limited to the above embodiment, and various modifications can be made.
For example, in the above-described embodiment, a normally black mode liquid crystal display device has been described as an example. However, the present invention is not limited to this, and can be applied to a normally white mode liquid crystal display device.
[0030]
In the above embodiment, a transmissive liquid crystal display device is taken as an example. However, the present invention is not limited to this, and can be applied to other liquid crystal display devices such as a reflective type and a transflective type.
In the above embodiment, the monomer is used as an example of the polymerizable component. However, an oligomer may be included in the liquid crystal layer as the polymerizable component.
[0031]
The manufacturing method of the liquid crystal display device according to the embodiment described above can be summarized as follows.
(Appendix 1)
A liquid crystal layer containing a polymerizable component that is polymerized by light is sealed between two substrates disposed opposite to each other;
The polymerizable component is polymerized by irradiating the light under a predetermined light irradiation condition while applying a voltage to the liquid crystal layer under a predetermined voltage application condition, thereby defining a pretilt angle of liquid crystal molecules and / or an alignment direction during driving. In this case, at least one of the voltage application condition and the light irradiation condition is changed for each region.
[0032]
(Appendix 2)
In the method for manufacturing a liquid crystal display device according to attachment 1,
The method for manufacturing a liquid crystal display device, wherein the light irradiation condition includes an irradiation intensity of the light.
[0033]
(Appendix 3)
In the method for manufacturing a liquid crystal display device according to appendix 1 or 2,
The method for manufacturing a liquid crystal display device, wherein the light irradiation condition includes an irradiation time of the light.
[0034]
(Appendix 4)
In the method for manufacturing a liquid crystal display device according to any one of appendices 1 to 3,
The method of manufacturing a liquid crystal display device, wherein the light irradiation condition includes an irradiation wavelength of the light.
[0035]
(Appendix 5)
In the method for manufacturing a liquid crystal display device according to any one of appendices 1 to 4,
A method of manufacturing a liquid crystal display device, wherein at least one of the voltage application condition and the light irradiation condition is changed for each color filter formed in each pixel.
[0036]
(Appendix 6)
In the method for manufacturing a liquid crystal display device according to any one of appendices 1 to 5,
A method of manufacturing a liquid crystal display device, wherein at least one of the voltage application condition and the light irradiation condition is changed between a corner region on the side facing the liquid crystal injection port and another region.
[0037]
(Appendix 7)
In the method for manufacturing a liquid crystal display device according to any one of appendices 1 to 6,
The method for manufacturing a liquid crystal display device, wherein the light is ultraviolet light.
[0038]
(Appendix 8)
A substrate for sandwiching a liquid crystal layer containing a polymer polymerized by ultraviolet light so as to define a pretilt angle of liquid crystal molecules and / or an alignment direction at the time of driving together with a substrate disposed oppositely;
A color filter resin layer formed on the substrate;
A liquid crystal display substrate, comprising: a pixel region arranged in a matrix on the substrate and having a different transmittance of the ultraviolet light for each color of the color filter resin layer.
[0039]
(Appendix 9)
In the substrate for liquid crystal display device according to appendix 8,
For the liquid crystal display device, the pixel region is Tr>Tg> Tb, where Tr is the transmittance of red pixels, Tg is the transmittance of green pixels, and Tb is the transmittance of blue pixels. substrate.
[0040]
(Appendix 10)
In the liquid crystal display substrate according to appendix 8 or 9,
A substrate for a liquid crystal display device, wherein the color filter resin layer has a different material for each color.
[0041]
(Appendix 11)
The substrate for a liquid crystal display device according to any one of appendices 8 to 10,
The substrate for a liquid crystal display device, wherein the color filter resin layer has a different film thickness for each color.
[0042]
(Appendix 12)
In a liquid crystal display device having two substrates opposed to each other and a liquid crystal layer sealed between the substrates,
A liquid crystal display device, wherein the substrate for a liquid crystal display device according to any one of appendices 8 to 11 is used on one of the substrates.
[0043]
【The invention's effect】
As described above, according to the present invention, it is possible to realize a method for manufacturing a liquid crystal display device capable of obtaining good display characteristics.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the irradiation intensity of UV light and the pretilt angle of liquid crystal molecules.
FIG. 2 is a cross-sectional view showing a schematic configuration of the liquid crystal display device according to the first embodiment of the invention.
FIG. 3 is a graph showing a luminance distribution of a display area of the liquid crystal display device according to the first embodiment of the present invention.
FIG. 4 is a graph showing a relationship between an applied voltage and a pretilt angle of liquid crystal molecules.
FIG. 5 is a graph showing the relationship between the irradiation wavelength of UV light and the pretilt angle of liquid crystal molecules.
FIG. 6 is a graph showing the relationship between the irradiation time of UV light and the pretilt angle of liquid crystal molecules.
FIG. 7 is a diagram showing a display area of a conventional liquid crystal display device.
FIG. 8 is a graph showing a luminance distribution in a display area of a conventional liquid crystal display device.
[Explanation of symbols]
2 TFT substrate 4 CF substrate 6 Liquid crystal layer 10 Display region 12 Liquid crystal injection port 16, 17 Glass substrate 20 Pixel electrode 22 Common electrode 24 Light shielding film

Claims (3)

光により重合する重合性成分を含有する液晶層を対向配置された2枚の基板間に封止し、
前記液晶層に所定の電圧印加条件で電圧を印加しながら所定の光照射条件で前記光を照射して前記重合性成分を重合し、液晶分子のプレチルト角及び/又は駆動時の配向方向を規定する際、各領域の透過率特性がほぼ均一になるように、前記電圧印加条件又は前記光照射条件の少なくともいずれか一方を前記領域毎に変化させること
を特徴とする液晶表示装置の製造方法。
A liquid crystal layer containing a polymerizable component that is polymerized by light is sealed between two substrates disposed opposite to each other;
The polymerizable component is polymerized by irradiating the light under a predetermined light irradiation condition while applying a voltage to the liquid crystal layer under a predetermined voltage application condition, thereby defining a pretilt angle of liquid crystal molecules and / or an alignment direction during driving. to time, as the transmittance characteristic of each region is substantially uniform, a method of manufacturing a liquid crystal display device characterized by varying at least one of the voltage applying condition or the light irradiation condition for each of the areas.
請求項1記載の液晶表示装置の製造方法において、
前記電圧印加条件又は前記光照射条件の少なくともいずれか一方を各画素に形成されたカラーフィルタ毎に変化させること
を特徴とする液晶表示装置の製造方法。
In the manufacturing method of the liquid crystal display device of Claim 1,
A method for manufacturing a liquid crystal display device, wherein at least one of the voltage application condition and the light irradiation condition is changed for each color filter formed in each pixel.
請求項1又は2に記載の液晶表示装置の製造方法において、
前記電圧印加条件又は前記光照射条件の少なくともいずれか一方を液晶注入口に対向する側の角部領域と他の領域とで変化させること
を特徴とする液晶表示装置の製造方法。
In the manufacturing method of the liquid crystal display device of Claim 1 or 2,
A method for manufacturing a liquid crystal display device, wherein at least one of the voltage application condition and the light irradiation condition is changed between a corner region on the side facing the liquid crystal injection port and another region.
JP2002043227A 2002-02-20 2002-02-20 Liquid crystal display device and manufacturing method thereof Expired - Lifetime JP4064687B2 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP2002043227A JP4064687B2 (en) 2002-02-20 2002-02-20 Liquid crystal display device and manufacturing method thereof
TW092103451A TWI275859B (en) 2002-02-20 2003-02-19 Liquid crystal display device's substrate, liquid crystal display device including the same, and manufacturing method of the same
US10/368,870 US6903787B2 (en) 2002-02-20 2003-02-19 Liquid crystal display device's substrate, liquid crystal display device including the same, and manufacturing method of the same
KR1020030010387A KR100826735B1 (en) 2002-02-20 2003-02-19 Substrate for liquid crystal display device, liquid crystal device having the same and manufacturing method thereof
CNB200510067828XA CN100514160C (en) 2002-02-20 2003-02-20 Liquid crystal display device and method of manufacturing liquid crystal display device
CNB031036724A CN1225672C (en) 2002-02-20 2003-02-20 Substrate for liquid-crystal display, liquid-crystal display and manufacture thereof
CN 200910142647 CN101661195B (en) 2002-02-20 2003-02-20 Liquid crystal display device and method for manufacturing the same
CNB200510067835XA CN100447648C (en) 2002-02-20 2003-02-20 Substrate for liquid crystal display and liquid crystal display device
CNB2005100678311A CN100447639C (en) 2002-02-20 2003-02-20 Liquid crystal display device and method of manufacturing liquid crystal display device
CNB2005100678307A CN100405184C (en) 2002-02-20 2003-02-20 Liquid crystal display device
US11/099,403 US7345719B2 (en) 2002-02-20 2005-04-05 Liquid crystal display device's substrate, liquid crystal display device including the same, and manufacturing method of the same
US11/978,460 US7847900B2 (en) 2002-02-20 2007-10-29 Liquid crystal display device's substrate, liquid crystal display device including the same, and manufacturing method of the same
US11/980,236 US8004640B2 (en) 2002-02-20 2007-10-30 Liquid crystal display device
US11/980,146 US8045124B2 (en) 2002-02-20 2007-10-30 Liquid crystal display device's substrate, liquid crystal display device including the same, and manufacturing method of the same
US13/238,949 US8755009B2 (en) 2002-02-20 2011-09-21 Liquid crystal display device's substrate, liquid crystal display device including the same, and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002043227A JP4064687B2 (en) 2002-02-20 2002-02-20 Liquid crystal display device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003241195A JP2003241195A (en) 2003-08-27
JP4064687B2 true JP4064687B2 (en) 2008-03-19

Family

ID=27783081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002043227A Expired - Lifetime JP4064687B2 (en) 2002-02-20 2002-02-20 Liquid crystal display device and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP4064687B2 (en)
CN (1) CN101661195B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5229766B2 (en) * 2006-05-31 2013-07-03 Dic株式会社 Vertical alignment type super twist liquid crystal display element and manufacturing method thereof
US20100302482A1 (en) * 2007-11-29 2010-12-02 Keiji Takahashi Color filter substrate, liquid crystal display panel, liquid crystal display device, and production method of color filter substrate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000013059A1 (en) * 1998-08-31 2000-03-09 Seiko Epson Corporation Liquid crystal panel and method of manufacture thereof
KR20000029277A (en) * 1998-10-29 2000-05-25 모리시타 요이찌 Liquid crystal device, its preparation and examination method

Also Published As

Publication number Publication date
CN101661195B (en) 2013-01-02
JP2003241195A (en) 2003-08-27
CN101661195A (en) 2010-03-03

Similar Documents

Publication Publication Date Title
US7345719B2 (en) Liquid crystal display device's substrate, liquid crystal display device including the same, and manufacturing method of the same
US7973894B2 (en) Liquid crystal display
KR100819993B1 (en) Liquid crystal display apparatus and manufacturing method therefor
US7812922B2 (en) Liquid crystal aligning device and alignment method thereof
JPH06160878A (en) Liquid crystal display device
US6738119B2 (en) Liquid crystal display and method for manufacturing the same
JP4423020B2 (en) Liquid crystal display
JP4064687B2 (en) Liquid crystal display device and manufacturing method thereof
US7420647B2 (en) Method for producing liquid crystal display device having a controlled parameter to obtain prescribed optical characteristics
KR100910564B1 (en) Liquid crystal display panel and manufacturing method thereof
US20020039160A1 (en) Liquid crystal display device and method for manufacturing the same
JPH08328007A (en) Production of liquid crystal display device
KR20060083643A (en) Liquid crystal display
KR100719753B1 (en) Liquid crystal display and manufacturing method thereof
KR20070077704A (en) Liquid crystal display apparatus
KR100859465B1 (en) Multi-domain Liquid Crystal Display Device
JPH095750A (en) Liquid crystal display element
KR20030048655A (en) Lcd device haning a support type spacer
JP2004302013A (en) Method for manufacturing liquid crystal display device
JPH10104587A (en) Liquid optical element and its production
KR20070044709A (en) Color filter substrate and liquid crystal display panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050127

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050712

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050713

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4064687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

EXPY Cancellation because of completion of term