JP5229304B2 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP5229304B2
JP5229304B2 JP2010249271A JP2010249271A JP5229304B2 JP 5229304 B2 JP5229304 B2 JP 5229304B2 JP 2010249271 A JP2010249271 A JP 2010249271A JP 2010249271 A JP2010249271 A JP 2010249271A JP 5229304 B2 JP5229304 B2 JP 5229304B2
Authority
JP
Japan
Prior art keywords
oil
gas
pressure
scroll member
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010249271A
Other languages
Japanese (ja)
Other versions
JP2011027117A (en
Inventor
勇 坪野
民雄 福田
利行 寺井
和己 田村
正人 金子
浩一 関口
敦 島田
哲也 田所
健裕 秋澤
信雄 阿部
芳之 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010249271A priority Critical patent/JP5229304B2/en
Publication of JP2011027117A publication Critical patent/JP2011027117A/en
Application granted granted Critical
Publication of JP5229304B2 publication Critical patent/JP5229304B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、圧縮機に係り、圧縮機から吐出されるガス中の油含有量の低減に関する。   The present invention relates to a compressor, and relates to a reduction in oil content in a gas discharged from the compressor.

特殊な場合を除いて、ガスを圧縮するためには機械的な手段を用いる。このため、機械的な手段における各部の潤滑性やシール性を確保するために油が用いられるが、この油がガスに混入することが多い。ところが、圧縮ガスの用途では、ほとんどの場合、ガス中の油を禁止または敬遠する場合が多い。例えば、冷凍サイクルに用いる冷媒ガスの場合には、含有する油は熱交換部における性能を低下させるため、冷凍サイクルの圧縮機にはガスとともに吐出される油量を極力低減する工夫が必要になる。   Except in special cases, mechanical means are used to compress the gas. For this reason, oil is used to ensure the lubricity and sealing performance of each part in the mechanical means, but this oil is often mixed into the gas. However, in most applications of compressed gas, the oil in the gas is often prohibited or avoided. For example, in the case of the refrigerant gas used in the refrigeration cycle, the oil contained in the refrigeration cycle deteriorates the performance in the heat exchanging unit, and therefore the compressor of the refrigeration cycle needs to be devised to reduce the amount of oil discharged together with the gas as much as possible. .

従来は、特開平6−346884号公報のスクロール圧縮機に示されるように、吐出パイプの密閉容器内側に金属製の網や多数の孔が開いた薄板を設け、そこを通る間に圧縮ガス中の油を分離する構成を有していた。   Conventionally, as shown in the scroll compressor of Japanese Patent Laid-Open No. 6-346884, a metal plate and a thin plate with a large number of holes are provided inside the sealed container of the discharge pipe, and the compressed gas is passed through the thin plate. The oil was separated.

特開平6−346884号公報JP-A-6-346884

しかし、圧縮ガスの流路内にモータのロータ等の高速回転体を配置した構造であるため、油を含む圧縮ガスが高速回転体に衝突し、その際個々の油滴が引き裂かれて複数の小さな油滴に分離する結果、金属製の網や多数の孔が開いた薄板に付着する油量が少なくなり、圧縮機から吐出される油量を低減できないという問題があった。その理由を以下に説明する。   However, since it has a structure in which a high-speed rotating body such as a rotor of a motor is arranged in the flow path of the compressed gas, the compressed gas containing oil collides with the high-speed rotating body, and at that time, individual oil droplets are torn and a plurality of As a result of the separation into small oil droplets, there is a problem that the amount of oil adhering to a metal net or a thin plate having a large number of holes is reduced, and the amount of oil discharged from the compressor cannot be reduced. The reason will be described below.

油滴には、質量に比例する重力と、周囲のガスとの相対速度と油滴の表面積の積に概略比例する粘性力が働く。しかし、このうちの重力は、粘性力と比較して通常の場合は小さいため、無視する。粘性力を式で表すと以下のようになる。
(粘性力)≒A×(油滴の表面積)×(周囲のガスとの相対速度) (1)
Aは比例定数である。ここでAの値は非常に大きい。これは、油滴がガスに対して相対速度を少しでも持つと大きな粘性力が働くということだから、油滴はガスの流れにほぼ乗って移動することを意味する。しかし、金属製の網や多数の孔が開いた薄板の内部のようにガスの流れ速度が急激に変化するところでは、油滴の慣性によって、ガスの流れに乗らずそれからずれて元の速度を継続しようとする作用が働く。この時に、ガスの流れとともに移動する視点から見ると、この作用は慣性力と捉えることができる。この慣性力は、油滴の慣性である質量に比例するため以下のような式で表現される。
(慣性力)=B×(油滴の質量)×(ガスの加速度) (2)
ところで、油滴は表面張力によりほぼ球形をしているため、
(油滴の質量)∝(油滴の直径)3 (3)
(油滴の表面積)∝(油滴の直径)2 (4)
という関係式が成り立つ。よって(3)、(4)の関係式を(1)〜(2)に代入すると以下のようになる。
(粘性力)∝A×(油滴の直径)2×(周囲のガスとの相対速度) (5)
(慣性力)∝B×(油滴の直径)3×(ガスの加速度) (6)
(6)で示すように、油滴には慣性力が作用する。(5)、(6)の両辺同士を割ると以下の式を得る。
(慣性力)/(粘性力)∝(油滴の直径)×(B×ガスの加速度)/(A×周囲のガスとの相対速度) (7)
The oil droplet has a gravity force proportional to the mass, and a viscous force approximately proportional to the product of the relative velocity with the surrounding gas and the surface area of the oil droplet. However, the gravitational force is negligible because it is usually smaller than the viscous force. The viscous force is expressed as follows.
(Viscous force) ≒ A x (surface area of oil droplet) x (relative velocity with surrounding gas) (1)
A is a proportionality constant. Here, the value of A is very large. This means that if the oil droplet has a slight relative velocity with respect to the gas, a large viscous force acts, so that the oil droplet moves almost on the gas flow. However, where the gas flow rate changes abruptly, such as inside a metal net or a thin plate with many holes, due to the inertia of the oil droplets, it does not ride on the gas flow and deviates from it. The action of trying to continue works. At this time, from the viewpoint of moving with the flow of gas, this action can be regarded as an inertial force. Since this inertia force is proportional to the mass which is the inertia of the oil droplet, it is expressed by the following equation.
(Inertia force) = B x (mass of oil droplet) x (acceleration of gas) (2)
By the way, oil droplets are almost spherical due to surface tension.
(Mass of oil droplets) ∝ (Diameter of oil droplets) 3 (3)
(Oil drop surface area) ∝ (Oil drop diameter) 2 (4)
The following relational expression holds. Therefore, substituting the relational expressions (3) and (4) into (1) and (2) yields the following.
(Viscosity) ∝ A x (Diameter of oil drop) 2 x (Relative velocity with surrounding gas) (5)
(Inertial force) ∝ B x (diameter of oil droplet) 3 x (gas acceleration) (6)
As shown in (6), an inertial force acts on the oil droplets. Dividing both sides of (5) and (6) gives the following formula.
(Inertial force) / (Viscosity force) ∝ (Diameter of oil droplet) × (B × Acceleration of gas) / (A × Relative velocity with surrounding gas) (7)

周囲のガスとの相対速度を含む項は、上記したように、Aが大きいために大きく変化しないので、油滴の大きさとはほぼ独立している。また、ガスの加速度は、ガス流路の形状とガスの速度といった外部条件で決まるため、これも油滴の大きさとはほぼ独立している。よって、(7)より、油滴の直径が大きくなると慣性力が粘性力に対して近づいてくるかまたは大きくなってくることがわかる。これは、油滴が大きくなるとガスの流れが急激に変化するところで、ガスの流れから外れやすくなることを意味している。つまり、網や多孔体の内部のように複雑に流れが変わるところでは、油滴が大きくなると、油滴はガスの流れから外れて、網や多孔体に接触して吸着し易くなり、ガス内の油の含有率が低減することを示している。すなわち、これを逆にいえば、油の粒径が小さくなるほど、網や多孔体による油含有率の低減効果が低下するということである。   Since the term including the relative velocity with the surrounding gas does not change greatly because A is large as described above, it is almost independent of the size of the oil droplet. Further, since the acceleration of the gas is determined by external conditions such as the shape of the gas flow path and the gas velocity, this is also almost independent of the size of the oil droplet. Therefore, it can be seen from (7) that the inertial force approaches or increases with respect to the viscous force as the diameter of the oil droplet increases. This means that when the oil droplets become large, the gas flow changes abruptly, and it is easy to come off from the gas flow. In other words, where the flow changes in a complicated manner, such as inside a mesh or a porous body, if the oil droplets become large, the oil droplets will deviate from the flow of the gas and will be easily adsorbed by contacting the mesh or porous body. This shows that the oil content of the oil is reduced. That is, conversely, the smaller the oil particle size, the lower the effect of reducing the oil content by the net or porous body.

そこで、粒径の小さい油も多量に吸着させるために金属製の網の目を細かくしたり薄板に開けた多数の孔を小さくしたりして、そこを流れるガス流の変化を一層急激にする手段が考えられるが、それらの手段によってガスの流路抵抗が増大し、性能が低下するという問題が生じる。   Therefore, in order to adsorb a large amount of oil with a small particle size, the change of the gas flow flowing therethrough is made sharper by making the mesh of the metal mesh finer or making many holes opened in the thin plate smaller. Although means can be considered, there arises a problem that the flow path resistance of the gas is increased by these means and the performance is lowered.

また、前記公報で示される他のスクロール圧縮機では、前記圧縮動作口を覆うように金属製の網や多数の孔が開いた薄板を設け、そこを通る間に圧縮ガスに含有する油を分離する構成を有していた。しかし、油に多量の冷媒ガスが溶解して油の表面張力が小さくなるような運転条件や、前記圧縮動作口における圧縮ガスの急激な減圧でそこに含有する油に溶解したガスが爆発的に気化する過圧縮条件のような運転条件では、上記した例と同様に圧縮ガス内の油の粒径が小さくなるため、同様の問題があった。   In another scroll compressor shown in the above publication, a metal net or a thin plate with a large number of holes is provided so as to cover the compression operation port, and oil contained in the compressed gas is separated while passing therethrough. It had the composition to do. However, the operating conditions in which a large amount of refrigerant gas is dissolved in the oil and the surface tension of the oil is reduced, and the gas dissolved in the oil contained therein due to the sudden pressure reduction of the compressed gas at the compression operation port explosively occur. Under operating conditions such as vaporizing overcompression conditions, similar to the above example, the oil particle size in the compressed gas becomes small, and thus there is a similar problem.

本発明の目的は、過圧縮を低減でき性能が向上する圧縮機を提供することにある。
An object of the present invention is to provide a compressor capable of reducing over-compression and improving performance .

本発明の圧縮機は、端板とそれに立設するスクロールラップから成る固定スクロール部材と、端板とそれに立設するスクロールラップから成り、前記固定スクロール部材と噛み合わされる旋回スクロール部材と、噛み合わされたこれらスクロール部材間に、前記旋回スクロール部材が自転せずに旋回運動することにより形成される圧縮室と、前記固定スクロール部材の鏡板を貫通し、前記圧縮室と吐出圧となる固定背面室をつなぐバイパス穴と、前記バイパス穴の連通を制御し、前記圧縮室の圧力が吐出圧よりも高い時に前記圧縮室と前記固定背面室を連通するバイパス弁と、からなるスクロールタイプの圧縮機において、前記バイパス穴の圧縮室側開口部である固定歯底側において、前記固定スクロール部材の前記スクロールラップに沿った方向のみに切欠きを設けることを特徴とする。The compressor according to the present invention is engaged with a fixed scroll member including an end plate and a scroll wrap standing on the end plate, and an orbiting scroll member engaged with the fixed scroll member. Between these scroll members, there is a compression chamber formed by the revolving motion of the orbiting scroll member without rotating, and a fixed back chamber that penetrates the end plate of the fixed scroll member and serves as the compression chamber and discharge pressure. In a scroll-type compressor comprising: a bypass hole to be connected; and a bypass valve that controls communication of the bypass hole and communicates the compression chamber and the fixed back chamber when the pressure of the compression chamber is higher than a discharge pressure. On the fixed tooth bottom side that is the compression chamber side opening of the bypass hole, along the scroll wrap of the fixed scroll member And providing a notch only in the direction.

本発明によれば、穴の中に残る高圧ガスによる再膨張を極力抑えて高圧側バイパス弁23の圧縮室と通じている期間が高圧側に拡大したため、過圧縮を一層低減でき性能が向上することができるAccording to the present invention, the re-expansion due to the high-pressure gas remaining in the hole is suppressed as much as possible, and the period of communication with the compression chamber of the high-pressure side bypass valve 23 is expanded to the high-pressure side, so that overcompression can be further reduced and performance is improved. Can

第一の実施例の縦断面図。The longitudinal cross-sectional view of a 1st Example. 第一の実施例の固定スクロール部材の反スクロールラップ側からの平面図。The top view from the non-scroll wrap side of the fixed scroll member of a 1st Example. 第一の実施例の固定スクロール部材のスクロールラップ側からの平面図。The top view from the scroll wrap side of the fixed scroll member of a 1st Example. 第一の実施例のリテーナの平面図。The top view of the retainer of a 1st Example. 第一の実施例の圧縮行程の説明図。Explanatory drawing of the compression process of a 1st Example. 第一の実施例のバイパス弁付近の縦断面図(図1におけるR部の拡大図)。The longitudinal cross-sectional view of the bypass valve vicinity of a 1st Example (enlarged view of the R section in FIG. 1). 第一の実施例の差圧制御弁付近の縦断面図(図1におけるP部の拡大図)。The longitudinal cross-sectional view of the differential pressure control valve vicinity of a 1st Example (enlarged view of the P section in FIG. 1). 第一の実施例の差圧制御弁の旋回側面領域付近の縦断面図(図7におけるQ部の拡大図)。The longitudinal cross-sectional view of the rotation side surface area vicinity of the differential pressure control valve of a 1st Example (enlarged view of the Q section in FIG. 7). 第一の実施例の貯油室付近の縦断面図(図1におけるS部の拡大図)。The longitudinal cross-sectional view of the oil storage chamber vicinity of a 1st Example (enlarged view of the S section in FIG. 1). 第一の実施例の油滴除去部の斜視図。The perspective view of the oil droplet removal part of a 1st Example. 第一の実施例の軸受支持板のモータ室側からの平面図。The top view from the motor chamber side of the bearing support plate of a 1st Example. 第二の実施例の軸受支持板のモータ室側からの平面図。The top view from the motor chamber side of the bearing support plate of a 2nd Example. 第三の実施例の軸受支持板のモータ室側からの平面図。The top view from the motor chamber side of the bearing support plate of a 3rd Example. 第四の実施例の貯油室付近の縦断面図(図1におけるS部の拡大図)。The longitudinal cross-sectional view of the oil storage chamber vicinity of a 4th Example (enlarged view of the S section in FIG. 1). 第五の実施例の貯油室付近の縦断面図(図1におけるS部の拡大図)。The longitudinal cross-sectional view of the oil storage chamber vicinity of a 5th Example (enlarged view of the S section in FIG. 1). 第五の実施例のガスカバーの組立て斜視図。The assembly perspective view of the gas cover of a 5th Example. 第五の実施例のガスカバーの貯油室側からの平面図。The top view from the oil storage chamber side of the gas cover of a 5th Example. 第六の実施例の貯油室付近の縦断面図(図1におけるS部の拡大図)。The longitudinal cross-sectional view of the oil storage chamber vicinity of a 6th Example (enlarged view of the S section in FIG. 1). 第六の実施例の軸受支持板のモータ室側からの平面図。The top view from the motor chamber side of the bearing support plate of a 6th Example. 第七の実施例の貯油室付近の縦断面図(図1におけるS部の拡大図)。The longitudinal cross-sectional view of the oil storage chamber vicinity of a 7th Example (enlarged view of the S section in FIG. 1). 第八の実施例の貯油室付近の縦断面図(図1におけるS部の拡大図)。The longitudinal cross-sectional view of the oil storage chamber vicinity of an 8th Example (enlarged view of the S section in FIG. 1). 第九の実施例のガスカバーの組立て斜視図。The assembly perspective view of the gas cover of a 9th Example. 第九の実施例のガスカバーの貯油室側からの平面図。The top view from the oil storage chamber side of the gas cover of a 9th Example. 第九の実施例の油滴除去部の斜視図。The perspective view of the oil droplet removal part of a 9th Example. 第十の実施例の油滴除去部の斜視図。The perspective view of the oil-drop removal part of a 10th Example. 第十一の実施例の貯油室付近の縦断面図(図1におけるS部の拡大図)。The longitudinal cross-sectional view of the oil storage chamber vicinity of an 11th Example (enlarged view of the S section in FIG. 1). 第十二の実施例のオイルトラッププレートの組立て斜視図。The assembly perspective view of the oil trap plate of the 12th Example. 第十二の実施例のオイルトラッププレートの取付け斜視図。The oil trap plate attachment perspective view of the twelfth embodiment. 第十二の実施例のオイルトラッププレートの取付け部付近の縦断面図。The longitudinal cross-sectional view of the attachment part vicinity of the oil trap plate of 12th Example. 第十三の実施例のオイルトラッププレートの斜視図。The perspective view of the oil trap plate of 13th Example. 第十四の実施例のオイルトラッププレートの斜視図。The perspective view of the oil trap plate of a 14th Example. 第十五の実施例の固定スクロール部材のスクロールラップ側からの平面図。The top view from the scroll wrap side of the fixed scroll member of 15th Example. 第十六の実施例の固定スクロール部材のスクロールラップ側からの中央付近の平面図。The top view of the center vicinity from the scroll wrap side of the fixed scroll member of the 16th Example. 第十六の実施例のバイパス穴の縦断面図。The longitudinal cross-sectional view of the bypass hole of the 16th Example. 第十七の実施例の固定スクロール部材のスクロールラップ側からの中央付近の平面図。The top view of the center vicinity from the scroll wrap side of the fixed scroll member of the 17th Example. 第十七の実施例のバイパス穴の縦断面図。The longitudinal cross-sectional view of the bypass hole of the 17th Example. 第十八の実施例の固定スクロール部材のスクロールラップ側からの中央付近の平面図。The top view of the center vicinity from the scroll wrap side of the fixed scroll member of the 18th Example. 第十九の実施例の差圧制御弁付近の縦断面図(図1におけるP部の拡大図)。The longitudinal cross-sectional view of the pressure difference control valve vicinity of a 19th Example (enlarged view of the P section in FIG. 1).

実施例を説明する前に本発明の作用を説明する。
まず、上記目的を達成するための第一の手段の作用を説明する。油を含有するガスを前記貯蔵油中に通すとき、気体と液体の比重の違いから、ガスを前記貯蔵油の下部に吹き込む必要がある。この吹き込んだガスは前記貯蔵油中を気泡となって上昇する。気泡の周囲全域は油であるため、気泡中の油滴が周囲の油と接触する確率は非常に高くなる。さらに、前記貯蔵油中の気泡の上昇は、油の粘性のために圧縮機内の他の箇所におけるガス流速と比較して非常に小さい速度となるため、気泡中の油滴が周囲の油と接触できる時間が長く、気泡中の油滴が周囲の油と接触する確率は一層高くなる。周囲の油に接触した油滴は、油の表面張力によって表面積を小さくする作用が働く結果、小さな油滴は気泡周囲の油に吸込まれる。つまり、油を含有するガスを前記貯蔵油中に通すと、そこから出てくるガスの油含有率が低減する。この油含有率低減作用は、気泡中の油滴の大きさによらないため、粒径の大きな油滴はもちろんのこと、従来技術で上げた網や多孔体で取り除くことが困難であった、粒径の小さい油滴も効果的に除去できる。ところで、運転条件によっては、ガスの気泡が前記貯蔵油の油面に達した時に気泡が潰れて新たな油滴が発生する場合がある。ところが、気泡の上昇速度は非常に遅いため、この時に発生する油滴の粒はかなり大きい。このため、前記貯蔵油から出てきたガスにはほぼ大きな油滴のみが含有するが、このガスは次に多孔性体を通過するようにすれば、前記した理由により、大きな油滴を高い確率で取り除くことができる。この結果、油の含有率を大幅に低減させたガスを圧縮機から吐出できる。
Before describing the embodiment, the operation of the present invention will be described.
First, the operation of the first means for achieving the above object will be described. When a gas containing oil is passed through the stored oil, it is necessary to blow the gas into the lower portion of the stored oil due to the difference in specific gravity between the gas and the liquid. The blown gas rises as bubbles in the stored oil. Since the entire area around the bubbles is oil, the probability that the oil droplets in the bubbles come into contact with the surrounding oil is very high. Furthermore, the rise of the bubbles in the stored oil is very small compared to the gas flow rate elsewhere in the compressor due to the viscosity of the oil, so that the oil droplets in the bubbles contact the surrounding oil. The time that can be taken is long, and the probability that the oil droplets in the bubbles come into contact with the surrounding oil becomes higher. The oil droplets in contact with the surrounding oil act to reduce the surface area by the surface tension of the oil. As a result, the small oil droplets are sucked into the oil around the bubbles. That is, when a gas containing oil is passed through the stored oil, the oil content of the gas coming out of the oil is reduced. This oil content reduction effect is not dependent on the size of the oil droplets in the bubbles, so it was difficult to remove not only large oil droplets but also nets and porous bodies raised in the prior art. Oil droplets having a small particle diameter can also be effectively removed. By the way, depending on the operating conditions, when the gas bubbles reach the oil level of the stored oil, the bubbles may be crushed and new oil droplets may be generated. However, since the rising speed of the bubbles is very slow, the oil droplets generated at this time are quite large. For this reason, the gas coming out of the stored oil contains only almost large oil droplets, but if this gas passes next through the porous body, large oil droplets have a high probability for the reasons described above. Can be removed. As a result, gas with a significantly reduced oil content can be discharged from the compressor.

次に、上記目的を達成するための第二の手段の作用を説明する。圧縮動作口から出てくるガスの流路を妨げるようにオイルトラッププレートを配置すると、ガスの流れはそこで急に曲げられるが、ガスに含まれる油は慣性が大きいために、このオイルトラッププレートに付着し、ガス中の油滴の含有率は低減する。しかし、このオイルトラッププレートを前記圧縮動作口に近づけ過ぎると、流路断面積が小さくなって流路抵抗が増大するため、性能低下が生じる。すなわち、
(圧縮動作口の面積)≦(圧縮動作口から出た後のガスの流路の断面積) (8)
が必要となる。圧縮動作口から出た後のガスの流れは、このオイルトラッププレートで直角に曲げられると考え、圧縮動作口から出た後のガスの流路の断面積は、圧縮動作口の周長に圧縮動作部外側面上の前記圧縮動作口からオイルトラッププレートまでの距離をかけた面積、つまり、圧縮動作口を底面とするオイルトラッププレートまでの高さの柱状立体図形の側面の面積とみなすことができる。通常、圧縮動作口は円形かそれに近い形状となっているため、圧縮動作口を断面積が等しい円としても状況はほとんど変わらない。よって、以前に定義した相当直径をD、前記圧縮動作口からオイルトラッププレートまでの距離をHとすると、(圧縮動作口の面積)=π×D2/4 (9)
(圧縮動作口から出た後のガスの流路の断面積)=π×D×H (10)
より、(8)の条件は、
π×D2/4≦π×D×H (11)
となる。これを整理すると以下のようになる。
H≧D/4 (12)
Next, the operation of the second means for achieving the above object will be described. If the oil trap plate is placed so as to obstruct the gas flow path coming out from the compression operation port, the gas flow is suddenly bent there, but the oil contained in the gas has a large inertia, so this oil trap plate It adheres and the content of oil droplets in the gas is reduced. However, if this oil trap plate is too close to the compression operation port, the flow path cross-sectional area is reduced and the flow path resistance is increased, resulting in performance degradation. That is,
(Area of compression operation port) ≦ (Cross sectional area of gas flow path after exiting compression operation port) (8)
Is required. The gas flow after exiting the compression operation port is considered to be bent at right angles by this oil trap plate, and the cross-sectional area of the gas flow path after exiting the compression operation port is compressed to the circumference of the compression operation port. It can be regarded as the area multiplied by the distance from the compression operation port to the oil trap plate on the outer surface of the operation part, that is, the side surface area of the columnar solid figure with the height from the compression operation port to the oil trap plate. it can. Usually, the compression operation port has a circular shape or a shape close thereto, so that the situation hardly changes even if the compression operation port is a circle having the same cross-sectional area. Therefore, D the equivalent diameter previously defined, and the distance from the compression operation port to the oil trap plate and H, (area of the compression operation opening) = π × D 2/4 (9)
(Cross sectional area of gas flow path after coming out of compression operation port) = π × D × H (10)
Therefore, the condition of (8) is
π × D 2/4 ≦ π × D × H (11)
It becomes. This is organized as follows.
H ≧ D / 4 (12)

また、Hが大きくなりすぎると、ガスがオイルトラッププレートに衝突する速度が小さくなるため、ガス中の油滴除去率が低下する。これまでの検討から、Dの2倍以上になると、油滴除去率が急激に低下することが分かっているため、以下の関係式が出る。
H≦2×D (13)
これより、(12)と(13)から、オイルトラッププレートを圧縮動作口の相当直径の0.25から2倍の距離だけ離れた位置に配置すれば、流路抵抗による性能低下も起こらず、ガス中の油滴除去率も高くなる。
On the other hand, if H becomes too large, the rate at which the gas collides with the oil trap plate is reduced, so that the oil droplet removal rate in the gas is lowered. From the examination so far, it has been found that the oil drop removal rate is drastically reduced when D is 2 times or more, so the following relational expression is obtained.
H ≦ 2 × D (13)
From (12) and (13), if the oil trap plate is disposed at a position that is a distance of 0.25 from the equivalent diameter of the compression operation port by a distance of 2 times, the performance deterioration due to the channel resistance does not occur. The oil droplet removal rate in the gas is also increased.

本発明を、旋回スクロール部材の反圧縮室側の空間に吸込圧よりも概略一定値(以下、過吸込圧値と称する)だけ高い圧力をかけることにより旋回スクロール部材を固定スクロール部材に押し付けるスクロール圧縮機に実施した第一の実施例を、図1ないし図11に基づいて説明する。図1は圧縮機の縦断面図、図2は固定スクロール部材の反スクロールラップ側からの平面図、図3は固定スクロール部材のスクロールラップ側からの平面図、図4はリテーナの平面図、図5は圧縮行程の説明図、図6はバイパス弁付近の縦断面図(図1におけるR部の拡大図)、図7は差圧制御弁付近の縦断面図(図1におけるP部の拡大図)、図8は差圧制御弁の背圧室付近の縦断面図(図7におけるQ部の拡大図)、図9は貯油室付近の縦断面図(図1におけるS部の拡大図)、図10は油滴除去部の斜視図、図11は軸受支持板のモータ室側からの平面図である。なお、この例は、圧縮機の直径が、10mmから1000mm程度のものである。   Scroll compression that presses the orbiting scroll member against the fixed scroll member by applying a pressure that is higher than the suction pressure by a substantially constant value (hereinafter referred to as an excessive suction pressure value) to the space on the anti-compression chamber side of the orbiting scroll member. A first embodiment implemented in the machine will be described with reference to FIGS. 1 is a longitudinal sectional view of the compressor, FIG. 2 is a plan view of the fixed scroll member from the non-scroll wrap side, FIG. 3 is a plan view of the fixed scroll member from the scroll wrap side, and FIG. 4 is a plan view of the retainer. 5 is an explanatory view of the compression stroke, FIG. 6 is a longitudinal sectional view in the vicinity of the bypass valve (enlarged view of R portion in FIG. 1), and FIG. 7 is a longitudinal sectional view in the vicinity of the differential pressure control valve (enlarged view of P portion in FIG. 1). 8 is a longitudinal sectional view of the differential pressure control valve in the vicinity of the back pressure chamber (enlarged view of portion Q in FIG. 7), and FIG. 9 is a longitudinal sectional view of the vicinity of the oil storage chamber (enlarged view of S portion in FIG. 1). FIG. 10 is a perspective view of the oil droplet removing unit, and FIG. 11 is a plan view from the motor chamber side of the bearing support plate. In this example, the compressor has a diameter of about 10 mm to 1000 mm.

まず、構造を説明する。   First, the structure will be described.

旋回スクロール部材3は、鏡板3aにインボリュートまたは代数螺線等を基本線とするスクロールラップ3bを立設し、その背面に旋回軸受3wを挿入した軸受保持部3sと、旋回オルダム溝3g、3hを設ける。   The orbiting scroll member 3 is provided with a bearing holding portion 3s in which a scroll wrap 3b having an involute or an algebraic spiral or the like as a basic line is erected on an end plate 3a, and an orbiting bearing 3w is inserted on the back thereof, and orbiting Oldham grooves 3g and 3h. Provide.

固定スクロール部材2は、鏡板2aにスクロールラップ2bを立設し、図3に示すようその外周にスクロールラップ歯先面とほぼ同一面となる非旋回基準面2uを設け、そこに周囲溝2cを形成する。そして、歯底には4個のバイパス穴2eが設けられる。ここでバイパス穴2eを4個設けた理由は、図5に示すように、形成される全ての圧縮室6に常にバイパス穴2eを開口させるためである。このバイパス穴2eを覆うようにリード弁板であるバイパス弁板23x(図2)およびその弁板23xの開口度を制限するリテーナ23aをバイパスねじ23hで固定する(図4、図6)。また、中央近くには圧縮動作口2dが開口している。また、歯底面の外縁側に吸込み掘込み2q(図3)を設け、そこに背面から吸込みパイプ54を挿入するための吸込穴2vを設ける。この吸込穴2vに前記吸込パイプ54を挿入するが、そのときに弁体24aと逆止弁ばね24cを入れ、吸込み側逆止弁24を形成する。さらに、固定スクロール部材2の外周にガスおよび油を流す複数個の流通溝2rを設ける。そして、そのうちの一個にはモータ線19nを通す。前記周囲溝2cに背面側導通路2βと弁穴2f(図7)を開け弁シール面または弁シール線2jを設ける。そして、この弁穴2fの側面と吸込室60と通じる連通溝2δをつなぐ吸込側導通路2αを設ける。図7に示すように、この弁穴2fに板状の弁体100aと差圧弁ばね100cを入れ、ばね位置決め突起100hに前記差圧弁ばね100cの一端を挿入した状態で弁キャップ100fを前記弁穴2fよりも直径の大きい弁キャップ挿入部2kに圧入し、差圧制御弁100を形成する。このとき、前記差圧弁ばね100cは圧縮され、前記弁体100aを前記弁シール面2jに押し付ける。この押付力は過吸込圧値を決定するため、これを決める寸法である前記弁穴2fの深さと前記キャップ挿入部2kの深さと前記弁体100aの厚さと前記差圧弁ばね100cのばね定数及び自然長は精度良く管理しなければならない。特に前記差圧弁ばね100cの端部をばねの中心軸に概略垂直な面に仕上げておくことが必要である。そうでないと、ばね100cを圧縮したときに座屈が起こり、過吸込圧値が異常に小さくなって、前記旋回スクロール部材3が前記固定スクロール部材2から離脱し正常な運転が不可能となる。また、前記弁キャップ100fの外径を前記弁キャップ挿入部2kの径よりも小さくし押付力が正規の値になるところでこの弁キャップ100fを拡管して止める方法もある。この時の押付力は、前記背面側導通路2βに棒を挿入して前記弁体100aに一端を付け、その棒が受ける力を検出する方法をとる。
この方法の場合には、上記した各部の寸法やばね定数の値を精度良く管理する必要が無くなるため量産性が向上するという効果がある。これら二通りの方法とも組み立て完了時には、前記弁キャップ100fの外周部と前記弁キャップ挿入部2kの内周部の間は完全にシールされていなければならない(差圧弁ばね100Cの反対側は吐出空間であり、このばねがある空間の圧力よりも高いから)。このシールを完全なものにするために、接着や溶接を行ってもよい。ここで、前記ばね位置決め突起100hの根元よりも先端の径を小さくしたテーパ形状にしてもよい。この場合、前記差圧弁ばね100cの端部が前記ばね位置決め突起100hの根元のみで固定されるため、ばねの可動部は前記位置決め突起100hと接触せず、ばねの自然長がばね単体時の自然長のまま確保される。よって、過吸込圧値の設定値からの誤差を小さく抑えることができるという特有の効果がある。
The fixed scroll member 2 has a scroll wrap 2b erected on the end plate 2a, and as shown in FIG. 3, a non-turning reference surface 2u that is substantially flush with the scroll wrap tooth tip surface is provided on its outer periphery, and a peripheral groove 2c is provided there. Form. And four bypass holes 2e are provided in a tooth base. The reason why the four bypass holes 2e are provided here is to always open the bypass holes 2e in all the compression chambers 6 to be formed as shown in FIG. A bypass valve plate 23x (FIG. 2), which is a lead valve plate, and a retainer 23a for limiting the degree of opening of the valve plate 23x are fixed with a bypass screw 23h so as to cover the bypass hole 2e (FIGS. 4 and 6). Further, a compression operation port 2d is opened near the center. Further, a suction dig 2q (FIG. 3) is provided on the outer edge side of the tooth bottom surface, and a suction hole 2v for inserting the suction pipe 54 from the back is provided therein. The suction pipe 54 is inserted into the suction hole 2v. At that time, the valve body 24a and the check valve spring 24c are inserted to form the suction side check valve 24. Furthermore, a plurality of flow grooves 2 r for flowing gas and oil are provided on the outer periphery of the fixed scroll member 2. And one of them passes the motor wire 19n. A back-side conduction path 2β and a valve hole 2f (FIG. 7) are opened in the peripheral groove 2c to provide a valve seal surface or a valve seal line 2j. A suction-side conduction path 2α is provided to connect the side surface of the valve hole 2f and the communication groove 2δ communicating with the suction chamber 60. As shown in FIG. 7, a plate-like valve body 100a and a differential pressure valve spring 100c are inserted into the valve hole 2f, and the valve cap 100f is inserted into the valve hole with one end of the differential pressure valve spring 100c inserted into a spring positioning projection 100h. The differential pressure control valve 100 is formed by press-fitting into the valve cap insertion portion 2k having a diameter larger than 2f. At this time, the differential pressure valve spring 100c is compressed and presses the valve body 100a against the valve seal surface 2j. Since this pressing force determines the excessive suction pressure value, the depth of the valve hole 2f, the depth of the cap insertion part 2k, the thickness of the valve body 100a, the spring constant of the differential pressure valve spring 100c, Natural length must be managed accurately. In particular, it is necessary to finish the end portion of the differential pressure valve spring 100c to a surface substantially perpendicular to the central axis of the spring. Otherwise, buckling occurs when the spring 100c is compressed, the excessive suction pressure value becomes abnormally small, and the orbiting scroll member 3 is detached from the fixed scroll member 2 and normal operation is impossible. There is also a method in which the outer diameter of the valve cap 100f is made smaller than the diameter of the valve cap insertion portion 2k, and the valve cap 100f is expanded and stopped when the pressing force becomes a normal value. As the pressing force at this time, a method is adopted in which a rod is inserted into the back surface side conduction path 2β, one end is attached to the valve body 100a, and the force received by the rod is detected.
In the case of this method, there is no need to accurately manage the dimensions of the respective parts and the values of the spring constants, so that there is an effect that the mass productivity is improved. When these two methods are completed, the outer periphery of the valve cap 100f and the inner periphery of the valve cap insertion portion 2k must be completely sealed (the opposite side of the differential pressure valve spring 100C is the discharge space). Because this spring is higher than the pressure in the space). Bonding or welding may be performed to complete this seal. Here, a tapered shape in which the diameter of the tip is smaller than the root of the spring positioning protrusion 100h may be used. In this case, since the end portion of the differential pressure valve spring 100c is fixed only at the root of the spring positioning projection 100h, the movable portion of the spring does not come into contact with the positioning projection 100h, and the natural length of the spring is the natural length of the spring alone. It is secured as long. Therefore, there is a specific effect that an error from the set value of the excessive suction pressure value can be reduced.

フレーム4は、外周部に前記固定スクロール部材2を取り付ける固定取付け面4b、その内側に旋回はさみ込み面4dが設けられ、そのはさみ込み面4dには一個または複数個のはさみ込み面溝4αが設けられる。そのさらに内側には、オルダムリング5をフレーム4と旋回スクロール部材3の間に配置するため、フレームオルダム溝4e、4f(ともに図示せず)を設ける。また、中央部には軸シール4aと主軸受4mを設け、そのスクロール側にシャフトを受けるシャフトスラスト面4cを設ける。そしてその軸シール4aと主軸受4mの間に油保持空間4nが開口している。外周面にはガスおよび油の流路となる複数の流通溝4hが設けられる。そして、そのうちの一個にはモータ線19nを通す。また、前記固定取付け面4bと反対側の外周部にフレームオイルリング44を設ける。   The frame 4 is provided with a fixed mounting surface 4b for mounting the fixed scroll member 2 on the outer peripheral portion, and a swivel pinching surface 4d on the inner side thereof, and one or a plurality of pinching surface grooves 4α are provided on the pinching surface 4d. It is done. Further on the inner side, frame Oldham grooves 4e and 4f (both not shown) are provided in order to place the Oldham ring 5 between the frame 4 and the orbiting scroll member 3. A shaft seal 4a and a main bearing 4m are provided at the center, and a shaft thrust surface 4c for receiving the shaft is provided on the scroll side. An oil holding space 4n is opened between the shaft seal 4a and the main bearing 4m. A plurality of flow grooves 4h serving as gas and oil flow paths are provided on the outer peripheral surface. And one of them passes the motor wire 19n. Further, a frame oil ring 44 is provided on the outer peripheral portion opposite to the fixed mounting surface 4b.

オルダムリング5は、その一面にフレーム突起部5a、5b(ともに図示せず)が設けられ、もう一方の面には旋回突起部5c、5dが設けられる。   The Oldham ring 5 is provided with frame protrusions 5a and 5b (both not shown) on one surface, and swivel protrusions 5c and 5d on the other surface.

シャフト12は、図1に示すように、その内部にシャフト給油孔12aと主軸受給油孔12bと軸シール給油孔12cと副軸受給油孔12iが設けられる。また、その上部には径の拡大したバランス保持部12hがあり、そこにシャフトバランス49が圧入される。
さらに偏心部12fが設けられる。
As shown in FIG. 1, the shaft 12 is provided with a shaft oil supply hole 12a, a main bearing oil supply hole 12b, a shaft seal oil supply hole 12c, and a sub-bearing oil supply hole 12i. Further, there is a balance holding portion 12h having an enlarged diameter at the upper portion thereof, and a shaft balance 49 is press-fitted there.
Further, an eccentric portion 12f is provided.

ロータ15は、積層鋼板15aに未着磁の永久磁石15bを内蔵し、両端にロータバランス15c、15pを設ける。   The rotor 15 incorporates a non-magnetized permanent magnet 15b in a laminated steel plate 15a and is provided with rotor balances 15c and 15p at both ends.

ステータ16は、積層鋼板16aの外周部に圧縮性ガスや油の流路となる複数のステータ溝16cを設け、内部にコイル貫通穴16vが開いている。ここにコイル16wが通り、コイルの折り返し部である副軸受側コイルエンド部16xと主軸受側コイルエンド部16yが前記ステータ16の両側に配される。さらに、前記積層鋼板16bの内部で前記コイル貫通穴16vより外周部に貫通したステータ穴16mを開ける。このステータ穴16mを前記コイル貫通穴16vより内側に設けると、前記ロータ15と前記ステータ16間の磁束密度が大幅に低下しモータ効率を低下させるからである。   The stator 16 is provided with a plurality of stator grooves 16c serving as a flow path for compressive gas and oil on the outer peripheral portion of the laminated steel plate 16a, and a coil through hole 16v is opened therein. The coil 16w passes through here, and the auxiliary bearing side coil end portion 16x and the main bearing side coil end portion 16y, which are the folded portions of the coil, are arranged on both sides of the stator 16. Further, a stator hole 16m penetrating from the coil through hole 16v to the outer peripheral portion is opened inside the laminated steel plate 16b. This is because if the stator hole 16m is provided on the inner side of the coil through hole 16v, the magnetic flux density between the rotor 15 and the stator 16 is greatly reduced, and the motor efficiency is reduced.

これらの構成要素を以下のように組み立てる。まず、前記フレーム4の主軸受4aに前記シャフトバランス49が圧入または接着または焼きばめされた前記シャフト12を挿入し、前記ロータ15を圧入または焼きばめする。さらに、前記オルダムリング5を、前記フレームオルダム溝4f、4eに前記オルダムリング5のフレーム突起部5a、5b(ともに図示せず)を挿入して、前記フレーム4に装着する。さらに、前記旋回スクロール部材3を、その旋回オルダム溝3g、3hに前記オルダムリング5の旋回突起部5c、5dを挿入し、旋回軸受3wに前記シャフト12の前記偏心部12fを挿入しながら、旋回はさみこみ面4d上に装着する。この旋回スクロール部材3に前記固定スクロール部材2を噛み合わせ、前記シャフト12を廻しながら回転トルクが最小になるかある基準値以下になる位置でラップ固定ねじ53により前記フレーム4に前記固定スクロール部材2を固定する。この方法によると、最適な位置から大きくは外れないが、高精度に最適な位置に固定することは困難である。この時、前記旋回スクロール部材3の前記鏡板3aの厚さが前記旋回はさみこみ面4dと非旋回基準面2uの間隔よりも5〜20μm程小さくなるようにし、前記旋回スクロール部材3と前記固定スクロール部材2の軸線方向における最大離間距離を規定する。そこで、次に示すような方法を用いて、固定スクロール部材2を前記フレーム4に一段高い精度で取付けることもできる。図2、3に示すように、固定スクロール部材2の外周部に位置精度及び寸法精度の高い位置決め穴2pを2個開け、それと対応するフレームの位置に同様に高精度の位置決め穴(図示せず)を設ける。そのフレーム側の穴に位置決めピンを前記固定取付け面4b側に突出した状態で圧入する。この位置決めピンに前記位置決め穴2pを挿入し、固定スクロール部材2を高精度に前記フレーム4に取り付ける。これは、各部品の加工精度に依存した組立て法であるため、部品が高精度に加工されていないと逆に組立て精度を低下させてしまう危険性がある。よって、部品を高精度に保つことができる場合のみ有効な方法である。逆に、まえに述べた組立て法は、部品精度があまり高くない場合でも、一定のレベルの組立て精度を確保できることから、量産性が高い方法であるといえる。この時に、前記旋回スクロール部材3の背面に背面過吸込圧領域99が形成される。次に、あらかじめ前記ステータ16を焼きばめまたは圧入または接着するとともに中央部の中央穴18cと下部の下部流路穴18aを有しオイルリングを溶接した軸受支持板18を溶接または圧入した円筒ケーシング31に、上記の組立て部を挿入し前記フレーム4または前記固定スクロール部材2の側面にタック溶接を行なう。ここで、図11に示すように、この下部流路口18aの最高点の高さを前記ステータ16のロータが挿入される中央の穴の最低点(図中のステータの内径高さ)よりも低く設定する。また、タック溶接の代わりに接着を行ってもよい。この時には、溶接による組立て部および前記円筒ケーシング31の変形が無くなるため性能が向上する。これにより、前記ロータ15と前記ステータ16によってモータ19を形成し、前記軸受支持板18と前記フレーム4の間にモータ室62を形成する。次に前記軸受支持板18の前記中央穴18cから出た前記シャフト12の一端が軸受ハウジング70に装着した球面軸受72の円筒穴に挿入されるように前記軸受ハウジング70を組み込み、前記シャフト12の回転トルクを検出しながら軸受ハウジング70の位置を調整してその回転トルクが最小になるかある基準値以下になる位置で前記軸受ハウジング70を前記軸受支持板18にスポット溶接する。そして、曲がった給油管71を溶接した給油キャップ90を前記軸受ハウジング70に挿入したうえでシール73を挟んで前記軸受ハウジング70にスポット溶接する。
ここで、前記シール73を挟み込まずにシールが行われるよう、シール面の表面粗さ精度を上げ、このシール面の押付力を増大させてもよい。また、接着してもよい。これらにより、シールが不要となり、部品点数が低減する。その後、給油管71の先端近くに、マグネット89を設ける。一方、複数の金網45aを積層保持部45bにより積層して多孔性体となる油滴除去部45を形成し、これを取付部45fにより底ケーシング21に固定する。その底ケーシング21の上部には、吐出パイプ55が溶接されている。そして、前記円筒ケーシング31にその底ケーシング21を溶接し、貯油室80を形成する。この時前記油滴除去部45と前記軸受支持板18の間に隙間が無いような位置まで前記底ケーシング21を前記円筒ケーシング31の内部に挿入する。次に、前記円筒ケーシング31に前記ハーメチック端子22と吸込パイプ取付管37を上部に溶接した上ケーシング20を前記ハーメチック端子22の内部側端子に前記モータ線19nを装着して溶接し、前記吸込みパイプ54を前記吸込パイプ取付管37に挿入してその隙間をろう付けして、固定背面室61を形成する。この状態で、前記ステータ16に電流を流し、前記ロータ15内部の永久磁石15bを着磁し、モータ19を形成する。その後、油を入れる。前記固定背面室61と前記モータ室62の間を仕切る前記フレーム4及び固定スクロール部材2のの下部には、前記流通溝4h、2rが存在することと、前記モータ室62と前記貯油室80の下部には、前記下部流通口18aが存在するため、前記固定背面室61や前記モータ室62及び前記貯油室80aの下部に貯蔵油69が溜まる。よって、これら3室は油貯蔵室の役割を有する。
These components are assembled as follows. First, the shaft 12 into which the shaft balance 49 is press-fitted, bonded or shrink-fitted is inserted into the main bearing 4a of the frame 4, and the rotor 15 is press-fitted or shrink-fitted. Further, the Oldham ring 5 is mounted on the frame 4 by inserting frame protrusions 5a and 5b (both not shown) of the Oldham ring 5 into the frame Oldham grooves 4f and 4e. Further, the orbiting scroll member 3 is swung while inserting the orbiting protrusions 5c and 5d of the Oldham ring 5 into the orbiting Oldham grooves 3g and 3h, and inserting the eccentric portion 12f of the shaft 12 into the orbiting bearing 3w. It is mounted on the sandwiching surface 4d. The fixed scroll member 2 is engaged with the orbiting scroll member 3, and the fixed scroll member 2 is attached to the frame 4 by a wrap fixing screw 53 at a position where the rotational torque becomes minimum or below a certain reference value while rotating the shaft 12. To fix. According to this method, although it does not greatly deviate from the optimum position, it is difficult to fix it at the optimum position with high accuracy. At this time, the thickness of the end plate 3a of the orbiting scroll member 3 is set to be about 5 to 20 μm smaller than the distance between the orbiting surface 4d and the non-orbiting reference surface 2u, and the orbiting scroll member 3 and the fixed scroll member are arranged. 2 defines the maximum separation distance in the axial direction. Therefore, the fixed scroll member 2 can be attached to the frame 4 with a higher accuracy by using the following method. As shown in FIGS. 2 and 3, two positioning holes 2p with high positional accuracy and dimensional accuracy are formed in the outer peripheral portion of the fixed scroll member 2, and a high-precision positioning hole (not shown) is similarly formed at the corresponding frame position. ). A positioning pin is press-fitted into the hole on the frame side in a state protruding from the fixed mounting surface 4b. The positioning hole 2p is inserted into the positioning pin, and the fixed scroll member 2 is attached to the frame 4 with high accuracy. Since this is an assembling method depending on the processing accuracy of each component, there is a risk that the assembly accuracy may be lowered if the component is not processed with high accuracy. Therefore, this method is effective only when the parts can be kept with high accuracy. On the contrary, the assembly method described above can be said to be a method with high mass productivity because it can ensure a certain level of assembly accuracy even when the component accuracy is not so high. At this time, a back surface excessive suction pressure region 99 is formed on the back surface of the orbiting scroll member 3. Next, the cylindrical casing in which the bearing 16 is welded or press-fitted in advance with the stator 16 being shrink-fitted, press-fitted or bonded, and having a central hole 18c at the center and a lower flow passage hole 18a at the bottom and welded with an oil ring. In 31, the above-described assembly portion is inserted, and tack welding is performed on the side surface of the frame 4 or the fixed scroll member 2. Here, as shown in FIG. 11, the height of the highest point of the lower flow passage opening 18a is lower than the lowest point of the central hole into which the rotor of the stator 16 is inserted (the inner diameter height of the stator in the figure). Set. Moreover, you may adhere | attach instead of tack welding. At this time, since the assembly portion by welding and the cylindrical casing 31 are not deformed, the performance is improved. Thus, a motor 19 is formed by the rotor 15 and the stator 16, and a motor chamber 62 is formed between the bearing support plate 18 and the frame 4. Next, the bearing housing 70 is incorporated so that one end of the shaft 12 coming out of the central hole 18 c of the bearing support plate 18 is inserted into a cylindrical hole of a spherical bearing 72 mounted on the bearing housing 70, and the shaft 12 The position of the bearing housing 70 is adjusted while detecting the rotational torque, and the bearing housing 70 is spot welded to the bearing support plate 18 at a position where the rotational torque is minimized or below a certain reference value. Then, an oil filler cap 90 welded to the bent oil supply pipe 71 is inserted into the bearing housing 70 and then spot welded to the bearing housing 70 with a seal 73 interposed therebetween.
Here, the surface roughness accuracy of the sealing surface may be increased and the pressing force of the sealing surface may be increased so that the sealing is performed without sandwiching the seal 73. Moreover, you may adhere | attach. These eliminate the need for a seal and reduce the number of parts. Thereafter, a magnet 89 is provided near the tip of the oil supply pipe 71. On the other hand, a plurality of wire meshes 45a are laminated by the lamination holding part 45b to form an oil droplet removing part 45 that becomes a porous body, and this is fixed to the bottom casing 21 by the attaching part 45f. A discharge pipe 55 is welded to the upper portion of the bottom casing 21. Then, the bottom casing 21 is welded to the cylindrical casing 31 to form an oil storage chamber 80. At this time, the bottom casing 21 is inserted into the cylindrical casing 31 to a position where there is no gap between the oil droplet removing portion 45 and the bearing support plate 18. Next, the upper casing 20 in which the hermetic terminal 22 and the suction pipe attachment pipe 37 are welded to the cylindrical casing 31 is welded by attaching the motor wire 19n to the inner terminal of the hermetic terminal 22, and the suction pipe. 54 is inserted into the suction pipe attachment pipe 37 and the gap is brazed to form the fixed back chamber 61. In this state, a current is passed through the stator 16 to magnetize the permanent magnet 15b in the rotor 15 to form a motor 19. Then add the oil. In the lower part of the frame 4 and the fixed scroll member 2 partitioning the fixed back chamber 61 and the motor chamber 62, the flow grooves 4 h and 2 r exist, and the motor chamber 62 and the oil storage chamber 80. Since the lower circulation port 18a exists in the lower part, the storage oil 69 is accumulated in the lower part of the fixed back chamber 61, the motor chamber 62, and the oil storage chamber 80a. Therefore, these three chambers have the role of oil storage chambers.

次に動作を説明する。まず、圧縮機起動直後の動作を説明する。   Next, the operation will be described. First, the operation immediately after starting the compressor will be described.

前記モータ19を回転開始させることにより、前記シャフト12が回転し前記旋回スクロール部材3が旋回運動を始める。ここで、この旋回スクロール部材3の旋回半径は、スクロールラップ形状から幾何学的に決まる大きさよりも小さく設定する。これは、前記スクロールラップ2b、3bの形状には必ず加工誤差があるため、小さく設定しないとラップの側面が圧接してしまい、摩擦ロスの増大や磨耗の進行、さらには最悪の場合、側面がかじりを起こして凝着を起こしたり、ラップが破壊したりして、運転不能に陥ることがあるからである。ここで、前記オルダムリング5があるために前記旋回スクロール部材3の自転が防止される。この動作により、両スクロールラップ2b、3bが噛み合う領域の外周部に形成される吸込室60内のガスが両スクロール部材の間に形成される前記圧縮室6に概略閉じ込められ圧縮されて前記圧縮動作口2dから前記固定背面室61に吐出され始める。ところで、図7で示すように、前記旋回スクロール部材3の前記鏡板3aの厚さが前記旋回はさみこみ面4dと非旋回基準面2uの間隔よりも5〜70μm程小さくなるようにし、前記旋回スクロール部材3と前記固定スクロール部材2の軸線方向における最大離間距離を規定している。このため、圧縮機起動直後は、前記旋回スクロール部材3は前記圧縮室6内のガスによる引離し力で前記固定スクロール部材2から引離され、前記フレーム4側に前記した距離だけ移動する。よって、鏡板3aの反ラップ側と前記旋回挟み込み面4dが摺動し、鏡板3aのラップ側と前記非旋回基準面2uの間には前記した最大離間距離だけの隙間が形成される。同時に、ラップの歯先と歯底間の隙間も同程度となるため、内部漏れが大きく高効率な運転はできないが、5〜70μm程度の最大離間距離であれば、モータ回転数を起動直後に許容できる最高値程度まで上昇させることにより内部漏れを抑制し、吸込圧を十分に下げるかまたは吐出圧を十分に上昇させることができる。前記圧縮動作口2dから前記固定背面室61に吐出されたガスは前記固定スクロール部材2および前記フレーム4の外周にある流通溝2rおよび4hを通って前記モータ室62の前記モータ19と前記フレーム4の間の空間にも流入する。そのガスは、さらに前記ステータ溝16cや前記ロータ15と前記ステータ16の間のギャップを通って、前記モータ室62の前記軸受支持板18側まで達する。ここまで広まった圧縮ガスは、行き場を失ってしまうために、溜まり始め、圧力が上昇してくる。この圧力上昇は、前記モータ室62及び前記固定背面室61の下部に溜まっている貯蔵油69を下向きに押す。この結果、前記貯蔵油69が前記下部流路口18aを通って前記貯油室80に流入し貯油室側の油面を上昇させる。そして、前記モータ室62の油面が前記下部流路口18aの最高点の高さまでくると、前記下部流路口18aが流路となって前記モータ室62から前記貯油室80へガスが流入する。この時、ガスは貯油室内に集められた前記貯蔵油69の下方より吹き出されその中を気泡となって上昇する。ここで、前記下部流路口18aの最高点の高さを前記ステータ16のロータが挿入される中央の穴の最低点よりも低く設定しているために、前記モータ室62の油面は前記ロータ15より低くなり、そこの貯蔵油69を高速で回転する前記ロータ15がかき回して細かい油滴を形成することが無くなり、ガスの油含有率を低減することができる。ところで、このモータ室62側の油面の高さを前記ロータ15がぎりぎりにかからない高さとなるように前記下部流路口18aの設定高さを決めると、前記ロータの回転により生じるガスの流れで油面から油滴が発生し、ガス内の油滴の含有率はあまり低下しない。よって、モータ室62側の油面は、少なくともロータの回転により生じるガス流がロータ表面速度の半分程度まで低下する位置まで下げると良い。以上より、前記モータ室62の油面を前記ロータ15へかかることなく、多量の貯蔵油を小形の圧縮機内部に蓄えることが可能となるため、油切れの可能性が低く高信頼性となる横置き圧縮機を小形で実現できるという本実施例特有の効果がある。この前記貯油室80の貯蔵油69の表面まで上昇したガスは、多孔性体からなる前記油滴除去部45を通過した後、前記吐出パイプ55で形成される吐出口から圧縮機外部に吐出される。圧縮機起動直後の前記背面過吸込圧領域99の圧力は、前記したように前記フレーム4の前記挟み込み面溝4αと鏡板3aのラップ側と前記非旋回基準面2uの隙間により、吸込圧に近い圧力となっている。前記背面過吸込圧領域99の前記圧力とほぼ吐出圧に近い前記貯油室内80との差圧等により前記貯油室80の油は前記給油管71から前記給油キャップ90内にはいり、そこで毛細管現象や遠心力により前記球面軸受72の球面側の軸受部に供給される。さらに、断面積が大きいために流路抵抗のほとんど無い前記シャフト給油孔12aに入り、一部は遠心力が加わる事により前記副軸受給油孔12iを通って前記球面軸受72の中心穴側の軸受部に供給され、他の一部は同様に遠心力が加わることにより前記軸シール給油穴12cを通って前記軸シール4aに供給され、その他の一部は遠心力により前記主軸受給油孔12bを通って前記主軸受4mに供給され、残りは旋回スクロール部材3の背面中央部に達した後前記と同様の差圧と遠心力により前記旋回軸受3wに供給される。この結果、前記旋回スクロール部材3背面の中央部に吐出圧のかかる背面吐出圧領域95を形成する。前記主軸受4m及び前記旋回軸受3wに給油された油はそこの摩擦で温度上昇した後に前記背面過吸込圧領域99へ入る。この時、軸受部における油の平均圧力は前記背面過吸込圧領域99の圧力よりも前記貯油室80側の圧力に近い高圧であるため、前記背面過吸込圧領域99に吹き出す。この結果、軸受部の摩擦による温度上昇と圧力の急激な低下により、油のガス成分の溶解度が低下し、油に溶け込んでいたガス成分が一気に気化する。この時に気化熱を周囲から奪うので、この付近の温度レベルを低く抑えるため前記主軸受4mや前記旋回軸受3wの信頼性が向上するという特有の効果がある。また、このガス成分の気化により、油は細かい油滴になるため、ガスの流れに乗って移動し易くなる。
後記するが、この後ガスは前記旋回スクロール部材3側に向かうため、油もその向きに流れることになる。前記主軸受4mや前記旋回軸受3wから前記旋回スクロール部材3へ向かう経路の途中には前記オルダムリング5があるため、前記オルダムリング5の摺動部に油滴が確実に供給される。よって、オルダムリング摺動部の信頼性が向上するという特有の効果もある。この結果、前記背面過吸込圧領域99へ流入するガス量が圧縮機起動直後に急激に増大する。このガスは、図7に示すように、油とともに、前記挟み込み面溝4α及び鏡板3aのラップ側と前記非旋回基準面2uの隙間を通って前記吸込室60に流入する。そして、この中の油は、軸方向に若干隙間を有する圧縮室6内に流れ込み、そこのシール性を向上させて圧縮室の内部漏れを低減し吐出圧の上昇を促進するという効果を発揮した後、ガスとともに前記圧縮動作口2dより前記固定背面室61に出る。また、鏡板3aのラップ側と前記非旋回基準面2uの隙間が小さいことと流れる流体中の油量が多く部分的にシール部を形成するため、前記背面過吸込圧領域99へ流入するガス及び油量に比較して流出するガス及び油量が少なく、前記背面過吸込圧領域99の圧力が急激に上昇する。この結果、吐出圧の上昇に伴う前記背面吐出圧領域95内の圧力上昇の寄与とともに、前記旋回スクロール部材3を前記固定スクロール部材2に押し付ける力である引付力が急激に増大し、圧縮機起動のほぼ直後もしくは非常に短時間で引付力の大きさが引離し力の大きさ以上となり、前記旋回スクロール部材3は前記固定スクロール部材2に押し付けられる。この結果、スクロールラップの歯先と歯底間の隙間が小さくなるために、前記圧縮室6の密閉性が向上して、圧縮途中のガスの内部漏れ量が低減し、起動直後に比較して性能が飛躍的に向上し、正規の運転状態に移行する。ところで、圧縮室6を形成するときにシール面となる前記スクロール部材2、3の面に、圧接して摺動すると削れるなじみ性を有する表面皮膜を形成すると、前記両スクロール部材2、3を押し付けた時にスクロールラップの歯先と歯底間の隙間がほぼ無くなるため、前記圧縮室6の密閉性が一層向上して、圧縮途中のガスの内部漏れ量が一層低減し、起動直後に比較して性能が一層飛躍的に向上し、正規の運転状態に移行する。このなじみ性皮膜は一方のスクロール部材のみに設けても効果がある。
By starting the rotation of the motor 19, the shaft 12 rotates and the orbiting scroll member 3 starts orbiting motion. Here, the turning radius of the orbiting scroll member 3 is set to be smaller than the size determined geometrically from the scroll wrap shape. This is because there is always a processing error in the shape of the scroll wraps 2b and 3b. If the setting is not made small, the side surface of the lap will come into pressure contact, increasing the friction loss and the progress of wear. This is because galling may cause adhesion, or the lap may be destroyed, resulting in inoperability. Here, since the Oldham ring 5 is provided, rotation of the orbiting scroll member 3 is prevented. By this operation, the gas in the suction chamber 60 formed in the outer peripheral portion of the area where the two scroll wraps 2b and 3b mesh with each other is substantially confined and compressed in the compression chamber 6 formed between the scroll members, and the compression operation is performed. It begins to be discharged into the fixed back chamber 61 from the mouth 2d. By the way, as shown in FIG. 7, the thickness of the end plate 3a of the orbiting scroll member 3 is made to be smaller by about 5 to 70 μm than the distance between the orbiting surface 4d and the non-orbiting reference surface 2u, and the orbiting scroll member. 3 and the maximum separation distance in the axial direction of the fixed scroll member 2 are defined. For this reason, immediately after the compressor is started, the orbiting scroll member 3 is separated from the fixed scroll member 2 by the separating force by the gas in the compression chamber 6 and moves to the frame 4 side by the distance described above. Therefore, the anti-wrap side of the end plate 3a and the turning sandwiching surface 4d slide, and a gap corresponding to the maximum separation distance is formed between the end of the end plate 3a and the non-turning reference surface 2u. At the same time, the gap between the tip of the wrap and the bottom of the wrap is about the same, so the internal leakage is large and high-efficiency operation is not possible. By increasing the pressure to the maximum allowable value, internal leakage can be suppressed, and the suction pressure can be sufficiently reduced or the discharge pressure can be sufficiently increased. The gas discharged from the compression operation port 2d to the fixed back chamber 61 passes through the fixed scroll member 2 and the flow grooves 2r and 4h on the outer periphery of the frame 4, and the motor 19 and the frame 4 in the motor chamber 62. Also flows into the space between. The gas further reaches the bearing support plate 18 side of the motor chamber 62 through the stator groove 16 c and the gap between the rotor 15 and the stator 16. Since the compressed gas that has spread so far loses its destination, it begins to accumulate and the pressure rises. This pressure increase pushes the stored oil 69 accumulated in the lower part of the motor chamber 62 and the fixed back chamber 61 downward. As a result, the stored oil 69 flows into the oil storage chamber 80 through the lower flow path port 18a and raises the oil level on the oil storage chamber side. When the oil level of the motor chamber 62 reaches the height of the highest point of the lower flow path port 18a, the lower flow path port 18a becomes a flow path and gas flows from the motor chamber 62 into the oil storage chamber 80. At this time, the gas is blown out from below the storage oil 69 collected in the oil storage chamber and rises in the form of bubbles. Here, since the height of the highest point of the lower flow passage opening 18a is set lower than the lowest point of the central hole into which the rotor of the stator 16 is inserted, the oil level of the motor chamber 62 is the rotor. Therefore, the rotor 15 that rotates the stored oil 69 at high speed does not form fine oil droplets, and the oil content of the gas can be reduced. By the way, if the set height of the lower flow passage opening 18a is determined so that the height of the oil surface on the motor chamber 62 side is not covered by the rotor 15, the oil flow is generated by the flow of gas generated by the rotation of the rotor. Oil droplets are generated from the surface, and the content of oil droplets in the gas does not decrease much. Therefore, the oil level on the motor chamber 62 side is preferably lowered to a position where the gas flow generated by the rotation of the rotor is reduced to about half of the rotor surface speed. As described above, since a large amount of stored oil can be stored inside the small compressor without the oil level of the motor chamber 62 being applied to the rotor 15, the possibility of running out of oil is low and the reliability is high. There is an effect peculiar to the present embodiment that the horizontal compressor can be realized in a small size. The gas that has risen to the surface of the storage oil 69 in the oil storage chamber 80 passes through the oil droplet removing portion 45 made of a porous material, and is then discharged from the discharge port formed by the discharge pipe 55 to the outside of the compressor. The The pressure in the back excessive suction pressure region 99 immediately after the start of the compressor is close to the suction pressure due to the gap between the sandwiching surface groove 4α of the frame 4 and the lap side of the end plate 3a and the non-rotating reference surface 2u as described above. It is pressure. The oil in the oil storage chamber 80 enters the oil supply cap 90 from the oil supply pipe 71 due to a differential pressure between the oil pressure in the back excessive suction pressure region 99 and the oil storage chamber 80 which is substantially close to the discharge pressure. The spherical force is supplied to the spherical bearing portion of the spherical bearing 72 by centrifugal force. Furthermore, since the cross-sectional area is large, it enters the shaft oil supply hole 12a having almost no flow resistance, and a part of the bearing is provided on the center hole side of the spherical bearing 72 through the auxiliary bearing oil supply hole 12i by applying centrifugal force. Similarly, the other part is supplied to the shaft seal 4a through the shaft seal oil supply hole 12c when centrifugal force is applied in the same manner, and the other part is supplied to the main bearing oil supply hole 12b by centrifugal force. After passing through the main bearing 4m, the remainder reaches the center of the rear surface of the orbiting scroll member 3 and then is supplied to the orbiting bearing 3w by the same differential pressure and centrifugal force as described above. As a result, a rear discharge pressure region 95 to which discharge pressure is applied is formed at the center of the rear surface of the orbiting scroll member 3. The oil supplied to the main bearing 4m and the slewing bearing 3w rises in temperature due to friction there, and then enters the back oversuction pressure region 99. At this time, since the average oil pressure in the bearing portion is higher than the pressure in the back surface oversuction pressure region 99 and closer to the pressure on the oil storage chamber 80 side, the oil is blown out to the back surface oversuction pressure region 99. As a result, the temperature rise due to the friction of the bearing portion and the rapid drop in pressure lower the solubility of the gas component of the oil, and the gas component dissolved in the oil vaporizes all at once. Since the heat of vaporization is taken away from the surroundings at this time, there is a specific effect that the reliability of the main bearing 4m and the slewing bearing 3w is improved in order to keep the temperature level in the vicinity low. Further, since the gas component is vaporized, the oil becomes fine oil droplets, so that the oil easily moves along the gas flow.
As will be described later, since the gas is directed to the orbiting scroll member 3 side, the oil also flows in that direction. Since the Oldham ring 5 is in the middle of the path from the main bearing 4 m and the orbiting bearing 3 w to the orbiting scroll member 3, oil droplets are reliably supplied to the sliding portion of the Oldham ring 5. Therefore, there is also a specific effect that the reliability of the Oldham ring sliding portion is improved. As a result, the amount of gas flowing into the back surface excessive suction pressure region 99 increases rapidly immediately after the compressor is started. As shown in FIG. 7, this gas flows into the suction chamber 60 together with oil through the sandwiching surface groove 4α and the gap between the end plate 3a and the non-turning reference surface 2u. And the oil in this flowed into the compression chamber 6 having a slight gap in the axial direction, and improved the sealing performance therefor, thereby reducing the internal leakage of the compression chamber and promoting the increase of the discharge pressure. Then, the gas exits to the fixed back chamber 61 from the compression operation port 2d together with the gas. In addition, since the gap between the lap side of the end plate 3a and the non-rotating reference surface 2u is small and the amount of oil in the flowing fluid is large and partially forms a seal portion, the gas flowing into the back oversuction pressure region 99 and The amount of gas flowing out and the amount of oil are small compared to the amount of oil, and the pressure in the back oversuction pressure region 99 rises rapidly. As a result, with the contribution of the pressure increase in the back surface discharge pressure region 95 accompanying the increase in the discharge pressure, the attraction force that is the force for pressing the orbiting scroll member 3 against the fixed scroll member 2 increases rapidly. The magnitude of the attracting force becomes equal to or greater than the magnitude of the separating force almost immediately after startup or in a very short time, and the orbiting scroll member 3 is pressed against the fixed scroll member 2. As a result, since the gap between the tooth tip and the tooth bottom of the scroll wrap is reduced, the sealing property of the compression chamber 6 is improved, the amount of internal leakage of gas during compression is reduced, and compared with immediately after startup. The performance is dramatically improved and the system is shifted to the normal operating state. By the way, if a surface film having a conformability that can be scraped when pressed against the surface of the scroll members 2 and 3 that form a sealing surface when the compression chamber 6 is formed, the scroll members 2 and 3 are pressed. Since the gap between the tooth tip and the tooth bottom of the scroll wrap is almost eliminated at the time, the sealing performance of the compression chamber 6 is further improved, and the amount of internal leakage of gas during compression is further reduced, compared with immediately after startup. The performance will be further improved and it will shift to the normal operating state. Even if this conformable film is provided only on one scroll member, it is effective.

次に、前記旋回スクロール部材3が前記固定スクロール部材2に押し付けられた正規の運転時の動作を説明する。   Next, an operation during normal operation in which the orbiting scroll member 3 is pressed against the fixed scroll member 2 will be described.

前記背面過吸込圧領域99に流入したガス及び油の全てが前記吸込み室60へ直接流れ込まない点以外は、圧縮機起動直後と同様であるため、この部分のみを図7や図8を主に用いて説明する。前記背面過吸込圧領域99に流入したガス及び油は、前記はさみ込み面溝4α及び前記鏡板3aの反ラップ面と前記旋回挟み込み面4dの隙間を通って、前記鏡板3aの側面と前記フレーム4の間の空間である旋回側面領域67に入る。このうちの一部は、前記鏡板3aのラップ側と前記非旋回基準面2uの両摺動面を潤滑しながら前記吸込み室60に流入する。前記旋回側面領域67と前記背面過吸込圧領域99の間の流路抵抗は小さいため、この旋回側面領域67の圧力は前記背面過吸込圧領域99の圧力にほぼ等しい。図8からわかるように、前記周囲溝2cは常にこの旋回側面領域67と通じているため、この周囲溝2c内の圧力は、前記背面過吸込圧領域99の圧力となり、前記背面側導通路2βを経由して前記差圧制御弁100の前記弁体100aのフレーム側の面には前記背面過吸込圧領域99の圧力がかかる。前記弁体100aの反対面側の空間は、前記吸込側導通路2αにより吸込圧である前記吸込室60と通じているため、前記背面過吸込圧領域99の圧力が、吸込圧よりも前記差圧弁ばね100cの押付力に対応した一定値である過吸込圧値よりも高くなると、前記弁体100aが前記差圧弁ばね100c側に動く。この結果、前記旋回側面領域67内のガス及び油のうちで摺動面を経由して前記吸込み室60に流入したもの以外は、前記背面側導通路2β、前記弁体100cと前記弁シール面または弁シール線2jの隙間、前記弁体100cの側面、前記弁穴2f、前記吸込側導通路2αを順次経由して、前記吸込室60に流入する。そして、圧縮室6内のガスと混ざって圧縮室6のシール性を向上させながらラップ中央に移送され前記圧縮動作口2dから吐出する。この結果、前記圧縮動作口2dより出た圧縮ガス中には、軸受に給油された油が全量含有することになる。このようにして、前記背面過吸込圧領域99の圧力は、吸込圧よりも前記差圧弁ばね100cの押付力に対応した一定値だけ高い圧力に制御される。
つまり、前記過吸込圧領域99の圧力は以下のように概略制御される。
Except that all the gas and oil that flowed into the back oversuction pressure region 99 do not flow directly into the suction chamber 60, this is the same as immediately after the start of the compressor. Therefore, only this part is mainly shown in FIGS. It explains using. The gas and oil that have flowed into the back excessive suction pressure region 99 pass through the sandwiching surface groove 4α and the gap between the anti-wrap surface of the end plate 3a and the swivel clamping surface 4d, and the side surface of the end plate 3a and the frame 4 Enter the swivel side surface area 67 which is the space between. A part of them flows into the suction chamber 60 while lubricating both sliding surfaces of the lap side of the end plate 3a and the non-turning reference surface 2u. Since the flow resistance between the swivel side surface area 67 and the back surface oversuction pressure region 99 is small, the pressure in the swivel side surface region 67 is substantially equal to the pressure in the back surface oversuction pressure region 99. As can be seen from FIG. 8, since the peripheral groove 2c always communicates with the turning side surface region 67, the pressure in the peripheral groove 2c becomes the pressure of the back surface excessive suction pressure region 99, and the back side conduction path 2β The pressure in the back oversuction pressure region 99 is applied to the frame-side surface of the valve body 100a of the differential pressure control valve 100 via. Since the space on the opposite surface side of the valve body 100a communicates with the suction chamber 60 which is the suction pressure by the suction side conduction path 2α, the pressure in the back surface excessive suction pressure region 99 is more than the difference from the suction pressure. When it becomes higher than the excessive suction pressure value that is a constant value corresponding to the pressing force of the pressure valve spring 100c, the valve body 100a moves toward the differential pressure valve spring 100c. As a result, the back side conduction path 2β, the valve body 100c, and the valve seal surface other than the gas and oil in the swivel side surface region 67 that have flowed into the suction chamber 60 via the sliding surface. Alternatively, the gas flows into the suction chamber 60 through the clearance of the valve seal line 2j, the side surface of the valve body 100c, the valve hole 2f, and the suction side conduction path 2α. Then, it is mixed with the gas in the compression chamber 6 to improve the sealing performance of the compression chamber 6 and is transferred to the center of the wrap and discharged from the compression operation port 2d. As a result, the compressed gas discharged from the compression operation port 2d contains the entire amount of oil supplied to the bearing. In this way, the pressure in the back excessive suction pressure region 99 is controlled to a pressure that is higher than the suction pressure by a certain value corresponding to the pressing force of the differential pressure valve spring 100c.
That is, the pressure in the excessive suction pressure region 99 is roughly controlled as follows.

A(過吸込圧値)をある定数として、
(背面過吸込圧領域99の圧力)≒(吸込圧+A)
これにより、要求される全運転範囲で旋回スクロール部材3を固定スクロール部材2に押し付けるとともに、広い運転条件範囲で引付力から引離し力を引いた付勢力を小さくし、摺動損失の小さい高性能な圧縮機を実現できるという効果がある。ところで、この前記背面過吸込圧領域99を経由するガスは、圧縮機の中で吐出系から圧縮途中の前記中間圧力室68へ短絡する流れであり、スクロールラップにおける内部漏れと結果的には同様のものであるため、極力少なくすることが必要である。ここでは前記吐出背面間流路102の絞り流路である軸受隙間があることから、この流量は非常に小さく、圧縮機の性能低下は生じない。
Let A (super suction pressure value) be a certain constant,
(Pressure in the back side over suction pressure region 99) ≈ (suction pressure + A)
As a result, the orbiting scroll member 3 is pressed against the fixed scroll member 2 in the entire required operating range, and the biasing force obtained by subtracting the pulling force from the pulling force is reduced in a wide range of operating conditions, thereby reducing the sliding loss. There is an effect that a high-performance compressor can be realized. By the way, the gas passing through the back side super suction pressure region 99 is a flow that is short-circuited from the discharge system to the intermediate pressure chamber 68 in the middle of compression in the compressor, and is similar to the internal leakage in the scroll wrap as a result. Therefore, it is necessary to reduce as much as possible. Here, since there is a bearing gap which is a throttle channel of the discharge back-to-back flow path 102, the flow rate is very small, and the performance of the compressor does not deteriorate.

ここで、前記圧縮動作口2dから出るガス中には上記したように前記旋回軸受3w及び前記主軸受4mに給油された油を全て含むため、例えば、吐出圧と前記背面過吸込圧領域99の圧力の差が大きい運転ほど、前記圧縮動作口2dから出る圧縮ガス中の油の量は増大する。また、前記旋回スクロール部材3の回転速度が小さい運転ほど、単位時間当たりの圧縮ガスの量が少なくなるが、軸受給油量は同じであるため、前記圧縮動作口2dから出るガスの油含有率が増大する。次にこのガスは流通溝2r、4hを通って、前記モータ室62に入る。この時、前記フレームオイルリング44や前記主軸受側コイルエンド部16yにより、主たる流れは前記ロータ15側へは向かわず、前記ステータ溝16cや前記ステータ穴16mを通る流れとなる。この流れによって前記ステータ16の前記積層鋼板16aを通過したガスの主たる流れは、前記副軸受側コイルエンド部16xによって、前記ロータ15側へは向かわず、前記軸受支持板18の方へ抜ける。そして、下方の前記下部流路口18aへ向かうが、この流れは前記オイルリング46によって前記ロータ15に近づかない。この前記ステータ16をガスが通ったことにより、高温となっているステータの前記コイル16w及び前記積層鋼板16aを冷却できるため、モータ効率が向上するという特有の効果がある。ここでは、前記ステータ16の前記コイルエンド部16x、16y等の多孔性体の中及び近くを通る際に、油滴の慣性により油がコイルエンド部に衝突してそこに付着しこれが大きな油の固まりとなって下部の前記貯蔵油69に落下するかまたは静止部を伝って流入し、油の含有率が低減するという特有の効果がある。また、前記コイルエンド部16x、16yや前記オイルリング46により、高速で回転する前記ロータ15にガスの主たる流れが接近しないため、前記ロータ15に接触する油滴が非常に少なく、細かい油滴がほとんど発生しないため、コイルエンド部等の多孔性体によるガスからの油分離効率が向上するという特有の効果がある。前記下部流路口18aまで達したガスの油含有率は以上に記した手段によりかなり低減しているが、そのガスを前記下部流路口18aから前記貯油室80の前記貯蔵油69の下部から吹き込むことによりさらに油の含有率が低減するという効果がある。この吹き込んだガスは前記貯蔵油69中を気泡となって上昇する。気泡の周囲全域は油であるため、気泡中の油滴が周囲の油と接触する確率は非常に高くなる。さらに、前記貯蔵油69中の気泡の上昇は、油の粘性のために圧縮機内の他の箇所におけるガス流速と比較して非常に小さい速度となるため、気泡中の油滴が周囲の油と接触できる時間が長く、気泡中の油滴が周囲の油と接触する確率は一層高くなる。周囲の油に接触した油滴は、油の表面張力によって表面積を小さくする作用が働く結果、小さな油滴は気泡周囲の油に吸込まれる。このような作用により前記した効果が出てくる。この油含有率低減作用は、気泡中の油滴の大きさによらないため、従来技術で上げた多孔性体で取り除くことが困難であった、粒径の小さい油滴も効果的に除去できる。しかし、ガスの気泡が前記貯蔵油69の油面に達すると、気泡が潰れる結果、新たな油滴が発生する。ただ、気泡の上昇速度は非常に遅いため、この時に発生する油滴の粒はかなり大きい。このため、前記貯蔵油から出てきたガスには大きな油滴のみが含有するが、このガスは多孔性体である前記油滴除去部45を通過するため、前記した理由により、大きな油滴を高い確率で取り除くことができる。この結果、油の含有率を大幅に低減させたガスを圧縮機から吐出できる効果がある。また、前記固定スクロール部材2の鏡板2aには、4個のバイパス穴2eが設けられている。これら各々のバイパス穴2eのバイパス弁シール面2λを覆う位置に弁部がくるように前記バイパス弁板23xを位置決めし、リテーナ23aとともにバイパスネジ23hで固定し、前記バイパス弁23を形成する。これにより、これらのバイパス弁23は、前記圧縮室6の圧力が吐出系の一部である前記固定背面室61の圧力よりも大きくなると開くことになる。前記固定背面室61の圧力は吐出圧であるから、このバイパス弁は、前記圧縮室6の圧力が吐出圧よりも高いときに前記圧縮室6と前記吐出系を連通する作用を有する。実際には、前記バイパス弁シール面2λにおける圧力分布やそこにある油の表面張力等により、このバイパス弁23が開口するタイミングはわずかにずれる。このようにして、前記旋回スクロール部材3の引付力付加手段として、前記過吸込圧領域99を旋回背面に設け、前記バイパス弁23を設けたため、過吸込圧値を小さく設定でき、広い運転範囲で付勢力を小さく設定できる。この結果、全断熱効率や信頼性を広い運転範囲で高くできるという特有の効果が有る。ところで、図5で示したように、前記圧縮室6と前記固定背面室61を常につなぐように前記バイパス穴2eを四個設けたため、どのようなタイミングで液圧縮が生じようとしても圧力が極端に上がる前に前記バイパス弁が開いて流体は前記固定背面室61に排出される。この結果、ラップの損傷の危険性を回避し、信頼性を向上できるという特有の効果がある。また、極端に圧力比の小さいポンプ運転に近い場合でも過圧縮を抑制できるため、低圧力比側の広い運転条件範囲で全断熱効率を高くできるという効果がある。   Here, since the gas discharged from the compression operation port 2d includes all the oil supplied to the slewing bearing 3w and the main bearing 4m as described above, for example, the discharge pressure and the back over-suction pressure region 99 As the pressure difference increases, the amount of oil in the compressed gas that exits from the compression operation port 2d increases. Further, the smaller the rotational speed of the orbiting scroll member 3 is, the smaller the amount of compressed gas per unit time is. However, since the bearing oil supply amount is the same, the oil content of the gas coming out of the compression operation port 2d is reduced. Increase. Next, this gas enters the motor chamber 62 through the flow grooves 2r and 4h. At this time, due to the frame oil ring 44 and the main bearing side coil end portion 16y, the main flow does not go to the rotor 15 side, but flows through the stator groove 16c and the stator hole 16m. Due to this flow, the main flow of the gas that has passed through the laminated steel plate 16a of the stator 16 does not go to the rotor 15 side by the auxiliary bearing side coil end portion 16x, but escapes toward the bearing support plate 18. And although it goes to the said lower flow path opening 18a below, this flow does not approach the said rotor 15 by the said oil ring 46. FIG. Since gas passes through the stator 16, the coil 16 w and the laminated steel plate 16 a of the stator that are at a high temperature can be cooled, so that there is a specific effect that motor efficiency is improved. Here, when passing through and near the porous body such as the coil end portions 16x and 16y of the stator 16, the oil collides with the coil end portion due to the inertia of the oil droplets and adheres to the coil end portion. There is a specific effect that it becomes a solid and falls into the storage oil 69 in the lower part or flows through the stationary part and the oil content is reduced. In addition, since the main flow of gas does not approach the rotor 15 rotating at high speed by the coil end portions 16x and 16y and the oil ring 46, there are very few oil droplets in contact with the rotor 15 and fine oil droplets are formed. Since it hardly occurs, there is a specific effect that oil separation efficiency from gas by a porous body such as a coil end portion is improved. Although the oil content of the gas reaching the lower flow path port 18a is considerably reduced by the means described above, the gas is blown from the lower flow path port 18a through the lower part of the stored oil 69 in the oil storage chamber 80. This has the effect of further reducing the oil content. The blown gas rises as bubbles in the storage oil 69. Since the entire area around the bubbles is oil, the probability that the oil droplets in the bubbles come into contact with the surrounding oil is very high. Furthermore, the rise of the bubbles in the storage oil 69 is very small compared to the gas flow rate at other points in the compressor due to the viscosity of the oil, so that the oil droplets in the bubbles are separated from the surrounding oil. The contact time is long, and the probability that the oil droplets in the bubbles come into contact with the surrounding oil becomes higher. The oil droplets in contact with the surrounding oil act to reduce the surface area by the surface tension of the oil. As a result, the small oil droplets are sucked into the oil around the bubbles. Such an effect brings about the above-mentioned effect. This oil content reduction effect does not depend on the size of the oil droplets in the bubbles, so it is also possible to effectively remove oil droplets having a small particle diameter, which were difficult to remove with the porous material raised in the prior art. . However, when the gas bubbles reach the oil level of the stored oil 69, the bubbles are crushed and new oil droplets are generated. However, since the rising speed of the bubbles is very slow, the oil droplets generated at this time are quite large. For this reason, only large oil droplets are contained in the gas coming out of the stored oil. However, since this gas passes through the oil droplet removing section 45 which is a porous body, for the reasons described above, large oil droplets are generated. Can be removed with high probability. As a result, there is an effect that the gas whose oil content is significantly reduced can be discharged from the compressor. The end plate 2a of the fixed scroll member 2 is provided with four bypass holes 2e. The bypass valve plate 23x is positioned so that the valve portion is positioned so as to cover the bypass valve seal surface 2λ of each of the bypass holes 2e, and fixed by the bypass screw 23h together with the retainer 23a, thereby forming the bypass valve 23. As a result, these bypass valves 23 are opened when the pressure in the compression chamber 6 becomes higher than the pressure in the fixed back chamber 61 which is a part of the discharge system. Since the pressure in the fixed back chamber 61 is a discharge pressure, the bypass valve has an effect of communicating the compression chamber 6 and the discharge system when the pressure in the compression chamber 6 is higher than the discharge pressure. Actually, the opening timing of the bypass valve 23 is slightly shifted due to the pressure distribution on the bypass valve seal surface 2λ and the surface tension of the oil there. In this manner, as the attraction force adding means for the orbiting scroll member 3, the over suction pressure region 99 is provided on the orbiting back surface, and the bypass valve 23 is provided. Therefore, the over suction pressure value can be set small, and a wide operating range is provided. The urging force can be set small. As a result, there is a specific effect that the total heat insulation efficiency and reliability can be increased in a wide operating range. By the way, as shown in FIG. 5, since the four bypass holes 2e are provided so as to always connect the compression chamber 6 and the fixed back chamber 61, the pressure is extremely high no matter what timing the liquid compression occurs. The fluid is discharged to the fixed back chamber 61 by opening the bypass valve before the fluid reaches the fixed rear chamber 61. As a result, there is a unique effect that the risk of damage to the lap can be avoided and the reliability can be improved. In addition, since overcompression can be suppressed even when the pump operation is extremely close to a low pressure ratio, there is an effect that the overall heat insulation efficiency can be increased in a wide operating condition range on the low pressure ratio side.

ここで、この圧縮機の起動時に、前記吸込パイプ54と連結する配管系や前記吐出パイプ55と連結する配管系の両方または各一方を絞る動作を行うシステムを設けるか作業者に行わせれば、吸込圧の低下または吐出圧の上昇を一層確実に実現できる。この結果、前記旋回スクロール部材3を前記固定スクロール部材2に押し付ける正規の運転に一層短時間で移行できるという効果が出てくる。   Here, at the time of starting the compressor, if an operator is provided with a system for performing an operation of restricting both or one of the piping system connected to the suction pipe 54 and the piping system connected to the discharge pipe 55, A reduction in suction pressure or an increase in discharge pressure can be realized more reliably. As a result, there is an effect that it is possible to shift to a normal operation of pressing the orbiting scroll member 3 against the fixed scroll member 2 in a shorter time.

次に、第二の実施例に基づいて説明する。軸受支持板18の下部流路口18aの最高点の位置を中央に設定した以外は前記第一の実施例と同様であるので、その他の部分の構造及び動作及び効果の説明は省略する。第一の実施例では、前記下部流路口18aの上辺が水平であるため、前記貯蔵油69内へガスが吹き出す可能性のある位置が上辺全体となる。このため、前記下部流路口18a上辺の近接した複数の場所で気泡が形成されはじめた場合、気泡の成長過程で気泡が合体する。仮に、この合体のタイミングが各々の気泡単独ではぎりぎりで前記下部流路口18aの上辺から離脱できない大きさであった場合を考える。この時に合体して形成された気泡の大きさは、合体せずに単独の成長による気泡では形成不可能な大きさになる。気泡が大きいと、気泡の体積に対する表面積の割合が小さくなるため、気泡中の油滴が周囲の油と接触する確率は低くなる。さらに、前記貯蔵油69中の気泡の上昇は、気泡の浮力から重力を引いた力で促進され、油の粘性力で抑制される。前者の力は概略的に気泡の体積に比例し、後者の力は概略的に気泡の表面積に比例する。気泡が大きいと、気泡の体積に対する表面積の割合が小さくなるため、気泡の上昇速度は大きくなり、気泡中の油滴が周囲の油と接触できる時間が短くなる。以上の二点から、気泡が大きいと、油の含有率の低減効果が小さくなってしまった。これに対し、本実施例では、気泡の発生できる場所は前記下部流路口18aの上辺の中央の一箇所と決まるため、第一の実施例の問題が無くなる。この結果、吐出ガス中の油の含有率を一層大幅に低減させたガスを圧縮機から吐出できる効果がある。また、前記第一の実施例では、前記油滴除去部45は、図9及び図10に示すように、中央部のみに多孔体があるので、圧縮機の取付け姿勢が圧縮機の円筒軸を中心に回転していると、前記貯蔵油69の中央から外れた箇所を気泡が上昇し中央から外れた油面部で油滴が生じるため、この油滴は多孔体を通らずに前記油滴除去部45の傍をすり抜けて吐出口に至ってしまう可能性が高い。これに対し、本実施例では、前記貯蔵油69の中央寄りを気泡が上昇するため、第一の実施例の問題が無くなる。この結果、油の含有率を一層大幅に低減させたガスを圧縮機から吐出できるという効果がある。   Next, a description will be given based on the second embodiment. Since it is the same as that of the first embodiment except that the position of the highest point of the lower flow passage opening 18a of the bearing support plate 18 is set at the center, the description of the structure, operation, and effects of other portions is omitted. In the first embodiment, since the upper side of the lower flow path port 18a is horizontal, the position where the gas may blow out into the stored oil 69 is the entire upper side. For this reason, when bubbles start to form at a plurality of locations close to the upper side of the lower flow path port 18a, the bubbles are combined in the bubble growth process. Let us consider a case where the timing of this coalescence is such that each bubble alone is barely detachable from the upper side of the lower flow path port 18a. The size of the bubbles formed by combining at this time becomes a size that cannot be formed by bubbles that are grown independently without being combined. If the bubbles are large, the ratio of the surface area to the volume of the bubbles is small, so the probability that the oil droplets in the bubbles are in contact with the surrounding oil is low. Further, the rising of the bubbles in the stored oil 69 is promoted by a force obtained by subtracting gravity from the buoyancy of the bubbles, and is suppressed by the viscous force of the oil. The former force is roughly proportional to the volume of the bubble and the latter force is roughly proportional to the surface area of the bubble. When the bubbles are large, the ratio of the surface area to the volume of the bubbles is reduced, so that the rising speed of the bubbles is increased and the time during which the oil droplets in the bubbles can come into contact with the surrounding oil is shortened. From the above two points, when the bubbles are large, the effect of reducing the oil content is reduced. On the other hand, in the present embodiment, the place where bubbles can be generated is determined at one place in the center of the upper side of the lower flow passage opening 18a, and thus the problem of the first embodiment is eliminated. As a result, there is an effect that the gas in which the content of oil in the discharge gas is further greatly reduced can be discharged from the compressor. Further, in the first embodiment, as shown in FIGS. 9 and 10, the oil droplet removing unit 45 has a porous body only at the central portion, so that the mounting posture of the compressor is the cylindrical shaft of the compressor. When the oil is rotated to the center, bubbles rise at the location off the center of the stored oil 69 and oil droplets are generated at the oil surface portion outside the center, so that these oil droplets are removed without passing through the porous body. There is a high possibility of passing through the portion 45 and reaching the discharge port. On the other hand, in this embodiment, since the bubbles rise near the center of the stored oil 69, the problem of the first embodiment is eliminated. As a result, there is an effect that the gas whose oil content is significantly reduced can be discharged from the compressor.

次に、第三の実施例を図13の軸受支持板のモータ室側からの平面図に基づいて説明する。軸受支持板18の下部流路口18aの上辺を鋸歯状にした以外は前記第一の実施例と同様であるので、その他の部分の構造及び動作及び効果の説明は省略する。   Next, a third embodiment will be described based on a plan view from the motor chamber side of the bearing support plate of FIG. Except for the upper side of the lower flow passage opening 18a of the bearing support plate 18 having a sawtooth shape, it is the same as in the first embodiment, and the description of the structure, operation, and effects of the other parts is omitted.

本実施例では、前記下部流路口18a上辺の鋸歯状の山になった箇所で気泡が形成される。この結果、第一の実施例で問題となった気泡の合体は生じなくなるため、吐出ガス中の油の含有率を一層大幅に低減させたガスを圧縮機から吐出できる効果がある。しかし、この鋸歯の周期間隔を前記下部流路口18aの上辺で成長できる気泡の直径よりも小さく取ると、合体が起こるため、少なくともそれ以上の間隔で鋸歯を形成しなければいけない。また、気泡が前記貯蔵油69中を上昇する時に、前記貯蔵油69の流れに影響されてまっすぐに上昇しないことから、鋸歯の周期間隔は前記下部流路口18aの上辺で成長できる気泡の直径よりも前記貯蔵油69の流れによる左右の揺れ幅だけ大きくした方が良い。
また、両側の山を取ったので、前記貯蔵油69の中央寄りを気泡が上昇し中央寄りの油面部で油滴が生じるため、この油滴は大部分が前記油滴除去部45の多孔体を通る。この結果、油の含有率を一層大幅に低減させたガスを圧縮機から吐出できるという効果がある。
In the present embodiment, bubbles are formed at a sawtooth-like peak on the upper side of the lower flow path opening 18a. As a result, coalescence of bubbles, which is a problem in the first embodiment, is not generated, and there is an effect that the gas in which the content of oil in the discharge gas is further reduced can be discharged from the compressor. However, if the period interval of the saw teeth is made smaller than the diameter of the bubbles that can grow on the upper side of the lower flow path opening 18a, coalescence occurs, so the saw teeth must be formed at least at an interval larger than that. In addition, when the bubbles rise in the storage oil 69, they are influenced by the flow of the storage oil 69 and do not rise straight. Therefore, the period interval of the sawtooth is larger than the diameter of the bubbles that can grow on the upper side of the lower flow passage opening 18a. Also, it is better to increase the width of the left and right sway due to the flow of the stored oil 69.
Further, since the crests on both sides are taken, air bubbles rise near the center of the stored oil 69 and oil droplets are generated at the oil surface near the center. Therefore, most of the oil droplets are porous bodies of the oil droplet removing unit 45. Pass through. As a result, there is an effect that the gas whose oil content is significantly reduced can be discharged from the compressor.

次に、第四の実施例を図14の貯油室付近の縦断面図(図1におけるS部の拡大図)に基づいて説明する。油滴除去部45を傾斜させた以外は前記第一ないし第三の実施例と同様であるので、その他の部分の構造及び動作及び効果の説明は省略する。   Next, a fourth embodiment will be described based on a longitudinal sectional view in the vicinity of the oil storage chamber in FIG. 14 (enlarged view of the S part in FIG. 1). Since it is the same as that of the said 1st thru | or 3rd Example except having made the oil droplet removal part 45 incline, description of the structure of another part, operation | movement, and an effect is abbreviate | omitted.

油滴除去部45に傾斜がない例えば第一の実施例の場合には、前記金網45aに付着した油滴はある程度溜まって合体し、その一部が前記積層保持部45bまで広がる。そして、それに吸着された油がまた溜まることで合体し、その一部が前記底ケーシング21まで広がって、重力により、前記貯蔵油69に戻る。このように、前記油滴除去部45に付着している時間が長いため、一旦捕獲された油滴が通過するガスの流れによって再び、ガス中に戻る場合があった。本実施例では、前記油滴除去部45が傾斜しているため、その金網45aで捕獲された油滴は重力により迅速に前記底ケーシング21方向へ流れ、油滴除去部45の取付け部を伝って前記底ケーシング21の表面まで流れ下る。よって、上記したような、一旦捕獲した油滴が再びガス中に戻ることは無くなるため、油の含有率を大幅に低減させたガスを圧縮機から吐出できる効果がある。本実施例では、油滴除去部45を前記底ケーシング21側に傾斜しているが、前記軸受支持板18側に傾斜していても良い。またこの時に、前記油滴除去部45を前記軸受支持板18に固定してもよい。   In the case of the first embodiment in which the oil droplet removing portion 45 is not inclined, for example, the oil droplets adhering to the wire mesh 45a are accumulated to some extent and united, and a part thereof extends to the laminated holding portion 45b. Then, the oil adsorbed on it collects again and coalesces. A part of the oil spreads to the bottom casing 21 and returns to the stored oil 69 by gravity. As described above, since the time of adhering to the oil droplet removing unit 45 is long, the oil droplet once captured may return to the gas again due to the flow of the gas passing therethrough. In the present embodiment, since the oil droplet removing portion 45 is inclined, the oil droplets captured by the wire mesh 45a quickly flow toward the bottom casing 21 due to gravity and travel along the attachment portion of the oil droplet removing portion 45. Then, it flows down to the surface of the bottom casing 21. Therefore, since the oil droplets once captured do not return to the gas again as described above, there is an effect that the gas whose oil content is greatly reduced can be discharged from the compressor. In the present embodiment, the oil droplet removing portion 45 is inclined toward the bottom casing 21 side, but may be inclined toward the bearing support plate 18 side. At this time, the oil droplet removing portion 45 may be fixed to the bearing support plate 18.

次に、第五の実施例を図15の貯油室付近の縦断面図(図1におけるS部の拡大図)と図16のガスカバーの組立て斜視図と図17のガスカバーの貯油室側からの平面図に基づいて説明する。軸受支持板18に油滴除去部45を装着したガスカバー88を設けた以外は第一ないし第四の実施例と同様であるので、その他の部分の構造及び動作及び効果の説明は省略する。   Next, a vertical sectional view of the vicinity of the oil storage chamber of FIG. 15 (enlarged view of the S portion in FIG. 1), an assembly perspective view of the gas cover of FIG. 16, and an oil storage chamber side of the gas cover of FIG. This will be described based on the plan view. Since it is the same as that of the 1st thru | or 4th Example except having provided the gas cover 88 which attached the oil-drop removal part 45 to the bearing support plate 18, description of the structure of another part, operation | movement, and an effect is abbreviate | omitted.

ガスカバー88は、円環カバー88dの内部に油滴除去部45を固定したうえで、前記ベースプレート88cにろう付けまたは接着または溶接し、内部にガス抜き通路88aを形成する。この時、固定する場所を決めるために中央つば88gと外周つめ88fを設けている。この結果、前記貯油室69のガスの流路は前記ガスカバー88内の前記ガス抜き通路88aとなるため、前記給油パイプ71にガスの気泡が進入する危険性は非常に低くなる。この結果、モータ室に貯まったガスは前記下部流通口18aから前記ガス抜き通路88aを通った時に、その後前記油滴除去部45を通り、吐出パイプ55に至る。この経路により、前記実施例で記したように、吐出ガス中の油の含有率を大幅に低減させたガスを圧縮機から吐出できる効果がある。なお、この実施例では、前記油滴除去部45を水平に設定しているが、これを斜めにすると第四の実施例と同様の効果がある。ここで、貯油室80に流入するガスの向きは、前記通路開口部88bが前記ガスカバーの側面に開口しているため、底ケーシング21の側面に衝突後、前記吐出パイプ55の方へ向かう。この結果、底ケーシング21との衝突によりガス中の油滴の含有率が一層低下するという特有の効果がある。   The gas cover 88 fixes the oil droplet removing portion 45 inside the annular cover 88d and then brazes, bonds or welds the base plate 88c to form a gas vent passage 88a therein. At this time, a central collar 88g and an outer peripheral claw 88f are provided in order to determine a fixing place. As a result, since the gas flow path of the oil storage chamber 69 becomes the gas vent passage 88a in the gas cover 88, the risk of gas bubbles entering the oil supply pipe 71 is very low. As a result, when the gas stored in the motor chamber passes through the gas vent passage 88a from the lower circulation port 18a, it then passes through the oil droplet removing section 45 and reaches the discharge pipe 55. By this route, as described in the above embodiment, there is an effect that the gas in which the content of oil in the discharge gas is greatly reduced can be discharged from the compressor. In this embodiment, the oil droplet removing unit 45 is set horizontally, but if it is inclined, the same effect as in the fourth embodiment can be obtained. Here, the direction of the gas flowing into the oil storage chamber 80 is directed toward the discharge pipe 55 after colliding with the side surface of the bottom casing 21 because the passage opening 88b is opened on the side surface of the gas cover. As a result, there is a specific effect that the content of oil droplets in the gas is further reduced due to the collision with the bottom casing 21.

次に、第六の実施例を図18の貯油室付近の縦断面図(図1におけるS部の拡大図)と図19の軸受支持板のモータ室側からの平面図に基づいて説明する。軸受支持板18の上部に上部流路口18bを設けた以外は前記第四の実施例と同様であるので、その他の部分の構造及び動作及び効果の説明は省略する。   Next, a sixth embodiment will be described based on a longitudinal sectional view in the vicinity of the oil storage chamber in FIG. 18 (enlarged view of the S portion in FIG. 1) and a plan view from the motor chamber side of the bearing support plate in FIG. Since it is the same as that of the said 4th Example except having provided the upper flow path opening 18b in the upper part of the bearing support plate 18, description of the structure of another part, operation | movement, and an effect is abbreviate | omitted.

前記上部流路口18bにより、前記モータ室62から前記貯油室80のガス域へ抜ける流路が形成される。この時は、この上部流路口18bの流路抵抗をわずかに付けて、前記貯油室80の圧力を前記モータ室62の圧力よりもわずかに低くしこの圧力差で油を前記貯油室80に貯蔵する。この結果、非常に大流量の運転時に、前記上部流路口18bが無い場合には油中の気泡が油面にきて潰れる時の油の泡立ちが激しくなって前記油滴除去部45で捕獲できない量の油が出るが、本実施例では、油中を通るガス量が少ないため、油面での泡立ちによる油滴の発生が大幅に少なくなり、吐出ガス中の油の含有率を大幅に低減させたガスを圧縮機から吐出できる効果がある。ここで、前記上部流路口18bは、図18で示すように、中心に一個ではなくて、二個でもまたは三個でもよい。   The upper flow path port 18b forms a flow path from the motor chamber 62 to the gas area of the oil storage chamber 80. At this time, the flow path resistance of the upper flow path port 18b is slightly added, the pressure of the oil storage chamber 80 is slightly lower than the pressure of the motor chamber 62, and oil is stored in the oil storage chamber 80 by this pressure difference. To do. As a result, during operation at a very large flow rate, if the upper flow passage port 18b is not provided, the oil droplet removal unit 45 cannot capture the oil bubbles when the bubbles in the oil come to the oil surface and collapse. In this example, the amount of gas that passes through the oil is small, so the generation of oil droplets due to foaming on the oil surface is greatly reduced, and the oil content in the discharge gas is greatly reduced. There is an effect that discharged gas can be discharged from the compressor. Here, as shown in FIG. 18, the upper flow path port 18b may be two or three instead of one at the center.

次に、第七の実施例を図20の貯油室付近の縦断面図(図1におけるS部の拡大図)に基づいて説明する。軸受支持板18の上部に上部流路口18bを設けた以外は前記第五の実施例と同様であるので、その他の部分の構造及び動作及び効果の説明は省略する。前記上部流路口18bにより、前記モータ室62から前記貯油室80のガス域へ抜ける流路が形成される。この時は、この上部流路口18bの流路抵抗をわずかに付けて、前記貯油室80の圧力を前記モータ室62の圧力よりもわずかに低くしこの圧力差で油を前記貯油室80に貯蔵する。この結果、非常に大流量の運転時に、前記上部流路口18bが無い場合には油中の気泡が油面にきて潰れる時の油の泡立ちが激しくなって前記油滴除去部45で捕獲できない量の油が出るが、本実施例では、油中を通るガス量が少ないため、油面での泡立ちによる油滴の発生が大幅に少なくなり、吐出ガス中の油の含有率を大幅に低減させたガスを圧縮機から吐出できる効果がある。   Next, a seventh embodiment will be described based on a longitudinal sectional view in the vicinity of the oil storage chamber of FIG. 20 (enlarged view of S part in FIG. 1). Since it is the same as that of the said 5th Example except having provided the upper flow path opening 18b in the upper part of the bearing support plate 18, description of the structure of another part, operation | movement, and an effect is abbreviate | omitted. The upper flow path port 18b forms a flow path from the motor chamber 62 to the gas area of the oil storage chamber 80. At this time, the flow path resistance of the upper flow path port 18b is slightly added, the pressure of the oil storage chamber 80 is slightly lower than the pressure of the motor chamber 62, and oil is stored in the oil storage chamber 80 by this pressure difference. To do. As a result, during operation at a very large flow rate, if the upper flow passage port 18b is not provided, the oil droplet removal unit 45 cannot capture the oil bubbles when the bubbles in the oil come to the oil surface and collapse. In this example, the amount of gas that passes through the oil is small, so the generation of oil droplets due to foaming on the oil surface is greatly reduced, and the oil content in the discharge gas is greatly reduced. There is an effect that discharged gas can be discharged from the compressor.

次に、第八の実施例を図21の貯油室付近の縦断面図(図1におけるS部の拡大図)に基づいて説明する。軸受支持板18の上部流路口18bをガスカバー88内に設けるために前記ベースプレート88cの対応する位置に短絡開口部88eを設ける以外は前記第七の実施例と同様であるので、その他の部分の構造及び動作及び効果の説明は省略する。前記上部流路口18bをガスカバーの内部に開口したために、そこを通るガスが前記円環カバー88dに衝突する。よって、ガスは大きな速度変化をし、そこに含まれる油滴に大きな慣性力が働き、油は前記円環カバー88dの内壁に付着する。この結果、油滴を除去されなかった前記上部流路口18bを通ってきたガスがここで油滴を除去されるため、油の含有率を大幅に低減させたガスを圧縮機から吐出できるという効果がある。また、ガスが前記円環カバー88dに衝突する箇所に多孔体である壁面多孔体88kを設ける実施例も考えられる。この場合には、付着した油が再離脱しにくくなり、油滴の捕捉率が向上し、ガス中の油の含有率が一層低減するという特有の効果がある。   Next, an eighth embodiment will be described based on a longitudinal sectional view in the vicinity of the oil storage chamber of FIG. 21 (enlarged view of the S part in FIG. 1). Since the upper flow path port 18b of the bearing support plate 18 is provided in the gas cover 88 except for the short-circuit opening 88e provided at the corresponding position of the base plate 88c, the other parts are the same. The description of the structure, operation, and effect is omitted. Since the upper flow path opening 18b is opened inside the gas cover, the gas passing therethrough collides with the annular cover 88d. Accordingly, the gas undergoes a large speed change, and a large inertial force acts on the oil droplets contained therein, so that the oil adheres to the inner wall of the annular cover 88d. As a result, the gas that has passed through the upper flow path port 18b from which the oil droplets have not been removed is removed here, so that the gas having a significantly reduced oil content can be discharged from the compressor. There is. Further, an embodiment in which a wall surface porous body 88k, which is a porous body, is provided at a location where gas collides with the annular cover 88d is also conceivable. In this case, the attached oil is difficult to re-separate, the oil droplet capturing rate is improved, and the oil content in the gas is further reduced.

次に、第九の実施例を図22のガスカバーの組立て斜視図と図23のガスカバーの貯油室側からの平面図と図24の油滴除去部の斜視図に基づいて説明する。前記上部流路口18bを通ってきたガスが前記円環カバー88dと衝突する箇所が傾斜した傾斜部88hとなり、油滴除去部45をガス抜き通路88aでガスの流れがほぼ垂直に上昇する位置に設け、さらに油滴除去部45の構造を変えた以外は前記第八の実施例と同様であるので、その他の部分の構造及び動作及び効果の説明は省略する。   Next, a ninth embodiment will be described with reference to an assembly perspective view of the gas cover in FIG. 22, a plan view of the gas cover from the oil storage chamber side in FIG. 23, and a perspective view of the oil droplet removing portion in FIG. A portion where the gas that has passed through the upper flow passage port 18b collides with the annular cover 88d becomes an inclined portion 88h, and the oil droplet removal portion 45 is moved to a position where the gas flow rises substantially vertically in the gas vent passage 88a. Since it is the same as that of the eighth embodiment except that it is provided and the structure of the oil droplet removing unit 45 is changed, the description of the structure, operation, and effects of other parts is omitted.

傾斜部の無い場合には、この衝突部の中心近くに付着した油が移動する駆動力は重力しかないため、非常に小さく、油滴はほぼ付着したままとなる。よって、後に続くガスの衝突により付着していた油を逆に再離脱させる危険性がある。本実施例では、衝突するガスの流れ自体が、付着した油を下部に押し流す作用をもつため、前記円環カバー88dに付着した油はガス中に再離脱せず、吐出ガス中の油の含有率を大幅に低減させたガスを圧縮機から吐出できる効果がある。また、前記油滴除去部45のほぼ中央をガスが流れるため、前記油滴除去部45の周囲の隙間をガスが流れることが無くなり、油の含有率を大幅に低減させることができる。また、二個所に油滴除去部が分かれたため、金網45aが小さくなりその端からそれを形成する針金が脱落する危険性が大きくなったが、これを回避するために、網押さえ45cを用い、押さえつめ45dで積層保持部45bに固定配置した。この結果、信頼性の向上した圧縮機を提供できるという効果がある。また通路開口部88bに多孔性体を設置してもよい。これにより、さらに一層油の含有率を大幅に低減させたガスを圧縮機から吐出できるという効果がある。   When there is no inclined part, since the driving force for the oil attached near the center of the collision part to move is only gravity, it is very small and the oil droplets remain almost attached. Therefore, there is a risk that oil adhering to the subsequent gas collision may be re-separated. In this embodiment, the collision gas flow itself has the action of pushing the attached oil downward, so that the oil attached to the annular cover 88d does not re-separate into the gas, and the oil contained in the discharge gas is contained. There is an effect that the gas whose rate is greatly reduced can be discharged from the compressor. Further, since the gas flows almost in the center of the oil droplet removing unit 45, the gas does not flow through the gap around the oil droplet removing unit 45, and the oil content can be greatly reduced. In addition, since the oil drop removing portion was divided at two locations, the wire mesh 45a became smaller and the risk of dropping the wire forming it from the end increased, but in order to avoid this, the mesh presser 45c was used, The presser claws 45d are fixedly disposed on the laminated holding portion 45b. As a result, there is an effect that a compressor with improved reliability can be provided. Moreover, you may install a porous body in the channel | path opening part 88b. Thereby, there is an effect that the gas whose oil content is further reduced can be discharged from the compressor.

次に、第十の実施例を図25の油滴除去部の斜視図に基づいて説明する。油滴除去部45として、金網を積層する代わりに、多数の小孔45eを設ける以外は前記第九の実施例と同様であるので、その他の部分の構造及び動作及び効果の説明は省略する。構造が簡単となるために、加工コストを低減できるという効果がある。   Next, a tenth embodiment will be described based on the perspective view of the oil droplet removing unit in FIG. Since the oil droplet removing portion 45 is the same as the ninth embodiment except that a large number of small holes 45e are provided instead of laminating a wire mesh, the description of the structure, operation, and effects of other portions is omitted. Since the structure is simple, there is an effect that the processing cost can be reduced.

次に、第十一の実施例を図26の貯油室付近の縦断面図(図1におけるS部の拡大図)に基づいて説明する。前記上部流路口18bを通ってきたガスも前記油滴除去部45を通るように前記油滴除去部45を傾斜させる以外は前記第六の実施例と同様であるので、その他の部分の構造及び動作及び効果の説明は省略する。   Next, an eleventh embodiment will be described based on a longitudinal sectional view in the vicinity of the oil storage chamber of FIG. 26 (enlarged view of the S portion in FIG. 1). The gas that has passed through the upper flow path port 18b is the same as that of the sixth embodiment except that the oil droplet removing unit 45 is inclined so as to pass through the oil droplet removing unit 45. Description of operation and effect is omitted.

この前記油滴除去部45は、前記貯蔵油69中を上昇した気泡により油面で発生する油滴を除去する役目と前記上部流路口18bを通ってきたガス内の油滴を除去する役目を兼ねているため、油の含有率を大幅に低減させたガスを単純な構成で実現できる。   The oil droplet removing unit 45 serves to remove oil droplets generated on the oil surface by bubbles rising in the stored oil 69 and to remove oil droplets in the gas that has passed through the upper flow path port 18b. Since it serves also, the gas which reduced the content rate of oil significantly can be implement | achieved by simple structure.

次に、第十二の実施例を図27のオイルトラッププレートの組立て斜視図と図28のオイルトラッププレートの取付け斜視図と図29のオイルトラッププレートの取付け部付近の縦断面図に基づいて説明する。このオイルトラッププレート47をリテーナ23aの上部に重ねて配置する以外は前記第一ないし第十一の実施例と同様であるので、その他の部分の構造及び動作及び効果の説明は省略する。オイルプレートホルダ47aの網挿入部47eに複数の網47bを積層して挿入し、網押さえリング47cを上部に重ねて押さえつめ47dを曲げて固定し、前記オイルトラッププレート47を形成する。このオイルトラッププレート47を図28に示すように二段ボルト23mとバイパスナット23nにより前記リテーナ23aの上部に固定する。この結果、圧縮動作口2dから出る油を多量に含有したガスがこのオイルトラッププレート47に衝突するため、これまで説明してきたように、油は、その慣性により、積層された網47b内に付着するため、油の含有率を大幅に低減させたガスを圧縮機から吐出できるという効果がある。ここで、前記オイルトラッププレート47と圧縮動作口2dの間隔Hを前記圧縮動作口2dの直径Dの0.25倍から2倍の範囲内に設定する。この結果、流路抵抗が増大せず、ガス中の油滴の除去率が高いという効果がある。ここで、このHを設定するために、二段ボルト23mのナット部の厚みと前記リテーナ23aの厚みを利用する。この結果、Hを確保するための治具や別部品が不要となり、低コストになるという効果がある。さらに、バイパス弁23のもれチェックをする時には、バイパス弁板23xとリテーナ23aのみを固定する必要があるが、この場合には、前記二段ボルト23mでそれらのみを固定することができるため、量産性が高くなるという効果がある。ここで、前記網47bの目の細かさを底に近い側を細かくし、表面に近い側を粗くすると油のガスからの除去率を向上させることができる。   Next, the twelfth embodiment will be described based on the assembly perspective view of the oil trap plate in FIG. 27, the perspective view of the oil trap plate in FIG. 28, and the longitudinal sectional view in the vicinity of the oil trap plate mounting portion in FIG. To do. Since the oil trap plate 47 is the same as that of the first to eleventh embodiments except that the oil trap plate 47 is disposed on the retainer 23a, description of the structure, operation, and effects of other parts is omitted. A plurality of meshes 47b are stacked and inserted into the mesh insertion portion 47e of the oil plate holder 47a, and the oil trap plate 47 is formed by bending the meshing ring 47c on the top and bending and fixing the retaining claws 47d. As shown in FIG. 28, the oil trap plate 47 is fixed to the upper portion of the retainer 23a by a two-stage bolt 23m and a bypass nut 23n. As a result, a gas containing a large amount of oil exiting from the compression operation port 2d collides with the oil trap plate 47. As described above, the oil adheres to the laminated net 47b due to its inertia. Therefore, there is an effect that the gas whose oil content is greatly reduced can be discharged from the compressor. Here, the distance H between the oil trap plate 47 and the compression operation port 2d is set within a range of 0.25 to 2 times the diameter D of the compression operation port 2d. As a result, there is an effect that the flow path resistance does not increase and the oil droplet removal rate in the gas is high. Here, in order to set this H, the thickness of the nut portion of the two-stage bolt 23m and the thickness of the retainer 23a are used. As a result, there is an effect that a jig or a separate part for securing H becomes unnecessary and the cost is reduced. Furthermore, when performing a leak check of the bypass valve 23, it is necessary to fix only the bypass valve plate 23x and the retainer 23a. In this case, only the two-stage bolts 23m can fix them, This has the effect of increasing mass productivity. Here, when the fineness of the mesh 47b is made fine on the side close to the bottom and the side close to the surface is made rough, the oil removal rate from the gas can be improved.

次に、第十三の実施例を図30のオイルトラッププレートの斜視図に基づいて説明する。網の積層の代わりに凹凸部47gを設ける以外は前記第十二の実施例と同様であるので、その他の部分の構造及び動作及び効果の説明は省略する。この凹凸部47gにより油の付着量が多くなるため、油のガスからの除去率を向上させることができる。   Next, a thirteenth embodiment will be described based on the perspective view of the oil trap plate of FIG. The structure is the same as that of the twelfth embodiment except that the uneven portion 47g is provided instead of the net lamination, and the description of the structure, operation, and effects of other portions is omitted. Since the unevenness portion 47g increases the amount of oil attached, the oil removal rate from the gas can be improved.

次に、第十四の実施例を図31のオイルトラッププレートの斜視図に基づいて説明する。網の積層を設けない以外は前記第十二の実施例と同様であるので、その他の部分の構造及び動作及び効果の説明は省略する。このプレートにガスが衝突するため、その中の油がその慣性によりプレートに激しく衝突し付着するため、ガス中の油の含有率を低減できる。これは、非常に簡単な構造であるため、低コストの圧縮機を実現できるという効果がある。   Next, a fourteenth embodiment will be described based on the perspective view of the oil trap plate of FIG. Since this embodiment is the same as the twelfth embodiment except that the net stack is not provided, the description of the structure, operation, and effects of other parts is omitted. Since the gas collides with the plate, the oil in the plate collides violently and adheres to the plate due to its inertia, so that the content of oil in the gas can be reduced. Since this has a very simple structure, there is an effect that a low-cost compressor can be realized.

次に、第十五の実施例を図32の固定スクロール部材のスクロールラップ側からの平面図に基づいて説明する。前記差圧制御弁100の他にもう一個の第二差圧制御弁200を設ける以外は前記第一ないし第十四の実施例と同様であるので、その他の部分の構造及び動作及び効果の説明は省略する。前記差圧制御弁100を流れる油やガスの量が多いと、差圧設定値がずれてくることを回避できるという効果がある。また、第二差圧制御弁200の差圧設定値を前記差圧制御弁100の設定値よりも大きしてもよい。この場合、起動時や運転状態の急激な変化時、前記背面過吸込圧領域99へ大量のガスや油が流入した時のそこでの圧力の異常上昇を逃がす安全弁の役割を持たせることができる。この結果、信頼性の高い圧縮機を提供できるという効果がある。   Next, a fifteenth embodiment will be described based on a plan view from the scroll wrap side of the fixed scroll member of FIG. Since the second differential pressure control valve 200 is provided in addition to the differential pressure control valve 100, the configuration is the same as that of the first to fourteenth embodiments. Is omitted. When the amount of oil or gas flowing through the differential pressure control valve 100 is large, there is an effect that it is possible to prevent the differential pressure set value from deviating. The differential pressure setting value of the second differential pressure control valve 200 may be larger than the setting value of the differential pressure control valve 100. In this case, it is possible to serve as a safety valve for escaping an abnormal increase in pressure when a large amount of gas or oil flows into the rear over-suction pressure region 99 at the time of start-up or a sudden change in the operating state. As a result, there is an effect that a highly reliable compressor can be provided.

次に、第十六の実施例を図33の固定スクロール部材のスクロールラップ側からの中央付近の平面図及び図34のバイパス穴の縦断面図に基づいて説明する。高圧側の一対のバイパス穴2eの歯底側にスクロールラップ2bに沿った方向で中央向きに切欠きを設ける以外は前記第一ないし第十二の実施例と同様であるので、その他の部分の構造及び動作及び効果の説明は省略する。穴の中に残る高圧ガスによる再膨張を極力抑えて高圧側バイパス弁23の圧縮室と通じている期間が高圧側に拡大したため、過圧縮を一層低減でき性能が向上するという効果がある。   Next, a sixteenth embodiment will be described based on a plan view of the vicinity of the center from the scroll wrap side of the fixed scroll member of FIG. 33 and a longitudinal sectional view of the bypass hole of FIG. Except for providing a notch toward the center in the direction along the scroll wrap 2b on the tooth bottom side of the pair of bypass holes 2e on the high pressure side, it is the same as in the first to twelfth embodiments. The description of the structure, operation, and effect is omitted. Since the re-expansion due to the high-pressure gas remaining in the hole is suppressed as much as possible and the period of communication with the compression chamber of the high-pressure side bypass valve 23 is expanded to the high-pressure side, over-compression can be further reduced and the performance is improved.

次に、第十七の実施例を図35の固定スクロール部材のスクロールラップ側からの中央付近の平面図及び図36のバイパス穴の縦断面図に基づいて説明する。高圧側の一対のバイパス穴2eの歯底側にスクロールラップ2bに沿った方向で外向きに切欠きを設ける以外は前記第十三の実施例と同様であるので、その他の部分の構造及び動作及び効果の説明は省略する。穴の中に残る高圧ガスによる再膨張を極力抑えて高圧側バイパス弁23の圧縮室と通じている期間が低圧側から高圧側まで拡大したため、低い圧力比での過圧縮を一層低減でき性能が向上するという効果がある。   Next, a seventeenth embodiment will be described based on a plan view of the vicinity of the center of the fixed scroll member from the scroll wrap side in FIG. 35 and a longitudinal sectional view of the bypass hole in FIG. Except for providing a notch outwardly in the direction along the scroll wrap 2b on the tooth bottom side of the pair of bypass holes 2e on the high-pressure side, the structure and operation of other parts are the same as the thirteenth embodiment. The description of the effect is omitted. Since the period of communication with the compression chamber of the high-pressure side bypass valve 23 is expanded from the low-pressure side to the high-pressure side while suppressing re-expansion due to the high-pressure gas remaining in the hole as much as possible, the over-compression at a low pressure ratio can be further reduced. There is an effect of improving.

次に、第十八の実施例を図37の固定スクロール部材のスクロールラップ側からの中央付近の平面図に基づいて説明する。低圧側の一対のバイパス穴2eの歯底側にスクロールラップ2bに沿った方向で中央向き及び外向きに切欠きを設ける以外は前記第十四の実施例と同様であるので、その他の部分の構造及び動作及び効果の説明は省略する。低圧側の一対のバイパス穴2eは、過圧縮抑制の役割ももちろんあるが、主な役割は液圧縮回避である。低圧側バイパス弁23の圧縮室と通じている期間が低圧側から高圧側まで拡大したため、液圧縮をより一層確実に回避でき信頼性が向上するという効果がある。   Next, an eighteenth embodiment will be described based on a plan view of the vicinity of the center from the scroll wrap side of the fixed scroll member of FIG. Since it is the same as the fourteenth embodiment except that a notch is provided in the center and outward in the direction along the scroll wrap 2b on the tooth bottom side of the pair of bypass holes 2e on the low pressure side, The description of the structure, operation, and effect is omitted. The pair of bypass holes 2e on the low-pressure side also has a role of suppressing overcompression, but the main role is to avoid liquid compression. Since the period during which the low pressure side bypass valve 23 communicates with the compression chamber has expanded from the low pressure side to the high pressure side, liquid compression can be avoided more reliably and the reliability can be improved.

最後に、第十九の実施例を図38の差圧制御弁付近の縦断面図(図1におけるP部の拡大図)に基づいて説明する。自然長の長い差圧弁ばね100cとそれを挿入できる挿入弁キャップ100jを設けた以外は前記第一ないし十五の実施例と同様なので、その他の部分の構造及び動作及び効果の説明は省略する。これにより、ばね定数を小さく設定できるため、各部の寸法精度を上げなくても差圧の設定を行えるため、量産性が向上するという効果がある。ここで、前記差圧弁ばね100cはつるまきばねになっているが、たけのこばねでもよい。この場合、座屈し難いので、差圧値を一層精度良く設定できるという効果がある。   Finally, the nineteenth embodiment will be described with reference to a longitudinal sectional view in the vicinity of the differential pressure control valve shown in FIG. 38 (enlarged view of portion P in FIG. 1). Since it is the same as the first to fifteenth embodiments except that the differential pressure valve spring 100c having a long natural length and the insertion valve cap 100j into which it can be inserted are provided, the description of the structure, operation, and effects of other parts is omitted. Thereby, since the spring constant can be set small, the differential pressure can be set without increasing the dimensional accuracy of each part, which has the effect of improving mass productivity. Here, the differential pressure valve spring 100c is a helical spring, but may be a bamboo shoot spring. In this case, since it is difficult to buckle, there is an effect that the differential pressure value can be set with higher accuracy.

2…固定スクロール部材(非旋回スクロ−ル部材)、2e…バイパス穴、3…旋回スクロ−ル部材、4…フレーム、5…オルダムリング、6…圧縮室、12…シャフト、19…モータ、44…フレームオイルリング、45…油滴除去部、46…オイルリング、47…オイルトラッププレート、47m…二段ボルト、60…吸込室、61…固定背面室、62…モータ室、69…貯蔵油、95…背面吐出圧領域、96…吐出室、99…背面過吸込圧領域、100…差圧制御弁。   2 ... fixed scroll member (non-orbiting scroll member), 2e ... bypass hole, 3 ... orbiting scroll member, 4 ... frame, 5 ... Oldham ring, 6 ... compression chamber, 12 ... shaft, 19 ... motor, 44 ... Frame oil ring, 45 ... Oil drop removal section, 46 ... Oil ring, 47 ... Oil trap plate, 47 m ... Two-stage bolt, 60 ... Suction chamber, 61 ... Fixed back chamber, 62 ... Motor chamber, 69 ... Oil stored, 95 ... back discharge pressure region, 96 ... discharge chamber, 99 ... back oversuction pressure region, 100 ... differential pressure control valve.

Claims (4)

端板とそれに立設するスクロールラップから成る固定スクロール部材と、
端板とそれに立設するスクロールラップから成り、前記固定スクロール部材と噛み合わされる旋回スクロール部材と、
噛み合わされたこれらスクロール部材間に、前記旋回スクロール部材が自転せずに旋回運動することにより形成される圧縮室と、
前記固定スクロール部材の鏡板を貫通し、前記圧縮室と吐出圧となる固定背面室をつなぐバイパス穴と、
前記バイパス穴の連通を制御し、前記圧縮室の圧力が吐出圧よりも高い時に前記圧縮室と前記固定背面室を連通するバイパス弁と、
からなるスクロールタイプの圧縮機において、
前記バイパス穴の圧縮室側開口部である固定歯底側において、前記固定スクロール部材の前記スクロールラップに沿った方向のみに切欠きを設けることを特徴とする圧縮機。
A fixed scroll member comprising an end plate and a scroll wrap standing on the end plate;
An orbiting scroll member comprising an end plate and a scroll wrap standing on the end plate, and meshed with the fixed scroll member;
A compression chamber formed by the revolving motion of the orbiting scroll member without rotating between the meshed scroll members;
A bypass hole that penetrates the end plate of the fixed scroll member and connects the compression chamber and a fixed back chamber serving as a discharge pressure;
A bypass valve that controls communication of the bypass hole and communicates the compression chamber and the fixed back chamber when the pressure of the compression chamber is higher than a discharge pressure;
In the scroll type compressor consisting of
A compressor having a notch provided only in a direction along the scroll wrap of the fixed scroll member on a fixed tooth bottom side that is an opening of the bypass hole on the compression chamber side.
請求項1において、
前記バイパス穴のうち、高圧側に設けるバイパス穴のみに前記切欠きを設けること、を特徴とする圧縮機。
In claim 1,
Of the bypass holes, only the bypass hole provided on the high-pressure side is provided with the notch.
請求項2において、
前記切欠きを、中央向き側のみに設けることを特徴とする圧縮機。
In claim 2,
A compressor characterized in that the notch is provided only on the center-facing side.
請求項1乃至3の何れかにおいて、
前記切欠きの形状を、前記バイパス穴から離れるにつれて深さが縮小する形状とすることを特徴とする圧縮機。
In any one of Claims 1 thru | or 3,
The compressor is characterized in that the shape of the notch is a shape whose depth decreases as the distance from the bypass hole increases.
JP2010249271A 2010-11-08 2010-11-08 Compressor Expired - Fee Related JP5229304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010249271A JP5229304B2 (en) 2010-11-08 2010-11-08 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010249271A JP5229304B2 (en) 2010-11-08 2010-11-08 Compressor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008035448A Division JP4730382B2 (en) 2008-02-18 2008-02-18 Compressor

Publications (2)

Publication Number Publication Date
JP2011027117A JP2011027117A (en) 2011-02-10
JP5229304B2 true JP5229304B2 (en) 2013-07-03

Family

ID=43636106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010249271A Expired - Fee Related JP5229304B2 (en) 2010-11-08 2010-11-08 Compressor

Country Status (1)

Country Link
JP (1) JP5229304B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5777571B2 (en) * 2012-06-11 2015-09-09 三菱電機株式会社 Scroll compressor
CN103147984A (en) * 2013-02-06 2013-06-12 广州万宝集团有限公司 Horizontal type scroll compressor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025781A (en) * 1988-06-23 1990-01-10 Toshiba Corp Scroll type compressor
JP2551164B2 (en) * 1989-08-31 1996-11-06 ダイキン工業株式会社 Scroll compressor
JP2752763B2 (en) * 1990-02-09 1998-05-18 株式会社日立製作所 Scroll compressor and manufacturing method thereof

Also Published As

Publication number Publication date
JP2011027117A (en) 2011-02-10

Similar Documents

Publication Publication Date Title
WO2011093385A1 (en) Compressor and refrigeration device
JPH10110688A (en) Scroll compressor
JP4730382B2 (en) Compressor
JP4126736B2 (en) Scroll compressor
JP3709103B2 (en) Hermetic vertical compressor
JP5229304B2 (en) Compressor
JP4228406B2 (en) Compressor
JP2008082272A (en) Fluid compressor
JP7099644B2 (en) Sealed refrigerant compressor
JP2005140066A (en) Fluid compressor
JP5429319B2 (en) Compressor
EP2960513B1 (en) Hermetic compressor
JP2006090180A (en) Hermetic compressor
JP4330563B2 (en) Scroll compressor
JP2006161818A (en) Scroll compressor
US20120308410A1 (en) Fluid Machine
JP2529355B2 (en) Hermetic electric gas compressor
JP2004003525A (en) Scroll compressor
JP3831530B2 (en) Oil return mechanism of scroll compressor
JP7307343B2 (en) Scroll compressor with frame holding bearings
JP4262701B2 (en) Scroll compressor
JP4262700B2 (en) Scroll compressor
KR102355631B1 (en) A compressor
JP6023977B2 (en) Compressor and vehicle air conditioner equipped with compressor
JP2976567B2 (en) Scroll compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees