JP5223506B2 - Crushing mill life evaluation method - Google Patents

Crushing mill life evaluation method Download PDF

Info

Publication number
JP5223506B2
JP5223506B2 JP2008177821A JP2008177821A JP5223506B2 JP 5223506 B2 JP5223506 B2 JP 5223506B2 JP 2008177821 A JP2008177821 A JP 2008177821A JP 2008177821 A JP2008177821 A JP 2008177821A JP 5223506 B2 JP5223506 B2 JP 5223506B2
Authority
JP
Japan
Prior art keywords
mill
stress
damage
degree
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008177821A
Other languages
Japanese (ja)
Other versions
JP2010019577A (en
Inventor
洋一 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2008177821A priority Critical patent/JP5223506B2/en
Publication of JP2010019577A publication Critical patent/JP2010019577A/en
Application granted granted Critical
Publication of JP5223506B2 publication Critical patent/JP5223506B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、石炭を微粉砕する粉砕ミルの寿命評価方法に係り、特に、その粉砕ミルの運用を考慮して寿命を評価できる粉砕ミルの寿命評価方法に関するものである。   The present invention relates to a method for evaluating the life of a pulverizing mill that finely pulverizes coal, and more particularly to a method for evaluating the life of a pulverizing mill that can evaluate the life in consideration of the operation of the pulverizing mill.

石炭焚きボイラ設備などでは、石炭原料を細かく粉砕して微粉炭とするために微粉炭ミルが用いられている。   In coal-fired boiler facilities and the like, a pulverized coal mill is used to finely pulverize coal raw materials into pulverized coal.

図8に示すように、微粉炭ミル81は、駆動装置82により回転駆動される回転テーブル83と、その回転テーブル83上に供給された原料(石炭)を粉砕する粉砕ローラ84とを備える。これら回転テーブル83および粉砕ローラ84は、ケーシング85で覆われており、粉砕ローラ84はローラピボット86を介してケーシング85に固定されている。   As shown in FIG. 8, the pulverized coal mill 81 includes a rotary table 83 that is rotationally driven by a driving device 82, and a pulverizing roller 84 that pulverizes the raw material (coal) supplied onto the rotary table 83. The rotary table 83 and the crushing roller 84 are covered with a casing 85, and the crushing roller 84 is fixed to the casing 85 via a roller pivot 86.

この微粉炭ミル81では、回転テーブルの上方に設けられた給炭管87から回転テーブル83上に原料を供給し、粉砕ローラ84を回転テーブル83に押し付けることで原料を粉砕している。所定粒径まで粉砕された原料は、ケーシング85下部に設けられた空気供給管88から供給される空気により吹上げられ、上方のセパレータ89に移動される。   In the pulverized coal mill 81, the raw material is supplied onto the rotary table 83 from a coal supply pipe 87 provided above the rotary table, and the raw material is pulverized by pressing the pulverizing roller 84 against the rotary table 83. The raw material pulverized to a predetermined particle size is blown up by air supplied from an air supply pipe 88 provided at the lower portion of the casing 85 and moved to the upper separator 89.

このセパレータ89は、セパレータ駆動装置90により回転駆動されており、粉砕された原料はここで分級されて、微粉炭のみがケーシング85上部に設けられた微粉炭管91から排出され、残りは回転テーブル83に戻されて再び粉砕される。   The separator 89 is rotationally driven by a separator driving device 90. The pulverized raw material is classified here, and only pulverized coal is discharged from a pulverized coal pipe 91 provided on the upper portion of the casing 85, and the rest is a rotary table. It is returned to 83 and pulverized again.

この微粉炭ミル81のような粉砕ミルでは、回転テーブル83やセパレータ89の回転によりケーシング85が固有の振動数で振動しており、他方、粉砕ローラ84では、原料の粉砕によりランダム振動している。そのため、形状的に応力が集中する部位では,繰り返し応力がかかることによって疲労亀裂が発生する。   In a pulverizing mill such as the pulverized coal mill 81, the casing 85 vibrates at a specific frequency by the rotation of the rotary table 83 and the separator 89, while the pulverizing roller 84 vibrates randomly by pulverizing the raw material. . For this reason, fatigue cracks are generated by repeatedly applying stress in a portion where stress is concentrated in shape.

応力集中部(クリティカルポイント)での疲労き裂の発生は不可避であり、事前にこれらを交換するため、粉砕ミルの寿命を予測できる寿命評価方法が望まれている。   The occurrence of fatigue cracks at the stress concentration part (critical point) is inevitable. Since these are exchanged in advance, a life evaluation method capable of predicting the life of the grinding mill is desired.

これに関し、粉砕ミルの寿命評価方法ではないが、他の構造物の寿命評価方法として、疲労センサや歪ゲージを用いて構造物の負荷状態を計測し、その結果に基づいて寿命を推定する方法(例えば、特許文献1〜5参照)が知られている。   In this regard, although it is not a method for evaluating the life of the crushing mill, as a method for evaluating the life of other structures, a method of measuring the load state of the structure using a fatigue sensor or strain gauge and estimating the life based on the result (For example, refer to Patent Documents 1 to 5).

この方法では、疲労センサや歪ゲージを構造物の応力集中部に取り付けてその応力を測定し、その測定結果に基づいて応力−頻度ヒストグラムを作成すると共に、応力集中部での疲労強度線図(SN線図)を作成し、さらに、これらを用いて単位時間あたりの損傷度を算出し、算出した損傷度からその構造物の寿命を推定している。   In this method, a fatigue sensor or strain gauge is attached to the stress concentration part of the structure, the stress is measured, a stress-frequency histogram is created based on the measurement result, and a fatigue strength diagram at the stress concentration part ( SN diagram) is created, the damage degree per unit time is calculated using these, and the lifetime of the structure is estimated from the calculated damage degree.

特開2006−329837号公報JP 2006-329837 A 特開2004−191340号公報JP 2004-191340 A 特開平10−185854号公報Japanese Patent Laid-Open No. 10-185854 特開2003−4599号公報Japanese Patent Laid-Open No. 2003-4599 特開平6−323962号公報Japanese Patent Laid-Open No. 6-323962

しかしながら、この寿命評価方法を粉砕ミルにそのまま適用することはできないという問題がある。   However, there is a problem that this life evaluation method cannot be directly applied to a grinding mill.

すなわち、粉砕ミルでは、セパレータ89や回転テーブル83、あるいは粉砕ローラ84などが振動源となり、その振動が原料供給量(給炭量)でも変化し、さらに、運用時間によっても発生応力レベルが変化するため、略一定の条件で応力がかかる構造物と同様に寿命を評価することはできない。   That is, in the crushing mill, the separator 89, the rotary table 83, the crushing roller 84, and the like serve as vibration sources, and the vibration changes depending on the raw material supply amount (coal supply amount), and the generated stress level also changes depending on the operation time. Therefore, the lifetime cannot be evaluated in the same manner as a structure to which stress is applied under substantially constant conditions.

従来における粉砕ミルの寿命評価は、設計図面を流用し、応力集中部の材料強度などを用いて疲労強度線図を作成すると共に、これを過去の損傷実績などと照らし合わせて設計疲労強度線図を作成し、これを用いて寿命評価を行うのみであった。   In the conventional crushing mill life evaluation, design drawings are used and a fatigue strength diagram is created using the material strength of the stress-concentrated part and the design fatigue strength diagram is compared with past damage records. This was only used for life evaluation.

しかし、例えば、起動停止回数が多い粉砕ミルより、起動停止回数の少ない粉砕ミルの方が早く疲労損傷(疲労き裂)が発生する場合があり、従来方法でこの現象を説明することはできなかった。   However, for example, a pulverizing mill with a small number of start and stop times may cause fatigue damage (fatigue cracks) earlier than a pulverizing mill with a large number of start and stop times, and this phenomenon cannot be explained by conventional methods. It was.

本発明者は、この原因について鋭意検討を行った結果、粉砕ミルでは、運用時間が長くなると粉砕ローラ84が摩耗し、この粉砕ローラ84の摩耗によりランダム振動の振動レベルが上昇していることを見出した。   As a result of intensive studies on this cause, the present inventor has found that in the pulverization mill, the pulverization roller 84 is worn when the operation time is long, and the vibration level of the random vibration is increased due to the wear of the pulverization roller 84. I found it.

つまり、運用時間が長くなるほど粉砕ローラ84が摩耗し、その摩耗により原料粉砕によるランダム振動の振動レベルが上昇し、そのランダム振動による応力集中部での発生応力レベルが上昇してしまい、粉砕ミルの寿命(疲労き裂発生)に影響を及ぼしていると考えられる。   That is, the longer the operation time is, the more the grinding roller 84 wears, and the wear increases the vibration level of random vibration due to raw material grinding, and the generated stress level at the stress concentration portion due to the random vibration rises. This is thought to have an effect on the life (generation of fatigue cracks).

従来の寿命評価方法では、この粉砕ローラ84の摩耗による発生応力レベルの上昇を考慮していないため、粉砕ミルの寿命を精度よく評価できなかった。よって、粉砕ローラ84の摩耗による応力レベルの上昇を考慮した寿命評価方法が望まれる。   In the conventional life evaluation method, since the increase in the generated stress level due to wear of the crushing roller 84 is not taken into consideration, the life of the crushing mill cannot be accurately evaluated. Therefore, a life evaluation method that takes into account an increase in stress level due to wear of the grinding roller 84 is desired.

そこで、本発明の目的は、粉砕ローラの摩耗により発生応力レベルが上昇することを考慮し、寿命評価の精度の向上を図った粉砕ミルの寿命評価方法を提供することにある。   Accordingly, an object of the present invention is to provide a life evaluation method for a crushing mill in which the accuracy of life evaluation is improved in consideration of an increase in generated stress level due to wear of the crushing roller.

本発明は上記目的を達成するために創案されたものであり、請求項1の発明は、ケーシング内に回転自在に設けられた回転テーブルと、その回転テーブル上に回転自在に支持され、前記回転テーブル上に供給される原料を粉砕する粉砕ローラとを備えた粉砕ミルの寿命を評価する粉砕ミルの寿命評価方法において、新品粉砕ミルと所定時間運転した旧品粉砕ミルの応力集中部にセンサを取り付け、これら粉砕ミルの起動から停止までを1サイクルとしてひずみを測定して、その応力−頻度ヒストグラムを作成すると共に、原料供給量ごとの応力−頻度ヒストグラムを作成し、他方、粉砕ミルの応力集中部の疲労強度線図を過去の損傷実績から設定しておき、その疲労強度線図と前記応力−頻度ヒストグラムから等価振動応力を求めると共に、その等価振動応力から新品粉砕ローラと旧品粉砕ローラの1サイクルでの損傷度を求め、1サイクルでの損傷度と運用時間の関係を設定しておき、次に、寿命評価を行う粉砕ミルのこれまでの運用実績から、その粉砕ミルの1サイクルでの損傷度を推定し、その1サイクルでの損傷度から任意の運用時間での応力−頻度ヒストグラムを作成できるようになし、これを基に任意の運用時間までの損傷度を累積して累積損傷度を算出し、その累積損傷度により寿命を予測する粉砕ミルの寿命評価方法である。   The present invention has been devised to achieve the above object, and the invention of claim 1 is a rotary table rotatably provided in a casing, and is rotatably supported on the rotary table. In the life evaluation method of a crushing mill that evaluates the life of a crushing mill equipped with a crushing roller that crushes the raw material supplied on the table, a sensor is installed at the stress concentration part of the new crushing mill and the old crushing mill that has been operated for a predetermined time Attaching and measuring strain from starting to stopping of these crushing mills as one cycle, creating a stress-frequency histogram for each, and creating a stress-frequency histogram for each raw material supply amount, on the other hand, stress concentration of crushing mill The fatigue strength diagram of the part is set from the past damage results, and the equivalent vibration stress is obtained from the fatigue strength diagram and the stress-frequency histogram, Determine the damage level in one cycle of the new crushing roller and the old crushing roller from the equivalent vibration stress, and set the relationship between the damage level in 1 cycle and the operation time, Based on the past operation results, the degree of damage in one cycle of the crushing mill can be estimated, and a stress-frequency histogram can be created for any operation time from the degree of damage in that one cycle. This is a crushing mill life evaluation method for calculating the cumulative damage degree by accumulating the damage degree up to an arbitrary operation time and predicting the life based on the cumulative damage degree.

請求項2の発明は、前記新品粉砕ミルと前記旧品粉砕ミルの応力−頻度ヒストグラムは、起動時、通常運転時、停止時の各運転パターンごとに作成される請求項1記載の粉砕ミルの寿命評価方法である。   According to a second aspect of the present invention, the stress-frequency histogram of the new pulverization mill and the old pulverization mill is created for each operation pattern at startup, normal operation, and stop. This is a life evaluation method.

請求項3の発明は、前記新品粉砕ミルと前記旧品粉砕ミルの応力−頻度ヒストグラムを、原料供給量ごとに、かつ各運転パターンごとに作成し、これを基にそれぞれの等価振動応力を求める請求項2記載の粉砕ミルの寿命評価方法である。   According to the invention of claim 3, stress-frequency histograms of the new pulverizing mill and the old pulverizing mill are created for each raw material supply amount and for each operation pattern, and the respective equivalent vibration stresses are obtained based on the histograms. It is the lifetime evaluation method of the crushing mill of Claim 2.

請求項4の発明は、起動時、通常運転時、停止時の各運転パターンの等価振動応力から損傷度をそれぞれ求め、これを足し合わせて1サイクルでの損傷度を求める請求項1〜3いずれかに記載の粉砕ミルの寿命評価方法である。   According to a fourth aspect of the present invention, the degree of damage is obtained from the equivalent vibration stress of each operation pattern at the time of start-up, normal operation, and stop, and these are added together to obtain the degree of damage in one cycle. This is a method for evaluating the life of a crushing mill described in the above.

請求項5の発明は、前記新品粉砕ミルと前記旧品粉砕ミルの1サイクルでの損傷度を、原料供給量が同じ条件でそれぞれ求めておき、前記新品粉砕ミルから前記旧品粉砕ミルの運用時間をスケールに、1サイクルでの損傷度と運用時間の関係を設定するようにした請求項1〜4いずれかに記載の粉砕ミルの寿命評価方法である。   In the invention of claim 5, the degree of damage in one cycle of the new pulverizing mill and the old pulverizing mill is determined under the same raw material supply amount, and the old pulverizing mill is operated from the new pulverizing mill. It is a crushing mill life evaluation method according to any one of claims 1 to 4, wherein the relationship between the damage degree in one cycle and the operation time is set on a time scale.

請求項6の発明は、前記新品粉砕ミルと前記旧品粉砕ミルの1サイクルでの損傷度は、原料供給量に応じた応力−頻度ヒストグラムの等価振動応力を加味して求める請求項1〜5いずれかに記載の粉砕ミルの寿命評価方法である。   In the invention of claim 6, the degree of damage in one cycle of the new crushing mill and the old crushing mill is obtained by taking into account the equivalent vibration stress of the stress-frequency histogram corresponding to the amount of raw material supplied. It is the lifetime evaluation method of the grinding | pulverization mill in any one.

請求項7の発明は、前記累積損傷度は、前記任意の運用時間での応力−頻度ヒストグラムから等価振動応力を求めると共に、その等価振動応力から損傷度を算出し、その損傷度を累積して求められる請求項1〜6いずれかに記載の粉砕ミルの寿命評価方法である。   In the invention according to claim 7, the cumulative damage degree is obtained by calculating an equivalent vibration stress from the stress-frequency histogram at the arbitrary operation time, calculating the damage degree from the equivalent vibration stress, and accumulating the damage degree. It is the lifetime evaluation method of the grinding | pulverization mill in any one of Claims 1-6 calculated | required.

請求項8の発明は、前記累積損傷度は、前記任意の運用時間での応力−頻度ヒストグラムから総運転時間での応力−頻度ヒストグラムを作成し、その総運転時間での応力−頻度ヒストグラムを基に算出される請求項1〜6いずれかに記載の粉砕ミルの寿命評価方法である。   In the invention according to claim 8, the cumulative damage degree is created based on the stress-frequency histogram in the total operation time by creating a stress-frequency histogram in the total operation time from the stress-frequency histogram in the arbitrary operation time. It is the lifetime evaluation method of the grinding | pulverization mill in any one of Claims 1-6 calculated by these.

本発明によれば、粉砕ローラの摩耗により発生応力レベルが上昇することを考慮して寿命評価を行うことにより、粉砕ミルの寿命を精度よく評価することができる。   According to the present invention, the life of the crushing mill can be accurately evaluated by performing the life evaluation in consideration of an increase in the generated stress level due to wear of the crushing roller.

以下、本発明の好適な実施の形態を添付図面にしたがって説明する。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

本発明は、図8で説明した微粉炭ミルなどの粉砕ミルの応力集中部に疲労き裂が発生するのを予測する寿命評価方法である。   The present invention is a life evaluation method for predicting the occurrence of fatigue cracks in the stress concentration part of a pulverizing mill such as the pulverized coal mill described in FIG.

従来の疲労強度線図のみを用いた寿命評価方法では、粉砕ミルの寿命を精度よく評価できないという問題があった。   The conventional life evaluation method using only the fatigue strength diagram has a problem that the life of the grinding mill cannot be accurately evaluated.

そこで、本発明者は、この原因について鋭意検討を行い、その結果、粉砕ローラの摩耗により発生応力レベルが上昇し、粉砕ミルの寿命評価に影響を与えることを見出した。   Therefore, the present inventor has conducted intensive studies on this cause, and as a result, has found that the generated stress level increases due to wear of the crushing roller, which affects the life evaluation of the crushing mill.

図2に示すように、起動から停止までを1サイクルとして、所定時間運転した旧品粉砕ミル(図示破線)と新品粉砕ミル(図示実線)の応力集中部での発生応力レベルを比較したところ、起動時、停止時には旧品粉砕ミルの方が新品粉砕ミルよりも発生応力レベルが低いものの、通常運転時には旧品粉砕ミルの発生応力レベルが新品粉砕ミルの発生応力レベルよりも上昇していることが分かった。   As shown in FIG. 2, when the generated stress level in the stress concentration part of the old product crushing mill (shown by the broken line in the figure) and the new product crushing mill (shown by the solid line in the figure) operated for a predetermined time as one cycle from start to stop is compared, When starting and stopping, the old product crushing mill has a lower stress level than the new crushing mill, but during normal operation, the old product crushing mill has a higher stress level than the new crushing mill. I understood.

通常運転時に旧品粉砕ミルの方が新品粉砕ミルよりも発生応力レベルが上昇する理由としては、粉砕ローラの摩耗のためであると考えられ、粉砕ローラの摩耗によりランダム振動の振動レベルが上昇してしまい、発生応力レベルが上昇していると考えられる。   The reason why the generated stress level of the old crushing mill is higher than that of the new crushing mill during normal operation is considered to be due to the wear of the crushing roller. The wear level of the crushing roller increases the vibration level of random vibration. Therefore, the generated stress level is considered to have increased.

図2において起動時、および停止時に発生応力レベルが大きくなるのは、原料が供給されていない、あるいは原料供給量が少ないために、粉砕ローラが回転テーブルと直接接触してしまい、大きな発生応力レベルが生じているためである。   In FIG. 2, the generated stress level increases at the time of start and stop, because the raw material is not supplied or the raw material supply amount is small, so that the pulverizing roller is in direct contact with the rotary table, resulting in a large generated stress level. This is because of this.

以上の結果から、本発明者は、粉砕ローラの摩耗により振動応力レベルが上昇することを考慮して粉砕ミルの寿命を評価し得る寿命評価方法について研究を重ね、本発明に至った。   From the above results, the present inventor has conducted research on a life evaluation method capable of evaluating the life of a grinding mill in consideration of an increase in vibration stress level due to wear of the grinding roller, and has reached the present invention.

さて、図1は、本実施形態に係る粉砕ミルの寿命評価方法のフローチャートである。   Now, FIG. 1 is a flowchart of the crushing mill life evaluation method according to the present embodiment.

図1に示すように、本実施形態に係る粉砕ミルの寿命評価方法は、新品粉砕ミル(運用時間:0時間)と所定時間運転した旧品粉砕ミル(運用時間:x時間)の1サイクルでの損傷度を求め、その損傷度から1サイクルでの損傷度と運用時間の関係を求める工程(ステップS1〜S7)と、その1サイクルでの損傷度と運用時間の関係を用いて、寿命評価を行う粉砕ミルの累積損傷度を算出し、寿命の評価を行う工程(ステップS8〜S9)とからなる。   As shown in FIG. 1, the crushing mill life evaluation method according to the present embodiment is performed in one cycle of a new crushing mill (operation time: 0 hour) and an old crushing mill (operation time: x hours) operated for a predetermined time. The life evaluation is performed by using the relationship between the degree of damage and the operation time in one cycle (steps S1 to S7) and the relationship between the degree of damage and the operation time in one cycle. The cumulative damage degree of the crushing mill that performs the process is calculated and the life is evaluated (steps S8 to S9).

まず、新品粉砕ミルと旧品粉砕ミルの1サイクルでの損傷度を求め、その損傷度から1サイクルでの損傷度と運用時間の関係を求める工程(ステップS1〜S7)について説明する。   First, the process (steps S1 to S7) of obtaining the damage degree in one cycle of the new crushing mill and the old article crushing mill and obtaining the relationship between the damage degree in one cycle and the operation time from the damage degree will be described.

ステップS1で用いる新品粉砕ミルおよび旧品粉砕ミルは、寿命評価を行う粉砕ミルと同型のものである。本実施形態では、旧品粉砕ミルとして、26000時間稼働したものを用いた。   The new crushing mill and the old crushing mill used in step S1 are of the same type as the crushing mill for performing life evaluation. In this embodiment, an old product grinding mill that has been operating for 26000 hours was used.

ステップS1では、新品粉砕ミル(あるいは旧品粉砕ミル、あるいは寿命評価を行う粉砕ミル)を固有振動解析(FEM)し、疲労き裂発生に対する応力集中部(クリティカルポイント)を抽出する。本実施形態では、低次の3モード程度のモーダルストレス分布から応力集中部を抽出した。抽出される応力集中部は、例えば、ローラピボットや空気供給管とケーシングの接続部などである。   In step S1, a new crushing mill (or an old crushing mill, or a crushing mill for performing life evaluation) is subjected to natural vibration analysis (FEM), and a stress concentration portion (critical point) for fatigue crack generation is extracted. In the present embodiment, the stress concentration portion is extracted from the low-order three-mode modal stress distribution. The extracted stress concentration portion is, for example, a roller pivot or a connection portion between the air supply pipe and the casing.

ステップS2では、ステップS1で抽出した応力集中部に疲労センサや歪ゲージなどのセンサを貼り付けて、新品粉砕ミルと旧品粉砕ミルの起動時、通常運転時、停止時の各運転パターンでの負荷状態(ひずみ変動)を計測する。通常運転時については、原料供給量ごとに負荷状態を計測しておく。センサにより計測されるひずみ変動の波形の一例を図3に示す。   In step S2, sensors such as fatigue sensors and strain gauges are affixed to the stress concentration portion extracted in step S1, and the new pulverizing mill and the old pulverizing mill are started, normally operated, and stopped in each operation pattern. Measure the load condition (strain fluctuation). During normal operation, the load state is measured for each raw material supply amount. An example of the waveform of the strain fluctuation measured by the sensor is shown in FIG.

ステップS3では、ステップS2で得た応力集中部での各運転パターンのひずみ波形を応力頻度解析し、新品粉砕ミルと旧品粉砕ミルの各運転パターンでの応力−頻度ヒストグラムを作成する。応力頻度解析法としては、例えば、レインフロー法を用いるとよい。作成される応力−頻度ヒストグラムの一例を図4に示す。   In step S3, the stress waveform of each operation pattern in the stress concentration portion obtained in step S2 is subjected to stress frequency analysis, and a stress-frequency histogram in each operation pattern of the new product crushing mill and the old product crushing mill is created. For example, a rain flow method may be used as the stress frequency analysis method. An example of the stress-frequency histogram created is shown in FIG.

ステップS4では、応力集中部の疲労強度線図を作成する。本実施形態では、過去の損傷実績をもとに、疲労強度線図の傾きと打ち切り限界(疲労損傷しない下限界応力)を設定している。作成される疲労強度線図の一例を図5に示す。   In step S4, a fatigue strength diagram of the stress concentration portion is created. In the present embodiment, the inclination of the fatigue strength diagram and the truncation limit (lower limit stress that does not cause fatigue damage) are set based on the past damage record. An example of the prepared fatigue strength diagram is shown in FIG.

ステップS5では、ステップS3で得た応力−頻度ヒストグラムと、ステップS4で得た疲労強度線図を用い、数(1)に示す式(1)   In step S5, using the stress-frequency histogram obtained in step S3 and the fatigue strength diagram obtained in step S4, equation (1) shown in equation (1)

Figure 0005223506
Figure 0005223506

により、新品粉砕ミルと旧品粉砕ミルの各運転パターンでの等価振動応力σv_eqを算出する。 Thus, the equivalent vibration stress σ v_eq in each operation pattern of the new pulverization mill and the old pulverization mill is calculated.

さらに、この等価振動応力σv_eqから、数(2)に示す式(2) Furthermore, from this equivalent vibration stress σ v_eq , the equation (2) shown in the equation (2)

Figure 0005223506
Figure 0005223506

により、新品粉砕ミルと旧品粉砕ミルの各運転パターンでの単位時間当たりの損傷度Dを算出する。 Thus, the damage degree D per unit time in each operation pattern of the new pulverization mill and the old pulverization mill is calculated.

ステップS6では、ステップS5で得た各運転パターンでの単位時間当たりの損傷度Dと、1サイクル内での各運転パターンの運転時間とから、新品粉砕ミルと旧品粉砕ミルの1サイクルでの損傷度を求める。   In step S6, from the damage degree D per unit time in each operation pattern obtained in step S5 and the operation time of each operation pattern in one cycle, the new crushing mill and the old crushing mill in one cycle. Determine the degree of damage.

具体的には、例えば、起動時の単位時間当たりの損傷度をD、1サイクル内での起動時間をt(h)とすると、起動時の合計損傷度はD×tで求められる。これを停止時、通常運転時(原料供給量が変わる場合は原料供給量ごと)についても同様に計算し、これら全てを足し合わせると、1サイクルでの損傷度を求めることができる。 Specifically, for example, assuming that the degree of damage per unit time at start-up is D 1 and the start-up time within one cycle is t 1 (h), the total degree of damage at start-up is obtained by D 1 × t 1 . It is done. When this is stopped and during normal operation (for each raw material supply amount when the raw material supply amount changes), the same calculation is performed, and when all of these are added, the degree of damage in one cycle can be obtained.

この新品粉砕ミルと旧品粉砕ミルの1サイクルでの損傷度は、原料供給量に応じた応力−頻度ヒストグラムの等価振動応力(単位時間あたりの損傷度)を加味して求められる。   The degree of damage in one cycle of the new crushing mill and the old crushing mill can be obtained by taking into account the equivalent vibration stress (damage per unit time) of the stress-frequency histogram corresponding to the raw material supply amount.

ステップS7では、ステップS6で得た新品粉砕ミルと旧品粉砕ミルの1サイクルでの損傷度から、新品粉砕ミル(運用時間:0時間)から旧品粉砕ミル(運用時間:26000時間)の運用時間をスケールに、1サイクルでの損傷度と運用時間の関係を設定する。設定する1サイクルでの損傷度と運用時間の関係の一例を図6に示す。   In step S7, the operation of the new crushing mill (operation time: 0 hours) to the old crushing mill (operation time: 26000 hours) is determined based on the degree of damage in one cycle of the new crushing mill and the old crushing mill obtained in step S6. Set the relationship between the degree of damage in one cycle and the operation time on a time scale. An example of the relationship between the degree of damage in one cycle to be set and the operation time is shown in FIG.

この1サイクルでの損傷度と運用時間の関係から、任意の運用時間(総運転時間)での1サイクルでの損傷度を求めることが可能となる。   From the relationship between the damage degree in one cycle and the operation time, the damage degree in one cycle at an arbitrary operation time (total operation time) can be obtained.

次に、以上により求めた1サイクルでの損傷度と運用時間の関係を用いて、寿命評価を行う粉砕ミルの累積損傷度を算出し、寿命の評価を行う工程(ステップS8〜S9)について説明する。   Next, the process (steps S8 to S9) for calculating the cumulative damage degree of the crushing mill for performing the life evaluation and performing the life evaluation using the relationship between the damage degree in one cycle and the operation time obtained as described above (steps S8 to S9) will be described. To do.

ステップS8では、ステップS7で得た1サイクルでの損傷度と運用時間の関係を用いて、任意の運用時間での1サイクルでの損傷度を求め、その損傷度に基づき、任意の運用時間での各運転パターンの応力−頻度ヒストグラムを作成し、寿命の評価を行う粉砕ミルの運用を考慮した各運用時間の応力−頻度ヒストグラムを取り出せるようにしておく。   In step S8, using the relationship between the degree of damage in one cycle and the operating time obtained in step S7, the degree of damage in one cycle at any operating time is obtained, and based on the degree of damage, A stress-frequency histogram of each operation pattern is created, and a stress-frequency histogram for each operation time in consideration of the operation of the crushing mill that evaluates the life can be taken out.

具体的には、まず、ステップS7で求めた1サイクルでの損傷度と運用時間の関係から、寿命の評価を行う粉砕ミルのある任意の運用時間での1サイクルでの損傷度を推定し、この1サイクルでの損傷度と、ステップS2で求めた新品粉砕ミル(あるいは旧品粉砕ミル)の1サイクルでの損傷度との比を求め、その比を新品粉砕ミル(あるいは旧品粉砕ミル)の応力−頻度ヒストグラムに乗ずることにより、任意の運用時間での各運転パターンの応力−頻度ヒストグラムを作成することができる。   Specifically, first, from the relationship between the degree of damage in one cycle obtained in step S7 and the operating time, the degree of damage in one cycle at an arbitrary operating time of the crushing mill for evaluating the life is estimated, The ratio between the degree of damage in one cycle and the degree of damage in one cycle of the new crushing mill (or old product crushing mill) obtained in step S2 is obtained, and the ratio is calculated as the new crushing mill (or old product crushing mill). By multiplying the stress-frequency histogram, it is possible to create a stress-frequency histogram of each operation pattern at an arbitrary operation time.

この任意の運用時間での各運転パターンの応力−頻度ヒストグラムを作成する際には、寿命評価を行う粉砕ミルのこれまでの実績から、過去の起動停止回数や原料供給量のパターンを考慮し、かつ各サイクルごとに応力−頻度ヒストグラムを作成しておくとよい。未来の応力−頻度ヒストグラムについては、過去の運用実績から運転パターンや原料供給量のパターンを推定すると共に、要求寿命(設計寿命)内での起動停止回数などを考慮して作成しておくとよい。新設の粉砕ミルの寿命を評価する場合も同様である。   When creating a stress-frequency histogram of each operation pattern at this arbitrary operation time, considering the past start and stop frequency and raw material supply amount pattern from the past performance of the grinding mill that performs life evaluation, A stress-frequency histogram is preferably created for each cycle. The future stress-frequency histogram should be created in consideration of the number of start / stops within the required life (design life) while estimating the operation pattern and raw material supply amount pattern from past operation results. . The same applies to the evaluation of the life of a new crushing mill.

ステップS9では、まず、ステップS8で作成したそれぞれの任意の運用時間での各運転パターンの応力−頻度ヒストグラムを用い、ステップS5〜S6で説明したのと同様に、数(3)に示す式(1)   In step S9, first, using the stress-frequency histogram of each operation pattern for each arbitrary operation time created in step S8, the equation (3) is expressed as described in steps S5 to S6 ( 1)

Figure 0005223506
Figure 0005223506

により各運転パターンごとに等価振動応力σv_eqを算出すると共に、その等価振動応力σv_eqから数(4)に示す式(2) To calculate the equivalent vibration stress sigma V_eq each driving pattern, shown from the equivalent vibration stress sigma V_eq number (4) Formula (2)

Figure 0005223506
Figure 0005223506

により各運転パターンでの単位時間当たりの損傷度Dを求める。 To obtain the damage degree D per unit time in each operation pattern.

その各パターンでの単位時間当たりの損傷度Dをサイクルごとに累積することにより、任意の運用時間(各サイクル)での1サイクルでの損傷度をそれぞれ算出する。   The degree of damage D per unit time in each pattern is accumulated for each cycle, thereby calculating the degree of damage in one cycle at an arbitrary operation time (each cycle).

その後、算出したそれぞれの任意の運用時間の1サイクルでの損傷度を累積計算することにより、累積損傷度を求める。   After that, the cumulative damage degree is obtained by cumulatively calculating the damage degree in one cycle of each calculated operation time.

この累積損傷度が1と等しくなるときに疲労き裂が発生することになる。よって、この累積損傷度から、粉砕ミルの寿命を予測することができる。   When this cumulative damage level becomes equal to 1, fatigue cracks are generated. Therefore, the life of the grinding mill can be predicted from this cumulative damage degree.

また、要求寿命(設計寿命)の総運転時間に対する累積損傷度を累積計算することで、疲労き裂が発生するかしないかを判定することもできる。   It is also possible to determine whether or not a fatigue crack will occur by cumulatively calculating the cumulative damage degree with respect to the total operating time of the required life (design life).

本実施形態では、ステップS9において、任意の時間での各運転パターンの応力−頻度ヒストグラムから等価振動応力σv_eq、単位時間当たりの損傷度Dを求め、これを基に1サイクルでの損傷度を求め、この1サイクルでの損傷度を累積して累積損傷度を求めたが、総運転時間に対する応力−頻度ヒストグラムを求め、その単純和から累積損傷度を求めてもよい。 In this embodiment, in step S9, the equivalent vibration stress σ v — eq and the damage degree D per unit time are obtained from the stress-frequency histogram of each operation pattern at an arbitrary time, and the damage degree in one cycle is obtained based on this. The cumulative damage degree is obtained by accumulating the damage degree in this one cycle, but the stress-frequency histogram with respect to the total operation time may be obtained, and the cumulative damage degree may be obtained from the simple sum.

この場合、作成した任意の時間での応力−頻度ヒストグラムを各運転パターンごとに全て足し合わせて、各運転パターンごとに総運転時間(運用時間)に対する応力−頻度ヒストグラムを作成し、数(5)に示す式(3)   In this case, the stress-frequency histograms created at arbitrary times are added together for each operation pattern, and a stress-frequency histogram for the total operation time (operation time) is created for each operation pattern. Formula (3) shown in

Figure 0005223506
Figure 0005223506

を用いて、各運転パターンでの累積損傷度D’を求める。この各運転パターンでの累積損傷度D’を足し合わせれば、全体での累積損傷度を求めることができる。 Is used to determine the cumulative damage degree D 'in each operation pattern. If the cumulative damage degree D ′ in each operation pattern is added, the total cumulative damage degree can be obtained.

さらに、ステップS8における任意の時間での各運転パターンの応力−頻度ヒストグラムを作成することを省略し、図6の1サイクルでの損傷度と運用時間の関係から任意の時間での1サイクルでの損傷度を直接求め、起動停止回数などのデータをもとに直接累積損傷度を計算するようにしてもよい。   Further, the creation of a stress-frequency histogram of each operation pattern at an arbitrary time in step S8 is omitted, and the relationship between the damage degree and the operation time in one cycle in FIG. The damage degree may be directly obtained, and the cumulative damage degree may be directly calculated based on data such as the number of start / stop times.

この場合、原料供給量や運転パターンを考慮する必要があるため、原料供給量や各運転パターンに応じて1サイクルでの損傷度と運用時間の関係を予め作成しておくとよい。   In this case, since it is necessary to consider the raw material supply amount and the operation pattern, it is preferable to create a relationship between the damage degree in one cycle and the operation time in advance according to the raw material supply amount and each operation pattern.

以上説明したように、本発明では、新品粉砕ミルと所定時間運転した旧品粉砕ミルの応力集中部のひずみを測定すると共に、これに基づいて応力−頻度ヒストグラムを原料供給量ごとに作成し、他方、粉砕ミルの応力集中部の疲労強度線図を過去の損傷実績から設定しておき、その疲労強度線図と前記応力−頻度ヒストグラムから等価振動応力を求めると共に、その等価振動応力から新品粉砕ローラと旧品粉砕ローラの1サイクルでの損傷度を求め、1サイクルでの損傷度と運用時間の関係を設定しておき、次に、寿命評価を行う粉砕ミルのこれまでの運用実績から、1サイクルでの損傷度を求め、その1サイクルでの損傷度から任意の運用時間での応力−頻度ヒストグラムを作成できるようになし、これを基に任意の運用時間までの損傷度を累積して累積損傷度を算出し、その累積損傷度により寿命を予測している。   As described above, in the present invention, the strain of the stress concentration part of the old pulverization mill operated for a predetermined time with the new pulverization mill is measured, and based on this, a stress-frequency histogram is created for each raw material supply amount, On the other hand, the fatigue strength diagram of the stress concentration part of the crushing mill is set from past damage records, and the equivalent vibration stress is obtained from the fatigue strength diagram and the stress-frequency histogram, and the new product is crushed from the equivalent vibration stress. Find the degree of damage in one cycle of the roller and the old crushing roller, set the relationship between the degree of damage in one cycle and the operation time, and then from the past operation results of the crushing mill that performs life evaluation, The degree of damage in one cycle is obtained, and a stress-frequency histogram at any operation time can be created from the degree of damage in that one cycle. Cumulatively calculates the cumulative damage degree predicts the life by the accumulated degree of damage.

これにより、粉砕ローラの摩耗により発生応力レベルが上昇することを考慮した疲労強度評価が可能となり、粉砕ミルの寿命を精度よく評価することができる。   As a result, it is possible to evaluate the fatigue strength in consideration of an increase in the generated stress level due to wear of the grinding roller, and the life of the grinding mill can be accurately evaluated.

さらに、本発明によれば、起動停止回数が多い粉砕ミルより起動停止回数の少ない粉砕ミルの法が早く疲労損傷が発生するという現象を説明できる疲労強度評価が可能となり、粉砕ミルの信頼性を向上させることができる。   Furthermore, according to the present invention, it is possible to evaluate the fatigue strength that can explain the phenomenon that the fatigue damage occurs earlier by the method of the pulverization mill having the smaller number of start / stop times than the pulverization mill having the larger number of start / stop times, and the reliability of the pulverization mill can be improved. Can be improved.

ここで、本発明により予測した粉砕ミルの寿命と、実際に疲労き裂が発生したときの運用寿命を比較したグラフを図7に示す。   Here, a graph comparing the service life of the pulverizing mill predicted by the present invention and the service life when a fatigue crack actually occurs is shown in FIG.

図7に示すように、本発明により予測した粉砕ミルの寿命と、実機での運用寿命はよく一致しており、本発明によれば、粉砕ミルの寿命を精度よく評価できることが分かる。   As shown in FIG. 7, the service life of the pulverization mill predicted by the present invention and the operation life of the actual machine are in good agreement, and according to the present invention, it can be seen that the service life of the pulverization mill can be evaluated with high accuracy.

本発明の粉砕ミルの寿命評価方法のフローチャートである。It is a flowchart of the lifetime evaluation method of the crushing mill of this invention. 本発明において、新品粉砕ミルと旧品粉砕ミルの発生応力レベルを比較する図である。In this invention, it is a figure which compares the generated stress level of a new article crushing mill and an old article crushing mill. 本発明で計測されるひずみ変動の波形の一例を示す図である。It is a figure which shows an example of the waveform of the distortion fluctuation | variation measured by this invention. 本発明で作成される応力−頻度ヒストグラムの一例を示す図である。It is a figure which shows an example of the stress-frequency histogram created by this invention. 本発明で作成される疲労強度線図の一例を示す図である。It is a figure which shows an example of the fatigue strength diagram created by this invention. 本発明で作成される1サイクルでの損傷度と運用時間の関係の一例を示す図である。It is a figure which shows an example of the relationship between the damage degree in 1 cycle created by this invention, and operation time. 本発明により予測した粉砕ミルの寿命と、実際に疲労き裂が発生したときの運用寿命を比較したグラフである。It is the graph which compared the lifetime of the grinding | pulverization mill estimated by this invention, and the operation lifetime when a fatigue crack actually generate | occur | produces. 微粉炭ミルの概略断面図である。It is a schematic sectional drawing of a pulverized coal mill.

符号の説明Explanation of symbols

81 微粉炭ミル
82 駆動装置
83 回転テーブル
84 粉砕ローラ
85 ケーシング
86 ローラピボット
87 給炭管
88 空気供給管
89 セパレータ
90 セパレータ駆動装置
91 微粉炭管
81 pulverized coal mill 82 drive unit 83 rotary table 84 crushing roller 85 casing 86 roller pivot 87 coal supply pipe 88 air supply pipe 89 separator 90 separator drive unit 91 pulverized coal pipe

Claims (8)

ケーシング内に回転自在に設けられた回転テーブルと、その回転テーブル上に回転自在に支持され、前記回転テーブル上に供給される原料を粉砕する粉砕ローラとを備えた粉砕ミルの寿命を評価する粉砕ミルの寿命評価方法において、
新品粉砕ミルと所定時間運転した旧品粉砕ミルの応力集中部にセンサを取り付け、これら粉砕ミルの起動から停止までを1サイクルとしてひずみを測定して、その応力−頻度ヒストグラムを作成すると共に、原料供給量ごとの応力−頻度ヒストグラムを作成し、他方、粉砕ミルの応力集中部の疲労強度線図を過去の損傷実績から設定しておき、その疲労強度線図と前記応力−頻度ヒストグラムから等価振動応力を求めると共に、その等価振動応力から新品粉砕ローラと旧品粉砕ローラの1サイクルでの損傷度を求め、1サイクルでの損傷度と運用時間の関係を設定しておき、次に、寿命評価を行う粉砕ミルのこれまでの運用実績から、その粉砕ミルの1サイクルでの損傷度を推定し、その1サイクルでの損傷度から任意の運用時間での応力−頻度ヒストグラムを作成できるようになし、これを基に任意の運用時間までの損傷度を累積して累積損傷度を算出し、その累積損傷度により寿命を予測することを特徴とする粉砕ミルの寿命評価方法。
Grinding for evaluating the life of a grinding mill comprising a rotary table rotatably provided in a casing, and a grinding roller that is rotatably supported on the rotary table and crushes the raw material supplied to the rotary table. In the mill life evaluation method,
A sensor is attached to the stress concentration part of the new crushing mill and the old crushing mill that has been operating for a predetermined time, and the strain is measured in one cycle from the start to the stop of the crushing mill. A stress-frequency histogram for each supply amount is created, and on the other hand, a fatigue strength diagram of the stress concentration part of the crushing mill is set from past damage records, and an equivalent vibration is calculated from the fatigue strength diagram and the stress-frequency histogram. In addition to obtaining the stress, the degree of damage in one cycle between the new grinding roller and the old grinding roller is obtained from the equivalent vibration stress, and the relationship between the degree of damage in one cycle and the operation time is set, and then the life evaluation The degree of damage in one cycle of the pulverizing mill is estimated from the past operation results of the pulverizing mill, and the stress at any operating time is calculated from the degree of damage in the one cycle. The life of a grinding mill is characterized by the fact that the degree of damage can be created and the degree of damage is calculated by accumulating the degree of damage up to an arbitrary operation time based on this, and the life is predicted by the accumulated degree of damage. Evaluation method.
前記新品粉砕ミルと前記旧品粉砕ミルの応力−頻度ヒストグラムは、起動時、通常運転時、停止時の各運転パターンごとに作成される請求項1記載の粉砕ミルの寿命評価方法。   2. The method for evaluating the life of a crushing mill according to claim 1, wherein stress-frequency histograms of the new crushing mill and the old crushing mill are created for each operation pattern at startup, normal operation, and stop. 前記新品粉砕ミルと前記旧品粉砕ミルの応力−頻度ヒストグラムを、原料供給量ごとに、かつ各運転パターンごとに作成し、これを基にそれぞれの等価振動応力を求める請求項2記載の粉砕ミルの寿命評価方法。   The pulverization mill according to claim 2, wherein stress-frequency histograms of the new pulverization mill and the old pulverization mill are prepared for each raw material supply amount and for each operation pattern, and the equivalent vibration stress is obtained based on the histogram. Life evaluation method. 起動時、通常運転時、停止時の各運転パターンの等価振動応力から損傷度をそれぞれ求め、これを足し合わせて1サイクルでの損傷度を求める請求項1〜3いずれかに記載の粉砕ミルの寿命評価方法。   The pulverization mill according to any one of claims 1 to 3, wherein a damage degree is obtained from an equivalent vibration stress of each operation pattern at start-up, normal operation, and stop, and the damage degree in one cycle is obtained by adding the damage degrees. Life evaluation method. 前記新品粉砕ミルと前記旧品粉砕ミルの1サイクルでの損傷度を、原料供給量が同じ条件でそれぞれ求めておき、前記新品粉砕ミルから前記旧品粉砕ミルの運用時間をスケールに、1サイクルでの損傷度と運用時間の関係を設定するようにした請求項1〜4いずれかに記載の粉砕ミルの寿命評価方法。   The degree of damage in one cycle of the new pulverizing mill and the old pulverizing mill is determined under the same raw material supply amount, and the cycle time of the old pulverizing mill from the new pulverizing mill is one cycle. The lifetime evaluation method of the crushing mill in any one of Claims 1-4 which was made to set the relationship between the damage degree in this, and operation time. 前記新品粉砕ミルと前記旧品粉砕ミルの1サイクルでの損傷度は、原料供給量に応じた応力−頻度ヒストグラムの等価振動応力を加味して求める請求項1〜5いずれかに記載の粉砕ミルの寿命評価方法。   The degree of damage in one cycle of the new product crushing mill and the old product crushing mill is determined by taking into account the equivalent vibration stress of a stress-frequency histogram corresponding to the amount of raw material supplied. Life evaluation method. 前記累積損傷度は、前記任意の運用時間での応力−頻度ヒストグラムから等価振動応力を求めると共に、その等価振動応力から損傷度を算出し、その損傷度を累積して求められる請求項1〜6いずれかに記載の粉砕ミルの寿命評価方法。   The cumulative damage degree is obtained by calculating an equivalent vibration stress from the stress-frequency histogram at the arbitrary operation time, calculating a damage degree from the equivalent vibration stress, and accumulating the damage degree. The life evaluation method of the grinding | pulverization mill in any one. 前記累積損傷度は、前記任意の運用時間での応力−頻度ヒストグラムから総運転時間での応力−頻度ヒストグラムを作成し、その総運転時間での応力−頻度ヒストグラムを基に算出される請求項1〜6いずれかに記載の粉砕ミルの寿命評価方法。   The cumulative damage level is calculated based on a stress-frequency histogram for a total operation time created from a stress-frequency histogram for the arbitrary operation time and a stress-frequency histogram for the total operation time. The life evaluation method of the grinding | pulverization mill in any one of -6.
JP2008177821A 2008-07-08 2008-07-08 Crushing mill life evaluation method Active JP5223506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008177821A JP5223506B2 (en) 2008-07-08 2008-07-08 Crushing mill life evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008177821A JP5223506B2 (en) 2008-07-08 2008-07-08 Crushing mill life evaluation method

Publications (2)

Publication Number Publication Date
JP2010019577A JP2010019577A (en) 2010-01-28
JP5223506B2 true JP5223506B2 (en) 2013-06-26

Family

ID=41704655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008177821A Active JP5223506B2 (en) 2008-07-08 2008-07-08 Crushing mill life evaluation method

Country Status (1)

Country Link
JP (1) JP5223506B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5251308B2 (en) * 2008-07-08 2013-07-31 株式会社Ihi Crushing mill design strength evaluation method
CN101975672B (en) * 2010-09-07 2012-02-01 中国矿业大学 Fault diagnosis device for coal mine digging machine
JP7458782B2 (en) 2019-12-27 2024-04-01 三菱重工業株式会社 Wear evaluation system, solid fuel pulverizer, wear evaluation method, and wear evaluation program

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456839U (en) * 1987-09-30 1989-04-10
JPH05345139A (en) * 1992-06-11 1993-12-27 Babcock Hitachi Kk Roller type grinding apparatus and grinding method using the same
US5717607A (en) * 1995-10-16 1998-02-10 Ford Motor Company Computer program, system and method to reduce sample size in accelerated reliability verification tests
JP3837124B2 (en) * 2003-05-09 2006-10-25 川崎重工業株式会社 Information acquisition device and evaluation equipment
JP4179248B2 (en) * 2004-09-01 2008-11-12 トヨタ自動車株式会社 Method and apparatus for estimating fatigue life of solder joints
JP4488957B2 (en) * 2005-05-26 2010-06-23 財団法人鉄道総合技術研究所 Fatigue state analysis apparatus and fatigue state analysis program

Also Published As

Publication number Publication date
JP2010019577A (en) 2010-01-28

Similar Documents

Publication Publication Date Title
US10527520B2 (en) Operating wind motors and determining their remaining useful life
US7226010B2 (en) Method and apparatus for solid fuel pulverizing operation and maintenance optimization
Avitabile et al. Prediction of full field dynamic strain from limited sets of measured data
JP5223506B2 (en) Crushing mill life evaluation method
KR102483606B1 (en) Device for diagnosing deterioration of crusher, pulverization system, and method for diagnosing deterioration
JP2012532461A (en) Method and apparatus for predictive preventive maintenance of processing chambers
CN203274989U (en) Testing device used for roller breaking device or grinding machine
Makokha et al. A new approach to optimising the life and performance of worn liners in ball mills: Experimental study and DEM simulation
JP5251308B2 (en) Crushing mill design strength evaluation method
CN203323723U (en) Test device for roller crusher
JP5817221B2 (en) Load monitoring method and apparatus for vertical mill
KR101890146B1 (en) Condition detecting method and device for trouble diagnosis of ball mill
CN110879912A (en) Fatigue analysis method and device
KR101159540B1 (en) Method for examining badness of main drive in rolling mill
US20130277467A1 (en) Test device for roller crusher
WO2013156964A1 (en) Test device for roller crusher
JP2000246126A (en) Maintenance monitor for roller mill
RU2807818C1 (en) Testing installation and method for checking destruction characteristics and mechanical properties of rock particles
US20110213568A1 (en) Methods and systems for assessing generator rotors
CN113578503B (en) Coal mill maintenance method and system, storage medium and terminal thereof
Guo et al. PHM of Roller Tyre in Nonferrous Metal Crushing Process Based on DUAE
EP3967871B1 (en) A method of operating a wind turbine
JPH05345139A (en) Roller type grinding apparatus and grinding method using the same
Zhang et al. Coal pulverizer monitoring and analysis: A case study
JP2007309283A (en) Gas turbine component service life management system and gas turbine component service life management method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130225

R151 Written notification of patent or utility model registration

Ref document number: 5223506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250