JP5226655B2 - Resin base for light reflector - Google Patents

Resin base for light reflector Download PDF

Info

Publication number
JP5226655B2
JP5226655B2 JP2009290275A JP2009290275A JP5226655B2 JP 5226655 B2 JP5226655 B2 JP 5226655B2 JP 2009290275 A JP2009290275 A JP 2009290275A JP 2009290275 A JP2009290275 A JP 2009290275A JP 5226655 B2 JP5226655 B2 JP 5226655B2
Authority
JP
Japan
Prior art keywords
resin
weight
light reflector
talc
polybutylene terephthalate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009290275A
Other languages
Japanese (ja)
Other versions
JP2011133523A (en
Inventor
竜也 渡利
修 滝瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Engineering Plastics Corp
Original Assignee
Mitsubishi Engineering Plastics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Engineering Plastics Corp filed Critical Mitsubishi Engineering Plastics Corp
Priority to JP2009290275A priority Critical patent/JP5226655B2/en
Publication of JP2011133523A publication Critical patent/JP2011133523A/en
Application granted granted Critical
Publication of JP5226655B2 publication Critical patent/JP5226655B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、樹脂製光反射体用基体に関する。特に、エクステンション用途に適した樹脂製光反射体用基体に関する。   The present invention relates to a resin-made light reflector base. In particular, the present invention relates to a resinous light reflector substrate suitable for extension applications.

自動車用ランプ等におけるハウジング、リフレクター、エクステンションや家電照明器具等などの光反射体は、ランプ光源の方向性、反射性のために、高い輝度感、平滑性、均一な反射率、さらには光源からの発熱に耐えうる高耐熱性等が要求される。よって光反射体としては、従来、金属製(板金)のものや、バルクモールディングコンパウンド(BMC)やシートモールディングコンパウンド(SMC)に代表される熱硬化性樹脂の表面に、金属メッキ加工や蒸着等により金属薄膜を設けたものが用いられてきた。   Light reflectors such as housings, reflectors, extensions and home appliance lighting fixtures in automotive lamps, etc., have high brightness, smoothness, uniform reflectivity, and further from the light source due to the directionality and reflectivity of the lamp light source. High heat resistance that can withstand the heat generation is required. Therefore, as a light reflector, conventionally, a metal (sheet metal), a thermosetting resin represented by a bulk molding compound (BMC) or a sheet molding compound (SMC) is used by metal plating or vapor deposition. What provided the metal thin film has been used.

しかしながら、金属製の光反射体は加工性が悪く、また重く扱い難いという欠点があった。一方、熱硬化性樹脂を成形してなる光反射体用基体の表面に金属薄膜を有する光反射体は、耐熱性、剛性、寸法安定性をはじめとして優れた特性を有している。しかしながら、熱硬化性樹脂の成形のためのサイクルが長く、また、成形の際にバリが発生したり、成形時のモノマー揮発によってガスが発生したりしていた。   However, metal light reflectors have the disadvantages of poor processability and are heavy and difficult to handle. On the other hand, a light reflector having a metal thin film on the surface of a substrate for light reflector formed by molding a thermosetting resin has excellent characteristics such as heat resistance, rigidity and dimensional stability. However, the cycle for molding the thermosetting resin is long, burrs are generated during molding, and gas is generated due to monomer volatilization during molding.

この様な問題を解決し、さらに、近年の光反射体の高機能化やデザインの多様化に対応し、かつ、生産性にも優れる、熱可塑性樹脂を用いて形成された光反射体用基体を用いることが検討されている。そして、反射体としては、このような熱可塑性樹脂組成物からなる光反射体用基体の表面に金属薄膜を設けたものが主流となってきている。   A substrate for a light reflector formed of a thermoplastic resin that solves such problems and further responds to the recent enhancement of functionality and design diversification of light reflectors and is excellent in productivity. The use of is being considered. And as a reflector, what provided the metal thin film on the surface of the base for light reflectors which consists of such a thermoplastic resin composition has become mainstream.

この様な熱可塑性樹脂組成物からなる光反射体用基体には、機械的性質、電気的性質、その他物理的・化学的特性に優れ、かつ良好な加工性が要求される。そこで、該熱可塑性樹脂組成物として、結晶性熱可塑性ポリエステル樹脂、特には、ポリブチレンテレフタレート樹脂、または、ポリエチレンテレフタレート樹脂と他の樹脂との混合物を主成分とし、これに、様々な強化材を添加配合した組成物が用いられてきた。
ここで、光反射体は、一般的に、射出成形により熱可塑性樹脂組成物を成形して光反射体用基体とし、その表面にアンダーコート等の前処理(下塗り)を行った後、真空蒸着等により光反射層として金属薄膜を形成して製造されていた。
A substrate for a light reflector made of such a thermoplastic resin composition is required to have excellent mechanical properties, electrical properties, other physical and chemical properties, and good workability. Therefore, as the thermoplastic resin composition, a crystalline thermoplastic polyester resin, in particular, a polybutylene terephthalate resin, or a mixture of a polyethylene terephthalate resin and another resin as a main component, and various reinforcing materials. Additive blended compositions have been used.
Here, the light reflector is generally formed by molding a thermoplastic resin composition by injection molding to form a substrate for a light reflector, and after performing pretreatment (undercoating) such as undercoat on the surface, vacuum deposition is performed. For example, a metal thin film is formed as a light reflecting layer.

しかしながら、アンダーコート等の下塗りは、大幅なコストアップとなり、デザインの自由度も制限されるので、アンダーコートしなくとも高い輝度感を有する光反射体を得ることが望まれている。ここで、アンダーコートせずに光反射体用基体の一面に光反射層が設けられた反射体が、高い輝度感・均一な反射率を有するには、光反射体用基体が良好な表面平滑性を有し、且つ高い光沢性・輝度感を有することが必要となる。またその用途仕様から、原料となる樹脂の耐熱性や、樹脂組成物の成形時等におけるガス発生抑制(低ガス性)も重要な問題である。   However, undercoating and the like undercoating greatly increase the cost and limit the degree of freedom of design. Therefore, it is desired to obtain a light reflector having a high luminance feeling without undercoating. Here, in order that the reflector provided with the light reflecting layer on one surface of the light reflector substrate without undercoating has a high luminance feeling and a uniform reflectance, the light reflector substrate has a good surface smoothness. It is necessary to have high glossiness and brightness. From the application specifications, the heat resistance of the resin as a raw material and the suppression of gas generation (low gasity) during molding of the resin composition are also important problems.

しかし、高輝度とするために、樹脂を射出成形するための成形金型の表面を著しく研磨すると、射出成形による成形時に成形体(光反射体用基体)の取り出しの際の型離れが悪くなり、成形サイクルが低下し、離型ムラ模様が成形体表面に現れやすくなる。これは、反射率の低下に起因する。そこで成形性を低下させないために離型性を向上させつつ、表面輝度を保持することが必要となる。   However, if the surface of the molding die for resin injection molding is significantly polished in order to achieve high brightness, the mold release at the time of taking out the molded body (light reflector base) during molding by injection molding becomes worse. As a result, the molding cycle is lowered, and the mold release unevenness pattern tends to appear on the surface of the molded body. This is due to a decrease in reflectance. Therefore, it is necessary to maintain the surface brightness while improving the mold releasability in order not to deteriorate the moldability.

さらに、車両用部材等に用いられる光反射体用基体は、通常、中空柱状構造を有する。そして、中空柱状構造を有する光反射基体は、その形状ゆえに成形時の収縮等によって金型に圧着して離型不良の原因となる。   Furthermore, the base for light reflectors used for a vehicle member or the like usually has a hollow columnar structure. The light reflecting substrate having a hollow columnar structure is pressed against the mold due to shrinkage during molding due to its shape, and causes mold release failure.

ここで、光反射体用基体に、粒子径の小さい無機フィラーを配合した樹脂組成物を用いることが多数提案されている(特許文献1〜7)。しかしながら、粒子径の小さいフィラーを用いることで樹脂組成中のフィラー分散不良や押出段階での作業環境の汚染、ホッパーでの詰まり、押出機への食い込み不良等、押出加工性の低下が起こり、剛性、寸法安定性、低収縮性および耐熱性を十分に満足する程の無機フィラーを添加することができなかった。一方、特許文献8〜10では、粒子径の小さいタルクを分散性を維持したまま顆粒化する技術が提案されているが、低収縮性、離型性について検討されていない。   Here, many proposals have been made to use a resin composition in which an inorganic filler having a small particle diameter is blended in a light reflector base (Patent Documents 1 to 7). However, the use of a filler with a small particle size causes a decrease in extrusion processability, such as poor filler dispersion in the resin composition, contamination of the working environment at the extrusion stage, clogging with a hopper, and poor biting into the extruder. Inorganic fillers that sufficiently satisfy dimensional stability, low shrinkage, and heat resistance could not be added. On the other hand, Patent Documents 8 to 10 propose a technique for granulating talc having a small particle diameter while maintaining dispersibility, but low shrinkability and releasability are not studied.

特開平06−203613号公報Japanese Patent Laid-Open No. 06-203613 特開平08−183114号公報Japanese Patent Laid-Open No. 08-183114 特開2000−35509号公報JP 2000-35509 A 特開2001−316573号公報JP 2001-316573 A 特開2002−294042号公報JP 2002-294042 A 特開2006−225439号公報JP 2006-225439 A 特開2005−97578号公報JP-A-2005-97578 特開2006−77176号公報JP 2006-77176 A 特開2006−111822号公報JP 2006-111822 A 特開2007−284502号公報JP 2007-284502 A

かかる状況のもと、本発明者らが、さらに検討を行った結果、上記特許文献7〜10では樹脂中から発生するガスにより、光反射層である、金属薄膜表面を犯してしまうことが分かった。これは、光反射体の表面の曇りにつながる。特に、中空構造を有する樹脂成光反射体用基体については、その構造の特殊性から、離型性が問題となる。
以上述べたとおり、成形時の収縮により離型を阻害するような中空構造を有する光反射体用基体においても、成形品表面の平滑性が高く、成形時の収縮率が小さいものが求められている。本発明はかかる要求に答えるものである。
Under such circumstances, the present inventors have further studied, and as a result, in Patent Documents 7 to 10, it is found that the gas generated from the resin violates the surface of the metal thin film, which is a light reflecting layer. It was. This leads to cloudiness of the surface of the light reflector. In particular, in the case of a resin-made optical reflector base having a hollow structure, releasability is a problem due to the particularity of the structure.
As described above, a substrate for a light reflector having a hollow structure that inhibits mold release due to shrinkage during molding is required to have a high surface smoothness of the molded product and a small shrinkage rate during molding. Yes. The present invention answers this need.

上記課題のもと、ポリブチレンテレフタレート樹脂に、特定の熱可塑性樹脂と、特定の無機フィラーと、特定の酸化防止剤を、特定の割合で配合することにより、成形性、押出加工性および離型性に優れた樹脂組成物が得られることを見出し、本発明を完成するに至った。具体的には、以下の手段により達成された。
(1)主成分の樹脂成分である、ポリブチレンテレフタレート樹脂(A)100重量部に対して、少なくとも、ポリブチレンテレフタレート樹脂以外の熱可塑性ポリエステル樹脂(b1)およびビニル系熱可塑性樹脂(b2)から選ばれる少なくとも一種以上の熱可塑性樹脂(B)10〜50重量部、平均一次粒子径が0.1〜10μmのタルク(C)と水溶性高分子バインダ(D)を含む顆粒状タルク(E)10〜50重量部、およびヒンダードフェノール系およびホスファイト系から選ばれた少なくとも一種の酸化防止剤(F)0.01〜2.0重量部。を配合した樹脂組成物からなり、かつ、中空柱状構造を有する樹脂製光反射体用基体。
(2)前記水溶性高分子バインダ(D)量がタルク(C)に対して0.05〜1.5重量%であり、かつ、顆粒状タルク(E)の嵩密度が0.4〜1.5g/mlである、(1)に記載の樹脂製光反射体用基体。
(3)(b1)成分と、(b2)成分の重量比(b1/b2)が、1を越えて5以下であることを特徴とする(1)または(2)に記載の樹脂製光反射体用基体。
(4)(b1)成分がポリエチレンテレフタレート樹脂であり、(b2)成分がアクリロニトリル−スチレン共重合樹脂であることを特徴とする(3)に記載の樹脂製光反射体用基体。
(5)前記樹脂組成物の樹脂成分の98重量%以上が、ポリブチレンテレフタレート樹脂(A)および前記熱可塑性樹脂(B)である、(1)〜(4)のいずれか1項に記載の樹脂製光反射体用基体。
(6)ポリブチレンテレフタレート樹脂(A)の末端カルボキシル基量が50eq/ton以下である(1)〜(5)のいずれか1項に記載の樹脂製光反射体用基体。
(7)前記樹脂製反射体用基体がエクステンション用である、(1)〜(6)のいずれか1項に記載の樹脂製光反射体用基体。
(8)(1)〜(7)のいずれか1項に記載の樹脂製光反射体用基体上に光反射層を有する光反射体。
Under the above-mentioned problems, by blending polybutylene terephthalate resin with a specific thermoplastic resin, a specific inorganic filler, and a specific antioxidant at a specific ratio, moldability, extrudability and mold release The inventors have found that a resin composition having excellent properties can be obtained, and have completed the present invention. Specifically, it was achieved by the following means.
(1) From at least a thermoplastic polyester resin (b1) other than a polybutylene terephthalate resin and a vinyl-based thermoplastic resin (b2) with respect to 100 parts by weight of the polybutylene terephthalate resin (A), which is a main resin component. Granular talc (E) containing 10 to 50 parts by weight of at least one selected thermoplastic resin (B) and talc (C) having an average primary particle size of 0.1 to 10 μm and a water-soluble polymer binder (D) 10 to 50 parts by weight, and 0.01 to 2.0 parts by weight of at least one antioxidant (F) selected from hindered phenols and phosphites. A resin-made light reflector base body, which is made of a resin composition blended with the above and has a hollow columnar structure.
(2) The amount of the water-soluble polymer binder (D) is 0.05 to 1.5% by weight with respect to the talc (C), and the bulk density of the granular talc (E) is 0.4 to 1 The substrate for resinous light reflectors according to (1), which is 0.5 g / ml.
(3) The resin light reflection according to (1) or (2), wherein the weight ratio (b1 / b2) of the component (b1) to the component (b2) is more than 1 and 5 or less. Body substrate.
(4) The resin light reflector substrate according to (3), wherein the component (b1) is a polyethylene terephthalate resin and the component (b2) is an acrylonitrile-styrene copolymer resin.
(5) 98% by weight or more of the resin component of the resin composition is the polybutylene terephthalate resin (A) and the thermoplastic resin (B), according to any one of (1) to (4). Resin substrate for light reflector.
(6) The resin light reflector substrate according to any one of (1) to (5), wherein the polybutylene terephthalate resin (A) has a terminal carboxyl group amount of 50 eq / ton or less.
(7) The resin-made light reflector substrate according to any one of (1) to (6), wherein the resin-made reflector substrate is used for extension.
(8) A light reflector having a light reflection layer on the resin light reflector substrate according to any one of (1) to (7).

本発明における樹脂組成物は、成形品の表面外観、フォギング性評価、成形収縮率、離型性評価、押出生産性および押出作業性に優れたものであり、これらを用いることにより、表面外観等に優れた中空柱状構造を有する樹脂製光反射体用基体を提供することが可能になった。   The resin composition in the present invention is excellent in surface appearance, fogging property evaluation, molding shrinkage rate, mold release property evaluation, extrusion productivity and extrusion workability of a molded product. It has become possible to provide a resin-made light reflector substrate having a hollow columnar structure excellent in the above.

以下において、本発明の内容について詳細に説明する。尚、本願明細書において「〜」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。   Hereinafter, the contents of the present invention will be described in detail. In the present specification, “to” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.

本発明における光反射体用基体とは、車両のランプ等に使用される中空柱状構造を有する樹脂製光反射体用基体をいい、例えば、特開2002−294042号公報、特開2008−71556号公報(特に、図5)、特開2009−197200号公報、特開2009−199769号公報、国際公開WO2009/005084号パンフレット、特開2006−225439号公報、特開2008−280498号公報、特開2005−41977号公報等の記載を参酌することができる。   The light reflector substrate in the present invention refers to a resin-made light reflector substrate having a hollow columnar structure used for a vehicle lamp or the like, for example, Japanese Patent Application Laid-Open Nos. 2002-294042 and 2008-71556. Gazette (especially FIG. 5), JP 2009-197200 A, JP 2009-199769 A, International Publication WO 2009/005084 pamphlet, JP 2006-225439 A, JP 2008-280498 A, JP The description of 2005-41977 gazette etc. can be considered.

本発明において、「エクステンション」とは、車両用灯具のボディとカバー(またはアウタレンズ)とで形成される灯室内の、ランプの周囲に設けられ、少なくとも一主面に鏡面処理が施される、灯具の一構成部品であって、灯具を外部から観察したときに灯室内全体を鏡面色に見せて見栄えを向上させる目的、および/または、一のランプから隣接するランプ側へ漏洩する光を遮断して各ランプによる表示の視認性を高める目的で使用されるものである。自動車用灯具のエクステンションとしては、前照灯や尾灯に多用されているが、本発明では特に限定されず、その他、前照灯(ヘッドランプ)、尾灯(テールランプ)、制動灯(ストップランプ)、方向指示灯(いわゆるウインカー)、車幅灯、後退灯なども含む趣旨である。   In the present invention, an “extension” is a lamp that is provided around a lamp in a lamp chamber formed by a body of a vehicle lamp and a cover (or an outer lens), and at least one main surface is subjected to a mirror surface treatment. It is a component of the lamp, and when the lamp is observed from the outside, the entire lamp chamber is made to have a specular color to improve the appearance and / or the light leaking from one lamp to the adjacent lamp side is blocked. This is used for the purpose of improving the visibility of the display by each lamp. As an extension of an automotive lamp, it is frequently used for a headlight and a taillight, but is not particularly limited in the present invention, and other headlights (headlights), taillights (taillights), braking lights (stoplights), It is intended to include turn signal lights (so-called turn signals), vehicle width lights, reverse lights, and the like.

本発明における、「中空柱状構造」とは、例えば、円筒状物や枠状物、またはこの様な構造を部分的に有する成形品の様に、金型に溶融樹脂が抱きつく形状で射出成形を行うものが挙げられる。このような構造は、本発明で用いる樹脂組成物の溶融状態のものの冷却時の収縮が著しい際に、樹脂成形品が金型を抱き込んでしまい、離型不良の発生の原因となっている。本発明は、このような離型不良を改善できた点に優位性がある。
本発明における中空柱状構造としては、中空柱状部の厚み(T)が1〜5mmであり、高さ(H)が10〜200nmのものが例示される。
In the present invention, the “hollow columnar structure” means, for example, a cylindrical object, a frame-like object, or a molded article that partially has such a structure, and is formed by injection molding in a shape in which a molten resin is held by a mold. What to do is mentioned. Such a structure causes the resin molded product to embrace the mold when the resin composition used in the present invention is in a molten state, and the shrinkage at the time of cooling is significant. . The present invention is advantageous in that such a mold release failure can be improved.
Examples of the hollow columnar structure in the present invention include a hollow columnar portion having a thickness (T) of 1 to 5 mm and a height (H) of 10 to 200 nm.

(A)ポリブチレンテレフタレート樹脂
本発明で用いる樹脂組成物は、ポリブチレンテレフタレート樹脂を主成分の樹脂とする。ここで、主成分の樹脂とは、樹脂組成物に含まれる樹脂のうち、含量が最も多い樹脂をいい、好ましくは、70重量%以上を占めることをいう。さらに、本発明では、樹脂成分の98重量%以上が、ポリブチレンテレフタレート樹脂(A)および後述する熱可塑性樹脂(B)であることが好ましい。このような構成とすることにより、表面外観および離型性をより向上させることができる。
自動車用のエクステンションに用いられる樹脂は、これまで、種々の熱可塑性樹脂が採用されていた。しかしながら、驚くべきことに、ポリブチレンテレフタレート樹脂を主成分とし、顆粒状タルクと酸化防止剤を組み合わせることにより、樹脂組成物から冷却されるときの収縮から抑制され離型性が向上し、中空構造を有する光反射体用基体に好適に用いることができることを見出した。
(A) Polybutylene terephthalate resin The resin composition used in the present invention contains a polybutylene terephthalate resin as a main component resin. Here, the main component resin means a resin having the largest content among the resins contained in the resin composition, and preferably means 70% by weight or more. Furthermore, in this invention, it is preferable that 98 weight% or more of a resin component is a polybutylene terephthalate resin (A) and the thermoplastic resin (B) mentioned later. By setting it as such a structure, surface external appearance and mold release property can be improved more.
Conventionally, various thermoplastic resins have been employed as resins used for automobile extensions. Surprisingly, however, the polybutylene terephthalate resin is the main component, and by combining granular talc and an antioxidant, it is suppressed from shrinkage when cooled from the resin composition and the releasability is improved. It has been found that it can be suitably used for a substrate for a light reflector having:

ポリブチレンテレフタレートは、特に制限されず、ブチレンテレフタレート単位の単独重合体であってもよいし、ブチレンテレフタレート単位を繰り返し単位中70質量%以上含有する共重合体であってもよい。共重合されるモノマーとしては、テレフクル酸およびその低級アルコールエステル以外の二塩基酸成分として、イソフタル酸、ナフタレンジカルボン酸、アジピン酸、セバシン酸、トリメリット酸、コハク酸等の芳香族もしくは脂肪族多塩基酸またはそれらのエステル等が挙げられる。また、1,4−ブタンジオール以外のグリコール成分としては、例えばエチレングリコール、ジエチレングリコール、プロピレングリコール、トリメチレングリコール、ヘキサメチレングリコール、ネオベンチルグリコール、シクロヘキサンジメタノール、1,3−オクタンジオール等のアルキレングリコール;ビスフェノールA、4,4'−ジヒドロキシビフェニル等の芳香族アルコール、ビスフェノールAのエチレンオキサイド2モル付加体、ビスフェノールAのプロピレンオキサイド3モル付加体等のアルキレンオキサイド付加体アルコール;グリセリン、ペンタエリスリトール等のポリヒドロキシ化合物またはそれらのエステル形成性誘導体が挙げられる。   The polybutylene terephthalate is not particularly limited, and may be a homopolymer of butylene terephthalate units or a copolymer containing 70% by mass or more of butylene terephthalate units in the repeating unit. Monomers to be copolymerized include dibasic acid components other than terephthalic acid and lower alcohol esters thereof, and aromatic or aliphatic polyvalents such as isophthalic acid, naphthalenedicarboxylic acid, adipic acid, sebacic acid, trimellitic acid, and succinic acid. Examples thereof include basic acids or esters thereof. Examples of glycol components other than 1,4-butanediol include alkylenes such as ethylene glycol, diethylene glycol, propylene glycol, trimethylene glycol, hexamethylene glycol, neoventyl glycol, cyclohexanedimethanol, and 1,3-octanediol. Glycol; Aromatic alcohols such as bisphenol A and 4,4′-dihydroxybiphenyl; Alkylene oxide adducts such as ethylene oxide 2-mole adduct of bisphenol A, propylene oxide 3-mole adduct of bisphenol A; Glycerin, pentaerythritol, etc. These polyhydroxy compounds or their ester-forming derivatives.

本発明に用いる(A)ポリブチレンテレフタレート樹脂の数平均分子量(Mn)は、特に制限はなく、適宜選択して決定することができる。通常は、1×104〜100×104であり、1×104〜30×104であることが好ましく、1×104〜10×104であることがさらに好ましい。 The number average molecular weight (Mn) of the (A) polybutylene terephthalate resin used in the present invention is not particularly limited and can be appropriately selected and determined. Usually, it is 1 × 10 4 to 100 × 10 4 , preferably 1 × 10 4 to 30 × 10 4 , more preferably 1 × 10 4 to 10 × 10 4 .

また本発明に用いる(A)ポリブチレンテレフタレート樹脂の固有粘度[η]は、通常、0.5〜2.0dl/gであり、0.6〜1.4dl/gであることが好ましい。ここで固有粘度とは、フェノールと1,1,2,2−テトラクロロエタンとの重量比1:1の混合溶媒に試料を溶解し、ウベローデ粘度計を用いて30℃にて測定した粘度である。固有粘度を0.5以上とすることにより機械的強度がより向上する傾向にあり、2.0以下とすることにより、溶融成形時の流動性が低下し過ぎず、成形体の表面特性を光反射体としての高輝度を発揮し易い傾向にあり好ましい。   Further, the intrinsic viscosity [η] of the (A) polybutylene terephthalate resin used in the present invention is usually 0.5 to 2.0 dl / g, and preferably 0.6 to 1.4 dl / g. Here, the intrinsic viscosity is a viscosity measured at 30 ° C. using a Ubbelohde viscometer after dissolving a sample in a mixed solvent of phenol and 1,1,2,2-tetrachloroethane in a weight ratio of 1: 1. . By setting the intrinsic viscosity to 0.5 or more, the mechanical strength tends to be further improved. By setting the intrinsic viscosity to 2.0 or less, the fluidity at the time of melt molding does not deteriorate too much, and the surface characteristics of the molded body are improved. This is preferable because it tends to exhibit high luminance as a reflector.

また、本発明に用いる(A)ポリブチレンテレフタレート樹脂の末端カルボキシル基量は適宜選択して決定すればよいが、50eq/ton以下であることが好ましく、30eq/ton以下であることがさらに好ましい。50eq/ton以下とすることにより本発明における樹脂組成物の溶融成形時にガスが発生しにくくなる。末端カルボキシル基量の下限値は特に定めるものではないが、ポリブチレンテレフタレート樹脂の製造の生産性を考慮し、通常、10eq/ton以上である。   Further, the terminal carboxyl group amount of the (A) polybutylene terephthalate resin used in the present invention may be appropriately selected and determined, but is preferably 50 eq / ton or less, and more preferably 30 eq / ton or less. By setting it to 50 eq / ton or less, gas is less likely to be generated during melt molding of the resin composition in the present invention. Although the lower limit of the amount of terminal carboxyl groups is not particularly defined, it is usually 10 eq / ton or more in consideration of the productivity of production of polybutylene terephthalate resin.

本発明における(A)ポリブチレンテレフタレート樹脂の末端カルボキシル基濃度は、ベンジルアルコール25mLにポリアルキレンテレフタレート0.5gを溶解し、水酸化ナトリウムの0.01モル/Lベンジルアルコール溶液を用いて滴定により測定して得られた値をいう。末端カルボキシル基濃度を調整する方法としては、重合時の原料仕込み比、重合温度、減圧方法などの重合条件を調節する方法や、末端封鎖剤を反応させる方法等、従来公知の任意の方法により行えばよい。   The terminal carboxyl group concentration of (A) polybutylene terephthalate resin in the present invention is measured by titration using a 0.01 mol / L benzyl alcohol solution of sodium hydroxide by dissolving 0.5 g of polyalkylene terephthalate in 25 mL of benzyl alcohol. This is the value obtained. The method for adjusting the terminal carboxyl group concentration is carried out by any conventionally known method such as a method for adjusting the polymerization conditions such as the raw material charge ratio at the time of polymerization, the polymerization temperature and the pressure reduction method, and a method for reacting the terminal blocking agent. Just do it.

本発明に用いる(A)ポリブチレンテレフタレート樹脂の製造方法は任意であり、従来公知の任意のものを使用できる。例えば、テレフタル酸と1,4−ブタンジオールを直接エステル化反応させる直接重合法と、テレフタル酸ジメチルを主原料として使用するエステル交換法とに大別される。   The manufacturing method of (A) polybutylene terephthalate resin used for this invention is arbitrary, and a conventionally well-known arbitrary thing can be used. For example, it is roughly classified into a direct polymerization method in which terephthalic acid and 1,4-butanediol are directly esterified and a transesterification method in which dimethyl terephthalate is used as a main raw material.

前者は初期のエステル化反応で水が生成し、後者は初期のエステル交換反応でアルコールが生成するという違いがある。直接エステル化反応は原料コスト面から有利である。また、ポリブチレンテレフタレート樹脂の製造方法は、原料供給またはポリマーの払い出し形態から回分法と連続法に大別される。   The former is different in that water is produced in the initial esterification reaction, and the latter is produced in the initial transesterification reaction. The direct esterification reaction is advantageous from the viewpoint of raw material costs. Moreover, the manufacturing method of a polybutylene terephthalate resin is divided roughly into a batch method and a continuous method from the supply form of a raw material or the discharge form of a polymer.

さらに、初期のエステル化(またはエステル交換)反応を連続操作で行い、続く重縮合を回分操作で行う方法や、初期のエステル化(またはエステル交換)反応を回分操作で行い、続く重縮合を連続操作で行う方法も挙げられる。   Furthermore, the initial esterification (or transesterification) reaction is performed in a continuous operation and the subsequent polycondensation is performed in a batch operation, or the initial esterification (or transesterification) reaction is performed in a batch operation and the subsequent polycondensation is continued. The method of performing by operation is also mentioned.

尚、本発明における重量平均分子量の測定方法は、GPC(Gel Permeation Chromatography)法であり、また酸価の測定方法は、0.5mol KOHエタノール溶液による電位差滴定法(ASTM D 1386)による。   In the present invention, the weight average molecular weight is measured by GPC (Gel Permeation Chromatography), and the acid value is measured by potentiometric titration (ASTM D 1386) using a 0.5 mol KOH ethanol solution.

(B)熱可塑性樹脂
本発明における樹脂組成物は、ポリブチレンテレフタレート樹脂(A)100重量部に対して、
ポリブチレンテレフタレート樹脂以外の熱可塑性ポリエステル樹脂(b1)およびビニル系熱可塑性樹脂(b2)から選ばれる少なくとも一種以上の熱可塑性樹脂(B)10〜50重量部を含み、より好ましくは、20〜45重量部含む。
自動車用のエクステンションには、他の熱可塑性樹脂も広く用いられているが、本発明者が検討した結果、ポリブチレンテレフタレート樹脂を主成分とし、これに、上記の割合で、ポリブチレンテレフタレート樹脂以外の熱可塑性ポリエステル樹脂(b1)およびビニル系熱可塑性樹脂(b2)から選ばれる少なくとも一種以上の熱可塑性樹脂(B)と、特定の添加剤を配合することにより、表面外観、フォギング性、成形収縮率、離型性、押出生産性および押出作業性の全てに総合的に優れた樹脂組成物が得られることを見出したものである。このような効果は、他の樹脂と、本発明で規定する添加剤の組み合わせでは得られない。
さらに、本発明における樹脂組成物は、ポリブチレンテレフタレート樹脂以外の熱可塑性ポリエステル樹脂(b1)およびビニル系熱可塑性樹脂(b2)の両方を含むことが好ましい。さらに、(b1)成分と、(b2)成分の重量比(b1/b2)が、1を越えて5以下の割合で配合されていることがより好ましく、1.5〜3.5の割合で配合されていることがさらに好ましい。このような配合比とすることにより、フォギング性を低下させずに成形収縮率を低下させることができる。
(B) Thermoplastic resin The resin composition in the present invention is based on 100 parts by weight of the polybutylene terephthalate resin (A).
It contains 10 to 50 parts by weight of at least one thermoplastic resin (B) selected from thermoplastic polyester resin (b1) and vinyl-based thermoplastic resin (b2) other than polybutylene terephthalate resin, more preferably 20 to 45 parts. Including parts by weight.
Other thermoplastic resins are also widely used for automobile extensions, but as a result of the study by the present inventors, polybutylene terephthalate resin is the main component, and in the above proportion, other than polybutylene terephthalate resin. By blending at least one thermoplastic resin (B) selected from the thermoplastic polyester resin (b1) and the vinyl-based thermoplastic resin (b2) with specific additives, surface appearance, fogging property, molding shrinkage It has been found that a resin composition which is comprehensively excellent in all of rate, mold release property, extrusion productivity and extrusion workability can be obtained. Such an effect cannot be obtained by a combination of another resin and the additive defined in the present invention.
Furthermore, the resin composition in the present invention preferably contains both a thermoplastic polyester resin (b1) and a vinyl-based thermoplastic resin (b2) other than the polybutylene terephthalate resin. Furthermore, it is more preferable that the weight ratio (b1 / b2) of the component (b1) and the component (b2) is more than 1 and not more than 5 and the ratio is 1.5 to 3.5. More preferably, it is blended. By setting it as such a compounding ratio, a mold shrinkage rate can be reduced, without reducing fogging property.

ポリブチレンテレフタレート樹脂以外の熱可塑性ポリエステル樹脂(b1)としては、ポリマー主鎖に−CO−O−結合を有し、加熱溶融できるポリブチレンテレフタレート樹脂以外のものをいう。その代表的なものとしては、ジカルボン酸又はその誘導体、例えば低級アルキルエステル、酸ハライド、酸無水物等と、グリコール又は二価フェノールとを縮合させて製造される飽和ポリエステル類、及び、ラクトンの開環重合によって製造される飽和ポリエステル類が挙げられる。具体的には、単独重合体では、ポリアルキレンテレフタレート類(ポリエチレンテレフタレート(PET)等)、ポリナフタレンテレフタレート(PEN)、ポリ(1,4−シクロヘキサンジメチレンテレフタレート)(PCT)等の縮合重合体、及び、ポリピバロラクトン、ポリ(ε−カプロラクトン)等の開環重合体がある。
また、共重合体では、アルキレングリコールとパラ−ヒドロキシ安息香酸(PHB)及びテレフタル酸とのコポリエステル、PHB及び6−オキシ−2−ナフトエ酸とのコポリエステルや、p,p'−ビスフェノールとPHB及びテレフタル酸とのコポリエステルである液晶性ポリエステル類等も挙げることができる。これらの中で、ポリアルキレンテレフタレート類(ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等)、ポリナフタレンテレフタレート(PEN)、ポリ(1,4−シクロヘキサンジメチレンテレフタレート)(PCT)等が好適である。
本発明では、ポリアルキレンテレフタレート樹脂が好ましく、ポリエチレンテレフタレート樹脂がより好ましい。
ポリエステルは、フェノールとテトラクロロエタンの1:1(重量比)の溶媒中で、30℃の固有粘度が、0.4〜1.5dl/gの範囲のものが好ましく、さらに好ましくは0.6〜1.3dl/gである。
The thermoplastic polyester resin (b1) other than the polybutylene terephthalate resin refers to a resin other than the polybutylene terephthalate resin that has a —CO—O— bond in the polymer main chain and can be melted by heating. Representative examples thereof include saturated polyesters produced by condensing dicarboxylic acids or derivatives thereof such as lower alkyl esters, acid halides, acid anhydrides and the like with glycols or dihydric phenols, and the opening of lactones. Examples include saturated polyesters produced by ring polymerization. Specifically, in a homopolymer, polyalkylene terephthalates (polyethylene terephthalate (PET) and the like), polynaphthalene terephthalate (PEN), poly (1,4-cyclohexanedimethylene terephthalate) (PCT) and other condensation polymers, And ring-opening polymers such as polypivalolactone and poly (ε-caprolactone).
Copolymers of alkylene glycol and para-hydroxybenzoic acid (PHB) and terephthalic acid, copolyesters of PHB and 6-oxy-2-naphthoic acid, p, p'-bisphenol and PHB And liquid crystalline polyesters which are copolyesters with terephthalic acid. Among these, polyalkylene terephthalates (polyethylene terephthalate (PET), polybutylene terephthalate (PBT), etc.), polynaphthalene terephthalate (PEN), poly (1,4-cyclohexanedimethylene terephthalate) (PCT) and the like are suitable. is there.
In the present invention, a polyalkylene terephthalate resin is preferable, and a polyethylene terephthalate resin is more preferable.
The polyester preferably has an intrinsic viscosity at 30 ° C. in the range of 0.4 to 1.5 dl / g in a 1: 1 (weight ratio) solvent of phenol and tetrachloroethane, more preferably 0.6 to 1.3 dl / g.

ビニル系熱可塑性樹脂(b2)としては、特に制限されず、公知のビニル系熱可塑性樹脂を用いることができる。例えば、アクリロニトリル−スチレン共重合樹脂、エポキシ基含有アクリロニトリル−スチレン共重合樹脂、マレイミド系共重合樹脂等の非晶性樹脂が挙げられ、これに限定されるものではないが、これらから選ばれる少なくとも1種であることが好ましく、アクリロニトリル−スチレン共重合樹脂を含むことがさらに好ましい。   The vinyl thermoplastic resin (b2) is not particularly limited, and a known vinyl thermoplastic resin can be used. Examples thereof include amorphous resins such as acrylonitrile-styrene copolymer resin, epoxy group-containing acrylonitrile-styrene copolymer resin, and maleimide copolymer resin, but are not limited thereto, but at least one selected from these. It is preferable to be a seed, and it is more preferable to include an acrylonitrile-styrene copolymer resin.

アクリロニトリル−スチレン共重合樹脂としては、特に制限されないが、アクリロニトリルとスチレンの比率は質量比でアクリロニトリル/スチレン=20/80〜45/55の範囲が好ましく、25/75〜35/65の範囲がより好ましい。アクリロニトリル−スチレン共重合樹脂の製造方法としては、特に制限されないが、懸淘重合、乳化重合、溶液重合、バルク重合等が挙げられる。アクリロニトリル−スチレン共重合樹脂の分子量は、特に制限されないが、テトラヒドロフランを溶媒としたゲルバーミエーションクロマトグラフィーで測定した重量平均分子量で50000〜200000(ポリスチレン換算)の範囲が好ましい。   The acrylonitrile-styrene copolymer resin is not particularly limited, but the ratio of acrylonitrile to styrene is preferably in the range of acrylonitrile / styrene = 20/80 to 45/55 by mass ratio, more preferably in the range of 25/75 to 35/65. preferable. Although it does not restrict | limit especially as a manufacturing method of an acrylonitrile styrene copolymer resin, Suspension polymerization, emulsion polymerization, solution polymerization, bulk polymerization, etc. are mentioned. The molecular weight of the acrylonitrile-styrene copolymer resin is not particularly limited, but is preferably in the range of 50,000 to 200,000 (polystyrene equivalent) in terms of weight average molecular weight measured by gel permeation chromatography using tetrahydrofuran as a solvent.

また、エポキシ基含有アクリロニトリル−スチレン共重合樹脂としては、特に制限されないが、例えば、シアン化ビニル単量体単位15〜40質量%、芳香族ビニル単量体単位60〜84.9質量%、およびエポキシ基含有ビニル単量体単位0.1〜0.4質量%からなる共重合樹脂が好ましい。エポキシ基含有アクリロニトリル−スチレン共重合樹脂の製造方法としては、特に制限されないが、懸淘重合、乳化重合、溶液重合、バルク重合等が挙げられる。   In addition, the epoxy group-containing acrylonitrile-styrene copolymer resin is not particularly limited. For example, the vinyl cyanide monomer unit is 15 to 40% by mass, the aromatic vinyl monomer unit is 60 to 84.9% by mass, and A copolymer resin composed of 0.1 to 0.4% by mass of an epoxy group-containing vinyl monomer unit is preferred. Although it does not restrict | limit especially as a manufacturing method of an epoxy-group-containing acrylonitrile-styrene copolymer resin, Suspension polymerization, emulsion polymerization, solution polymerization, bulk polymerization, etc. are mentioned.

マレイミド系共重合樹脂としては、特に制限されないが、マレイミド系単量体単位、並びに、芳香族ビニル系単量体単位および/または他のビニル系単量体単位からなる共重合樹脂が挙げられ、マレイミド系単量体単位の含有量が15〜65質量%、好ましくは20〜50質量%の範囲のものが挙げられる。マレイミド系単量体としては、N−シクロヘキシルマレイミド、N−オルトクロルフェニルマレイミド、N−オルトブロモマレイミド、N−フェニルマレイミドが好ましく、N−フェニルマレイミドがより好ましい。これらマレイミド系単量体は1種あるいは2種以上を組み合わせてもよい。芳香族ビニル系単量体としては、スチレン、α−メチルスチレン、p−メチルスチレン、t−ブチルスチレン等が挙げられ、特にスチレンが好ましい。これら芳香族ビニル系単量体は1種あるいは2種以上を組み合わせて用いる事が出来る。芳香族ビニル系単量体単位の含有量は、35〜85質量%、好ましくは40〜70質量%の範囲が好ましい。他のビニル系単量体としては、シアン化ビニル系単量体、アクリル酸エステル系単量体、メタクリル酸エステル系単量体、不飽和ジカルボン酸系単量体などが挙げられ、特にシアン化ビニル系単量体が好ましい。   The maleimide copolymer resin is not particularly limited, and examples include maleimide monomer units, and copolymer resins composed of aromatic vinyl monomer units and / or other vinyl monomer units. The maleimide monomer unit content is 15 to 65% by mass, preferably 20 to 50% by mass. As the maleimide monomer, N-cyclohexylmaleimide, N-orthophenylphenylmaleimide, N-orthobromomaleimide and N-phenylmaleimide are preferable, and N-phenylmaleimide is more preferable. These maleimide monomers may be used alone or in combination of two or more. Examples of the aromatic vinyl monomer include styrene, α-methylstyrene, p-methylstyrene, t-butylstyrene and the like, and styrene is particularly preferable. These aromatic vinyl monomers can be used alone or in combination of two or more. The content of the aromatic vinyl monomer unit is preferably 35 to 85% by mass, and more preferably 40 to 70% by mass. Examples of other vinyl monomers include vinyl cyanide monomers, acrylic ester monomers, methacrylic ester monomers, and unsaturated dicarboxylic acid monomers. Vinyl monomers are preferred.

(E)顆粒タルク
本発明で用いる顆粒タルクは、平均一次粒子径が0.1〜10μmのタルク(C)と水溶性高分子バインダ(D)を含む顆粒状タルクである。
タルク(C)は、平均一次粒子径が好ましくは0.5〜7μmの範囲のものである。ここで平均粒子径とは、X線透過による液相沈降方式で測定されたD50をいう。このような測定ができる装置としては、Sedigraph粒子径分析器(Micromeritics Instruments社製、モデル5100)を挙げることができる。タルク(C)の平均一次粒子径が0.1μm未満では、熱可塑性樹脂組成物の機械的強度や寸法安定性に対する改良効果が小さく、10μmを超えると成形品の外観不良が発生し易くなるので好ましくない。
本発明で用いるタルク(C)の化学組成は、含水ケイ酸マグネシウムであり、通常SiO2 を58〜66重量%、MgOを28〜35重量%、H2 Oを約5重量%含んでいる。その他少量成分としてFe2 3 が0.03〜1.2重量%、Al2 3 が0.05〜1.5重量%、CaOが0.05〜1.2重量%、K2 Oが0.2重量%以下、Na2 Oが0.2重量%以下等、含有しており比重は約2.7である。
(E) Granular talc The granular talc used in the present invention is a granular talc containing talc (C) having an average primary particle size of 0.1 to 10 μm and a water-soluble polymer binder (D).
Talc (C) preferably has an average primary particle size in the range of 0.5 to 7 μm. Here, the average particle diameter means D50 measured by a liquid phase precipitation method by X-ray transmission. As an apparatus capable of performing such measurement, a Sedigraph particle size analyzer (manufactured by Micromeritics Instruments, model 5100) can be mentioned. If the average primary particle size of talc (C) is less than 0.1 μm, the effect of improving the mechanical strength and dimensional stability of the thermoplastic resin composition is small, and if it exceeds 10 μm, poor appearance of the molded product tends to occur. It is not preferable.
Chemical composition of talc (C) used in the present invention is a hydrous magnesium silicate, the normal SiO 2 58 to 66 wt%, the MgO 28 to 35 wt%, contains of H 2 O to about 5 wt%. As other minor components, Fe 2 O 3 is 0.03 to 1.2% by weight, Al 2 O 3 is 0.05 to 1.5% by weight, CaO is 0.05 to 1.2% by weight, and K 2 O is 0.2 wt% or less, Na 2 O is 0.2 wt% or less and the like, specific gravity is contained is about 2.7.

本発明で用いる顆粒状タルク(E)は、上記のようなタルク(C)が水溶性高分子バインダ(D)によって処理されている。水溶性高分子バインダ(D)を用いることにより、小粒径のタルクを顆粒状とし、コンパウンド時に樹脂の分解を抑制し、押出し性を改善できる。
本明細書における水溶性高分子バインダ(D)は、水に可溶な高分子化合物であって、タルクとの造粒性が高く、不活性で安定な物質であり、色相に優れ、得られた熱可塑性樹脂成形品の機械的特性を低下させないものであれば制限はなく、ポリピニルアルコール、ポリピニルピロリドン、ポリエチレンオキサイド、ポリアクリル酸ナトリウム、アルギン酸ナトリウム、寒天、多糖類(メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロプルセルロース、カルポキシメチルセルロースナトリウム等のセルロース系誘導体や澱粉等)、タンパク質(ゼラチン、膠等)等が挙げられる。これらの中でも、粘結性が高く、タルクとの吸着性の高い多糖類、タンパク質がより好ましく、中でもタルク分散性、外観改善の面からカルポキシメチルセルロースナトリウムが特に好ましい。顆粒状タルク(E)の製造時に使用される水溶性高分子バインダ(D)の量は、タルク(C)に対して、好ましくは0.05〜1.5重量%であり、より好ましくは0.08〜0.8重量%である。水溶性高分子バインダ(D)量が0.05重量%以上とすることにより、顆粒状タルク(E)と熱可塑性樹脂の予備の混合作業や、溶融混練機等への移し替え作業中に、顆粒状タルクが壊れるのを抑制し、粒径の小さいタルクの飛散・粉塵の発生による作業環境の悪化や、押出加工性の低下を抑制する傾向にあり好ましい。一方、水溶性高分子バインダ(D)の量を1.5重量%以下とすることにより、顆粒状物が壊れにくくなり、顆粒状タルク(E)の分散性を向上させることが可能になる。
In the granular talc (E) used in the present invention, the talc (C) as described above is treated with a water-soluble polymer binder (D). By using the water-soluble polymer binder (D), the talc having a small particle diameter can be made into granules, the decomposition of the resin can be suppressed at the time of compounding, and the extrudability can be improved.
The water-soluble polymer binder (D) in the present specification is a water-soluble polymer compound that has a high granulating property with talc, is an inert and stable substance, has an excellent hue, and is obtained. There is no limitation as long as the mechanical properties of the thermoplastic resin molded product are not deteriorated, such as polypinyl alcohol, polypinyl pyrrolidone, polyethylene oxide, sodium polyacrylate, sodium alginate, agar, polysaccharides (methylcellulose, ethylcellulose) , Cellulose derivatives such as hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose sodium, starch, etc.), proteins (gelatin, glue, etc.) and the like. Among these, polysaccharides and proteins having high caking properties and high adsorptivity with talc are more preferable, and sodium carboxymethylcellulose is particularly preferable from the viewpoints of talc dispersibility and appearance improvement. The amount of the water-soluble polymer binder (D) used in the production of the granular talc (E) is preferably 0.05 to 1.5% by weight, more preferably 0, based on the talc (C). 0.08 to 0.8% by weight. By making the amount of the water-soluble polymer binder (D) 0.05% by weight or more, during the preliminary mixing operation of the granular talc (E) and the thermoplastic resin, the transfer operation to a melt kneader, etc. It is preferable because it suppresses breakage of granular talc, and tends to suppress deterioration of the working environment due to scattering of talc having a small particle size and generation of dust, and deterioration of extrusion processability. On the other hand, when the amount of the water-soluble polymer binder (D) is 1.5% by weight or less, the granular material is hardly broken and the dispersibility of the granular talc (E) can be improved.

顆粒状タルク(E)の嵩密度は、好ましくは0.4〜1.5g/mlの範囲であり、より好ましくは0.5〜1.3g/mlである。嵩密度を0.4g/ml以上とすることにより、押出加工性が向上し、嵩密度を1.5g/ml以下とすることにより、タルク(C)の分散性を向上させることができる。ここで、顆粒状タルク(E)の嵩密度は、以下の方法により求めた。
1) 試料を目開きが1.4mmの篩上に乗せ、ハケで均等に軽く掃きながら篩を通す。
2) 上記試料をJIS K5101に規定された嵩密度測定装置に付属する受器に山盛りになるまで投入する。
3) 受器の投入口から上部の山盛りになった試料をヘラで削り取り、受器内の試料の重量を測定し、下式にて嵩密度を算出する。
嵩密度(g/ml)=受器内の試料の重量(g)/受器の容量(ml)
The bulk density of the granular talc (E) is preferably in the range of 0.4 to 1.5 g / ml, more preferably 0.5 to 1.3 g / ml. When the bulk density is 0.4 g / ml or more, the extrusion processability is improved, and when the bulk density is 1.5 g / ml or less, the dispersibility of talc (C) can be improved. Here, the bulk density of the granular talc (E) was determined by the following method.
1) Place the sample on a sieve with a mesh opening of 1.4 mm, and pass through the sieve while sweeping lightly with a brush.
2) The sample is put into a receiver attached to the bulk density measuring device specified in JIS K5101 until it reaches a heap.
3) Remove the sample piled up from the inlet of the receiver with a spatula, measure the weight of the sample in the receiver, and calculate the bulk density using the following formula.
Bulk density (g / ml) = weight of the sample in the receiver (g) / capacity of the receiver (ml)

また、本発明で用いる顆粒状タルク(E)は、破壊率が好ましくは81〜100重量%の範囲であり、更に好ましくは90〜100重量%の範囲のものである。破壊率が十分大きくないと、組成物中でタルク(C)の分散不良、成形品の外観不良、機械的特性不十分等の目的未達が発生する。なお、顆粒状タルク(E)の破壊率は、バインダ含有率や製造条件により調整できる。   The granular talc (E) used in the present invention preferably has a breaking rate in the range of 81 to 100% by weight, and more preferably in the range of 90 to 100% by weight. If the fracture rate is not sufficiently high, the composition may fail to achieve its purpose such as poor dispersion of talc (C), poor appearance of the molded product, and insufficient mechanical properties. In addition, the destruction rate of granular talc (E) can be adjusted with binder content rate or manufacturing conditions.

本発明で用いる顆粒状タルク(E)は、その製造方法に特に制限はないが、タルク(C)と水溶性高分子バインダ(D)との混練性を高めるとともに、顆粒製造時における混練物に可塑性を与え、製造を容易にし、かつ、造粒機の摩耗を低減し、さらに顆粒状物の硬さを調製するために湿潤剤を加えることが好ましい。通常、タルク(C)と水溶性高分子バインダ(D)とに潤滑剤を加え、また、必要に応じて分散剤やその他の添加剤を加えて、ヘンシェルミキサー、スーパーミキサー等の混合機で撹拌しながら混合物とする。この混合物を一軸や二軸等のスクリュー式押出機等で混練後、ストランド状に押出し、カッティングして造粒し、流動式乾燥機やバンドヒーター等を用いて乾燥して、顆粒状タルク(E)を製造する。乾燥した後に分級を行うこともできる。   The production method of the granular talc (E) used in the present invention is not particularly limited, but the kneadability between the talc (C) and the water-soluble polymer binder (D) is improved and the kneaded product at the time of granule production is used. It is preferred to add a wetting agent to impart plasticity, facilitate manufacturing, reduce granulator wear, and further adjust the hardness of the granulate. Usually, a lubricant is added to talc (C) and water-soluble polymer binder (D), and if necessary, a dispersant and other additives are added, followed by stirring in a mixer such as a Henschel mixer or a super mixer. While making the mixture. This mixture is kneaded with a single screw or twin screw extruder, etc., extruded into a strand, cut and granulated, dried using a fluid dryer or a band heater, etc., and granulated talc (E ). Classification can also be performed after drying.

上記のようにして得られた顆粒状タルク(E)は、前記ポリブチレンテレフタレート樹脂(A)100重量部に対し10〜50重量部配合され、好ましくは10〜40重量部、より好ましくは15〜35重量部配合される。顆粒状タルク(E)の配合率を10重量部以上とすることにより、樹脂組成物の寸法安定性や剛性の改良効果が大きくなり、50重量部以下とすることにより、流動性や表面外観、耐衝撃性を向上させることができる。   The granular talc (E) obtained as described above is blended in an amount of 10 to 50 parts by weight, preferably 10 to 40 parts by weight, more preferably 15 to 15 parts by weight based on 100 parts by weight of the polybutylene terephthalate resin (A). 35 parts by weight is blended. By making the blending ratio of the granular talc (E) 10 parts by weight or more, the effect of improving the dimensional stability and rigidity of the resin composition is increased, and by making it 50 parts by weight or less, fluidity and surface appearance, Impact resistance can be improved.

(F)酸化防止剤
本発明における樹脂組成物は、(A)ポリブチレンテレフタレート樹脂100重量部に対し、ヒンダードフェノール系およびホスファイト系から選ばれた少なくとも一種の酸化防止剤(F)を0.01〜2.0重量部含み、好ましくは、0.1〜1.0重量部の範囲で含む。
従来から、熱可塑性樹脂組成物に酸化防止剤を配合することは検討されていたが、タルクと酸化防止剤の関係は全く検討されていなかった。そして、驚くべきことに、本発明における樹脂組成物において、上記顆粒状タルク(E)と特定の酸化防止剤を組み合わせて用いることにより、本発明の効果を奏することを見出したものである。特に、本発明で規定する顆粒状タルク以外のタルクと、ヒンダードフェノール系および/またはホスファイト系酸化防止剤を併用しても、本発明の効果が十分に奏されない。従って、本発明において酸化防止剤を添加する意義は極めて高い。
(F) Antioxidant The resin composition in the present invention contains at least one antioxidant (F) selected from hindered phenols and phosphites with respect to 100 parts by weight of (A) polybutylene terephthalate resin. 0.01 to 2.0 parts by weight, preferably 0.1 to 1.0 parts by weight.
Conventionally, the addition of an antioxidant to a thermoplastic resin composition has been studied, but the relationship between talc and an antioxidant has not been studied at all. Surprisingly, the present inventors have found that the effects of the present invention can be achieved by using the granular talc (E) and a specific antioxidant in combination in the resin composition of the present invention. In particular, even when talc other than the granular talc specified in the present invention is used in combination with a hindered phenol-based and / or phosphite-based antioxidant, the effects of the present invention are not sufficiently exhibited. Therefore, the significance of adding an antioxidant in the present invention is extremely high.

ヒンダードフェノール系酸化防止剤の例としては、1,6 −ヘキサンジオールビス〔3−(3,5 −ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、ペンタエリスリトールテトラキス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、トリエチレングリコールビス〔3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート〕などが挙げられる。
フォルファイト系酸化防止剤としては、トリフェニルフォスファイト、トリ(ノニルフェニル)フォスファイト等のトリアリルフォスファイト、ジステアリルペンタエリスリトールジフォスファイト、サイクリックネオペンタンテトライル−ビス−(2,4 −ジ−t−ブチルフェニル−フォスファイト)、ジ−(2,6 −ジ−t−ブチル−4−メチルフェニル)ペンタエリスリトールジフォスファイト等の耐熱性フォスファイト類等が挙げられる。
Examples of hindered phenol antioxidants include 1,6-hexanediol bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], pentaerythritol tetrakis [3- (3 5-di-t-butyl-4-hydroxyphenyl) propionate], triethylene glycol bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate] and the like.
Examples of the phosphite antioxidant include triaryl phosphite such as triphenyl phosphite and tri (nonylphenyl) phosphite, distearyl pentaerythritol diphosphite, cyclic neopentanetetrayl-bis- (2,4- And heat-resistant phosphites such as di- (2,6-di-t-butyl-4-methylphenyl) pentaerythritol diphosphite.

離型剤
本発明における樹脂組成物は、金型からの離型性をさらに高めるという点から、離型剤を配合することが好ましい。離型剤としては、ポリエステル樹脂に通常使用される既知の離型剤が利用可能であるが、中でも、金属膜密着性を阻害しにくいという点で、ポリオレフィン系化合物、脂肪酸エステル系化合物及びシリコーン系化合物から選ばれる1種以上の離型剤が好ましい。
Mold Release Agent The resin composition in the present invention preferably contains a mold release agent from the viewpoint of further improving the mold release properties from the mold. As the mold release agent, known mold release agents usually used for polyester resins can be used. Among them, polyolefin compounds, fatty acid ester compounds, and silicone systems are particularly difficult in that they do not hinder metal film adhesion. One or more mold release agents selected from compounds are preferred.

ポリオレフィン系化合物としては、パラフィンワックス及びポリエチレンワックスから選ばれる化合物が挙げられ、中でも、ポリオレフィン系化合物の分散が良好であるという点から、重量平均分子量が、700〜10,000、更には900〜8,000のポリエチレンワックスが好ましい。   Examples of the polyolefin compound include compounds selected from paraffin wax and polyethylene wax. Among them, the weight average molecular weight is 700 to 10,000, more preferably 900 to 8 from the viewpoint of good dispersion of the polyolefin compound. 1,000 polyethylene waxes are preferred.

脂肪酸エステル系化合物としては、グリセリン脂肪酸エステル類、ソルビタン脂肪酸エステル類等の脂肪酸エステル類やその部分鹸化物などが挙げられ、中でも、炭素数11〜28、好ましくは炭素数17〜21の脂肪酸で構成されるモノ又はジ脂肪酸エステルが好ましい。具体的には、グリセリンモノステアレート、グリセリンモノベヘネート、グリセリンジベヘネート、グリセリン−12−ヒドロキシモノステアレート、ソルビタンモノベヘネート、ぺンタエリスリトールモノステアレート、ペンタエリストールジステアレート等が挙げられる。   Examples of the fatty acid ester compounds include fatty acid esters such as glycerin fatty acid esters and sorbitan fatty acid esters, and partially saponified products thereof. Among them, the fatty acid ester compounds are composed of fatty acids having 11 to 28 carbon atoms, preferably 17 to 21 carbon atoms. Preferred are mono- or di-fatty acid esters. Specific examples include glycerin monostearate, glycerin monobehenate, glycerin dibehenate, glycerin-12-hydroxy monostearate, sorbitan monobehenate, pentaerythritol monostearate, pentaerythritol distearate and the like. It is done.

また、シリコーン系化合物としては、樹脂との相溶性などの点から、変性されている化合物が好ましい。変性シリコーンオイルとしては、ポリシロキサンの側鎖に有機基を導入したシリコーンオイル、ポリシロキサンの両末端および/または片末端に有機基を導入したシリコーンオイルなどが挙げられる。導入される有機基としては、エポキシ基、アミノ基、カルボキシル基、カルビノール基、メタクリル基、メルカプト基、フェノール基などが挙げられ、好ましくはエポキシ基が挙げられる。変性シリコーンオイルとしては、ポリシロキサンの側鎖にエポキシ基を導入したシリコーンオイルが特に好ましい。   Moreover, as a silicone type compound, the compound modified | denatured from points, such as compatibility with resin, is preferable. Examples of the modified silicone oil include silicone oil in which an organic group is introduced into the side chain of polysiloxane, and silicone oil in which an organic group is introduced into both ends and / or one end of polysiloxane. Examples of the organic group to be introduced include an epoxy group, an amino group, a carboxyl group, a carbinol group, a methacryl group, a mercapto group, and a phenol group, and preferably an epoxy group. As the modified silicone oil, a silicone oil in which an epoxy group is introduced into the side chain of polysiloxane is particularly preferable.

離型剤の配合量は、(A)ポリブチレンテレフタレート樹脂100重量部に対して、好ましくは、0.05〜2重量部である。該配合量を0.05重量部以上とすることにより、溶融成形時の離型不良を抑制して、表面性を向上させることが可能になり、2重量部以下とすることにより、離型剤のブリード抑制、及び樹脂組成物の練り込み作業性が向上する。離型剤の配合量は、好ましくは0.07〜1.5重量部、さらに好ましくは0.1〜1.0重量部である。   The compounding amount of the release agent is preferably 0.05 to 2 parts by weight with respect to 100 parts by weight of the (A) polybutylene terephthalate resin. By setting the blending amount to 0.05 parts by weight or more, it becomes possible to suppress a release failure at the time of melt molding and improve surface properties. By setting the blending amount to 2 parts by weight or less, a release agent. Bleed control and kneading workability of the resin composition are improved. The amount of the release agent is preferably 0.07 to 1.5 parts by weight, more preferably 0.1 to 1.0 parts by weight.

<その他の添加剤>
本発明における樹脂組成物には、本発明の趣旨を逸脱しない範囲内において、他の添加剤を配合してもよい。他の添加剤としては、難燃剤、熱安定剤、滑剤、触媒失活剤、結晶核剤、着色剤、顔料等を挙げることができる。これらの添加剤は、樹脂の重合途中又は重合後に添加することができる。さらに、ポリブチレンテレフタレート樹脂に所望の性能を付与するため、紫外線吸収剤、耐候安定剤、帯電防止剤、発泡剤、可塑剤、耐衝撃性改良剤、顆粒状タルク以外の無機充填剤等を配合してもよい。
これらの添加剤の含量は、本発明における樹脂組成物の10重量%以下であることが好ましい。
<Other additives>
You may mix | blend another additive with the resin composition in this invention in the range which does not deviate from the meaning of this invention. Examples of other additives include flame retardants, heat stabilizers, lubricants, catalyst deactivators, crystal nucleating agents, colorants, and pigments. These additives can be added during or after polymerization of the resin. In addition, UV absorbers, weather stabilizers, antistatic agents, foaming agents, plasticizers, impact modifiers, inorganic fillers other than granular talc, etc. are added to give the desired performance to polybutylene terephthalate resin. May be.
The content of these additives is preferably 10% by weight or less of the resin composition in the present invention.

難燃剤としては、特に制限されず、例えば、有機ハロゲン化合物、アンチモン化合物、リン化合物、その他の有機難燃剤、無機難燃剤等が挙げられる。有機ハロゲン化合物としては、例えば、臭素化ポリカーボネート、臭素化エポキシ樹脂、臭素化フェノキシ樹脂、臭素化ポリフェニレンエーテル樹脂、臭素化ポリスチレン樹脂、臭素化ビスフェノールA、ペンタブロモベンジルポリアクリレートが挙げられる。アンチモン化合物としては、例えば、三酸化アンチモン、五酸化アンチモン、アンチモン酸ソーダが挙げられる。リン化合物としては、例えば、リン酸エステル、ポリリン酸、ポリリン酸アンモニウム、赤リン等が挙げられる。その他の有機難燃剤としては、例えば、メラミン、シアヌル酸等の窒素化合物が挙げられる。その他の無機難燃剤としては、例えば、水酸化アルミニウム、水酸化マグネシウム、ケイ素化合物、ホウ素化合物が挙げられる。
これらの難燃剤の配合量は、ポリブチレンテレフタレート樹脂100重量部に対し、好ましくは0.1〜50重量部、より好ましくは1〜30重量部である。難燃剤の配合量を0.1重量部以上とすることにより、難燃性をより効果的に発現することができ、50重量部以下にすることにより、物性、特に機械的強度をより高く保つことができる。
The flame retardant is not particularly limited, and examples thereof include organic halogen compounds, antimony compounds, phosphorus compounds, other organic flame retardants, and inorganic flame retardants. Examples of the organic halogen compound include brominated polycarbonate, brominated epoxy resin, brominated phenoxy resin, brominated polyphenylene ether resin, brominated polystyrene resin, brominated bisphenol A, and pentabromobenzyl polyacrylate. Examples of the antimony compound include antimony trioxide, antimony pentoxide, and sodium antimonate. As a phosphorus compound, phosphate ester, polyphosphoric acid, ammonium polyphosphate, red phosphorus etc. are mentioned, for example. Examples of other organic flame retardants include nitrogen compounds such as melamine and cyanuric acid. Examples of other inorganic flame retardants include aluminum hydroxide, magnesium hydroxide, silicon compound, and boron compound.
The blending amount of these flame retardants is preferably 0.1 to 50 parts by weight, more preferably 1 to 30 parts by weight with respect to 100 parts by weight of the polybutylene terephthalate resin. By setting the blending amount of the flame retardant to 0.1 parts by weight or more, flame retardancy can be expressed more effectively, and by setting it to 50 parts by weight or less, physical properties, particularly mechanical strength, are kept higher. be able to.

前記の種々の添加剤の配合方法は、特に制限されないが、ベント口から脱揮できる設備を有する1軸又は2軸の押出機を混練機として使用する方法が好ましい。各成分は、付加的成分を含めて、混練機に一括して供給してもよいし、順次供給してもよい。また、付加的成分を含めて、各成分から選ばれた2種以上の成分を予め混合、混練しておいてもよい。   The blending method of the various additives is not particularly limited, but a method of using a single-screw or twin-screw extruder having equipment capable of devolatilization from the vent port as a kneader is preferable. Each component including an additional component may be supplied to the kneader in a lump or sequentially. Moreover, you may mix and knead | mix previously 2 or more types of components chosen from each component including an additional component.

本発明の光反射体は、上述の方法で得られた樹脂組成物からなる光反射体用基体上に光反射層を有するものであり、好ましくは、光反射体用基体の表面に光反射層を有するものである。本発明における樹脂組成物を成形する成形方法としては、生産性と、得られる光反射体用基体の表面性が良好となるなど、本発明の効果が顕著であることから、射出成形法により成形することが好ましい。従来公知の任意の成形方法としては、例えば、通常の射出成形の他に、ガスアシスト射出成形、中空成形、圧縮成形等が挙げられる。   The light reflector of the present invention has a light reflection layer on a light reflector substrate made of the resin composition obtained by the method described above, and preferably the light reflection layer on the surface of the light reflector substrate. It is what has. As the molding method for molding the resin composition in the present invention, the effect of the present invention is remarkable, such as the productivity and the surface properties of the obtained light reflector substrate, so that the molding is performed by the injection molding method. It is preferable to do. Conventionally known arbitrary molding methods include, for example, gas assist injection molding, hollow molding, compression molding and the like in addition to normal injection molding.

本発明における光反射層は、通常、金属蒸着等によって形成される金属薄膜であり、光反射体用基体の表面に形成される。金属蒸着の方法は特に制限はなく、従来公知の任意の方法を用いればよい。例えば、以下に示す方法が挙げられる。   The light reflecting layer in the present invention is usually a metal thin film formed by metal vapor deposition or the like, and is formed on the surface of the light reflector substrate. There is no restriction | limiting in particular in the method of metal vapor deposition, What is necessary is just to use conventionally well-known arbitrary methods. For example, the method shown below is mentioned.

光反射体用基体を真空状態下の蒸着装置内に静置し、アルゴン等の不活性ガスと酸素を導入後、光反射体用基体の表面にプラズマ活性化処理を施す。次に蒸着装置内においてターゲットを担持した電極に通電し、チャンバー内に誘導放電したプラズマによりスパッタしたスパッタ粒子(例えば、アルミ粒子)を光反射体用基体に付着させる。さらに必要に応じて、アルミニウム蒸着膜の保護膜として、珪素を含むガスをプラズマ重合処理するか、または酸化珪素をイオンプレーティング法等により、アルミニウム蒸着膜の表面に付着してもよい。   The substrate for light reflector is left in a vacuum deposition apparatus, and after introducing an inert gas such as argon and oxygen, a plasma activation process is performed on the surface of the substrate for light reflector. Next, the electrode carrying the target is energized in the vapor deposition apparatus, and sputtered particles (for example, aluminum particles) sputtered by plasma induced and discharged in the chamber are attached to the light reflector substrate. Further, if necessary, as a protective film for the aluminum vapor deposition film, a gas containing silicon may be plasma polymerized, or silicon oxide may be attached to the surface of the aluminum vapor deposition film by an ion plating method or the like.

本発明の光反射体用基体は、光反射体用基体の表面に、アンダーコートを形成することなく、直接、金属薄膜を設ける場合に、特に有用である。つまり、本発明の光反射体用基体は、表面性に優れ、その表面にプライマー処理を施さずに直接に金属蒸着しても、金属薄膜との接着性に優れ、良好な光沢表面が得られる。さらに、射出成形時においても、光反射体用基体の金型からの離型性が高いので、金型の転写むらの発生も抑制できる。   The light reflector substrate of the present invention is particularly useful when a metal thin film is provided directly on the surface of the light reflector substrate without forming an undercoat. That is, the substrate for light reflectors of the present invention has excellent surface properties, and even if metal deposition is directly performed on the surface without applying a primer treatment, it has excellent adhesion to a metal thin film and a good glossy surface can be obtained. . Furthermore, even during injection molding, the release of the light reflector substrate from the mold is high, so that occurrence of uneven transfer of the mold can also be suppressed.

金属薄膜に用いられる金属としては、例えば、クロム、ニッケル、アルミニウムなどが挙げられ、中でもアルミニウムが好ましい。尚、光反射体用基体の表面と金属薄膜との接着力を上げるために、蒸着前に、光反射体用基体の表面を洗浄、脱脂してもよい。   Examples of the metal used for the metal thin film include chromium, nickel, aluminum, and the like. Among these, aluminum is preferable. In order to increase the adhesion between the surface of the light reflector substrate and the metal thin film, the surface of the light reflector substrate may be cleaned and degreased before vapor deposition.

以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。   The present invention will be described more specifically with reference to the following examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below.

これらの実施例および比較例においては下記の成分を使用した。   In these examples and comparative examples, the following components were used.

[樹脂成分]
(A)ポリブチレンテレフタレート(PBT):三菱エンジニアリングプラスチックス(MEP)社製、ノバデュラン5008、η=0.85、末端カルボキシル基量20eq/ton、Mn20,000
(B−1)ポリエチレンテレフタレート(PET):三菱化学社製PBK1、η=0.65
(B−2)アクリロニトリル−ポリスチレン(AS):UMGABS社製、AP−A
[Resin component]
(A) Polybutylene terephthalate (PBT): manufactured by Mitsubishi Engineering Plastics (MEP), Novaduran 5008, η = 0.85, terminal carboxyl group amount 20 eq / ton, Mn 20,000
(B-1) Polyethylene terephthalate (PET): Mitsubishi Chemical Corporation PBK1, η = 0.65
(B-2) Acrylonitrile-polystyrene (AS): UMGABS, AP-A

[離型剤]
離型剤1:商品名H−476D ペンタエリスリトールジステアレート 融点53℃ 密度0.918/cm3
離型剤2:クラリアント社製 商品名リコワックスPED522 酸化ポリエチレン 酸価22〜28mgKOH 滴点 102〜107℃ 密度0.95〜0.97g/cm3 分子量Mn1000 Mw3100
離型剤3:クラリアント社製 リコモントCaV102 酸価 10mgKOH/g以下 滴点147℃以下 密度0.98g/cm3以下、アルカリ含有量4%(Ca)以下
[Release agent]
Mold release agent 1: Trade name H-476D Pentaerythritol distearate Melting point 53 ° C. Density 0.918 / cm 3
Release agent 2: manufactured by Clariant Co., Ltd. Brand name Licowax PED522 Polyethylene oxide Acid value 22-28 mg KOH Dropping point 102-107 ° C. Density 0.95-0.97 g / cm 3 Molecular weight Mn1000 Mw3100
Release agent 3: Recommont CaV102 manufactured by Clariant Co. Acid value: 10 mgKOH / g or less Dropping point: 147 ° C. or less Density: 0.98 g / cm 3 or less, Alkaline content: 4% (Ca) or less

[タルク]
顆粒状タルク1:松村産業社製 ハイコンタルクC−3
タルクは、平均一次粒子径4〜7μm、嵩密度0.7g/mlである。また、本顆粒状タルクは、タルクに対して、0.2重量%のカルポキラメチルセルロースナトリウムを含む。
顆粒状タルク2:松村産業社製 ハイコンタルクC−12
タルクは、平均一次粒子径1.8μm、嵩密度0.74g/mlである。また、本顆粒状タルクは、タルクに対して、0.3重量%のカルポキラメチルセルロースナトリウムを含む。
圧縮タルク:松村産業社製 ハイフィラー#5000PJC 1.8μm 嵩密度0.62g/ml
汎用タルク1:松村産業社製 ハイフィラー#5000PJ 1.8μm 嵩密度0.12g/ml
汎用タルク2:松村産業社製 クラウンタルクP 11μm 嵩密度0.34g/ml
表面処理タルク:林原化成社製 CHC−13S−10E
タルクは平均一次・・・2.8μm 嵩密度0.35g/mlである。また表面処理タルクはタルクに対して1重量%の3−グリシドキシプロピルトリメトキシシランを含む。
[酸化防止剤]
ホスファイト系酸化防止剤:ADEKA社製 PEP−36 融点237℃ 分子量633
ヒンダードフェノール系酸化防止剤:ADEKA社製 AO−330 融点244℃ 分子量775
[talc]
Granular talc 1: High Contalc C-3 manufactured by Matsumura Sangyo Co., Ltd.
Talc has an average primary particle size of 4 to 7 μm and a bulk density of 0.7 g / ml. Moreover, this granular talc contains 0.2 weight% sodium carboxymethyl cellulose with respect to talc.
Granular talc 2: High Contalc C-12 made by Matsumura Sangyo Co., Ltd.
Talc has an average primary particle size of 1.8 μm and a bulk density of 0.74 g / ml. The granular talc contains 0.3% by weight of sodium carboxymethyl cellulose relative to talc.
Compression talc: Made by Matsumura Sangyo Co., Ltd. High filler # 5000PJC 1.8μm Bulk density 0.62g / ml
General-purpose talc 1: Made by Matsumura Sangyo Co., Ltd. High filler # 5000PJ 1.8 μm Bulk density 0.12 g / ml
General-purpose talc 2: Crown Talc P 11 μm, bulk density 0.34 g / ml, manufactured by Matsumura Sangyo Co., Ltd.
Surface treatment talc: CHC-13S-10E manufactured by Hayashibara Kasei Co., Ltd.
Talc has an average primary value of 2.8 μm and a bulk density of 0.35 g / ml. The surface-treated talc contains 1% by weight of 3-glycidoxypropyltrimethoxysilane based on talc.
[Antioxidant]
Phosphite-based antioxidant: ADEKA PEP-36 Melting point 237 ° C. Molecular weight 633
Hindered phenol antioxidant: ADEKA AO-330 Melting point 244 ° C. Molecular weight 775

[実施例および比較例]
樹脂成分、およびその他の添加剤を、表1の組成で十分にドライブレンドした後、260℃に設定した2軸スクリュウ押出機を用い、40Kg/時間の押出速度でペレット化した。
得られたペレットを射出成形前に120℃、6時間乾燥し、型締め力が80tonの射出成形機を用い、成形温度260℃、成形体形状が60mm×60mm×3mmの鏡面金型を用い、金型温度60℃で成形して、光反射体用基体を得た。射出成形時の離型性は良好であり、無抵抗で成形体の取り出しが可能であった。
[Examples and Comparative Examples]
The resin component and other additives were thoroughly dry blended with the composition shown in Table 1, and then pelletized at an extrusion rate of 40 kg / hour using a twin screw extruder set at 260 ° C.
The obtained pellets were dried at 120 ° C. for 6 hours before injection molding, using an injection molding machine with a clamping force of 80 tons, a molding temperature of 260 ° C., and a molded body shape of 60 mm × 60 mm × 3 mm using a mirror mold. Molding was performed at a mold temperature of 60 ° C. to obtain a light reflector base. The mold release property at the time of injection molding was good, and the molded product could be taken out without resistance.

[試験・評価方法]
表面外観
金型温度設定60℃で成形した板状成形品の表面外観を目視にて観察し、成形品表面の平滑性が高く、曇りのないものを◎、成形品表面のタルク凝集物や曇りのないものを○、凝集物が少しあるものを△+、ガスによる曇りやフローマークのあるものを△−、凝集物が多いものを×として評価した。
[Test / Evaluation Method]
Surface appearance The surface appearance of a plate-shaped molded product molded at a mold temperature setting of 60 ° C. is visually observed, and the surface of the molded product having high smoothness and no cloudiness is ◎, talc aggregates and cloudiness on the molded product surface The evaluation was evaluated as ◯ for those having no flakes, Δ + for those having a small amount of aggregates, Δ− for those having cloudiness or a flow mark due to gas, and × for those having a large amount of aggregates.

フォギング性評価
成形品を粉砕しペレット大とし、試験管(φ20×160mm)に10g入れ、180℃に温度調節したフォギング試験機(GLサイエンス社製中型恒温槽L−75改良機)にセットした。さらに、上記試験管に、耐熱ガラス(テンパックスガラスφ25×2mmt)の蓋をした後、耐熱ガラス部を25℃雰囲気に温度調節し、180℃で20時間、熱処理を実施した。熱処理後、ガラス板内側には樹脂組成物より昇華した分解物等による付着物が析出した。熱処理終了後、耐熱ガラスの付着物の状態を肉眼で観察し、以下の3段階の基準で評価した。
A:ガラスプレートへの付着、曇りはほとんど無く、目視にて透過像が鮮明に認識できる。
B:ガラスプレートへの付着、曇りはややあり、透過像は多少ぼやけるが目視にて認識できる。
C:ガラスプレートへの付着、曇りが多く、透過像は認識できない。
Evaluation of fogging property The molded product was pulverized to a pellet size, 10 g was put in a test tube (φ20 × 160 mm), and the temperature was adjusted to 180 ° C. and set in a fogging tester (medium temperature chamber L-75 improved machine manufactured by GL Science). Further, the test tube was covered with heat-resistant glass (Tempax glass φ25 × 2 mmt), and then the temperature of the heat-resistant glass part was adjusted to an atmosphere of 25 ° C., and heat treatment was performed at 180 ° C. for 20 hours. After the heat treatment, deposits due to decomposition products sublimated from the resin composition were deposited on the inner side of the glass plate. After the heat treatment was completed, the state of the heat-resistant glass deposit was observed with the naked eye and evaluated according to the following three criteria.
A: There is almost no adhesion and fogging on the glass plate, and the transmitted image can be clearly recognized visually.
B: Adhesion to the glass plate and cloudiness are somewhat present, and the transmission image is slightly blurred but can be recognized visually.
C: Adherence to the glass plate and fogging are many, and the transmission image cannot be recognized.

成形収縮率
射出成形機(日精樹脂工業社製、NEX80)を用い、シリンダー温度260℃、金型温度80℃の条件下で、縦100mm、横100mm、厚み2mmの四角形の平板をフィルムゲート金型により成形し、流れの直角方向(TD)の成形収縮率を測定した。
Using a molding shrinkage injection molding machine (Nex80, manufactured by Nissei Plastic Industry Co., Ltd.), a rectangular flat plate having a length of 100 mm, a width of 100 mm, and a thickness of 2 mm under the conditions of a cylinder temperature of 260 ° C. and a mold temperature of 80 ° C. is a film gate mold. The molding shrinkage in the direction perpendicular to the flow (TD) was measured.

離型性評価
住友重機械工業社製SE−50成形機を用い、直径55mm×35mm、深さ16mm、厚み1.5mmの金型を用いて、成形温度260℃、金型温度60℃で連続成形し、成形性を以下の3段階の基準で評価した。
○:30ショット以上、不良発生無く連続成形できる。
△:10ショット以上30ショット未満で離型不良が発生する(コアへの抱き付きによるエジェクトピン突き抜け)。
×:離型不良により連続成形できない。
Evaluation of releasability Continuously at a molding temperature of 260 ° C. and a mold temperature of 60 ° C. using a mold with a diameter of 55 mm × 35 mm, a depth of 16 mm and a thickness of 1.5 mm using an SE-50 molding machine manufactured by Sumitomo Heavy Industries, Ltd. Molding was performed and the moldability was evaluated according to the following three-stage criteria.
○: Continuous molding can be performed for 30 shots or more without occurrence of defects.
(Triangle | delta): A mold release defect generate | occur | produces at 10 shots or more and less than 30 shots (ejection pin penetration by the hug to a core).
X: Continuous molding cannot be performed due to defective release.

押出生産性
二軸押出機(日本製鋼所製、TEX30XCT、L/D=42)を用いて、ホッパーでの詰まり、押出機への食い込み不良等の問題がなく、スムーズに押出可能な樹脂組成物の最大吐出量(kg/hr)から以下のようにして評価した。
○:25kg/hr以上
△:15〜25kg/hr
×:15kg/hr以下
Extrusion productivity Resin composition that can be extruded smoothly using a twin screw extruder (manufactured by Nippon Steel Works, TEX30XCT, L / D = 42) without problems such as clogging in the hopper and poor biting into the extruder. The maximum discharge amount (kg / hr) was evaluated as follows.
○: 25 kg / hr or more Δ: 15-25 kg / hr
×: 15 kg / hr or less

押出作業性
移し替え作業や押出機運転中における、樹脂組成物調製時のタルクの飛散・粉塵の発生による作業環境の悪化度合について、周囲の粉塵濃度を測定し、粉塵濃度(mg/m3)が0.05以下を◎、0.05〜0.1を○、0.1〜0.3を△、0.3以上を×として評価した。なお、粉塵濃度は、柴田科学社製のデジタル粉塵計P−5H型使用して測定した。
Extrusion workability During the transfer operation and extruder operation, the ambient dust concentration was measured and the dust concentration (mg / m 3 ) was measured for the degree of deterioration of the working environment due to talc scattering and dust generation during resin composition preparation. Of 0.05 or less was evaluated as ◎, 0.05 to 0.1 as ○, 0.1 to 0.3 as Δ, and 0.3 or more as ×. The dust concentration was measured using a digital dust meter P-5H manufactured by Shibata Kagaku.

Figure 0005226655
Figure 0005226655
Figure 0005226655
Figure 0005226655
Figure 0005226655
Figure 0005226655

上記表の結果から明らかなとおり、本発明における樹脂組成物を用いた成形品は、表面外観、フォギング性評価、成形収縮率、離型性評価、押出生産性および押出作業性に優れたものであり、優れた中空柱状構造を有する樹脂製光反射体用基体が得られることが分かる。
一方、樹脂成分として、ポリブチレンテレフタレート樹脂のみを用いた場合(比較例1)、表面外観および離型性に劣ることが分かる。また、ポリブチレンテレフタレート樹脂100重量部に対して、ポリブチレンテレフタレート樹脂以外の熱可塑性ポリエステル樹脂およびビニル系熱可塑性樹脂の配合量が50重量部を超える場合も、表面外観に劣ることが分かる。一方、タルクとして、顆粒状タルク以外のものを用いた場合、押出生産性、表面外観フォンギング性が両立できないことが分かる。
また、一般的な表面処理タルクでは顆粒状とならないため押出生産性を十分に満足することができず、表面外観と押出生産性を両立することができないことが分かる(比較例13)
As is apparent from the results in the above table, the molded product using the resin composition in the present invention is excellent in surface appearance, fogging property evaluation, molding shrinkage rate, mold release property evaluation, extrusion productivity and extrusion workability. It can be seen that a resin light reflector base body having an excellent hollow columnar structure is obtained.
On the other hand, when only the polybutylene terephthalate resin is used as the resin component (Comparative Example 1), it can be seen that the surface appearance and releasability are poor. Moreover, it turns out that it is inferior to surface appearance also when the compounding quantity of thermoplastic polyester resin other than polybutylene terephthalate resin and vinyl-type thermoplastic resin exceeds 50 weight part with respect to 100 weight part of polybutylene terephthalate resin. On the other hand, when talc other than granular talc is used, it can be seen that extrusion productivity and surface appearance foaming properties cannot be compatible.
Moreover, since it does not become a granular form in general surface-treated talc, it is understood that the extrusion productivity cannot be sufficiently satisfied, and the surface appearance and the extrusion productivity cannot be compatible (Comparative Example 13).

Claims (8)

主成分の樹脂成分である、ポリブチレンテレフタレート樹脂(A)100重量部に対して、少なくとも、
ポリブチレンテレフタレート樹脂以外の熱可塑性ポリエステル樹脂(b1)およびビニル系熱可塑性樹脂(b2)から選ばれる少なくとも一種以上の熱可塑性樹脂(B)10〜50重量部、
平均一次粒子径が0.1〜10μmのタルク(C)と多糖類およびタンパク質から選択される水溶性高分子バインダ(D)を含む顆粒状タルク(E)10〜50重量部、および
ヒンダードフェノール系およびホスファイト系から選ばれた少なくとも一種の酸化防止剤(F)0.01〜2.0重量部、
を配合した樹脂組成物からなり、かつ、中空柱状構造を有する樹脂製光反射体用基体。
At least with respect to 100 parts by weight of the polybutylene terephthalate resin (A), which is the main resin component,
10 to 50 parts by weight of at least one thermoplastic resin (B) selected from thermoplastic polyester resins (b1) other than polybutylene terephthalate resin and vinyl thermoplastic resin (b2),
10-50 parts by weight of granular talc (E) containing talc (C) having an average primary particle size of 0.1-10 μm and a water-soluble polymer binder (D) selected from polysaccharides and proteins , and hindered phenol 0.01 to 2.0 parts by weight of at least one antioxidant (F) selected from a system and a phosphite system,
A resin-made light reflector base body, which is made of a resin composition blended with the above and has a hollow columnar structure.
前記水溶性高分子バインダ(D)量がタルク(C)に対して0.05〜1.5重量%であり、かつ、顆粒状タルク(E)の嵩密度が0.4〜1.5g/mlである、請求項1に記載の樹脂製光反射体用基体。 The amount of the water-soluble polymer binder (D) is 0.05 to 1.5% by weight based on the talc (C), and the bulk density of the granular talc (E) is 0.4 to 1.5 g / The resin light reflector substrate according to claim 1, which is ml. (b1)成分と、(b2)成分の重量比(b1/b2)が、1を越えて5以下であることを特徴とする請求項1または2に記載の樹脂製光反射体用基体。 The resin light reflector substrate according to claim 1 or 2, wherein the weight ratio (b1 / b2) of the component (b1) and the component (b2) is more than 1 and 5 or less. (b1)成分がポリエチレンテレフタレート樹脂であり、(b2)成分がアクリロニトリル−スチレン共重合樹脂であることを特徴とする請求項3に記載の樹脂製光反射体用基体。 The resin light reflector substrate according to claim 3, wherein the component (b1) is a polyethylene terephthalate resin, and the component (b2) is an acrylonitrile-styrene copolymer resin. 前記樹脂組成物の樹脂成分の98重量%以上が、ポリブチレンテレフタレート樹脂(A)および前記熱可塑性樹脂(B)である、請求項1〜4のいずれか1項に記載の樹脂製光反射体用基体。 The resinous light reflector according to any one of claims 1 to 4, wherein 98% by weight or more of the resin component of the resin composition is a polybutylene terephthalate resin (A) and the thermoplastic resin (B). Substrate. ポリブチレンテレフタレート樹脂(A)の末端カルボキシル基量が50eq/ton以下である請求項1〜5のいずれか1項に記載の樹脂製光反射体用基体。 The base for resinous light reflectors according to any one of claims 1 to 5, wherein the amount of terminal carboxyl groups of the polybutylene terephthalate resin (A) is 50 eq / ton or less. 前記樹脂製反射体用基体がエクステンション用である、請求項1〜6のいずれか1項に記載の樹脂製光反射体用基体。 The resin light reflector substrate according to claim 1, wherein the resin reflector substrate is for extension. 請求項1〜7のいずれか1項に記載の樹脂製光反射体用基体上に光反射層を有する光反射体。 The light reflector which has a light reflection layer on the base | substrate for resinous light reflectors of any one of Claims 1-7.
JP2009290275A 2009-12-22 2009-12-22 Resin base for light reflector Active JP5226655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009290275A JP5226655B2 (en) 2009-12-22 2009-12-22 Resin base for light reflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009290275A JP5226655B2 (en) 2009-12-22 2009-12-22 Resin base for light reflector

Publications (2)

Publication Number Publication Date
JP2011133523A JP2011133523A (en) 2011-07-07
JP5226655B2 true JP5226655B2 (en) 2013-07-03

Family

ID=44346364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009290275A Active JP5226655B2 (en) 2009-12-22 2009-12-22 Resin base for light reflector

Country Status (1)

Country Link
JP (1) JP5226655B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105229079A (en) 2013-05-17 2016-01-06 株式会社Adeka Products formed, use the ameliorative way of its insulating material and the electrical insulating property of polyester and resin composition
CN106471059B (en) 2014-07-01 2019-03-19 三菱工程塑料株式会社 Polyester and resin composition, injection-molded article, light reflector matrix and light reflector
KR102178157B1 (en) * 2019-02-13 2020-11-13 공주대학교 산학협력단 Reflector made from pellet for reflector injection molding comprising polymer matrix and ceramic particles and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000035509A (en) * 1998-05-14 2000-02-02 Polyplastics Co Light reflection body made of polybutyrene terephthalate resin and its production
JP2005097578A (en) * 2003-08-26 2005-04-14 Mitsubishi Rayon Co Ltd Thermoplastic resin composition and light reflector
JP5168812B2 (en) * 2006-04-13 2013-03-27 三菱エンジニアリングプラスチックス株式会社 Thermoplastic resin composition and resin molded product

Also Published As

Publication number Publication date
JP2011133523A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
JP5825919B2 (en) Resin base for light reflector
JP5538188B2 (en) Flame retardant thermoplastic polyester resin composition
JP4232863B2 (en) Metallized polyester composition
WO2016002831A1 (en) Polyester resin composition, injection molded article, light reflecting body base, and light reflecting body
JP5564269B2 (en) Manufacturing method of raw material pellets for molding
WO2016117586A1 (en) Infrared light-transmitting polyester resin composition
WO2017038580A1 (en) Thermoplastic polyester resin composition and light reflector using same
JP5508009B2 (en) Polyester resin composition for injection molding, light reflector substrate and light reflector
JP6447780B1 (en) Polyester resin composition, light reflector component containing the same, and light reflector
JP5226655B2 (en) Resin base for light reflector
WO2012073740A1 (en) Method for producing polybutylene terephthalate resin composition, and polybutylene terephthalate resin composition for molding
JP2002179895A (en) Polyester resin composition
EP2289999B1 (en) Thermoplastic composition
CN111363317B (en) High-heat-resistance high-gloss PBT (polybutylene terephthalate) composite material for automobile lamp reflector and preparation method thereof
WO2018143099A1 (en) Polyester resin composition, and light reflector component and light reflector including same
JP7068532B2 (en) Polyester resin composition and parts for vehicle lamps
JP2004155797A (en) Metallized polyester composition
JP2014162916A (en) Polybutylene terephthalate based resin composition and substrate for light reflector made of resin
JP6558196B2 (en) Thermoplastic polyester resin composition and light reflector using the same
JP7195315B2 (en) Flame-retardant polybutylene terephthalate resin composition
WO2022153945A1 (en) Liquid crystal polyester composition, method for producing liquid crystal polyester composition, and method for producing injection molded article
JP2018123257A (en) Polyester resin composition, and component for light reflection body and light reflection body containing the same
KR20150078902A (en) Polyester Resin Composition
TW202336151A (en) Resin composition and molded article
JP6606964B2 (en) Thermoplastic polyester resin composition and light reflector using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130314

R150 Certificate of patent or registration of utility model

Ref document number: 5226655

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350