JP5227694B2 - Nanoimprinting composition - Google Patents
Nanoimprinting composition Download PDFInfo
- Publication number
- JP5227694B2 JP5227694B2 JP2008207850A JP2008207850A JP5227694B2 JP 5227694 B2 JP5227694 B2 JP 5227694B2 JP 2008207850 A JP2008207850 A JP 2008207850A JP 2008207850 A JP2008207850 A JP 2008207850A JP 5227694 B2 JP5227694 B2 JP 5227694B2
- Authority
- JP
- Japan
- Prior art keywords
- composition
- meth
- acrylate
- polymerizable monomer
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Description
本発明は、ナノインプリント用組成物に関する。より詳しくは、半導体集積回路、フラットスクリーン、マイクロ電気機械システム(MEMS)、センサ素子、光ディスク、高密度メモリーディスク等の磁気記録媒体、回折格子やレリーフホログラム等の光学部品、ナノデバイス、光学デバイス、フラットパネルディスプレイ製作のための光学フィルムや偏光素子、液晶ディスプレイの薄膜トランジタ、有機トランジスタ、カラーフィルタ、オーバーコート層、柱材、液晶配向用のリブ材、マイクロレンズアレイ、免疫分析チップ、DNA分離チップ、マイクロリアクター、ナノバイオデバイス、光導波路、光学フィルター、フォトニック液晶等の作製に用いられる微細パターン形成のためのナノインプリント用組成物に関する。また、本発明のナノインプリント用組成物を硬化してなる硬化物および該硬化物の製造方法、ならびに、該硬化物を用いた表示装置に関する。 The present invention relates to a composition for nanoimprinting. More specifically, semiconductor integrated circuits, flat screens, micro electro mechanical systems (MEMS), sensor elements, optical recording media such as high-density memory disks, optical components such as diffraction gratings and relief holograms, nano devices, optical devices, Optical films and polarizing elements for manufacturing flat panel displays, thin film transistors for liquid crystal displays, organic transistors, color filters, overcoat layers, pillar materials, rib materials for liquid crystal alignment, microlens arrays, immunoassay chips, DNA separation chips The present invention relates to a nanoimprinting composition for forming a fine pattern used for producing a microreactor, a nanobiodevice, an optical waveguide, an optical filter, a photonic liquid crystal, and the like. The present invention also relates to a cured product obtained by curing the composition for nanoimprinting of the present invention, a method for producing the cured product, and a display device using the cured product.
ナノインプリント法は、光ディスク製作ではよく知られているエンボス技術を発展させ、凹凸のパターンを形成した金型原器(一般的にモールド、スタンパ、テンプレートと呼ばれる)を、レジストにプレスして力学的に変形させて微細パターンを精密に転写する技術である。モールドを一度作製すれば、ナノ構造等の微細構造が簡単に繰り返して成型できるため経済的であるとともに、有害な廃棄・排出物が少ないナノ加工技術であるため、近年、さまざまな分野への応用が期待されている。 The nanoimprint method has been developed by developing an embossing technique that is well-known in optical disc production, and mechanically pressing a mold master (generally called a mold, stamper, or template) with a concavo-convex pattern onto a resist. This is a technology that precisely deforms and transfers fine patterns. Once the mold is made, it is economical because nanostructures and other microstructures can be easily and repeatedly molded, and it is economical, and since it is a nano-processing technology with less harmful waste and emissions, it has recently been applied to various fields. Is expected.
ナノインプリント法には、被加工材料として熱可塑性樹脂を用いる熱ナノインプリント法(例えば、非特許文献1参照)と、光硬化性組成物を用いる光ナノインプリント法(例えば、非特許文献2参照)の2通りの技術が提案されている。熱ナノインプリント法の場合、ガラス転移温度以上に加熱した高分子樹脂にモールドをプレスし、冷却後にモールドを離型することで微細構造を基板上の樹脂に転写するものである。この方法は多様な樹脂材料やガラス材料にも応用可能であるため、様々な方面への応用が期待されている。例えば、特許文献1および2には、熱可塑性樹脂を用いて、ナノパターンを安価に形成するナノインプリントの方法が開示されている。 There are two types of nanoimprint methods: a thermal nanoimprint method using a thermoplastic resin as a material to be processed (for example, see Non-Patent Document 1) and an optical nanoimprint method using a photocurable composition (for example, see Non-Patent Document 2). The technology has been proposed. In the case of the thermal nanoimprint method, the mold is pressed on a polymer resin heated to a temperature higher than the glass transition temperature, and the mold is released after cooling to transfer the fine structure to the resin on the substrate. Since this method can be applied to various resin materials and glass materials, application to various fields is expected. For example, Patent Documents 1 and 2 disclose a nanoimprint method for forming a nanopattern at low cost using a thermoplastic resin.
一方、透明モールドや透明基材を通して光を照射し、光ナノインプリント用硬化性組成物を光硬化させる光ナノインプリント法では、モールドのプレス時に転写される材料を加熱する必要がなく室温でのインプリントが可能になる。 On the other hand, in the optical nanoimprint method in which light is irradiated through a transparent mold or a transparent substrate and the curable composition for optical nanoimprint is photocured, it is not necessary to heat the material transferred when the mold is pressed, and imprinting at room temperature is possible. It becomes possible.
このようなナノインプリント法においては、以下のような応用技術が提案されている。
第一の技術としては、成型した形状(パターン)そのものが機能を持ち、様々なナノテクノロジーの要素部品、あるいは構造部材として応用できる場合である。例としては、各種のマイクロ・ナノ光学要素や高密度の記録媒体、光学フィルム、フラットパネルディスプレイにおける構造部材などが挙げられる。第二の技術は、マイクロ構造とナノ構造との同時一体成型や、簡単な層間位置合わせにより積層構造を構築し、これをμ−TAS(Micro - Total Analysis System)やバイオチップの作製に応用しようとするものである。第三の技術としては、形成されたパターンをマスクとし、エッチング等の方法により基板を加工する用途に利用されるものである。かかる技術では高精度な位置合わせと高集積化とにより、従来のリソグラフィ技術に代わって高密度半導体集積回路の作製や、液晶ディスプレイのトランジスタへの作製、パターンドメディアと呼ばれる次世代ハードディスクの磁性体加工等に応用できる。前記の技術を始め、これらの応用に関するナノインプリント法の実用化への取り組みが近年活発化している。
In such a nanoimprint method, the following applied technologies have been proposed.
The first technique is a case where a molded shape (pattern) itself has a function and can be applied as various nanotechnology element parts or structural members. Examples include various micro / nano optical elements, high-density recording media, optical films, and structural members in flat panel displays. The second technology is to build a laminated structure by simultaneous integral molding of microstructure and nanostructure and simple interlayer alignment, and apply this to the production of μ-TAS (Micro-Total Analysis System) and biochips. It is what. The third technique is used for processing a substrate by a method such as etching using the formed pattern as a mask. In this technology, high-precision alignment and high integration enable high-density semiconductor integrated circuit fabrication, liquid crystal display transistor fabrication, and magnetic media for next-generation hard disks called patterned media instead of conventional lithography technology. It can be applied to processing. In recent years, efforts have been made to put the nanoimprint method relating to these applications into practical use.
ナノインプリント法のより具体的な応用例として、まず、高密度半導体集積回路作製への応用例を説明する。近年、半導体集積回路は微細化、集積化が進んでおり、その微細加工を実現するためのパターン転写技術としてフォトリソグラフィ装置の高精度化が進められてきた。しかし、さらなる微細化要求に対して、微細パターン解像性、装置コスト、スループットの3つを同時に満たすのが困難となってきていた。これに対し、微細なパターン形成を低コストで行うための技術として光ナノインプリント法が提案された。例えば、特許文献1および特許文献3にはシリコンウエハをスタンパとして用い、25nm以下の微細構造を転写により形成するナノインプリント技術が開示されている。しかし、さらに近年では、本用途においては数十nmレベルのパターン形成性と基板加工時にマスク(エッチングレジスト)として機能するための高いエッチング耐性とが要求されるようになってきている。 As a more specific application example of the nanoimprint method, an application example for manufacturing a high-density semiconductor integrated circuit will be described first. 2. Description of the Related Art In recent years, semiconductor integrated circuits have been miniaturized and integrated, and photolithography apparatuses have been improved in accuracy as a pattern transfer technique for realizing the fine processing. However, it has become difficult to satisfy the three requirements of fine pattern resolution, apparatus cost, and throughput simultaneously for further miniaturization requirements. In contrast, an optical nanoimprint method has been proposed as a technique for forming a fine pattern at a low cost. For example, Patent Documents 1 and 3 disclose a nanoimprint technique in which a silicon wafer is used as a stamper and a fine structure of 25 nm or less is formed by transfer. However, in recent years, in this application, a pattern forming property of several tens of nanometers and a high etching resistance for functioning as a mask (etching resist) at the time of substrate processing have been required.
次に、ナノインプリント法の次世代ハードディスクドライブ(HDD)作製への応用例を説明する。HDDは、ヘッドの高性能化とメディアの高性能化とを両輪とし、大容量化と小型化との歴史を歩んできた。HDDは、メディア高性能化という観点においては、面記録密度を高めることで大容量化を達成してきている。しかしながら記録密度を高める際には、磁気ヘッド側面からの、いわゆる磁界広がりが問題となる。磁界広がりはヘッドを小さくしてもある値以下には小さくならないため、結果としてサイドライトと呼ばれる現象が発生してしまう。サイドライトが発生すると、記録時に隣接トラックへの書き込みが生じ、既に記録したデータを消してしまう。また、磁界広がりによって、再生時には隣接トラックからの余分な信号を読みこんでしまうなどの現象が発生する。このような問題に対し、トラック間を非磁性材料で充填し、物理的、磁気的に分離することで解決するディスクリートトラックメディアやビットパターンドメディアといった技術が提案されている。近年では、これらのディスクリートトラックメディアやビットパターンドメディア作製において磁性体あるいは非磁性体パターンを形成する方法としてナノインプリント法を応用することが提案されてきている。近年では、本用途においても数十nmレベルのパターン形成性が要求されており、基板加工時にマスク(エッチングレジスト)として機能するための高いエッチング耐性が要求されてきている。 Next, an application example of the nanoimprint method to the production of a next-generation hard disk drive (HDD) will be described. HDDs have a history of both high-capacity and miniaturization, with both high-performance heads and high-performance media. From the viewpoint of improving the performance of media, HDDs have increased in capacity by increasing the surface recording density. However, when the recording density is increased, so-called magnetic field spreading from the side surface of the magnetic head becomes a problem. Since the magnetic field spread does not become smaller than a certain value even if the head is made smaller, a phenomenon called sidelight occurs as a result. When side writing occurs, writing to an adjacent track occurs during recording, and already recorded data is erased. Further, due to the magnetic field spread, a phenomenon such as reading an excessive signal from an adjacent track occurs during reproduction. In order to solve such a problem, technologies such as discrete track media and bit patterned media have been proposed which are solved by filling the spaces between tracks with a nonmagnetic material and physically and magnetically separating the tracks. In recent years, it has been proposed to apply a nanoimprint method as a method of forming a magnetic or non-magnetic pattern in the production of these discrete track media and bit patterned media. In recent years, pattern formation on the order of several tens of nanometers is also required in this application, and high etching resistance is required to function as a mask (etching resist) during substrate processing.
次に、液晶ディスプレイ(LCD)やプラズマディスプレイ(PDP)などのフラットディスプレイへのナノインプリント法の応用例について説明する。LCD基板やPDP基板の大型化や高精細化の動向に伴い、薄膜トランジスタ(TFT)や電極板の製造時に使用する従来のフォトリソグラフィ法に代わる安価なリソグラフィとしてナノインプリント法が、近年注目されている。そのため、従来のフォトリソグラフィ法で用いられるエッチングフォトレジストに代わる構造部材用のレジストの開発が必要になってきている。また、LCDなどの構造部材として、特許文献4および特許文献5に記載される透明保護膜材料や、あるいは特許文献5に記載されるスペーサなどに対するナノインプリント法の応用も検討され始めている。このような構造部材用のレジストは、前記エッチングフォトレジストとは異なり、最終的にディスプレイ内に残るため、“永久レジスト”、あるいは“永久膜”と称されることがある。また、液晶ディスプレイにおけるセルギャップを規定するスペーサも永久膜の一種であり、従来のフォトリソグラフィにおいては、樹脂、光重合性モノマーおよび開始剤からなる光硬化性組成物が一般的に広く用いられてきた(例えば、特許文献6参照)。スペーサは、一般には、カラーフィルタ基板上に、カラーフィルタ形成後、もしくは、前記カラーフィルタ用保護膜形成後、光硬化性組成物を塗布し、フォオトリソグラフィにより10μm〜20μm程度の大きさのパターンを形成し、さらにポストベイクにより加熱硬化して形成される。 Next, an application example of the nanoimprint method to a flat display such as a liquid crystal display (LCD) or a plasma display (PDP) will be described. With the trend toward larger and higher definition LCD substrates and PDP substrates, nanoimprint methods have recently attracted attention as inexpensive lithography that replaces conventional photolithography methods used in the manufacture of thin film transistors (TFTs) and electrode plates. For this reason, it has become necessary to develop a resist for a structural member in place of the etching photoresist used in the conventional photolithography method. Further, as a structural member such as an LCD, the application of the nanoimprint method to the transparent protective film material described in Patent Document 4 and Patent Document 5 or the spacer described in Patent Document 5 has begun to be studied. Unlike the etching photoresist, such a resist for a structural member is finally left in the display, and is sometimes referred to as a “permanent resist” or “permanent film”. In addition, a spacer that defines a cell gap in a liquid crystal display is also a kind of permanent film. In conventional photolithography, a photocurable composition comprising a resin, a photopolymerizable monomer, and an initiator has been widely used. (For example, see Patent Document 6). The spacer is generally a pattern having a size of about 10 μm to 20 μm by photolithography after applying the photocurable composition after forming the color filter on the color filter substrate or after forming the protective film for the color filter. And is further heated and cured by post-baking.
さらに、マイクロ電気機械システム(MEMS)、センサ素子、回折格子やレリーフホログラム等の光学部品、ナノデバイス、光学デバイス、フラットパネルディスプレイ製作のための光学フィルムや偏光素子、液晶ディスプレイの薄膜トランジタ、有機トランジスタ、カラーフィルタ、オーバーコート層、柱材、液晶配向用のリブ材、マイクロレンズアレイ、免疫分析チップ、DNA分離チップ、マイクロリアクター、ナノバイオデバイス、光導波路、光学フィルター、フォトニック液晶などの永久膜形成用途においてもナノインプリント法は有用である。 Furthermore, microelectromechanical systems (MEMS), sensor elements, optical components such as diffraction gratings and relief holograms, nanodevices, optical devices, optical films and polarizing elements for the production of flat panel displays, thin film transistors for liquid crystal displays, organic transistors , Color filter, overcoat layer, pillar material, rib material for liquid crystal alignment, microlens array, immunoassay chip, DNA separation chip, microreactor, nanobiodevice, optical waveguide, optical filter, photonic liquid crystal, etc. The nanoimprint method is also useful for applications.
これら永久膜用途においては、形成されたパターンが最終的に製品に残るため、耐熱性、耐光性、耐溶剤性、耐擦傷性、外部圧力に対する高い機械的特性、硬度など主に膜の耐久性や強度に関する性能が要求される。 In these permanent film applications, the formed pattern will eventually remain in the product, so the durability of the film, mainly heat resistance, light resistance, solvent resistance, scratch resistance, high mechanical properties against external pressure, hardness, etc. And strength-related performance is required.
このように従来フォトリソグラフィ法で形成されていたパターンのほとんどがナノインプリントで形成可能であり、安価に微細パターンが形成できる技術として注目されている。これらの用途においては良好なパターンが形成されることが前提であるが、パターン形成においてナノインプリント法に関しては、モールドとナノインプリント用組成物との剥離性(モールド剥離性)が重要である。マスクと感光性組成物とが接触しないフォトリソグラフィ法に対し、ナノインプリント法においてはモールドとナノインプリント用組成物とが接触する。モールド剥離時にモールドに組成物の残渣が付着すると以降のインプリント時にパターン欠陥となってしまう問題がある。すなわち、ナノインプリント用組成物には基板や支持体等の基材への良好な密着性とモールドからの容易な剥離性という、相反する性能の両立が要求される。従来のナノインプリント用組成物の基材密着性と、モールド剥離性改良との両立という課題に対し、モールドの表面処理、具体的には、フロロアルキル鎖含有シランカップリング剤をモールド表面に結合させる方法や、モールドのフッ素プラズマ処理、フッ素含有樹脂モールドを用いる方法などにより付着問題を解決するなどの試みがこれまでになされてきた。しかしながら、前述してきたようにナノインプリント用組成物からの基材密着性とモールド剥離性改良との両立はこれらの技術である程度解決されてきたものの基材密着性とモールド剥離性を両立するナノインプリント用組成物を提供するには至っていなかった。近年、ナノインプリント法の実用化および工業化に際してパターンの量産化が求められるため、さらにモールドの数万回のインプリント耐久性をも両立することが求められてくることとなった。その際、モールド自体の表面処理技術では数万回のインプリント処理後によりモールド離型性が低下してしまうというという課題が新たに発生したため、ナノインプリント用組成物自体も高いモールド剥離性を有することが、生産性を高める観点から再度求められることとなった。
このような経緯から、近年では、ナノインプリント用組成物自体の基材密着性とモールド剥離性の両立、およびエッチング耐性の向上という3要素を全て満たすことが求められることとなっている。特に、エッチング耐性の中でも工業上の有用性の観点から基板加工に用いられるドライエッチング耐性の向上が求められている。
As described above, most of the patterns conventionally formed by the photolithography method can be formed by nanoimprinting, and attention has been paid as a technique capable of forming a fine pattern at low cost. In these applications, it is premised that a good pattern is formed. However, in the pattern formation, the releasability (mold releasability) between the mold and the nanoimprinting composition is important for the nanoimprint method. In contrast to the photolithography method in which the mask and the photosensitive composition do not contact, in the nanoimprint method, the mold and the nanoimprint composition are in contact. If a residue of the composition adheres to the mold when the mold is peeled off, there is a problem that a pattern defect occurs during subsequent imprinting. That is, the composition for nanoimprinting is required to satisfy both conflicting performances of good adhesion to a substrate such as a substrate and a support and easy releasability from a mold. For the problem of coexistence of substrate adhesion of conventional nanoimprinting compositions and improvement of mold releasability, surface treatment of the mold, specifically, a method of bonding a fluoroalkyl chain-containing silane coupling agent to the mold surface Attempts have been made so far to solve the adhesion problem by a fluorine plasma treatment of the mold, a method using a fluorine-containing resin mold, or the like. However, as described above, the compatibility between the substrate adhesion from the nanoimprint composition and the mold releasability improvement has been solved to some extent by these techniques, but the nanoimprint composition satisfies both the substrate adhesion and the mold releasability. It did not come to offer things. In recent years, since the mass production of patterns is required for practical application and industrialization of the nanoimprint method, it has also been required to satisfy both imprint durability of tens of thousands of molds. At that time, a new problem that mold releasability deteriorates after imprint processing of tens of thousands of times by the surface treatment technology of the mold itself has occurred, so that the composition for nanoimprint itself also has high mold releasability. However, it was requested again from the viewpoint of increasing productivity.
In view of such circumstances, in recent years, it has been required to satisfy all three elements of compatibility of the base material adhesion and mold releasability of the nanoimprint composition itself and improvement of etching resistance. In particular, improvement in dry etching resistance used for substrate processing is required from the viewpoint of industrial usefulness among etching resistance.
特許文献1にはポリメチルメタクリレートを用いた熱ナノインプリント用組成物が開示されている。この組成物は比較的良好なパターンが得られ、ある程度のモールド剥離性を有する一方で、基材密着性は十分でなく、基材密着性とモールド剥離性という観点からは十分ではなかった。さらに、ドライエッチング耐性が大量生産に求められるレベルからは不十分であり、エッチングの際にパターンの劣化が大きいといった問題があった。 Patent Document 1 discloses a composition for thermal nanoimprinting using polymethyl methacrylate. While this composition has a relatively good pattern and has some mold releasability, the substrate adhesion is not sufficient, and it is not sufficient from the viewpoint of substrate adhesion and mold releasability. Furthermore, the dry etching resistance is insufficient from the level required for mass production, and there is a problem that the pattern is greatly deteriorated during etching.
特許文献7には、モールドとの剥離性をよくするために、フッ素含有硬化性材料を用いたパターン形成方法が開示されている。しかしながらフッ素系材料をインプリント用組成物として用いた際には基材密着性が低下し、さらにエッチング耐性が低いためエッチングの際にパターンの劣化が大きいといった問題があった。 Patent Document 7 discloses a pattern forming method using a fluorine-containing curable material in order to improve releasability from a mold. However, when a fluorine-based material is used as the imprinting composition, there is a problem that the adhesion of the substrate is lowered, and the etching resistance is low, so that the pattern is greatly deteriorated during etching.
また、特許文献8には、ドライエッチング耐性を付与する為に、環状構造を含む(メタ)アクリレートモノマーを用いるナノインプイリント用の光硬化性樹脂組成物の利用が開示されているが、この組成物は高いドライエッチング耐性に加え、基材密着性とモールド剥離性を両立するという観点からは十分ではなかった。 Patent Document 8 discloses the use of a photocurable resin composition for nano-imprint using a (meth) acrylate monomer containing a cyclic structure in order to impart dry etching resistance. In addition to high dry etching resistance, the composition was not sufficient from the viewpoint of achieving both substrate adhesion and mold releasability.
さらに、特許文献9および特許文献10には、フッ素原子を有するモノマーを含有するナノインプリント用組成物が記載されている。そして、これらの化合物を用いた場合に、ナノインプリント用組成物のモールド剥離性およびエッチング耐性が向上することが記載されている。 Furthermore, Patent Document 9 and Patent Document 10 describe nanoimprint compositions containing a monomer having a fluorine atom. And when these compounds are used, it is described that the mold releasability and the etching resistance of the composition for nanoimprinting are improved.
上述のようにナノインプリント法を工業的に利用する上では、ナノインプリント用組成物のパターン形成性、特に基材密着性とモールド剥離性との両立が極めて重要である。さらに、ナノインプリント用組成物には、用途によっては、パターン耐久性、その中でもエッチング耐性、さらにその中でもドライエッチング耐性が要求される。しかし、従来の技術では、ナノインプリント用組成物のナノメートルオーダーのパターンに対応可能なモールド剥離性と、ドライエッチング耐性を同時に達成することは困難であった。 As described above, in order to industrially use the nanoimprint method, it is extremely important to have both the pattern forming property of the composition for nanoimprinting, particularly the compatibility between the substrate adhesion and the mold release property. Further, depending on the application, the nanoimprint composition is required to have pattern durability, etching resistance among them, and dry etching resistance among them. However, in the conventional art, and nanometer patterns enables corresponding mall de releasability of the composition for imprints, it has been difficult to achieve dry etching resistance at the same time.
本発明の第一の目的は、モールド剥離性およびドライエッチング耐性に優れるナノインプリント用組成物を提供することにある。本発明の第二の目的は、本発明のナノインプリント用組成物を用いたパターン形成方法を提供し、そのパターン形成方法によって形成されるエッチングレジストおよび永久膜を提供することにある。 The first object of the present invention is to provide a nanoimprinting composition having excellent mold releasability and dry etching resistance. The second object of the present invention is to provide a pattern forming method using the nanoimprinting composition of the present invention, and to provide an etching resist and a permanent film formed by the pattern forming method.
上記課題のもと、本願発明者が鋭意検討を行った結果、芳香族基と末端に−CF 3 を有するフロロアルキル基を有する重合性単量体を採用することにより、剥離性とドライエッチング性の両方に優れたナノインプリント用組成物を提供可能であることが分かった。具体的には、以下の手段により、上記課題を解決しうることを見出した。
(1)(A)芳香族基と末端に−CF 3 を有するフロロアルキル基を有する重合性単量体(Ax)少なくとも1種と、(B)光重合開始剤とを含有するナノインプリント用組成物。
(2)前記重合性単量体(Ax)が(メタ)アクリレート誘導体である、(1)に記載のナノインプリント用組成物。
(3)前記重合性単量体(Ax)が有する芳香族基が、炭化水素系芳香族基である、(1)または(2)に記載のナノインプリント用組成物。
(4)前記重合性単量体(Ax)が有する重合性基の数が、1〜3個である、(1)〜(3)のいずれか1項に記載のナノインプリント用組成物。
(5)前記重合性単量体(Ax)が有するフロロアルキル基の数が、1〜3個である、(1)〜(4)のいずれか1項に記載のナノインプリント用組成物。
(6)前記重合性単量体(Ax)が式(I)で表される化合物である、(1)〜(5)のいずれか1項に記載のナノインプリント用組成物。
式(I)
(7)さらに、他の重合性単量体(Ay)少なくとも1種を含む、(1)〜(6)のいずれか1項に記載のナノインプリント用組成物。
(8)前記他の重合性単量体(Ay)が(メタ)アクリレート誘導体である、(7)に記載のナノインプリント用組成物。
(9)前記他の重合性単量体(Ay)が、重合性基を2個以上有する重合性単量体を少なくとも1種含有することを特徴とする、(7)または(8)に記載のナノインプリント用組成物。
(10)前記他の重合性単量体(Ay)の重量比が、全重合性単量体中の50〜99質量%である、(7)〜(9)のいずれか1項に記載のナノインプリント用組成物。
(11)分子量2000以上のポリマー成分の含有量が、溶剤を除く成分中に30重量%以下である、(1)〜(10)のいずれか1項に記載のナノインプリント用組成物。
(12)さらに、(C)界面活性剤を含有する、(1)〜(11)のいずれか1項に記載のナノインプリント用組成物。
(13)前記(C)界面活性剤が、ノニオン系界面活性剤である、(12)に記載のナノインプリント用組成物。
(14)さらに、(D)酸化防止剤を含有する、(1)〜(13)のいずれか1項に記載のナノインプリント用組成物。
(15)(1)〜(14)のいずれか1項に記載のナノインプリント用組成物を硬化させてなる硬化物。
(16)(15)に記載の硬化物を製造する方法であって、少なくとも(1)〜(14)のいずれか1項に記載のナノインプリント用組成物を基板に設置する工程と、前記ナノインプリント用組成物にモールドを押圧する工程と、前記ナノインプリント用組成物に光照射する工程とを、含むことを特徴とするパターン形成方法。
(17)(16)記載のパターン形成方法により得られたパターン。
Based on the above-mentioned problems, the inventors of the present application have conducted intensive studies. As a result, by adopting a polymerizable monomer having an aromatic group and a fluoroalkyl group having —CF 3 at the terminal , releasability and dry etching properties are achieved. It was found that a nanoimprinting composition excellent in both of the above can be provided. Specifically, it has been found that the above problems can be solved by the following means.
(1) A composition for nanoimprinting comprising (A) at least one polymerizable monomer (Ax) having an aromatic group and a fluoroalkyl group having —CF 3 at the terminal ; and (B) a photopolymerization initiator. .
(2) The composition for nanoimprints according to (1), wherein the polymerizable monomer (Ax) is a (meth) acrylate derivative.
(3) The composition for nanoimprints according to (1) or (2), wherein the aromatic group of the polymerizable monomer (Ax) is a hydrocarbon-based aromatic group.
(4) The composition for nanoimprints according to any one of (1) to (3), wherein the polymerizable monomer (Ax) has 1 to 3 polymerizable groups.
(5) The composition for nanoimprints according to any one of (1) to (4), wherein the polymerizable monomer (Ax) has 1 to 3 fluoroalkyl groups.
(6) The composition for nanoimprints according to any one of (1) to (5), wherein the polymerizable monomer (Ax) is a compound represented by the formula (I).
Formula (I)
(7) The nanoimprinting composition according to any one of (1) to (6), further comprising at least one other polymerizable monomer (Ay).
(8) The composition for nanoimprints according to (7), wherein the other polymerizable monomer (Ay) is a (meth) acrylate derivative.
(9) The other polymerizable monomer (Ay) contains at least one polymerizable monomer having two or more polymerizable groups, described in (7) or (8) Nanoimprint composition.
(10) The weight ratio of the other polymerizable monomer (Ay) according to any one of (7) to (9), wherein the weight ratio is 50 to 99% by mass in the total polymerizable monomer. Composition for nanoimprint.
(11) The composition for nanoimprints according to any one of (1) to (10), wherein the content of the polymer component having a molecular weight of 2000 or more is 30% by weight or less in the component excluding the solvent.
(12) The nanoimprinting composition according to any one of (1) to (11), further comprising (C) a surfactant.
(13) The composition for nanoimprints according to (12), wherein the surfactant (C) is a nonionic surfactant.
(14) The nanoimprinting composition according to any one of (1) to (13), further comprising (D) an antioxidant.
(15) A cured product obtained by curing the nanoimprinting composition according to any one of (1) to (14).
(16) A method for producing the cured product according to (15), wherein the nanoimprinting composition according to any one of (1) to (14) is placed on a substrate, and the nanoimprinting method The pattern formation method characterized by including the process of pressing a mold to a composition, and the process of irradiating the said composition for nanoimprint with light.
(17) A pattern obtained by the pattern forming method according to (16).
本発明により、モールド剥離性とドライエッチング性の両方に優れたナノインプリント用組成物を提供可能になった。さらに、該ナノインプリント用組成物を用いることにより、優れたエッチングレジストおよび永久膜を提供することが可能になる。 According to the present invention, it is possible to provide a composition for nanoimprinting excellent in both mold releasability and dry etching property. Furthermore, it becomes possible to provide an excellent etching resist and permanent film by using the composition for nanoimprinting.
以下において、本発明の内容について詳細に説明する。尚、本願明細書において「〜」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。また、本明細書において、“(メタ)アクリレート”は“アクリレート”および“メタクリレート”を表す。本発明における重合性単量体は、オリゴマーおよびポリマーと区別され、重量平均分子量が1,000以下の化合物をいう。本明細書中において、“重合性基”は重合に関与する基をいう。
また、本発明でいうナノインプリントとは、およそ数十nmから数十μmのサイズのパターン転写をいい、ナノオーダーのものに限定されるものではない。
Hereinafter, the contents of the present invention will be described in detail. In the present specification, “to” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value. In the present specification, “(meth) acrylate” means “acrylate” and “methacrylate”. The polymerizable monomer in the present invention is distinguished from an oligomer and a polymer, and refers to a compound having a weight average molecular weight of 1,000 or less. In the present specification, “polymerizable group” refers to a group involved in polymerization.
In addition, the nanoimprint referred to in the present invention refers to pattern transfer having a size of about several tens of nanometers to several tens of micrometers, and is not limited to nano-order ones.
[本発明のナノインプリント用組成物]
本発明のナノインプリント用組成物(以下、単に「本発明の組成物」と称する場合もある)は、少なくとも、芳香族基とフロロアルキル基を有する重合性単量体(Ax)と、光重合開始剤(B)とを含み、通常、ナノインプリントに使われるものである。そして、光ナノインプリント法に用いられるナノインプリント用組成物は、通常、重合性官能基を有する重合性単量体と、光照射によって前記重合性単量体の重合反応を開始させる光重合開始剤とを含み、さらに必要に応じて、溶剤、界面活性剤または酸化防止剤等を含んで構成される。本発明の組成物においては、重合性官能基を有する重合性単量体として少なくとも重合性単量体(Ax)を含む。本発明の組成物は、重合性単量体(Ax)を含むことで、ナノインプリント法によって基材密着性、モールド剥離性、およびエッチング耐性に優れたパターンを形成することができる。
[Nanoimprinting composition of the present invention]
The composition for nanoimprinting of the present invention (hereinafter sometimes simply referred to as “the composition of the present invention”) includes at least a polymerizable monomer (Ax) having an aromatic group and a fluoroalkyl group, and photopolymerization initiation. It contains the agent (B) and is usually used for nanoimprinting. And the composition for nanoimprint used for the photo nanoimprint method usually comprises a polymerizable monomer having a polymerizable functional group, and a photopolymerization initiator that initiates a polymerization reaction of the polymerizable monomer by light irradiation. In addition, a solvent, a surfactant, an antioxidant, or the like is included as necessary. In the composition of the present invention, at least a polymerizable monomer (Ax) is included as a polymerizable monomer having a polymerizable functional group. By including the polymerizable monomer (Ax), the composition of the present invention can form a pattern excellent in substrate adhesion, mold releasability, and etching resistance by the nanoimprint method.
(A)重合性単量体
重合性単量体(Ax)
本発明における重合性単量体(Ax)は、芳香族基と、フロロアルキル基と、重合性官能基を含む化合物である。前記重合性官能基としては、カチオン重合性官能基、ラジカル重合性官能基が挙げられ、ラジカル重合性官能基が好ましい。カチオン重合性官能基としては、エポキシ基、オキセタン基、ビニルエーテル基が好ましい。また、ラジカル重合性官能基としては、エチレン性不飽和結合を有する官能基が挙げられ、(メタ)アクリル基、ビニル基、アリル基が好ましく、特に好ましくは、(メタ)アクリル基である。このため、本発明における重合性単量体(Ax)は、(メタ)アクリレート誘導体であることが好ましい。本発明における重合性単量体(Ax)中に含まれる重合性官能基の数は、硬化性の向上および組成物の粘度の低下の観点から1〜3個が好ましく、より好ましくは1または2個、さらに好ましくは1個である。
(A) Polymerizable monomer Polymerizable monomer (Ax)
The polymerizable monomer (Ax) in the present invention is a compound containing an aromatic group, a fluoroalkyl group, and a polymerizable functional group. Examples of the polymerizable functional group include a cationic polymerizable functional group and a radical polymerizable functional group, and a radical polymerizable functional group is preferable. As the cationically polymerizable functional group, an epoxy group, an oxetane group, and a vinyl ether group are preferable. Moreover, as a radically polymerizable functional group, the functional group which has an ethylenically unsaturated bond is mentioned, A (meth) acryl group, a vinyl group, and an allyl group are preferable, Most preferably, it is a (meth) acryl group. Therefore, the polymerizable monomer (Ax) in the present invention is preferably a (meth) acrylate derivative. The number of polymerizable functional groups contained in the polymerizable monomer (Ax) in the present invention is preferably 1 to 3, more preferably 1 or 2 from the viewpoint of improving curability and reducing the viscosity of the composition. And more preferably one.
本発明における重合性単量体(Ax)が有するフロロアルキル基は、直鎖、分岐または環状のアルキル基であって、アルキル基が有する水素原子の少なくとも一部がフッ素原子で置換されているものをいう。該フロロアルキル基は、直鎖または分岐のフロロアルキル基がより好ましい。フロロアルキル基の炭素数は、1〜8であることが好ましく、1〜6であることがより好ましい。また、アルキル基が有する水素原子は全てフッ素原子で置換されていてもよいし、一部が置換されていても良い。フロロアルキル基の数は、一分子中に、1〜3個が好ましく、より好ましくは1または2個、さらに好ましくは1個である。このような範囲とすることにより、基板密着性およびエッチング耐性がより向上する傾向にあり好ましい。
フロロアルキル基は、芳香族基に結合していてもよいし、重合性官能基に結合していてもよいし、連結基を介してこれらに結合していてもよい。
The fluoroalkyl group of the polymerizable monomer (Ax) in the present invention is a linear, branched or cyclic alkyl group, and at least a part of hydrogen atoms of the alkyl group is substituted with fluorine atoms. Say. The fluoroalkyl group is more preferably a linear or branched fluoroalkyl group. The number of carbon atoms of the fluoroalkyl group is preferably 1-8, and more preferably 1-6. Moreover, all the hydrogen atoms of the alkyl group may be substituted with fluorine atoms, or a part thereof may be substituted. The number of fluoroalkyl groups is preferably 1 to 3, more preferably 1 or 2, and still more preferably 1 per molecule. By setting it as such a range, there exists a tendency for board | substrate adhesiveness and etching tolerance to improve more, and it is preferable.
The fluoroalkyl group may be bonded to an aromatic group, may be bonded to a polymerizable functional group, or may be bonded to these via a linking group.
本発明における重合性単量体(Ax)が有する芳香族基は、フェニル基、ナフタレン基、アントラセン基、フェナントレン基、ピレン基、ビフェニル基などの炭化水素系芳香族基、インドール基、カルバゾール基などのヘテロ芳香族基などが挙げられ、炭化水素系芳香族基が好ましく、フェニル基またはナフタレン基がさらに好ましい。芳香族基の数は、通常、一分子中に、1個であるが、本発明の趣旨を逸脱しない限り、2個以上有していてもよい。 The aromatic group of the polymerizable monomer (Ax) in the present invention is a hydrocarbon aromatic group such as phenyl group, naphthalene group, anthracene group, phenanthrene group, pyrene group, biphenyl group, indole group, carbazole group, etc. Heteroaromatic groups, and the like, hydrocarbon-based aromatic groups are preferred, and phenyl groups or naphthalene groups are more preferred. The number of aromatic groups is usually one per molecule, but may be two or more unless departing from the gist of the present invention.
ナノインプリント用組成物中に、フロロアルキル基を有する重合性化合物が含まれているとモールド剥離性は良化するが、ドライエッチング時においてパターンの劣化が大きい。すなわち、フロロアルキル基を有する重合性化合物を用いると、ドライエッチング耐性が低いものとなってしまう。本発明の組成物は、かかる問題点を、芳香族基を有する重合性化合物を用いることにより解決したものであって、良好なモールド剥離性と、高いドライエッチング耐性を同時に達成できる。
本発明における重合性単量体(Ax)は、下記式(I)で表される化合物であることが好ましい。
If the nanoimprinting composition contains a polymerizable compound having a fluoroalkyl group, the mold releasability is improved, but the pattern is greatly deteriorated during dry etching. That is, when a polymerizable compound having a fluoroalkyl group is used, the dry etching resistance is low. The composition of the present invention solves this problem by using a polymerizable compound having an aromatic group, and can simultaneously achieve good mold releasability and high dry etching resistance.
The polymerizable monomer (Ax) in the present invention is preferably a compound represented by the following formula (I).
式(I)中、R1は水素原子、置換基を有していても良いアルキル基またはハロゲン原子を示し、置換基を有していてもよいアルキル基としては、硬化性の観点から、炭素数1〜4のアルキル基が好ましく、炭素数1〜3のアルキル基がより好ましく、メチル基、エチル基、プロピル基がさらに好ましく、メチル基が特に好ましい。アルキル基が有していてもよい置換基としては、好ましくはハロゲン原子、水酸基、アルコキシ基、アシルオキシ基が挙げられる。
R1および前記アルキル基の置換基としてのハロゲン原子としては、フッ素、塩素、臭素、ヨウ素原子が挙げられ、好ましくはフッ素原子である。
In the formula (I), R 1 represents a hydrogen atom, an alkyl group which may have a substituent, or a halogen atom, and the alkyl group which may have a substituent may be carbon from the viewpoint of curability. An alkyl group having 1 to 4 carbon atoms is preferable, an alkyl group having 1 to 3 carbon atoms is more preferable, a methyl group, an ethyl group, and a propyl group are more preferable, and a methyl group is particularly preferable. Preferred examples of the substituent that the alkyl group may have include a halogen atom, a hydroxyl group, an alkoxy group, and an acyloxy group.
Examples of the halogen atom as a substituent for R 1 and the alkyl group include fluorine, chlorine, bromine and iodine atoms, and preferably a fluorine atom.
式(I)中、Xは単結合または連結基を示す。前記Xの連結基としては、−O−、−C(=O)O−、−C(=O)NRx−(Rxは、水素原子または有機基を示し、前記有機基としては、アリール基、アルキル基が好ましい)、アルキレン基、アリーレン基およびこれらの2以上が組み合わさった連結基が好ましく、−C(=O)O−、−C(=O)O−アルキレン基−がさらに好ましい。 In formula (I), X represents a single bond or a linking group. As the linking group of X, —O—, —C (═O) O—, —C (═O) NRx— (Rx represents a hydrogen atom or an organic group, and the organic group includes an aryl group, An alkyl group is preferred), an alkylene group, an arylene group, and a linking group formed by combining two or more of these are preferred, and —C (═O) O— and —C (═O) O-alkylene group— are more preferred.
式(I)中、R2は置換基を示す。前記置換基としては、アルキル基、アルコキシ基、アリール基、ハロゲン原子、アシルオキシ基、アルコキシカルボニル基、ニトロ基、水酸基、シアノ基が好ましい。
式(I)中、Rfのフロロアルキル構造を有する置換基としては、アルキル基、アルコキシ基、アシル基、アルコキシカルボニル基、アルキルチオ基などが挙げられ、これら置換基のアルキル鎖部分の一部または全ての水素原子がフッ素原子で置換されたものを挙げることができる。アルキル鎖中に酸素原子、硫黄原子などのヘテロ原子を連結基として有していても良い。本発明では、特に、末端にフッ素原子で置換されたアルキル鎖を有するものが好ましく、末端に炭素数3以上であって、全ての水素原子がフッ素原子で置換されたアルキル鎖を有するものがより好ましい。
In the formula (I), R 2 represents a substituent. As the substituent, an alkyl group, an alkoxy group, an aryl group, a halogen atom, an acyloxy group, an alkoxycarbonyl group, a nitro group, a hydroxyl group, and a cyano group are preferable.
In the formula (I), examples of the substituent having a fluoroalkyl structure of R f include an alkyl group, an alkoxy group, an acyl group, an alkoxycarbonyl group, an alkylthio group, and the like, and a part of the alkyl chain portion of these substituents or The thing by which all the hydrogen atoms were substituted by the fluorine atom can be mentioned. The alkyl chain may have a hetero atom such as an oxygen atom or a sulfur atom as a linking group. In the present invention, those having an alkyl chain substituted with a fluorine atom at the end are particularly preferred, and those having an alkyl chain having 3 or more carbon atoms and all hydrogen atoms substituted with fluorine atoms at the end are more preferred. preferable.
式(I)中、mは1〜3の整数を示し、硬化性の向上および組成物の粘度の低下の観点から、1または2が好ましい。
式(I)中、n1は0〜6の整数を示し、1〜3の整数が好ましく、基板密着性の向上および組成物の粘度の低下の観点から1または2がより好ましく、1がさらに好ましい。
式(I)中、n2は1〜3の整数であり、1または2が好ましい。
In formula (I), m represents an integer of 1 to 3, and is preferably 1 or 2 from the viewpoint of improving curability and reducing the viscosity of the composition.
In the formula (I), n1 represents an integer of 0 to 6, preferably an integer of 1 to 3, more preferably 1 or 2 from the viewpoint of improvement in substrate adhesion and a decrease in the viscosity of the composition, and 1 is more preferable. .
In formula (I), n2 is an integer of 1 to 3, and 1 or 2 is preferable.
Arは芳香族基を示す。前記芳香族基としては、ドライエッチング耐性の向上、組成物の粘度の低下の観点から、フェニル基、ナフタレン基、アントラセン基、フェナントレン基、ピレン基、ビフェニル基などの炭化水素系芳香族基、インドール基、カルバゾール基などのヘテロ芳香族基などが挙げられ、炭化水素形芳香族基が好ましく、フェニル基またはナフタレン基がさらに好ましい。 Ar represents an aromatic group. Examples of the aromatic group include hydrocarbon aromatic groups such as phenyl group, naphthalene group, anthracene group, phenanthrene group, pyrene group, biphenyl group, and indole from the viewpoint of improving dry etching resistance and decreasing the viscosity of the composition. Groups, heteroaromatic groups such as a carbazole group, and the like. A hydrocarbon-type aromatic group is preferable, and a phenyl group or a naphthalene group is more preferable.
以下に、本発明で用いられる重合性単量体(Ax)として好ましい具体例を示すが、本発明で採用する重合性単量体(Ax)はこれらに限られるものではない。
本発明の組成物中における重合性単量体の総含有量は、硬化性の向上および組成物の粘度の低下の観点から、溶剤を除く全成分中、50〜99.5質量%が好ましく、70〜99質量%がさらに好ましく、90〜99質量%が特に好ましい。本発明における重合性単量体(Ax)の含有量は、全重合性単量体中1〜100質量%が好ましく、より好ましくは1〜70質量%であり、さらに好ましくは1〜50質量%である。すなわち、組成物の粘度の低下、ドライエッチング耐性の向上、インプリント適性の向上、硬化性の向上等の観点から、必要に応じて重合性単量体(Ax)と、以下に説明する重合性単量体(Ax)とは異なる他の重合性単量体(Ay)とを併用することが好ましい。 The total content of the polymerizable monomer in the composition of the present invention is preferably 50 to 99.5% by mass in all components excluding the solvent, from the viewpoint of improving curability and reducing the viscosity of the composition. 70-99 mass% is further more preferable, and 90-99 mass% is especially preferable. As for content of the polymerizable monomer (Ax) in this invention, 1-100 mass% is preferable in all the polymerizable monomers, More preferably, it is 1-70 mass%, More preferably, it is 1-50 mass%. It is. That is, from the viewpoints of decreasing the viscosity of the composition, improving dry etching resistance, improving imprintability, improving curability, and the like, the polymerizable monomer (Ax) and the polymerizable property described below are optionally used. It is preferable to use another polymerizable monomer (Ay) different from the monomer (Ax) in combination.
他の重合性単量体(Ay)
他の重合性単量体としては、例えば、エチレン性不飽和結合含有基を1〜6個有する重合性不飽和単量体、オキシラン環を有する化合物(エポキシ化合物)、ビニルエーテル化合物、スチレン誘導体、フッ素原子を有する化合物、プロペニルエーテルおよびブテニルエーテルを挙げることができ、硬化性の向上の観点から、エチレン性不飽和結合含有基を1〜6個有する重合性不飽和単量体がより好ましく、(メタ)アクリレート誘導体であることがより好ましい。重合性基の数が2個以上である重合性単量体(Ay)を少なくとも1種含有していることが好ましい。
Other polymerizable monomer (Ay)
Examples of the other polymerizable monomer include a polymerizable unsaturated monomer having 1 to 6 ethylenically unsaturated bond-containing groups, a compound having an oxirane ring (epoxy compound), a vinyl ether compound, a styrene derivative, and fluorine. A compound having an atom, propenyl ether and butenyl ether can be mentioned, and a polymerizable unsaturated monomer having 1 to 6 ethylenically unsaturated bond-containing groups is more preferable from the viewpoint of improving curability, A meth) acrylate derivative is more preferable. It is preferable to contain at least one polymerizable monomer (Ay) having two or more polymerizable groups.
前記エチレン性不飽和結合含有基を1〜6個有する重合性不飽和単量体(1〜6官能の重合性不飽和単量体)について説明する。
まず、エチレン性不飽和結合含有基を1個有する重合性不飽和単量体(1官能の重合性不飽和単量体)としては具体的に、2−アクリロイロキシエチルフタレート、2−アクリロイロキシ2−ヒドロキシエチルフタレート、2−アクリロイロキシエチルヘキサヒドロフタレート、2−アクリロイロキシプロピルフタレート、2−エチル−2−ブチルプロパンジオールアクリレート、2−エチルヘキシル(メタ)アクリレート、2−エチルヘキシルカルビトール(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、3−メトキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、アクリル酸ダイマー、ベンジル(メタ)アクリレート、1−または2−ナフチル(メタ)アクリレート、ブタンジオールモノ(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレート、エチレンオキシド変性(以下「EO」という。)クレゾール(メタ)アクリレート、ジプロピレングリコール(メタ)アクリレート、エトキシ化フェニル(メタ)アクリレート、エチル(メタ)アクリレート、イソアミル(メタ)アクリレート、イソブチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロヘンタニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ラウリル(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシトリプロピレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メチル(メタ)アクリレート、ネオペンチルグリコールベンゾエート(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリプロピレングリコール(メタ)アクリレート、オクチル(メタ)アクリレート、パラクミルフェノキシエチレングリコール(メタ)アクリレート、エピクロロヒドリン(以下「ECH」という)変性フェノキシアクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシヘキサエチレングリコール(メタ)アクリレート、フェノキシテトラエチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリエチレングリコール−ポリプロピレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、ステアリル(メタ)アクリレート、EO変性コハク酸(メタ)アクリレート、tert−ブチル(メタ)アクリレート、トリブロモフェニル(メタ)アクリレート、EO変性トリブロモフェニル(メタ)アクリレート、トリドデシル(メタ)アクリレート、p−イソプロペニルフェノール、スチレン、α−メチルスチレン、アクリロニトリル、が例示される。
これらの中で特に、芳香族基あるいは脂環炭化水素基を有する(メタ)アクリレートがドライエッチング耐性の観点で好ましく、ベンジル(メタ)アクリレート、1−または2−ナフチル(メタ)アクリレート、1−または2−ナフチルメチル(メタ)アクリレート、1−または2−ナフチルエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、イソボロニル(メタ)アクリレート、アダマンチル(メタ)アクリレートが本発明に好適に用いられる。
The polymerizable unsaturated monomer having 1 to 6 ethylenically unsaturated bond-containing groups (1 to 6 functional polymerizable unsaturated monomer) will be described.
First, specific examples of the polymerizable unsaturated monomer having one ethylenically unsaturated bond-containing group (monofunctional polymerizable unsaturated monomer) include 2-acryloyloxyethyl phthalate, 2-acryloyloxy 2 -Hydroxyethyl phthalate, 2-acryloyloxyethyl hexahydrophthalate, 2-acryloyloxypropyl phthalate, 2-ethyl-2-butylpropanediol acrylate, 2-ethylhexyl (meth) acrylate, 2-ethylhexyl carbitol (meth) Acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, 4-hydroxy Butyl (medium ) Acrylate, acrylic acid dimer, benzyl (meth) acrylate, 1- or 2-naphthyl (meth) acrylate, butanediol mono (meth) acrylate, butoxyethyl (meth) acrylate, butyl (meth) acrylate, cetyl (meth) acrylate , Ethylene oxide modified (hereinafter referred to as “EO”) cresol (meth) acrylate, dipropylene glycol (meth) acrylate, ethoxylated phenyl (meth) acrylate, ethyl (meth) acrylate, isoamyl (meth) acrylate, isobutyl (meth) acrylate , Isooctyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclohentanyl (meth) acrylate, dicyclopentanyloxye (Meth) acrylate, isomyristyl (meth) acrylate, lauryl (meth) acrylate, methoxydipropylene glycol (meth) acrylate, methoxytripropylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, methoxytriethylene glycol ( (Meth) acrylate, methyl (meth) acrylate, neopentyl glycol benzoate (meth) acrylate, nonylphenoxypolyethylene glycol (meth) acrylate, nonylphenoxypolypropylene glycol (meth) acrylate, octyl (meth) acrylate, paracumylphenoxyethylene glycol (meth) ) Acrylate, epichlorohydrin (hereinafter referred to as “ECH”) modified phenoxy acrylate, phenoxyethyl (meth) ) Acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxyhexaethylene glycol (meth) acrylate, phenoxytetraethylene glycol (meth) acrylate, polyethylene glycol (meth) acrylate, polyethylene glycol-polypropylene glycol (meth) acrylate, polypropylene glycol (meth) Acrylate, stearyl (meth) acrylate, EO-modified succinic acid (meth) acrylate, tert-butyl (meth) acrylate, tribromophenyl (meth) acrylate, EO-modified tribromophenyl (meth) acrylate, tridodecyl (meth) acrylate, p -Isopropenylphenol, styrene, α-methylstyrene, acrylonitrile are exemplified.
Among these, (meth) acrylates having an aromatic group or an alicyclic hydrocarbon group are particularly preferred from the viewpoint of dry etching resistance, such as benzyl (meth) acrylate, 1- or 2-naphthyl (meth) acrylate, 1- or 2-naphthylmethyl (meth) acrylate, 1- or 2-naphthylethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentanyloxyethyl (meth) acrylate, isobornyl (meth) acrylate, adamantyl (meth) ) Acrylate is preferably used in the present invention.
他の重合性単量体として、エチレン性不飽和結合含有基を2個有する多官能重合性不飽和単量体を用いることも好ましい。
本発明で好ましく用いることのできるエチレン性不飽和結合含有基を2個有する2官能重合性不飽和単量体の例としては、ジエチレングリコールモノエチルエーテル(メタ)アクリレート、ジメチロールジシクロペンタンジ(メタ)アクリレート、ジ(メタ)アクリル化イソシアヌレート、1,3−ブチレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、EO変性1,6−ヘキサンジオールジ(メタ)アクリレート、ECH変性1,6−ヘキサンジオールジ(メタ)アクリレート、アリロキシポリエチレングリコールアクリレート、1,9−ノナンジオールジ(メタ)アクリレート、EO変性ビスフェノールAジ(メタ)アクリレート、PO変性ビスフェノールAジ(メタ)アクリレート、変性ビスフェノールAジ(メタ)アクリレート、EO変性ビスフェノールFジ(メタ)アクリレート、ECH変性ヘキサヒドロフタル酸ジアクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、EO変性ネオペンチルグリコールジアクリレート、プロピレンオキシド(以後「PO」という。)変性ネオペンチルグリコールジアクリレート、カプロラクトン変性ヒドロキシピバリン酸エステルネオペンチルグリコール、ステアリン酸変性ペンタエリスリトールジ(メタ)アクリレート、ECH変性フタル酸ジ(メタ)アクリレート、ポリ(エチレングリコール−テトラメチレングリコール)ジ(メタ)アクリレート、ポリ(プロピレングリコール−テトラメチレングリコール)ジ(メタ)アクリレート、ポリエステル(ジ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ECH変性プロピレングリコールジ(メタ)アクリレート、シリコーンジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、ネオペンチルグリコール変性トリメチロールプロパンジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、EO変性トリプロピレングリコールジ(メタ)アクリレート、トリグリセロールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ジビニルエチレン尿素、ジビニルプロピレン尿素が例示される。
It is also preferable to use a polyfunctional polymerizable unsaturated monomer having two ethylenically unsaturated bond-containing groups as the other polymerizable monomer.
Examples of the bifunctional polymerizable unsaturated monomer having two ethylenically unsaturated bond-containing groups that can be preferably used in the present invention include diethylene glycol monoethyl ether (meth) acrylate, dimethylol dicyclopentane di (meta ) Acrylate, di (meth) acrylated isocyanurate, 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, EO-modified 1,6-hexanediol di (meth) acrylate, ECH modified 1,6-hexanediol di (meth) acrylate, allyloxy polyethylene glycol acrylate, 1,9-nonanediol di (meth) acrylate, EO modified bisphenol A di (meth) acrylate, PO modified bisphenol A di (meth) Acrylate, modified screw Enol A di (meth) acrylate, EO modified bisphenol F di (meth) acrylate, ECH modified hexahydrophthalic acid diacrylate, hydroxypivalic acid neopentyl glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, EO modified Neopentyl glycol diacrylate, propylene oxide (hereinafter referred to as “PO”) modified neopentyl glycol diacrylate, caprolactone modified hydroxypivalate ester neopentyl glycol, stearic acid modified pentaerythritol di (meth) acrylate, ECH modified phthalic acid di ( (Meth) acrylate, poly (ethylene glycol-tetramethylene glycol) di (meth) acrylate, poly (propylene glycol-tetramethylene glycol) Di) (di) (meth) acrylate, polyester (di) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, ECH modified propylene glycol di (meth) acrylate, silicone di (meth) acrylate, triethylene Glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dimethylol tricyclodecane di (meth) acrylate, neopentyl glycol modified trimethylolpropane di (meth) acrylate, tripropylene glycol di (meth) acrylate, EO Modified tripropylene glycol di (meth) acrylate, triglycerol di (meth) acrylate, dipropylene glycol di (meth) acrylate, divinyl ethyl And urea and divinyl propylene urea are exemplified.
これらの中で特に、ネオペンチルグリコールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート等が本発明に好適に用いられる。 Among these, neopentyl glycol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, neopentyl hydroxypivalate Glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, and the like are preferably used in the present invention.
エチレン性不飽和結合含有基を3個以上有する多官能重合性不飽和単量体の例としては、ECH変性グリセロールトリ(メタ)アクリレート、EO変性グリセロールトリ(メタ)アクリレート、PO変性グリセロールトリ(メタ)アクリレート、ペンタエリスリトールトリアクリレート、EO変性リン酸トリアクリレート、トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールヒドロキシペンタ(メタ)アクリレート、アルキル変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート、アルキル変性ジペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等が挙げられる。 Examples of the polyfunctional polymerizable unsaturated monomer having 3 or more ethylenically unsaturated bond-containing groups include ECH-modified glycerol tri (meth) acrylate, EO-modified glycerol tri (meth) acrylate, PO-modified glycerol tri (meta) ) Acrylate, pentaerythritol triacrylate, EO modified phosphoric acid triacrylate, trimethylolpropane tri (meth) acrylate, caprolactone modified trimethylolpropane tri (meth) acrylate, EO modified trimethylolpropane tri (meth) acrylate, PO modified trimethylol Propane tri (meth) acrylate, tris (acryloxyethyl) isocyanurate, dipentaerythritol hexa (meth) acrylate, caprolactone-modified dipentaerythritol hexa (meth) Acrylate, dipentaerythritol hydroxypenta (meth) acrylate, alkyl-modified dipentaerythritol penta (meth) acrylate, dipentaerythritol poly (meth) acrylate, alkyl-modified dipentaerythritol tri (meth) acrylate, ditrimethylolpropane tetra (meth) Examples include acrylate, pentaerythritol ethoxytetra (meth) acrylate, and pentaerythritol tetra (meth) acrylate.
これらの中で特に、EO変性グリセロールトリ(メタ)アクリレート、PO変性グリセロールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等が本発明に好適に用いられる。 Among these, EO-modified glycerol tri (meth) acrylate, PO-modified glycerol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, EO-modified trimethylolpropane tri (meth) acrylate, PO-modified trimethylolpropane tri (Meth) acrylate, dipentaerythritol hexa (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate, pentaerythritol tetra (meth) acrylate and the like are preferably used in the present invention.
前記オキシラン環を有する化合物(エポキシ化合物)としては、例えば、多塩基酸のポリグリシジルエステル類、多価アルコールのポリグリシジルエーテル類、ポリオキシアルキレングリコールのポリグリシジルエーテル類、芳香族ポリオールのポリグリシジルエテーテル類、芳香族ポリオールのポリグリシジルエーテル類の水素添加化合物類、ウレタンポリエポキシ化合物およびエポキシ化ポリブタジエン類等を挙げることができる。これらの化合物は、その一種を単独で使用することもできるし、また、その二種以上を混合して使用することもできる。 Examples of the compound having an oxirane ring (epoxy compound) include polyglycidyl esters of polybasic acids, polyglycidyl ethers of polyhydric alcohols, polyglycidyl ethers of polyoxyalkylene glycol, and polyglycidyl ethers of aromatic polyols. Examples include teters, hydrogenated compounds of polyglycidyl ethers of aromatic polyols, urethane polyepoxy compounds, and epoxidized polybutadienes. These compounds can be used alone or in combination of two or more thereof.
本発明に好ましく使用することのできる前記オキシラン環を有する化合物(エポキシ化合物)としては、例えばビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、臭素化ビスフェノールAジグリシジルエーテル、臭素化ビスフェノールFジグリシジルエーテル、臭素化ビスフェノールSジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、水添ビスフェノールFジグリシジルエーテル、水添ビスフェノールSジグリシジルエーテル、1,4−ブタンジオールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル類;エチレングリコール、プロピレングリコール、グリセリンなどの脂肪族多価アルコールに1種または2種以上のアルキレンオキサイドを付加することにより得られるポリエーテルポリオールのポリグリシジルエーテル類;脂肪族長鎖二塩基酸のジグリシジルエステル類;脂肪族高級アルコールのモノグリシジルエーテル類;フェノール、クレゾール、ブチルフェノールまたはこれらにアルキレンオキサイドを付加して得られるポリエーテルアルコールのモノグリシジルエーテル類;高級脂肪酸のグリシジルエステル類などを例示することができる。 Examples of the compound having an oxirane ring (epoxy compound) that can be preferably used in the present invention include bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, brominated bisphenol A diglycidyl ether, bromine Bisphenol F diglycidyl ether, brominated bisphenol S diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, hydrogenated bisphenol S diglycidyl ether, 1,4-butanediol diglycidyl ether, 1 , 6-hexanediol diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, polyethylene glycol jig Polyglycidyl ethers of polyether polyols obtained by adding one or more alkylene oxides to aliphatic polyhydric alcohols such as ethylene glycol, propylene glycol and glycerin; Diglycidyl esters of aliphatic long-chain dibasic acids; monoglycidyl ethers of higher aliphatic alcohols; monoglycidyl ethers of polyether alcohols obtained by adding phenol, cresol, butylphenol or alkylene oxide to these; higher fatty acid Examples thereof include glycidyl esters.
これらの中で特に、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、水添ビスフェノールFジグリシジルエーテル、1,4−ブタンジオールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテルが好ましい。 Among these, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-hexanediol Diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, neopentyl glycol diglycidyl ether, polyethylene glycol diglycidyl ether, and polypropylene glycol diglycidyl ether are preferred.
グリシジル基含有化合物として好適に使用できる市販品としては、UVR−6216(ユニオンカーバイド社製)、グリシドール、AOEX24、サイクロマーA200、(以上、ダイセル化学工業(株)製)、エピコート828、エピコート812、エピコート1031、エピコート872、エピコートCT508(以上、油化シェル(株)製)、KRM−2400、KRM−2410、KRM−2408、KRM−2490、KRM−2720、KRM−2750(以上、旭電化工業(株)製)などを挙げることができる。これらは、1種単独で、または2種以上組み合わせて用いることができる。 Commercially available products that can be suitably used as the glycidyl group-containing compound include UVR-6216 (manufactured by Union Carbide), glycidol, AOEX24, cyclomer A200, (manufactured by Daicel Chemical Industries, Ltd.), Epicoat 828, Epicoat 812, Epicoat 1031, Epicoat 872, Epicoat CT508 (above, manufactured by Yuka Shell Co., Ltd.), KRM-2400, KRM-2410, KRM-2408, KRM-2490, KRM-2720, KRM-2750 (above, Asahi Denka Kogyo ( Product)). These can be used alone or in combination of two or more.
また、これらのオキシラン環を有する化合物はその製法は問わないが、例えば、丸善KK出版、第四版実験化学講座20有機合成II、213〜、平成4年、Ed.by Alfred Hasfner,The chemistry of heterocyclic compounds−Small Ring Heterocycles part3 Oxiranes,John & Wiley and Sons,An Interscience Publication,New York,1985、吉村、接着、29巻12号、32、1985、吉村、接着、30巻5号、42、1986、吉村、接着、30巻7号、42、1986、特開平11−100378号公報、特許第2906245号公報、特許第2926262号公報などの文献を参考にして合成できる。 The production method of these compounds having an oxirane ring is not limited. For example, Maruzen KK Publishing, 4th edition Experimental Chemistry Course 20 Organic Synthesis II, 213, 1992, Ed. By Alfred Hasfner, The chemistry of cyclic compounds-Small Ring Heterocycles part 3 Oxiranes, John & Wiley and Sons, An Interscience Publication, New York, 1985, Yoshimura, Adhesion, Vol. 29, No. 12, 32, 1985, Yoshimura, Adhesion, Vol. 30, No. 5, 42, 1986, Yoshimura, Adhesion, Vol. 30, No. 7, 42, 1986, Japanese Patent Application Laid-Open No. 11-1000037, Japanese Patent No. 2906245, Japanese Patent No. 2926262 and the like can be synthesized.
本発明で用いる他の重合性単量体として、ビニルエーテル化合物を併用してもよい。
ビニルエーテル化合物は公知のものを適宜選択することができ、例えば、2−エチルヘキシルビニルエーテル、ブタンジオール−1,4−ジビニルエーテル、ジエチレングリコールモノビニルエーテル、ジエチレングリコールモノビニルエーテル、エチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、1,2−プロパンジオールジビニルエーテル、1,3−プロパンジオールジビニルエーテル、1,3−ブタンジオールジビニルエーテル、1,4−ブタンジオールジビニルエーテル、テトラメチレングリコールジビニルエーテル、ネオペンチルグリコールジビニルエーテル、トリメチロールプロパントリビニルエーテル、トリメチロールエタントリビニルエーテル、ヘキサンジオールジビニルエーテル、テトラエチレングリコールジビニルエーテル、ペンタエリスリトールジビニルエーテル、ペンタエリスリトールトリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ソルビトールテトラビニルエーテル、ソルビトールペンタビニルエーテル、エチレングリコールジエチレンビニルエーテル、トリエチレングリコールジエチレンビニルエーテル、エチレングリコールジプロピレンビニルエーテル、トリエチレングリコールジエチレンビニルエーテル、トリメチロールプロパントリエチレンビニルエーテル、トリメチロールプロパンジエチレンビニルエーテル、ペンタエリスリトールジエチレンビニルエーテル、ペンタエリスリトールトリエチレンビニルエーテル、ペンタエリスリトールテトラエチレンビニルエーテル、1,1,1−トリス〔4−(2−ビニロキシエトキシ)フェニル〕エタン、ビスフェノールAジビニロキシエチルエーテル等が挙げられる。
As other polymerizable monomer used in the present invention, a vinyl ether compound may be used in combination.
As the vinyl ether compound, known compounds can be appropriately selected. For example, 2-ethylhexyl vinyl ether, butanediol-1,4-divinyl ether, diethylene glycol monovinyl ether, diethylene glycol monovinyl ether, ethylene glycol divinyl ether, triethylene glycol divinyl ether, 1,2-propanediol divinyl ether, 1,3-propanediol divinyl ether, 1,3-butanediol divinyl ether, 1,4-butanediol divinyl ether, tetramethylene glycol divinyl ether, neopentyl glycol divinyl ether, trimethylol Propane trivinyl ether, trimethylol ethane trivinyl ether, hexanediol divinyl ether, tetra Tylene glycol divinyl ether, pentaerythritol divinyl ether, pentaerythritol trivinyl ether, pentaerythritol tetravinyl ether, sorbitol tetravinyl ether, sorbitol pentavinyl ether, ethylene glycol diethylene vinyl ether, triethylene glycol diethylene vinyl ether, ethylene glycol dipropylene vinyl ether, triethylene glycol diethylene vinyl ether , Trimethylolpropane triethylene vinyl ether, trimethylolpropane diethylene vinyl ether, pentaerythritol diethylene vinyl ether, pentaerythritol triethylene vinyl ether, pentaerythritol tetraethylene vinyl ether, 1,1,1-to Scan [4- (2-vinyloxy ethoxy) phenyl] ethane, bisphenol A divinyloxyethyl carboxyethyl ether.
これらのビニルエーテル化合物は、例えば、Stephen.C.Lapin,Polymers Paint Colour Journal.179(4237)、321(1988)に記載されている方法、すなわち多価アルコールもしくは多価フェノールとアセチレンとの反応、または多価アルコールもしくは多価フェノールとハロゲン化アルキルビニルエーテルとの反応により合成することができ、これらは1種単独あるいは2種以上を組み合わせて用いることができる。 These vinyl ether compounds can be obtained, for example, by the method described in Stephen C. Lapin, Polymers Paint Color Journal. 179 (4237), 321 (1988), that is, the reaction of a polyhydric alcohol or polyhydric phenol with acetylene, or They can be synthesized by the reaction of a polyhydric alcohol or polyhydric phenol and a halogenated alkyl vinyl ether, and these can be used singly or in combination of two or more.
また、本発明で用いる他の重合性単量体としては、スチレン誘導体も採用できる。スチレン誘導体としては、例えば、スチレン、p−メチルスチレン、p−メトキシスチレン、β−メチルスチレン、p−メチル−β−メチルスチレン、α−メチルスチレン、p−メトキシ−β−メチルスチレン、p−ヒドロキシスチレン、等を挙げることができる。 Moreover, a styrene derivative can also be employ | adopted as another polymerizable monomer used by this invention. Examples of styrene derivatives include styrene, p-methylstyrene, p-methoxystyrene, β-methylstyrene, p-methyl-β-methylstyrene, α-methylstyrene, p-methoxy-β-methylstyrene, p-hydroxy. Examples include styrene.
また、モールドとの剥離性や塗布性を向上させる目的で、トリフルオロエチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、(パーフルオロブチル)エチル(メタ)アクリレート、パーフルオロブチル−ヒドロキシプロピル(メタ)アクリレート、(パーフルオロヘキシル)エチル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、パーフルオロオクチルエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート等のフッ素原子を有する化合物も併用することができる。 In addition, trifluoroethyl (meth) acrylate, pentafluoroethyl (meth) acrylate, (perfluorobutyl) ethyl (meth) acrylate, perfluorobutyl-hydroxypropyl ( Use compounds containing fluorine atoms such as (meth) acrylate, (perfluorohexyl) ethyl (meth) acrylate, octafluoropentyl (meth) acrylate, perfluorooctylethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, etc. Can do.
本発明で用いる他の重合性単量体としては、プロペニルエーテルおよびブテニルエーテルを用いることもできる。前記プロペニルエーテルまたはブテニルエーテルとしては、例えば1−ドデシル−1−プロペニルエーテル、1−ドデシル−1−ブテニルエーテル、1−ブテノキシメチル−2−ノルボルネン、1−4−ジ(1−ブテノキシ)ブタン、1,10−ジ(1−ブテノキシ)デカン、1,4−ジ(1−ブテノキシメチル)シクロヘキサン、ジエチレングリコールジ(1−ブテニル)エーテル、1,2,3−トリ(1−ブテノキシ)プロパン、プロペニルエーテルプロピレンカーボネート等が好適に適用できる。
他の重合性単量体としては、重合性官能基としてアクリレート基を1または2個有し、且つ芳香族基を有する重合性単量体を少なくとも1種含有することが好ましい。
As another polymerizable monomer used in the present invention, propenyl ether and butenyl ether can also be used. Examples of the propenyl ether or butenyl ether include 1-dodecyl-1-propenyl ether, 1-dodecyl-1-butenyl ether, 1-butenoxymethyl-2-norbornene, 1-4-di (1-butenoxy) butane, 1,10-di (1-butenoxy) decane, 1,4-di (1-butenoxymethyl) cyclohexane, diethylene glycol di (1-butenyl) ether, 1,2,3-tri (1-butenoxy) propane, propenyl ether propylene Carbonate or the like can be suitably applied.
The other polymerizable monomer preferably contains at least one polymerizable monomer having one or two acrylate groups as a polymerizable functional group and an aromatic group.
上述の他の重合性単量体は、本発明における重合性単量体の含有量によってその好ましい含有量が変わるが、例えば、本発明の全重合性単量体中に好ましくは0〜99質量%、より好ましくは30〜99質量%、さらに好ましくは40〜99質量%、特に好ましくは50〜99質量%の範囲で含む。 The preferred content of the other polymerizable monomer described above varies depending on the content of the polymerizable monomer in the present invention. For example, the total polymerizable monomer of the present invention is preferably 0 to 99 mass%. %, More preferably 30 to 99% by mass, still more preferably 40 to 99% by mass, particularly preferably 50 to 99% by mass.
次に、本発明における重合性単量体(Ax)および他の重合性単量体(Ay)(以下、これらを併せて「重合性不飽和単量体」ということがある)の好ましいブレンド形態について説明する。
1官能の重合性不飽和単量体は、通常、反応性希釈剤として用いられ、本発明のナノインプリント用組成物の粘度を低下させる効果を有し、重合性単量体の総量に対して、15質量%以上添加されることが好ましく、20〜80質量%添加されることがより好ましく、25〜70質量%添加されることがさらに好ましく、30〜60質量%添加されることが特に好ましい。
不飽和結合含有基を2個有する単量体(2官能重合性不飽和単量体)は、全重合性不飽和単量体の好ましくは90質量%以下、より好ましくは80質量%以下、特に好ましくは70質量%以下の範囲で添加される。1官能および2官能重合性不飽和単量体の割合は、全重合性不飽和単量体の、好ましくは10〜100質量%、より好ましくは30〜95質量%、特に好ましくは50〜90質量%の範囲で添加される。不飽和結合含有基を3個以上有する多官能重合性不飽和単量体の割合は、全重合性不飽和単量体の、好ましくは80質量%以下、より好ましくは60質量%以下、特に好ましくは、40質量%以下の範囲で添加される。重合性不飽和結合含有基を3個以上有する重合性不飽和単量体の割合を80質量%以下とすることにより、組成物の粘度を下げられるため好ましい。
Next, a preferred blend form of the polymerizable monomer (Ax) and other polymerizable monomer (Ay) in the present invention (hereinafter, these may be collectively referred to as “polymerizable unsaturated monomer”) Will be described.
The monofunctional polymerizable unsaturated monomer is usually used as a reactive diluent and has an effect of reducing the viscosity of the nanoimprinting composition of the present invention. With respect to the total amount of the polymerizable monomer, It is preferable to add 15% by mass or more, more preferably 20 to 80% by mass, more preferably 25 to 70% by mass, and particularly preferably 30 to 60% by mass.
The monomer having two unsaturated bond-containing groups (bifunctional polymerizable unsaturated monomer) is preferably 90% by mass or less, more preferably 80% by mass or less, and particularly preferably 80% by mass or less of the total polymerizable unsaturated monomer. Preferably, it is added in a range of 70% by mass or less. The ratio of the monofunctional and bifunctional polymerizable unsaturated monomer is preferably 10 to 100% by mass, more preferably 30 to 95% by mass, and particularly preferably 50 to 90% by mass of the total polymerizable unsaturated monomer. % Is added. The ratio of the polyfunctional polymerizable unsaturated monomer having 3 or more unsaturated bond-containing groups is preferably 80% by mass or less, more preferably 60% by mass or less, particularly preferably the total polymerizable unsaturated monomer. Is added in a range of 40% by mass or less. Since the viscosity of a composition can be lowered | hung by making the ratio of the polymerizable unsaturated monomer which has 3 or more of polymerizable unsaturated bond containing groups into 80 mass% or less, it is preferable.
(B)光重合開始剤
本発明のナノインプリント用組成物には、光重合開始剤が含まれる。本発明に用いられる光重合開始剤は、光照射により上述の重合性単量体を重合する活性種を発生する化合物であればいずれのものでも用いることができる。光重合開始剤としては、光照射によりラジカルを発生するラジカル重合開始剤、光照射により酸を発生するカチオン重合開始剤が好ましく、より好ましくはラジカル重合開始剤であるが、前記重合性単量体の重合性基の種類に応じて適宜決定される。すなわち、本発明における光重合開始剤は、使用する光源の波長に対して活性を有するものが配合され、反応形式の違い(例えばラジカル重合やカチオン重合など)に応じて適切な活性種を発生させるものを用いる必要がある。また、本発明において、光重合開始剤は複数種を併用してもよい。
(B) Photopolymerization initiator The nanoimprint composition of the present invention contains a photopolymerization initiator. As the photopolymerization initiator used in the present invention, any compound can be used as long as it is a compound that generates an active species capable of polymerizing the above polymerizable monomer by light irradiation. The photopolymerization initiator is preferably a radical polymerization initiator that generates radicals by light irradiation, or a cationic polymerization initiator that generates acids by light irradiation, more preferably a radical polymerization initiator. It is determined appropriately according to the type of the polymerizable group. That is, the photopolymerization initiator in the present invention is formulated with an activity with respect to the wavelength of the light source to be used, and generates appropriate active species according to the difference in the reaction format (for example, radical polymerization or cationic polymerization). It is necessary to use something. In the present invention, a plurality of photopolymerization initiators may be used in combination.
本発明に用いられる光重合開始剤の含有量は、溶剤を除く全組成物中、例えば、0.01〜15質量%であり、好ましくは0.1〜12質量%であり、さらに好ましくは0.2〜7質量%である。2種類以上の光重合開始剤を用いる場合は、その合計量が前記範囲となる。
光重合開始剤の含有量が0.01質量%以上であると、感度(速硬化性)、解像性、ラインエッジラフネス性、塗膜強度が向上する傾向にあり好ましい。一方、光重合開始剤の含有量を15質量%以下とすると、光透過性、着色性、取り扱い性などが向上する傾向にあり、好ましい。
Content of the photoinitiator used for this invention is 0.01-15 mass% in all the compositions except a solvent, for example, Preferably it is 0.1-12 mass%, More preferably, it is 0. 2 to 7% by mass. When using 2 or more types of photoinitiators, the total amount becomes the said range.
When the content of the photopolymerization initiator is 0.01% by mass or more, the sensitivity (fast curability), resolution, line edge roughness, and coating strength tend to be improved, which is preferable. On the other hand, when the content of the photopolymerization initiator is 15% by mass or less, light transmittance, colorability, handleability and the like tend to be improved, which is preferable.
本発明で使用されるラジカル光重合開始剤としては、アシルホスフィンオキシド系化合物、オキシムエステル系化合物が硬化感度、吸収特性の観点から好ましい。光重合開始剤は例えば市販されている開始剤を用いることができる。これらの例としてはCiba社から入手可能なIrgacure(登録商標)2959(1−[4−(2−ヒドロキシエトキシ)フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン、Irgacure(登録商標)184(1−ヒドロキシシクロヘキシルフェニルケトン)、Irgacure(登録商標)500(1−ヒドロキシシクロヘキシルフェニルケトン、ベンゾフェノン)、Irgacure(登録商標)651(2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン)、Irgacure(登録商標)369(2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)ブタノン−1)、Irgacure(登録商標)907(2−メチル−1[4−メチルチオフェニル]−2−モルフォリノプロパン−1−オン、Irgacure(登録商標)819(ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド、Irgacure(登録商標)1800(ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルフォスフィンオキサイド,1−ヒドロキシ−シクロヘキシル−フェニル−ケトン)、Irgacure(登録商標)1800(ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルフォスフィンオキサイド,2−ヒドロキシ−2−メチル−1−フェニル−1−プロパン−1−オン)、Irgacure(登録商標)OXE01(1,2−オクタンジオン,1−[4−(フェニルチオ)フェニル]−2−(O−ベンゾイルオキシム)、Darocur(登録商標)1173(2−ヒドロキシ−2−メチル−1−フェニル−1−プロパン−1−オン)、Darocur(登録商標)1116、1398、1174および1020、CGI242(エタノン,1−[9−エチル−6−(2−メチルベンゾイル)−9H−カルバゾール−3−イル]−1−(O−アセチルオキシム)、BASF社から入手可能なLucirin TPO(2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド)、Lucirin TPO−L(2,4,6−トリメチルベンゾイルフェニルエトキシホスフィンオキサイド)、ESACUR日本シイベルヘグナー社から入手可能なESACURE 1001M(1−[4−ベンゾイルフェニルスルファニル]フェニル]−2−メチル−2−(4−メチルフェニルスルホニル)プロパン−1−オン、N−1414旭電化社から入手可能なアデカオプトマー(登録商標)N−1414(カルバゾール・フェノン系)、アデカオプトマー(登録商標)N−1717(アクリジン系)、アデカオプトマー(登録商標)N−1606(トリアジン系)、三和ケミカル製のTFE−トリアジン(2−[2−(フラン−2−イル)ビニル]−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン)、三和ケミカル製のTME−トリアジン(2−[2−(5−メチルフラン−2−イル)ビニル]−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン)、三和ケミカル製のMP−トリアジン(2−(4−メトキシフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン)、ミドリ化学製TAZ−113(2−[2−(3,4−ジメトキシフェニル)エテニル]−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン)、ミドリ化学製TAZ−108(2−(3,4−ジメトキシフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン)、ベンゾフェノン、4,4’−ビスジエチルアミノベンゾフェノン、メチル−2−ベンゾフェノン、4−ベンゾイル−4’−メチルジフェニルスルフィド、4−フェニルベンゾフェノン、エチルミヒラーズケトン、2−クロロチオキサントン、2−メチルチオキサントン、2−イソプロピルチオキサントン、4−イソプロピルチオキサントン、2,4−ジエチルチオキサントン、1−クロロ−4−プロポキシチオキサントン、2−メチルチオキサントン、チオキサントンアンモニウム塩、ベンゾイン、4,4’−ジメトキシベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンジルジメチルケタール、1,1,1−トリクロロアセトフェノン、ジエトキシアセトフェノンおよびジベンゾスベロン、o−ベンゾイル安息香酸メチル、2−ベンゾイルナフタレン、4−ベンゾイルビフェニル、4−ベンゾイルジフェニルエーテル、1,4−ベンゾイルベンゼン、ベンジル、10−ブチル−2−クロロアクリドン、[4−(メチルフェニルチオ)フェニル]フェニルメタン)、2−エチルアントラキノン、2,2−ビス(2−クロロフェニル)4,5,4‘,5’−テトラキス(3,4,5−トリメトキシフェニル)1,2‘−ビイミダゾール、2,2−ビス(o−クロロフェニル)4,5,4’,5’−テトラフェニル−1,2’−ビイミダゾール、トリス(4−ジメチルアミノフェニル)メタン、エチル−4−(ジメチルアミノ)ベンゾエート、2−(ジメチルアミノ)エチルベンゾエート、ブトキシエチル−4−(ジメチルアミノ)ベンゾエート、等が挙げられる。 As the radical photopolymerization initiator used in the present invention, acylphosphine oxide compounds and oxime ester compounds are preferable from the viewpoints of curing sensitivity and absorption characteristics. As the photopolymerization initiator, for example, a commercially available initiator can be used. Examples of these include Irgacure® 2959 (1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propan-1-one, Irgacure (available from Ciba). (Registered trademark) 184 (1-hydroxycyclohexyl phenyl ketone), Irgacure (registered trademark) 500 (1-hydroxycyclohexyl phenyl ketone, benzophenone), Irgacure (registered trademark) 651 (2,2-dimethoxy-1,2-diphenylethane- 1-one), Irgacure® 369 (2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butanone-1), Irgacure® 907 (2-methyl-1 [4- Methylthiophenyl] -2-morpholinop Pan-1-one, Irgacure® 819 (bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, Irgacure® 1800 (bis (2,6-dimethoxybenzoyl) -2,4 , 4-trimethyl-pentylphosphine oxide, 1-hydroxy-cyclohexyl-phenyl-ketone), Irgacure® 1800 (bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide) , 2-hydroxy-2-methyl-1-phenyl-1-propan-1-one), Irgacure® OXE01 (1,2-octanedione, 1- [4- (phenylthio) phenyl] -2- ( O-benzoyloxime), Darocur (registered trader) Standard) 1173 (2-hydroxy-2-methyl-1-phenyl-1-propan-1-one), Darocur (R) 1116, 1398, 1174 and 1020, CGI242 (ethanone, 1- [9-ethyl-6 -(2-Methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime), Lucirin TPO (2,4,6-trimethylbenzoyldiphenylphosphine oxide), Lucirin TPO available from BASF -L (2,4,6-trimethylbenzoylphenylethoxyphosphine oxide), ESACURE 1001M (1- [4-benzoylphenylsulfanyl] phenyl] -2-methyl-2- (4-methyl), available from ESACUR Nippon Siebel Hegner Phenylsulfur Honyl) propan-1-one, N-1414 Adeka optomer (registered trademark) N-1414 (carbazole phenone system), Adeka optomer (registered trademark) N-1717 (acridine system) available from Asahi Denka Co., Ltd. Adekaoptomer (registered trademark) N-1606 (triazine type), TFE-triazine (2- [2- (furan-2-yl) vinyl] -4,6-bis (trichloromethyl) -1 manufactured by Sanwa Chemical Co., Ltd.) , 3,5-triazine), TME-triazine (2- [2- (5-methylfuran-2-yl) vinyl] -4,6-bis (trichloromethyl) -1,3,5, manufactured by Sanwa Chemical Co., Ltd.) -Triazine), MP-triazine (2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine) manufactured by Sanwa Chemical, manufactured by Midori Chemical AZ-113 (2- [2- (3,4-dimethoxyphenyl) ethenyl] -4,6-bis (trichloromethyl) -1,3,5-triazine), TAZ-108 (2- (3 , 4-dimethoxyphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine), benzophenone, 4,4'-bisdiethylaminobenzophenone, methyl-2-benzophenone, 4-benzoyl-4'- Methyl diphenyl sulfide, 4-phenylbenzophenone, ethyl Michler's ketone, 2-chlorothioxanthone, 2-methylthioxanthone, 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2,4-diethylthioxanthone, 1-chloro-4-propoxythioxanthone, 2-methylthioxanthone, thioxa Ton ammonium salt, benzoin, 4,4'-dimethoxybenzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzyl dimethyl ketal, 1,1,1-trichloroacetophenone, diethoxyacetophenone and dibenzosuberone , Methyl o-benzoylbenzoate, 2-benzoylnaphthalene, 4-benzoylbiphenyl, 4-benzoyldiphenyl ether, 1,4-benzoylbenzene, benzyl, 10-butyl-2-chloroacridone, [4- (methylphenylthio) Phenyl] phenylmethane), 2-ethylanthraquinone, 2,2-bis (2-chlorophenyl) 4,5,4 ′, 5′-tetrakis (3,4,5-trimethoxyphenyl) 1, 2′-biimidazole, 2,2-bis (o-chlorophenyl) 4,5,4 ′, 5′-tetraphenyl-1,2′-biimidazole, tris (4-dimethylaminophenyl) methane, ethyl-4 -(Dimethylamino) benzoate, 2- (dimethylamino) ethyl benzoate, butoxyethyl-4- (dimethylamino) benzoate, and the like.
なお、本発明において「光」には、紫外、近紫外、遠紫外、可視、赤外等の領域の波長の光や、電磁波だけでなく、放射線も含まれる。前記放射線には、例えばマイクロ波、電子線、EUV、X線が含まれる。また248nmエキシマレーザー、193nmエキシマレーザー、172nmエキシマレーザーなどのレーザー光も用いることができる。これらの光は、光学フィルターを通したモノクロ光(単一波長光)を用いてもよいし、複数の波長の異なる光(複合光)でもよい。露光は、多重露光も可能であり、膜強度、エッチング耐性を高めるなどの目的でパターン形成した後、全面露光することも可能である。 In the present invention, “light” includes not only light having a wavelength in the ultraviolet, near-ultraviolet, far-ultraviolet, visible, infrared, etc., and electromagnetic waves but also radiation. Examples of the radiation include microwaves, electron beams, EUV, and X-rays. Laser light such as a 248 nm excimer laser, a 193 nm excimer laser, and a 172 nm excimer laser can also be used. The light may be monochromatic light (single wavelength light) that has passed through an optical filter, or may be light with a plurality of different wavelengths (composite light). The exposure can be multiple exposure, and the entire surface can be exposed after forming a pattern for the purpose of increasing the film strength and etching resistance.
本発明で使用される光重合開始剤は、使用する光源の波長に対して適時に選択する必要があるが、モールド加圧・露光中にガスを発生させないものが好ましい。ガスが発生すると、モールドが汚染されるため、頻繁にモールドを洗浄しなければならなくなったり、本発明の組成物がモールド内で変形し、転写パターン精度を劣化させるなどの問題を生じる。 The photopolymerization initiator used in the present invention needs to be selected in a timely manner with respect to the wavelength of the light source to be used, but is preferably one that does not generate gas during mold pressurization / exposure. When the gas is generated, the mold is contaminated, so that the mold has to be frequently washed, and the composition of the present invention is deformed in the mold, thereby deteriorating the transfer pattern accuracy.
本発明のナノインプリント用組成物は、(A)重合性単量体がラジカル重合性単量体であり、(B)光重合開始剤が光照射によりラジカルを発生するラジカル重合開始剤であるラジカル重合性ナノインプリント用組成物であることが好ましい。 The composition for nanoimprinting of the present invention is a radical polymerization in which (A) the polymerizable monomer is a radical polymerizable monomer, and (B) the photopolymerization initiator is a radical polymerization initiator that generates radicals upon light irradiation. It is preferable that it is a composition for conductive nanoimprint.
(その他成分)
本発明のナノインプリント用組成物は、(A)重合性単量体および(B)光重合開始剤の他に種々の目的に応じて、本発明の効果を損なわない範囲で、(C)界面活性剤、(D)酸化防止剤、溶剤、ポリマー成分等その他の成分を含んでいてもよい。本発明のナノインプリント用組成物としては、フッ素系界面活性剤、シリコーン系界面活性剤、フッ素・シリコーン系界面活性剤から選ばれる界面活性剤の少なくとも1種、および、酸化防止剤を含有することが好ましい。
(Other ingredients)
The composition for nanoimprinting of the present invention comprises (C) a surface active activity within the range not impairing the effects of the present invention, depending on various purposes in addition to (A) a polymerizable monomer and (B) a photopolymerization initiator. Other components such as an agent, (D) an antioxidant, a solvent, and a polymer component may be included. The nanoimprinting composition of the present invention may contain at least one surfactant selected from a fluorine-based surfactant, a silicone-based surfactant, and a fluorine / silicone-based surfactant, and an antioxidant. preferable.
(C)界面活性剤
本発明のナノインプリント用組成物には、界面活性剤を含有することが好ましい。本発明に用いられる界面活性剤の含有量は、全組成物中、例えば、0.001〜5質量%であり、好ましくは0.002〜4質量%であり、さらに好ましくは、0.005〜3質量%である。2種類以上の界面活性剤を用いる場合は、その合計量が前記範囲となる。界面活性剤が組成物中0.001〜5質量%の範囲にあると、塗布の均一性の効果が良好であり、界面活性剤の過多によるモールド転写特性の悪化を招きにくい。
(C) Surfactant The nanoimprint composition of the present invention preferably contains a surfactant. The content of the surfactant used in the present invention is, for example, 0.001 to 5% by mass, preferably 0.002 to 4% by mass, and more preferably 0.005 to 5% in the entire composition. 3% by mass. When using 2 or more types of surfactant, the total amount becomes the said range. When the surfactant is in the range of 0.001 to 5% by mass in the composition, the effect of coating uniformity is good, and deterioration of mold transfer characteristics due to excessive surfactant is unlikely to occur.
前記界面活性剤としては、フッ素系界面活性剤、シリコーン系界面活性剤およびフッ素・シリコーン系界面活性剤の少なくとも1種を含むことが好ましく、フッ素系界面活性剤とシリコーン系界面活性剤との両方または、フッ素・シリコーン系界面活性剤を含むことがより好ましい。尚、前記フッ素系界面活性剤およびシリコーン系界面活性剤としては、ノニオン系の界面活性剤が好ましい。ここで、“フッ素・シリコーン系界面活性剤”とは、フッ素系界面活性剤およびシリコーン系界面活性剤の両方の要件を併せ持つものをいう。
このような界面活性剤を用いることによって、半導体素子製造用のシリコンウエハーや、液晶素子製造用のガラス角基板、クロム膜、モリブデン膜、モリブデン合金膜、タンタル膜、タンタル合金膜、窒化珪素膜、アモルファスシリコーン膜、酸化錫をドープした酸化インジウム(ITO)膜や酸化錫膜などの、各種の膜が形成される基板上に本発明のナノインプリント用組成物を塗布したときに起こるストリエーションや、鱗状の模様(レジスト膜の乾燥むら)などの塗布不良の問題を解決するが可能となる。また、モールド凹部のキャビティ内への本発明の組成物の流動性の向上、モールドとレジストとの間の剥離性の向上、レジストと基板間との密着性の向上、組成物の粘度を下げる等が可能になる。特に、本発明のナノインプリント用組成物は、前記界面活性剤を添加することにより、塗布均一性を大幅に改良でき、スピンコーターやスリットスキャンコーターを用いた塗布において、基板サイズに依らず良好な塗布適性が得られる。
The surfactant preferably includes at least one of a fluorine-based surfactant, a silicone-based surfactant, and a fluorine / silicone-based surfactant, and includes both a fluorine-based surfactant and a silicone-based surfactant. Alternatively, it is more preferable to include a fluorine / silicone surfactant. The fluorine-based surfactant and the silicone-based surfactant are preferably nonionic surfactants. Here, the “fluorine / silicone surfactant” refers to one having both requirements of a fluorine surfactant and a silicone surfactant.
By using such a surfactant, a silicon wafer for manufacturing a semiconductor element, a glass square substrate for manufacturing a liquid crystal element, a chromium film, a molybdenum film, a molybdenum alloy film, a tantalum film, a tantalum alloy film, a silicon nitride film, The striations and scales that occur when the composition for nanoimprinting of the present invention is applied to a substrate on which various films such as an amorphous silicone film, an indium oxide (ITO) film doped with tin oxide, and a tin oxide film are formed. It is possible to solve the problem of coating defects such as patterns (unevenness of drying of resist film). In addition, the fluidity of the composition of the present invention into the cavity of the mold recess is improved, the peelability between the mold and the resist is improved, the adhesion between the resist and the substrate is improved, the viscosity of the composition is decreased, etc. Is possible. In particular, the composition for nanoimprinting of the present invention can significantly improve the coating uniformity by adding the surfactant, and can be satisfactorily applied regardless of the substrate size in coating using a spin coater or slit scan coater. Aptitude is obtained.
本発明で用いることのできる、ノニオン系フッ素系界面活性剤の例としては、商品名 フロラード FC−430、FC−431(住友スリーエム(株)製)、商品名サーフロン S−382(旭硝子(株)製)、EFTOP EF−122A、122B、122C、EF−121、EF−126、EF−127、MF−100((株)トーケムプロダクツ製)、商品名 PF−636、PF−6320、PF−656、PF−6520(いずれもOMNOVA Solutions, Inc.)、商品名フタージェントFT250、FT251、DFX18 (いずれも(株)ネオス製)、商品名ユニダインDS−401、DS−403、DS−451 (いずれもダイキン工業(株)製)、商品名メガフアック171、172、173、178K、178A、(いずれも大日本インキ化学工業(株)製)が挙げられる。
また、ノニオン性シリコーン系界面活性剤の例としては、商品名SI−10シリーズ(竹本油脂(株)製)、メガファックペインタッド31(大日本インキ化学工業(株)製)、KP−341(信越化学工業(株)製)が挙げられる。
また、前記フッ素・シリコーン系界面活性剤の例としては、商品名 X−70−090、X−70−091、X−70−092、X−70−093、(いずれも、信越化学工業(株)製)、商品名メガフアックR−08、XRB−4(いずれも、大日本インキ化学工業(株)製)が挙げられる。
Examples of nonionic fluorosurfactants that can be used in the present invention include trade names Fluorard FC-430 and FC-431 (manufactured by Sumitomo 3M), trade names Surflon S-382 (Asahi Glass Co., Ltd.). Manufactured), EFTOP EF-122A, 122B, 122C, EF-121, EF-126, EF-127, MF-100 (manufactured by Tochem Products), trade names PF-636, PF-6320, PF-656 , PF-6520 (all OMNOVA Solutions, Inc.), trade names FT250, FT251, DFX18 (all manufactured by Neos), trade names Unidyne DS-401, DS-403, DS-451 (all Daikin Industries, Ltd.), trade names Megafuk 171, 172, 173, 178K, 178A (all Dainippon Ink & Chemicals) Industry).
Examples of nonionic silicone surfactants include trade name SI-10 series (manufactured by Takemoto Yushi Co., Ltd.), MegaFuck Paintad 31 (manufactured by Dainippon Ink Chemical Co., Ltd.), KP-341 ( Shin-Etsu Chemical Co., Ltd.).
Examples of the fluorine / silicone surfactant include trade names X-70-090, X-70-091, X-70-092, X-70-093 (all Shin-Etsu Chemical Co., Ltd. )), And trade names Megafuk R-08 and XRB-4 (both manufactured by Dainippon Ink & Chemicals, Inc.).
(D)酸化防止剤
さらに、本発明のナノインプリント用組成物は、公知の酸化防止剤を含有することが好ましい。本発明に用いられる酸化防止剤の含有量は、重合性単量体に対し、例えば、0.01〜10質量%であり、好ましくは0.2〜5質量%である。2種類以上の酸化防止剤を用いる場合は、その合計量が前記範囲となる。
前記酸化防止剤は、熱や光照射による退色およびオゾン、活性酸素、NOx、SOx(Xは整数)などの各種の酸化性ガスによる退色を抑制するものである。特に本発明では、酸化防止剤を添加することにより、硬化膜の着色の防止や、分解による膜厚の減少を低減できるという利点がある。このような酸化防止剤としては、ヒドラジド類、ヒンダードアミン系酸化防止剤、含窒素複素環メルカプト系化合物、チオエーテル系酸化防止剤、ヒンダードフェノール系酸化防止剤、アスコルビン酸類、硫酸亜鉛、チオシアン酸塩類、チオ尿素誘導体、糖類、亜硝酸塩、亜硫酸塩、チオ硫酸塩、ヒドロキシルアミン誘導体などを挙げることができる。この中でも、特にヒンダードフェノール系酸化防止剤、チオエーテル系酸化防止剤が硬化膜の着色、膜厚減少の観点で好ましい。
(D) Antioxidant Furthermore, it is preferable that the composition for nanoimprinting of the present invention contains a known antioxidant. Content of the antioxidant used for this invention is 0.01-10 mass% with respect to a polymerizable monomer, for example, Preferably it is 0.2-5 mass%. When using 2 or more types of antioxidant, the total amount becomes the said range.
The antioxidant suppresses fading caused by heat or light irradiation and fading caused by various oxidizing gases such as ozone, active oxygen, NO x , SO x (X is an integer). In particular, in the present invention, by adding an antioxidant, there are advantages that prevention of coloring of the cured film and reduction in film thickness due to decomposition can be reduced. Examples of such antioxidants include hydrazides, hindered amine antioxidants, nitrogen-containing heterocyclic mercapto compounds, thioether antioxidants, hindered phenol antioxidants, ascorbic acids, zinc sulfate, thiocyanates, Examples include thiourea derivatives, sugars, nitrites, sulfites, thiosulfates, hydroxylamine derivatives, and the like. Among these, hindered phenol antioxidants and thioether antioxidants are particularly preferable from the viewpoint of coloring the cured film and reducing the film thickness.
前記酸化防止剤の市販品としては、商品名 Irganox1010、1035、1076、1222(以上、チバガイギー(株)製)、商品名 Antigene P、3C、FR、スミライザーS、スミライザーGA80(住友化学工業(株)製)、商品名アデカスタブAO70、AO80、AO503((株)ADEKA製)等が挙げられる。これらは単独で用いてもよいし、混合して用いてもよい。 Commercially available products of the antioxidants include trade names Irganox 1010, 1035, 1076, 1222 (above, manufactured by Ciba Geigy Co., Ltd.), trade names Antigene P, 3C, FR, Sumilyzer S, and Sumilizer GA80 (Sumitomo Chemical Co., Ltd.). Product name) ADK STAB AO70, AO80, AO503 (manufactured by ADEKA Corporation) and the like. These may be used alone or in combination.
溶剤
本発明の組成物には、種々の必要に応じて、溶剤を用いることができる。特に膜厚500nm以下のパターンを形成する際には溶剤を含有していることが好ましい。好ましい溶剤としては常圧における沸点が80〜200℃の溶剤である。溶剤の種類としては組成物を溶解可能な溶剤であればいずれも用いることができるが、好ましくはエステル構造、ケトン構造、水酸基、エーテル構造のいずれか1つ以上を有する溶剤である。具体的に、好ましい溶剤としてはプロピレングリコールモノメチルエーテルアセテート、シクロヘキサノン、2−ヘプタノン、ガンマブチロラクトン、プロピレングリコールモノメチルエーテル、乳酸エチルから選ばれる単独あるいは混合溶剤であり、プロピレングリコールモノメチルエーテルアセテートを含有する溶剤が塗布均一性の観点で最も好ましい。
本発明の組成物中における前記溶剤の含有量は、溶剤を除く成分の粘度、塗布性、目的とする膜厚によって最適に調整されるが、塗布性の観点から、全組成物中、0〜99質量%が好ましく、10〜99質量%がさらに好ましい。特に膜厚500nm以下のパターンを形成する際には50〜99質量%が好ましく、60〜99質量%がさらに好ましく、70〜98質量%が特に好ましい。
Solvent A solvent can be used in the composition of the present invention according to various needs. In particular, a solvent is preferably contained when forming a pattern having a thickness of 500 nm or less. A preferable solvent is a solvent having a boiling point of 80 to 200 ° C. at normal pressure. Any solvent can be used as long as it can dissolve the composition, but a solvent having any one or more of an ester structure, a ketone structure, a hydroxyl group, and an ether structure is preferable. Specifically, preferred solvents are propylene glycol monomethyl ether acetate, cyclohexanone, 2-heptanone, gamma butyrolactone, propylene glycol monomethyl ether, ethyl lactate alone or a mixed solvent, and a solvent containing propylene glycol monomethyl ether acetate. Most preferable from the viewpoint of coating uniformity.
The content of the solvent in the composition of the present invention is optimally adjusted depending on the viscosity of the components excluding the solvent, coating properties, and the target film thickness, but from the viewpoint of coating properties, 99 mass% is preferable and 10-99 mass% is further more preferable. When forming a pattern with a film thickness of 500 nm or less, 50 to 99% by mass is preferable, 60 to 99% by mass is more preferable, and 70 to 98% by mass is particularly preferable.
ポリマー成分
本発明の組成物では、架橋密度をさらに高める目的で、前記多官能の他の重合性単量体よりもさらに分子量の大きい多官能オリゴマーを、本発明の目的を達成する範囲で配合することもできる。光ラジカル重合性を有する多官能オリゴマーとしてはポリエステルアクリレート、ウレタンアクリレート、ポリエーテルアクリレート、エポキシアクリレート等の各種アクリレートオリゴマーが挙げられる。オリゴマー成分の添加量としては組成物の溶剤を除く成分に対し、0〜30質量%が好ましく、より好ましくは0〜20質量%であり、さらに好ましくは0〜10質量%であり、最も好ましくは0〜5質量%である。
本発明の組成物はドライエッチング耐性、インプリント適性、硬化性等の改良の観点からも、ポリマー成分を含有していてもよい。このようなポリマー成分としては側鎖に重合性官能基を有するポリマーが好ましい。該ポリマー成分の重量平均分子量としては、重合性単量体との相溶性の観点から、2,000〜100,000が好ましく、5,000〜50,000がさらに好ましい。ポリマー成分の添加量としては組成物の溶剤を除く成分に対し、0〜30質量%が好ましく、より好ましくは0〜20質量%であり、さらに好ましくは0〜10質量%であり、最も好ましくは2質量%以下である。本発明の組成物において溶剤を除く成分中、分子量2,000以上のポリマー成分の含有量が30質量%以下であると、モールド充填性が向上し、スループットが改善され、且つ、パターン形成性が向上する傾向にある。従って、パターン形成性の観点から樹脂成分はできる限り少ない方が好ましく、界面活性剤や微量の添加剤を除き、樹脂成分を含まないことが好ましい。
Polymer component In the composition of the present invention, for the purpose of further increasing the crosslinking density, a polyfunctional oligomer having a molecular weight higher than that of the other polyfunctional polymerizable monomer is blended within the range of achieving the object of the present invention. You can also. Examples of the polyfunctional oligomer having photoradical polymerizability include various acrylate oligomers such as polyester acrylate, urethane acrylate, polyether acrylate, and epoxy acrylate. The addition amount of the oligomer component is preferably 0 to 30% by mass, more preferably 0 to 20% by mass, further preferably 0 to 10% by mass, and most preferably, relative to the component excluding the solvent of the composition. It is 0-5 mass%.
The composition of the present invention may contain a polymer component from the viewpoint of improving dry etching resistance, imprint suitability, curability and the like. Such a polymer component is preferably a polymer having a polymerizable functional group in the side chain. The weight average molecular weight of the polymer component is preferably from 2,000 to 100,000, more preferably from 5,000 to 50,000, from the viewpoint of compatibility with the polymerizable monomer. The addition amount of the polymer component is preferably 0 to 30% by mass, more preferably 0 to 20% by mass, further preferably 0 to 10% by mass, and most preferably, relative to the component excluding the solvent of the composition. 2% by mass or less. When the content of the polymer component having a molecular weight of 2,000 or more in the components excluding the solvent in the composition of the present invention is 30% by mass or less, mold filling property is improved, throughput is improved, and pattern formability is improved. It tends to improve. Therefore, it is preferable that the resin component is as small as possible from the viewpoint of pattern formability, and it is preferable that the resin component is not included except for a surfactant and a trace amount of additives.
本発明の組成物には前記成分の他に必要に応じて離型剤、シランカップリング剤、重合禁止剤、紫外線吸収剤、光安定剤、老化防止剤、可塑剤、密着促進剤、熱重合開始剤、着色剤、エラストマー粒子、光酸増殖剤、光塩基発生剤、塩基性化合物、流動調整剤、消泡剤、分散剤等を添加してもよい。 In addition to the above components, the composition of the present invention may include a mold release agent, a silane coupling agent, a polymerization inhibitor, an ultraviolet absorber, a light stabilizer, an antiaging agent, a plasticizer, an adhesion promoter, and thermal polymerization. Initiators, colorants, elastomer particles, photoacid multipliers, photobase generators, basic compounds, flow regulators, antifoaming agents, dispersants and the like may be added.
本発明の組成物は、上述の各成分を混合して調製することができる。また、前記各成分を混合した後、例えば、孔径0.05μm〜5.0μmのフィルターで濾過することによって溶液として調製することもできる。本発明の組成物の混合・溶解は、通常、0℃〜100℃の範囲で行われる。濾過は、多段階で行ってもよいし、多数回繰り返してもよい。また、濾過した液を再濾過することもできる。濾過に使用するフィルターの材質は、ポリエチレン樹脂、ポリプロピレン樹脂、フッソ樹脂、ナイロン樹脂などのものが使用できるが特に限定されるものではない。 The composition of the present invention can be prepared by mixing the above-mentioned components. Moreover, after mixing each said component, it can also prepare as a solution by filtering with a filter with a hole diameter of 0.05 micrometer-5.0 micrometers, for example. Mixing and dissolution of the composition of the present invention is usually performed in the range of 0 ° C to 100 ° C. Filtration may be performed in multiple stages or repeated many times. Moreover, the filtered liquid can be refiltered. The material of the filter used for filtration may be polyethylene resin, polypropylene resin, fluorine resin, nylon resin or the like, but is not particularly limited.
本発明の組成物において、溶剤を除く成分の25℃における粘度は1〜100mPa・sであることが好ましい。より好ましくは2〜50mPa・s、さらに好ましくは5〜30mPa・sである。粘度を適切な範囲とすることで、パターンの矩形性が向上し、さらに残膜を低く抑えることができる。 In the composition of the present invention, the viscosity at 25 ° C. of the components excluding the solvent is preferably 1 to 100 mPa · s. More preferably, it is 2-50 mPa * s, More preferably, it is 5-30 mPa * s. By setting the viscosity within an appropriate range, the rectangularity of the pattern can be improved and the remaining film can be kept low.
[パターン形成方法]
次に、本発明の組成物を用いたパターン(特に、微細凹凸パターン)の形成方法について説明する。本発明のパターン形成方法では、本発明の組成物を基板または支持体(基材)上に塗布してパターン形成層を形成する工程と、前記パターン形成層表面にモールドを圧接する工程と、前記パターン形成層に光を照射する工程と、を経て本発明の組成物を硬化することで、微細な凹凸パターンを形成することができる。
ここで、本発明の組成物は、光照射後にさらに加熱して硬化させることが好ましい。具体的には、基材(基板または支持体)上に少なくとも本発明の組成物からなるパターン形成層を塗布し、必要に応じて乾燥させて本発明の組成物からなる層(パターン形成層)を形成してパターン受容体(基材上にパターン形成層が設けられたもの)を作製し、当該パターン受容体のパターン形成層表面にモールドを圧接し、モールドパターンを転写する加工を行い、微細凹凸パターン形成層を光照射により硬化させる。本発明のパターン形成方法による光インプリントリソグラフィは、積層化や多重パターニングもでき、通常の熱インプリントと組み合わせて用いることもできる。
[Pattern formation method]
Next, the formation method of the pattern (especially fine concavo-convex pattern) using the composition of this invention is demonstrated. In the pattern forming method of the present invention, a step of applying the composition of the present invention on a substrate or a support (base material) to form a pattern forming layer, a step of pressing a mold on the surface of the pattern forming layer, A fine concavo-convex pattern can be formed by curing the composition of the present invention through a step of irradiating the pattern forming layer with light.
Here, the composition of the present invention is preferably further heated and cured after light irradiation. Specifically, a layer (pattern forming layer) consisting of the composition of the present invention is applied on a base material (substrate or support) by applying at least a pattern forming layer consisting of the composition of the present invention and drying as necessary. To form a pattern receptor (with a pattern-forming layer provided on the substrate), press the mold against the surface of the pattern-receiving layer of the pattern receptor, and transfer the mold pattern. The concavo-convex pattern forming layer is cured by light irradiation. The optical imprint lithography according to the pattern forming method of the present invention can be laminated and multiple patterned, and can be used in combination with ordinary thermal imprint.
本発明の組成物は、光ナノインプリント法により微細なパターンを低コストかつ高い精度で形成することができる。このため、従来のフォトリソグラフィ技術を用いて形成されていたものをさらに高い精度で、かつ、低コストで形成することができる。例えば、基板または支持体上に本発明の組成物を塗布し、該組成物からなる層を露光、硬化、必要に応じて乾燥(ベーク)させることによって、液晶ディスプレイ(LCD)などに用いられる、オーバーコート層や絶縁膜などの永久膜や、半導体集積回路、記録材料、あるいはフラットパネルディスプレイなどのエッチングレジストとして適用することも可能である。特に本発明の組成物を用いて形成されたパターンは、エッチング性にも優れ、フッ化炭素等を用いるドライエッチングのエッチングレジストとしても好ましく用いることができる。 The composition of the present invention can form a fine pattern with low cost and high accuracy by a photo nanoimprint method. For this reason, what was formed using the conventional photolithography technique can be formed with higher accuracy and at low cost. For example, the composition of the present invention is applied on a substrate or a support, and a layer made of the composition is exposed, cured, and dried (baked) as necessary to be used for a liquid crystal display (LCD). It can also be applied as a permanent film such as an overcoat layer or an insulating film, an etching resist for a semiconductor integrated circuit, a recording material, or a flat panel display. In particular, the pattern formed using the composition of the present invention is excellent in etching property and can be preferably used as an etching resist for dry etching using fluorocarbon or the like.
液晶ディスプレイ(LCD)などに用いられる永久膜(構造部材用のレジスト)や電子材料の基板加工に用いられるレジストにおいては、製品の動作を阻害しないようにするため、レジスト中の金属あるいは有機物のイオン性不純物の混入を極力避けることが望ましい。このため、本発明の組成物中における金属または有機物のイオン性不純物の濃度としては、通常、1000ppm以下であり、好ましくは10ppm以下であり、さらに好ましくは100ppb以下である。 In permanent films (resist for structural members) used in liquid crystal displays (LCDs) and resists used in substrate processing of electronic materials, ions of metals or organic substances in the resist are used so as not to hinder the operation of the product. It is desirable to avoid contamination with sexual impurities as much as possible. For this reason, the concentration of metal or organic ionic impurities in the composition of the present invention is usually 1000 ppm or less, preferably 10 ppm or less, and more preferably 100 ppb or less.
以下において、本発明の組成物を用いたパターン形成方法(パターン転写方法)について具体的に述べる。
本発明のパターン形成方法においては、まず、本発明の組成物を基材上に塗布してパターン形成層を形成する。
本発明の組成物を基材上に塗布する際の塗布方法としては、一般によく知られた塗布方法、例えば、ディップコート法、エアーナイフコート法、カーテンコート法、ワイヤーバーコート法、グラビアコート法、エクストルージョンコート法、スピンコート方法、スリットスキャン法、インクジェット法などを挙げることができる。また、本発明の組成物からなるパターン形成層の膜厚は、使用する用途によって異なるが、0.05μm〜30μm程度である。また、本発明の組成物を、多重塗布により塗布してもよい。さらに、基材と本発明の組成物からなるパターン形成層との間には、例えば平坦化層等の他の有機層などを形成してもよい。これにより、パターン形成層と基板とが直接接しないことから、基板に対するごみの付着や基板の損傷等を防止することができる。尚、本発明の組成物によって形成されるパターンは、基材上に有機層を設けた場合であっても、有機層との密着性に優れる。
Hereinafter, a pattern formation method (pattern transfer method) using the composition of the present invention will be specifically described.
In the pattern formation method of this invention, first, the composition of this invention is apply | coated on a base material, and a pattern formation layer is formed.
As a coating method for coating the composition of the present invention on a substrate, generally known coating methods such as dip coating, air knife coating, curtain coating, wire bar coating, and gravure coating are used. And an extrusion coating method, a spin coating method, a slit scanning method, an ink jet method and the like. Moreover, although the film thickness of the pattern formation layer which consists of a composition of this invention changes with uses to be used, it is about 0.05 micrometer-30 micrometers. Further, the composition of the present invention may be applied by multiple coating. Furthermore, you may form other organic layers, such as a planarization layer, for example between a base material and the pattern formation layer which consists of a composition of this invention. Thereby, since the pattern formation layer and the substrate are not in direct contact with each other, it is possible to prevent adhesion of dust to the substrate, damage to the substrate, and the like. In addition, the pattern formed with the composition of this invention is excellent in adhesiveness with an organic layer, even when it is a case where an organic layer is provided on a base material.
本発明の組成物を塗布するための基材(基板または支持体)は、種々の用途によって選択可能であり、例えば、石英、ガラス、光学フィルム、セラミック材料、蒸着膜、磁性膜、反射膜、Ni、Cu、Cr、Feなどの金属基板、紙、SOG(Spin On Glass)、ポリエステルフィルム、ポリカーボネートフィルム、ポリイミドフィルム等のポリマー基板、TFTアレイ基板、PDPの電極板、ガラスや透明プラスチック基板、ITOや金属などの導電性基材、絶縁性基材、シリコーン、窒化シリコーン、ポリシリコーン、酸化シリコーン、アモルファスシリコーンなどの半導体作製基板など特に制約されない。また、基材の形状も特に限定されるものではなく、板状でもよいし、ロール状でもよい。また、後述のように前記基材としては、モールドとの組み合わせ等に応じて、光透過性、または、非光透過性のものを選択することができる。 The substrate (substrate or support) on which the composition of the present invention is applied can be selected depending on various applications. For example, quartz, glass, optical film, ceramic material, vapor deposition film, magnetic film, reflection film, Metal substrates such as Ni, Cu, Cr, Fe, paper, SOG (Spin On Glass), polyester film, polycarbonate film, polymer film such as polyimide film, TFT array substrate, PDP electrode plate, glass and transparent plastic substrate, ITO There are no particular restrictions on semiconductor substrates such as conductive substrates such as metal and metal, insulating substrates, silicone, silicon nitride, polysilicon, silicone oxide, and amorphous silicone. Further, the shape of the substrate is not particularly limited, and may be a plate shape or a roll shape. In addition, as described later, a light transmissive or non-light transmissive material can be selected as the base material depending on the combination with the mold.
次いで、本発明のパターン形成方法においては、パターン形成層にパターンを転写するために、パターン形成層表面にモールドを押接する。これにより、モールドの押圧表面にあらかじめ形成された微細なパターンをパターン形成層に転写することができる。
本発明で用いることのできるモールド材について説明する。本発明の組成物を用いた光ナノインプリントリソグラフィは、モールド材および/または基材の少なくとも一方に、光透過性の材料を選択する。本発明に適用される光インプリントリソグラフィでは、基材の上に本発明の組成物を塗布してパターン形成層を形成し、この表面に光透過性のモールドを押接し、モールドの裏面から光を照射し、前記パターン形成層を硬化させる。また、光透過性基材上にナノインプリント用組成物を塗布し、モールドを押し当て、基材の裏面から光を照射し、ナノインプリント用組成物を硬化させることもできる。
前記光照射は、モールドを付着させた状態で行ってもよいし、モールド剥離後に行ってもよいが、本発明では、モールドを密着させた状態で行うのが好ましい。
Next, in the pattern forming method of the present invention, a mold is pressed against the surface of the pattern forming layer in order to transfer the pattern to the pattern forming layer. Thereby, the fine pattern previously formed on the pressing surface of the mold can be transferred to the pattern forming layer.
The molding material that can be used in the present invention will be described. In optical nanoimprint lithography using the composition of the present invention, a light transmissive material is selected as at least one of a molding material and / or a base material. In the optical imprint lithography applied to the present invention, the composition of the present invention is applied on a substrate to form a pattern forming layer, a light-transmitting mold is pressed against this surface, and light is transmitted from the back surface of the mold. To cure the pattern forming layer. Moreover, the composition for nanoimprint can be apply | coated on a transparent base material, a mold can be pressed, light can be irradiated from the back surface of a base material, and the composition for nanoimprint can also be hardened.
The light irradiation may be performed with the mold attached or after the mold is peeled off. In the present invention, the light irradiation is preferably performed with the mold in close contact.
本発明で用いることのできるモールドは、転写されるべきパターンを有するモールドが使われる。前記モールド上のパターンは、例えば、フォトリソグラフィや電子線描画法等によって、所望する加工精度に応じてパターンが形成できるが、本発明では、モールドパターン形成方法は特に制限されない。
本発明において用いられる光透過性モールド材は、特に限定されないが、所定の強度、耐久性を有するものであればよい。具体的には、ガラス、石英、PMMA、ポリカーボネート樹脂などの光透明性樹脂、透明金属蒸着膜、ポリジメチルシロキサンなどの柔軟膜、光硬化膜、金属膜等が例示される。
As the mold that can be used in the present invention, a mold having a pattern to be transferred is used. The pattern on the mold can be formed according to the desired processing accuracy by, for example, photolithography, electron beam drawing, or the like, but the mold pattern forming method is not particularly limited in the present invention.
The light-transmitting mold material used in the present invention is not particularly limited as long as it has predetermined strength and durability. Specifically, a light transparent resin such as glass, quartz, PMMA, and polycarbonate resin, a transparent metal vapor-deposited film, a flexible film such as polydimethylsiloxane, a photocured film, and a metal film are exemplified.
本発明において光透過性の基材を用いた場合に使われる非光透過型モールド材としては、特に限定されないが、所定の強度を有するものであればよい。具体的には、セラミック材料、蒸着膜、磁性膜、反射膜、Ni、Cu、Cr、Feなどの金属基板、SiC、シリコーン、窒化シリコーン、ポリシリコーン、酸化シリコーン、アモルファスシリコーンなどの基板などが例示され、特に制約されない。また、モールドの形状も特に制約されるものではなく、板状モールド、ロール状モールドのどちらでもよい。ロール状モールドは、特に転写の連続生産性が必要な場合に適用される。 In the present invention, the non-light-transmitting mold material used when a light-transmitting substrate is used is not particularly limited as long as it has a predetermined strength. Specific examples include ceramic materials, deposited films, magnetic films, reflective films, metal substrates such as Ni, Cu, Cr, and Fe, and substrates such as SiC, silicone, silicone nitride, polysilicon, silicone oxide, and amorphous silicone. There are no particular restrictions. Further, the shape of the mold is not particularly limited, and may be either a plate mold or a roll mold. The roll mold is applied particularly when continuous transfer productivity is required.
本発明のパターン形成方法で用いられるモールドは、ナノインプリント用組成物とモールド表面との剥離性を向上させるために離型処理を行ったものを用いてもよい。このようなモールドとしては、シリコーン系やフッ素系などのシランカップリング剤による処理を行ったもの、例えば、ダイキン工業(株)製のオプツールDSXや、住友スリーエム(株)製のNovec EGC−1720等、市販の離型剤も好適に用いることができる。 The mold used in the pattern forming method of the present invention may be a mold that has been subjected to a release treatment in order to improve the peelability between the nanoimprinting composition and the mold surface. Examples of such molds include those that have been treated with a silane coupling agent such as silicone or fluorine, such as OPTOOL DSX manufactured by Daikin Industries, Ltd. or Novec EGC-1720 manufactured by Sumitomo 3M Co., Ltd. Commercially available release agents can also be suitably used.
本発明の組成物を用いて光インプリントリソグラフィを行う場合、本発明のパターン形成方法では、通常、モールド圧力を10気圧以下で行うのが好ましく、より好ましくは5気圧以下、さらに好ましくは1気圧〜5気圧である。モールド圧力を10気圧以下とすることにより、モールドや基板が変形しにくくパターン精度が向上する傾向にある。また、加圧が低いため装置を縮小できる傾向にある点からも好ましい。モールド圧力は、モールド凸部のナノインプリント用組成物の残膜が少なくなる範囲で、モールド転写の均一性が確保できる領域を選択することが好ましい。 In the case of performing photoimprint lithography using the composition of the present invention, in the pattern forming method of the present invention, the mold pressure is preferably preferably 10 atm or less, more preferably 5 atm or less, and even more preferably 1 atm. ~ 5 atm. By setting the mold pressure to 10 atm or less, the mold and the substrate are hardly deformed and the pattern accuracy tends to be improved. Further, it is preferable from the viewpoint that the apparatus can be reduced because the pressure is low. As the mold pressure, it is preferable to select a region in which the uniformity of mold transfer can be ensured within a range in which the remaining film of the nanoimprinting composition on the mold convex portion is reduced.
本発明のパターン形成方法中、前記パターン形成層に光を照射する工程における光照射の照射量は、硬化に必要な照射量よりも十分大きければよい。硬化に必要な照射量は、ナノインプリント用組成物の不飽和結合の消費量や硬化膜のタッキネスを調べて適宜決定される。
また、本発明に適用される光インプリントリソグラフィにおいては、光照射の際の基板温度は、通常、室温で行われるが、反応性を高めるために加熱をしながら光照射してもよい。光照射の前段階として、真空状態にしておくと、気泡混入防止、酸素混入による反応性低下の抑制、モールドとナノインプリント用組成物との密着性向上に効果があるため、真空状態で光照射してもよい。また、本発明のパターン形成方法中、光照射時における好ましい真空度は、10-1Paから常圧の範囲である。
In the pattern forming method of the present invention, the irradiation amount of the light irradiation in the step of irradiating the pattern forming layer may be sufficiently larger than the irradiation amount necessary for curing. The irradiation amount necessary for curing is appropriately determined by examining the consumption of unsaturated bonds of the nanoimprinting composition and the tackiness of the cured film.
In the photoimprint lithography applied to the present invention, the substrate temperature at the time of light irradiation is usually room temperature, but the light irradiation may be performed while heating in order to increase the reactivity. As a pre-stage of light irradiation, if it is in a vacuum state, it is effective in preventing bubbles from being mixed, suppressing the decrease in reactivity due to oxygen mixing, and improving the adhesion between the mold and the nanoimprinting composition. May be. In the pattern forming method of the present invention, the preferable degree of vacuum at the time of light irradiation is in the range of 10 −1 Pa to normal pressure.
本発明の組成物を硬化させるために用いられる光は特に限定されず、例えば、高エネルギー電離放射線、近紫外、遠紫外、可視、赤外等の領域の波長の光または放射線が挙げられる。高エネルギー電離放射線源としては、例えば、コッククロフト型加速器、ハンデグラーフ型加速器、リニヤーアクセレーター、ベータトロン、サイクロトロン等の加速器によって加速された電子線が工業的に最も便利かつ経済的に使用されるが、その他に放射性同位元素や原子炉等から放射されるγ線、X線、α線、中性子線、陽子線等の放射線も使用できる。紫外線源としては、例えば、紫外線螢光灯、低圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノン灯、炭素アーク灯、太陽灯等が挙げられる。放射線には、例えばマイクロ波、EUVが含まれる。また、LED、半導体レーザー光、あるいは248nmのKrFエキシマレーザー光や193nmArFエキシマレーザーなどの半導体の微細加工で用いられているレーザー光も本発明に好適に用いることができる。これらの光は、モノクロ光を用いてもよいし、複数の波長の異なる光(ミックス光)でもよい。 The light used for curing the composition of the present invention is not particularly limited, and examples thereof include high energy ionizing radiation, light or radiation having a wavelength in the region of near ultraviolet, far ultraviolet, visible, infrared, and the like. As the high-energy ionizing radiation source, for example, an electron beam accelerated by an accelerator such as a cockcroft accelerator, a handagraaf accelerator, a linear accelerator, a betatron, or a cyclotron is industrially most conveniently and economically used. However, radiation such as γ rays, X rays, α rays, neutron rays, proton rays emitted from radioisotopes or nuclear reactors can also be used. Examples of the ultraviolet ray source include an ultraviolet fluorescent lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a xenon lamp, a carbon arc lamp, and a solar lamp. The radiation includes, for example, microwaves and EUV. Also, laser light used in semiconductor microfabrication such as LED, semiconductor laser light, or 248 nm KrF excimer laser light or 193 nm ArF excimer laser can be suitably used in the present invention. These lights may be monochromatic lights, or may be lights having different wavelengths (mixed lights).
露光に際しては、露光照度を1mW/cm2〜50mW/cm2の範囲にすることが好ましい。1mW/cm2以上とすることにより、露光時間を短縮することができるため生産性が向上し、50mW/cm2以下とすることにより、副反応が生じることによる永久膜の特性の劣化を抑止できる傾向にあり好ましい。露光量は5mJ/cm2〜1000mJ/cm2の範囲にすることが望ましい。5mJ/cm2未満では、露光マージンが狭くなり、光硬化が不十分となりモールドへの未反応物の付着などの問題が発生しやすくなる。一方、1000mJ/cm2を超えると組成物の分解による永久膜の劣化の恐れが生じる。
さらに、露光に際しては、酸素によるラジカル重合の阻害を防ぐため、チッソやアルゴンなどの不活性ガスを流して、酸素濃度を100mg/L未満に制御してもよい。
During exposure is preferably in the range of exposure intensity of 1mW / cm 2 ~50mW / cm 2 . By making the exposure time 1 mW / cm 2 or more, the exposure time can be shortened so that productivity is improved, and by making the exposure time 50 mW / cm 2 or less, deterioration of the properties of the permanent film due to side reactions can be suppressed. It tends to be preferable. The exposure dose is desirably in the range of 5 mJ / cm 2 to 1000 mJ / cm 2 . If it is less than 5 mJ / cm 2 , the exposure margin becomes narrow, photocuring becomes insufficient, and problems such as adhesion of unreacted substances to the mold tend to occur. On the other hand, if it exceeds 1000 mJ / cm 2 , the permanent film may be deteriorated due to decomposition of the composition.
Further, during exposure, in order to prevent inhibition of radical polymerization by oxygen, an inert gas such as nitrogen or argon may be flowed to control the oxygen concentration to less than 100 mg / L.
本発明のパターン形成方法においては、光照射によりパターン形成層を硬化させた後、必要に応じて硬化させたパターンに熱を加えてさらに硬化させる工程を含んでいてもよい。光照射後に本発明の組成物を加熱硬化させる熱としては、150〜280℃が好ましく、200〜250℃がより好ましい。また、熱を付与する時間としては、5〜60分間が好ましく、15〜45分間がさらに好ましい。 In the pattern formation method of this invention, after making a pattern formation layer harden | cure by light irradiation, the process of applying the heat | fever to the pattern hardened | cured as needed may be included. As heat which heat-hardens the composition of this invention after light irradiation, 150-280 degreeC is preferable and 200-250 degreeC is more preferable. In addition, the time for applying heat is preferably 5 to 60 minutes, and more preferably 15 to 45 minutes.
また、本発明のパターン形成方法によって形成されたパターンは、エッチングレジストとしても有用である。本発明のナノインプリント用組成物をエッチングレジストとして利用する場合には、まず、基材として例えばSiO2等の薄膜が形成されたシリコンウエハー等を用い、基材上に本発明のパターン形成方法によってナノオーダーの微細なパターンを形成する。その後、ウェットエッチングの場合にはフッ化水素等、ドライエッチングの場合にはCF4等のエッチングガスを用いてエッチングすることにより、基材上に所望のパターンを形成することができる。本発明の組成物は、特にドライエッチングに対するエッチング耐性が良好である。 The pattern formed by the pattern forming method of the present invention is also useful as an etching resist. When the composition for nanoimprinting of the present invention is used as an etching resist, first, a silicon wafer or the like on which a thin film such as SiO 2 is formed is used as a base material, and then nanopatterned by the pattern forming method of the present invention on the base material. A fine pattern of order is formed. Thereafter, a desired pattern can be formed on the substrate by etching using an etching gas such as hydrogen fluoride in the case of wet etching or CF 4 in the case of dry etching. The composition of the present invention has particularly good etching resistance against dry etching.
上述のように本発明のパターン形成方法によって形成されたパターンは、液晶ディスプレイ(LCD)などに用いられる永久膜(構造部材用のレジスト)やエッチングレジストとして使用することができる。また、前記永久膜は、製造後にガロン瓶やコート瓶などの容器にボトリングし、輸送、保管されるが、この場合に、劣化を防ぐ目的で、容器内を不活性なチッソ、またはアルゴンなどで置換しておいてもよい。また、輸送、保管に際しては、常温でもよいが、より永久膜の変質を防ぐため、−20℃から0℃の範囲に温度制御してもよい。勿論、反応が進行しないレベルで遮光することが好ましい。 As described above, the pattern formed by the pattern forming method of the present invention can be used as a permanent film (resist for a structural member) or an etching resist used in a liquid crystal display (LCD) or the like. In addition, the permanent film is bottled in a container such as a gallon bottle or a coated bottle after manufacture, and is transported and stored. In this case, in order to prevent deterioration, the container is filled with inert nitrogen or argon. It may be replaced. Further, at the time of transportation and storage, the temperature may be normal temperature, but the temperature may be controlled in the range of −20 ° C. to 0 ° C. in order to prevent the permanent film from being altered. Of course, it is preferable to shield from light so that the reaction does not proceed.
以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。 The present invention will be described more specifically with reference to the following examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below.
合成例
化合物(I−1)の合成
4−トリデカフロロヘキシルエチルベンジルアルコール5gをアセトン70mlに溶解させ、これにトリエチルアミン1.8gを加えた。この溶液に氷冷下アクリル酸クロリド1.3gを滴下した。室温で3時間反応させた後、水100mlを加えた。これを酢酸エチルで抽出し、有機相を1N−HCl水溶液、飽和炭酸水素ナトリウム水溶液、水、飽和食塩水で順次洗浄した。有機相を乾燥、濃縮し、粗生成物をカラムクロマトグラフィーにて精製して4gの化合物I−1を得た。
Synthesis Example Synthesis of Compound (I-1) 5 g of 4-tridecafluorohexylethylbenzyl alcohol was dissolved in 70 ml of acetone, and 1.8 g of triethylamine was added thereto. To this solution, 1.3 g of acrylic acid chloride was added dropwise under ice cooling. After reacting at room temperature for 3 hours, 100 ml of water was added. This was extracted with ethyl acetate, and the organic phase was washed successively with 1N HCl aqueous solution, saturated aqueous sodium hydrogen carbonate solution, water and saturated brine. The organic phase was dried and concentrated, and the crude product was purified by column chromatography to obtain 4 g of compound I-1.
組成物の調整
表1に示す重合性単量体に、重合開始剤P−1(2重量%)、界面活性剤W−1(0.1重量%)、界面活性剤W−2(0.04重量%)、酸化防止剤A−1およびA−2(各1重量%)を加えて組成物を調整した。表1中、重合性単量体の種類の後の括弧は、重合性単量体の添加量(単位:g)を示している。
Preparation of Composition Into the polymerizable monomers shown in Table 1, polymerization initiator P-1 (2% by weight), surfactant W-1 (0.1% by weight), surfactant W-2 (0. 04 wt%), antioxidants A-1 and A-2 (1 wt% each) were added to prepare the composition. In Table 1, parentheses after the type of the polymerizable monomer indicate the amount of the polymerizable monomer added (unit: g).
<光重合開始剤>
P−1:2,4,6−トリメチルベンゾイル−エトキシフェニル−ホスフィンオキシド(BASF社製:Lucirin TPO−L)
<Photopolymerization initiator>
P-1: 2,4,6-trimethylbenzoyl-ethoxyphenyl-phosphine oxide (manufactured by BASF: Lucirin TPO-L)
<界面活性剤>
W−1:フッ素系界面活性剤(トーケムプロダクツ社製)
W−2:シリコーン系界面活性剤(大日本インキ化学工業社製:メガファックペインタッド31)
<Surfactant>
W-1: Fluorosurfactant (manufactured by Tochem Products)
W-2: Silicone-based surfactant (Dainippon Ink & Chemicals, Inc .: Megafuck Paintad 31)
<酸化防止剤>
A−1:スミライザーGA80(住友化学工業(株)製)
A−2:アデカスタブAO503((株)ADEKA製)
<Antioxidant>
A-1: Sumilizer GA80 (manufactured by Sumitomo Chemical Co., Ltd.)
A-2: ADK STAB AO503 (manufactured by ADEKA Corporation)
<ドライエッチング耐性>
シリコンウェハ上に硬化後の膜厚が1μmとなるように各組成物を塗布した後、モールドを圧着せず、窒素雰囲気下で露光量240mJ/cm2で露光し硬化膜を得た。得られた硬化膜を、日立ハイテクノロジー社製ドライエッチャー(U−621)を用いてAr/C4F6/O2=100:4:2のガスで2分間プラズマドライエッチングを行い、残膜量を測定し、1秒間当りのエッチングレートを算出した。得られたエチングレートを比較例1の値が1となるように規格化した。値が小さいほどドライエッチング耐性が良好であることを示す。
<Dry etching resistance>
Each composition was applied onto a silicon wafer so that the film thickness after curing was 1 μm, and then the mold was not pressed and exposed in an atmosphere of nitrogen at an exposure amount of 240 mJ / cm 2 to obtain a cured film. The obtained cured film was subjected to plasma dry etching with Ar / C 4 F 6 / O 2 = 100: 4: 2 for 2 minutes using a dry etcher (U-621) manufactured by Hitachi High-Technology Co., Ltd. The amount was measured and the etching rate per second was calculated. The obtained etching rate was standardized so that the value of Comparative Example 1 was 1. A smaller value indicates better dry etching resistance.
<モールド剥離性>
各組成物をシリコン基板上にスピンコートした。1つの組成物につき10枚の塗布膜を準備した。得られた塗布膜に線幅100nm、溝深さが100nmの矩形ライン/スペースパターン(1/1)を有し、パターン表面がフッ素系処理された石英モールドをのせ、ナノインプリント装置にセットした。装置内を真空とした後、窒素パージを行って装置内を窒素置換した。25℃で1MPaの圧力でモールドをシリコン基板に圧着させ、これに石英モールドの裏面から240mJ/cm2の条件で露光し、露光後、石英モールドを離し、パターンを得た。この操作を、石英モールドを変えずに連続して10枚の塗布膜について実施した。10回のパターン形成に使用した石英モールドに組成物の成分が付着しているか否かを走査型電子顕微鏡もしくは光学顕微鏡にて観察し、剥離性を以下のように評価した。
A:モールドに組成物の付着がまったく認められなかった。
B:モールドにわずかな組成物の付着が認められた。
C:モールドの組成物の付着が明らかに認められた。
<Mold peelability>
Each composition was spin coated on a silicon substrate. Ten coating films were prepared for each composition. A quartz mold having a rectangular line / space pattern (1/1) having a line width of 100 nm and a groove depth of 100 nm and having a pattern surface treated with a fluorine system was placed on the obtained coating film and set in a nanoimprint apparatus. After the inside of the apparatus was evacuated, nitrogen purge was performed to replace the inside of the apparatus with nitrogen. The mold was pressure-bonded to the silicon substrate at 25 ° C. and a pressure of 1 MPa, and exposed to this from the back surface of the quartz mold under the condition of 240 mJ / cm 2. After the exposure, the quartz mold was released to obtain a pattern. This operation was continuously performed on ten coating films without changing the quartz mold. Whether or not the components of the composition were adhered to the quartz mold used for 10 pattern formations was observed with a scanning electron microscope or an optical microscope, and the peelability was evaluated as follows.
A: Adherence of the composition to the mold was not recognized at all.
B: Slight adhesion of the composition was observed on the mold.
C: Adhesion of the mold composition was clearly observed.
本発明の組成物を用いた実施例1は、フロロアルキル基を有するが芳香族基を有さない重合性単量体(X−1)を用いた比較例1に対し、ドライエッチング耐性に優れることが分かる。また、実施例1は、芳香族基を有するがフロロアルキル基を有さない重合性単量体(X−2)を用いた比較例2に対し、ドライエッチング耐性はほぼ同等で良好なモールド剥離性を示した。さらに、フロロアルキル基を有する重合性単量体と、芳香族基を有する重合性単量体を併用した比較例3であっても、剥離性が劣ることが分かった。
すなわち、フロロアルキル基を有し、かつ、芳香族基を有する重合性単量体を用いることにより、ドライエッチング耐性およびモールド剥離性の両方について高いレベルを有するナノインプリント用組成物となることが分かった。
さらに、他の本発明の組成物である、実施例2〜5についても、高いドライエッチング耐性と、良好なモールド剥離性を示すことが確認された。
Example 1 using the composition of the present invention is superior in dry etching resistance to Comparative Example 1 using a polymerizable monomer (X-1) having a fluoroalkyl group but not having an aromatic group. I understand that. In addition, Example 1 has almost the same dry etching resistance as that of Comparative Example 2 using a polymerizable monomer (X-2) having an aromatic group but not having a fluoroalkyl group. Showed sex. Furthermore, it was found that even in Comparative Example 3 in which a polymerizable monomer having a fluoroalkyl group and a polymerizable monomer having an aromatic group were used in combination, the peelability was inferior.
That is, it was found that by using a polymerizable monomer having a fluoroalkyl group and an aromatic group, a composition for nanoimprinting having a high level of both dry etching resistance and mold releasability was obtained. .
Furthermore, it was confirmed that Examples 2 to 5 which are other compositions of the present invention also show high dry etching resistance and good mold releasability.
Claims (17)
式(I)
Formula (I)
前記ナノインプリント用組成物にモールドを押圧する工程と、
前記ナノインプリント用組成物に光照射する工程とを、
含むことを特徴とするパターン形成方法。 A method for producing the cured product according to claim 15, wherein at least the step of installing the composition for nanoimprinting according to any one of claims 1 to 14 on a substrate,
Pressing the mold against the nanoimprint composition; and
Irradiating the composition for nanoimprint with light,
A pattern forming method comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008207850A JP5227694B2 (en) | 2008-08-12 | 2008-08-12 | Nanoimprinting composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008207850A JP5227694B2 (en) | 2008-08-12 | 2008-08-12 | Nanoimprinting composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010045163A JP2010045163A (en) | 2010-02-25 |
JP5227694B2 true JP5227694B2 (en) | 2013-07-03 |
Family
ID=42016320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008207850A Active JP5227694B2 (en) | 2008-08-12 | 2008-08-12 | Nanoimprinting composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5227694B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5827180B2 (en) * | 2012-06-18 | 2015-12-02 | 富士フイルム株式会社 | Imprint curable composition and substrate adhesion composition, and semiconductor device using the same |
TWI645252B (en) | 2014-12-25 | 2018-12-21 | 日商富士軟片股份有限公司 | Photocurable composition for imprint, pattern forming method, and element manufacturing method |
JP2016164977A (en) * | 2015-02-27 | 2016-09-08 | キヤノン株式会社 | Nanoimprint liquid material, method for manufacturing nanoimprint liquid material, method for manufacturing hardened material pattern, method for manufacturing optical component, method for manufacturing circuit board, and method for manufacturing electronic component |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004071934A (en) * | 2002-08-08 | 2004-03-04 | Kanegafuchi Chem Ind Co Ltd | Method for manufacturing fine pattern and transfer material |
JP4742665B2 (en) * | 2005-04-28 | 2011-08-10 | 旭硝子株式会社 | Method of manufacturing processed substrate processed by etching |
JP2007001250A (en) * | 2005-06-27 | 2007-01-11 | Asahi Glass Co Ltd | Manufacturing method of fine pattern formed material |
JP5196933B2 (en) * | 2006-09-27 | 2013-05-15 | 富士フイルム株式会社 | Curable composition for optical nanoimprint lithography and pattern forming method using the same |
JP5309436B2 (en) * | 2006-10-16 | 2013-10-09 | 日立化成株式会社 | Resin microstructure, method for producing the same, and polymerizable resin composition |
-
2008
- 2008-08-12 JP JP2008207850A patent/JP5227694B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010045163A (en) | 2010-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5243887B2 (en) | Curable composition for nanoimprint and pattern forming method | |
JP5671302B2 (en) | Curable composition for imprint, pattern forming method and pattern | |
JP5611519B2 (en) | Composition for nanoimprint, pattern and method for forming the same | |
JP5665329B2 (en) | Curable composition for imprint, pattern forming method and pattern | |
JP5498729B2 (en) | Curable composition for imprint, pattern forming method and pattern | |
US8530540B2 (en) | Curable composition for imprints, patterning method and pattern | |
JP5829177B2 (en) | Curable composition for imprint, pattern forming method and pattern | |
JP5511415B2 (en) | Curable composition for imprint, pattern forming method and pattern | |
JP5671377B2 (en) | Curable composition for imprint, pattern forming method and pattern | |
JP5564383B2 (en) | Curable composition for imprint, pattern forming method and pattern | |
JP2010018666A (en) | Composition for nano imprint, pattern and patterning method | |
JP2010186979A (en) | Curable composition for imprints, patterning method, and pattern | |
JP5268384B2 (en) | Curable composition for nanoimprint and pattern forming method | |
JP5968933B2 (en) | Curable composition for imprint, pattern forming method and pattern | |
JP5448589B2 (en) | Pattern formation method | |
WO2012137672A1 (en) | Pattern-forming method and pattern | |
JP2010106062A (en) | Composition for nanoimprint, and pattern and method for forming the same | |
JP5227694B2 (en) | Nanoimprinting composition | |
JP2013179159A (en) | Curable composition for imprint, patterning method and pattern | |
JP5566639B2 (en) | Curable composition for imprint, cured product, and pattern forming method | |
JP5695482B2 (en) | Curable composition for imprint, pattern forming method and pattern | |
JP2010157542A (en) | Curable composition for nanoimprint and method of forming pattern | |
JP2009208239A (en) | Pattern forming method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110207 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120614 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120619 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120806 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130305 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130318 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5227694 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160322 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |