JP5223228B2 - Hot metal desiliconization method - Google Patents

Hot metal desiliconization method Download PDF

Info

Publication number
JP5223228B2
JP5223228B2 JP2007107815A JP2007107815A JP5223228B2 JP 5223228 B2 JP5223228 B2 JP 5223228B2 JP 2007107815 A JP2007107815 A JP 2007107815A JP 2007107815 A JP2007107815 A JP 2007107815A JP 5223228 B2 JP5223228 B2 JP 5223228B2
Authority
JP
Japan
Prior art keywords
lance
hot metal
immersion
gas
gaseous oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007107815A
Other languages
Japanese (ja)
Other versions
JP2008266674A (en
Inventor
章敏 松井
誠司 鍋島
康夫 岸本
堅一郎 田宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007107815A priority Critical patent/JP5223228B2/en
Publication of JP2008266674A publication Critical patent/JP2008266674A/en
Application granted granted Critical
Publication of JP5223228B2 publication Critical patent/JP5223228B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

本発明は、浸漬ランスを介して気体酸素を溶銑に吹き込んで行う溶銑の脱珪処理方法に関し、詳しくは、二重管構造の浸漬ランスの下端側面に吐出孔を2孔、逆T字状に分岐させて設け、該ランスを溶銑に垂直に浸漬させ、所定の吹き込み条件を満足させて脱珪処理することにより、浸漬ランスを長寿命化することが可能な脱珪処理方法に関するものである。   The present invention relates to a hot metal desiliconization method in which gaseous oxygen is blown into a hot metal via an immersion lance, and more specifically, two discharge holes are formed in an inverted T shape on the lower end side surface of the double tube structure immersion lance. The present invention relates to a desiliconization method capable of extending the life of an immersion lance by providing a branch, immersing the lance perpendicularly to the hot metal, and satisfying a predetermined blowing condition for desiliconization.

近年、鋼材の高級化に伴う燐含有量低下対策、或いは製鋼プロセスの合理化を目的として、溶銑の脱燐処理が、転炉または溶銑鍋若しくは混銑車(「トピードカー」ともいう)などにおいて広く行われている。また、この脱燐処理を効率的に行うために、脱燐処理の前に予め溶銑中の珪素を除去する脱珪処理も行われている。溶銑中の燐及び珪素は酸化反応によって除去されるので、溶銑の脱燐処理及び脱珪処理は、溶銑に気体酸素や酸化鉄などの酸素源を供給し、酸素源によって溶銑中の燐或いは珪素を酸化除去させている。その際に、反応効率を高める或いは生成するスラグの組成を調整するために、生石灰などのフラックスも添加されている。   In recent years, hot metal dephosphorization has been widely performed in converters, hot metal pans, or kneading cars (also called “topy cars”) for the purpose of reducing the phosphorus content accompanying the upgrading of steel materials or rationalizing the steel making process. ing. Moreover, in order to perform this dephosphorization process efficiently, the desiliconization process which removes the silicon in a hot metal beforehand is also performed before the dephosphorization process. Since phosphorus and silicon in the hot metal are removed by an oxidation reaction, the dephosphorization process and desiliconization process of the hot metal supply an oxygen source such as gaseous oxygen or iron oxide to the hot metal, and the phosphorus or silicon in the hot metal is supplied by the oxygen source. Is removed by oxidation. At that time, a flux such as quicklime is also added to increase the reaction efficiency or adjust the composition of the slag to be generated.

溶銑の脱燐処理及び脱珪処理において溶銑に気体酸素を供給する方法は、大きく分けて2種類に分類される。1つの方法は、溶銑とは非接触の上吹きランスなどから気体酸素を溶銑浴面に向けて吹き付ける方法(「上吹き送酸法」と呼ぶ)である(例えば、特許文献1参照)。他の方法は、溶銑中に浸漬させたガス吹き込み用の浸漬ランスや反応容器の底部などに設けた羽口から、溶銑中に気体酸素を直接吹き込む方法(「吹き込み送酸法」と呼ぶ)である(例えば、特許文献2参照)。それぞれの方法には、それぞれの特徴があり、吹き込み送酸法の場合には、気体酸素の添加効率が高い、攪拌力が向上するなどの利点がある一方、浸漬ランスの浸漬部の熱負荷は大きく(例えば一方向のみの熱負荷を受ける羽口などと比べても消耗が激しい)、耐用回数が限られるなどの問題がある。これに対して、上吹き送酸法の場合には、上吹きランスへの熱負荷が小さく、長期間に亘って使用できるという利点はあるが、気体酸素の添加効率が低い、攪拌力が得られないなどの問題がある。   Methods for supplying gaseous oxygen to hot metal in hot metal dephosphorization and desiliconization are roughly classified into two types. One method is a method in which gaseous oxygen is sprayed toward the hot metal bath surface from a non-contact upper blowing lance or the like (referred to as “upper blowing acid feeding method”) (see, for example, Patent Document 1). Another method is a method in which gaseous oxygen is directly blown into the hot metal from a soaking lance for gas blowing immersed in the hot metal or a tuyere provided at the bottom of the reaction vessel (referred to as “blow acid feeding method”). Yes (see, for example, Patent Document 2). Each method has its own characteristics, and in the case of the blowing acid method, there are advantages such as high addition efficiency of gaseous oxygen and improved stirring power, while the heat load of the immersion part of the immersion lance is There is a problem that it is large (for example, consumption is severe compared to tuyere that receives a heat load in only one direction) and the number of service life is limited. On the other hand, in the case of the top blowing acid method, there is an advantage that the heat load on the top blowing lance is small and it can be used for a long period of time, but the addition efficiency of gaseous oxygen is low and the stirring power is obtained. There are problems such as inability.

気体酸素を供給する際に、上吹き送酸法とするか、吹き込み送酸法とするかは、上記の特徴を考慮して決められるが、例えば混銑車の場合のように、処理容器の形状から上吹き送酸法では反応効率が悪く、吹き込み送酸法を採用せざるを得ないこともある。混銑車の場合には、その容器形状から攪拌・混合されにくく、それに加えて溶銑の収容量に対して開口部が少なく、上吹き送酸法では所望する反応効率が得られないからである。   When supplying gaseous oxygen, whether to use the top blowing method or the blowing method is determined in consideration of the above-mentioned characteristics. For example, as in the case of a kneading vehicle, the shape of the processing vessel Therefore, the top blowing acid method has poor reaction efficiency, and the blowing acid method may have to be adopted. In the case of a kneading vehicle, it is difficult to stir and mix due to the shape of the container, and in addition to that, there are few openings for the amount of hot metal accommodated, and the desired reaction efficiency cannot be obtained by the top blowing acid method.

吹き込み送酸法で使用する浸漬ランスは、前述したように浸漬部の損耗が激しいことから、これを改善する手段が提案されている。例えば、特許文献3には、溶融金属中に浸漬する先端部と、該先端部を保持するホルダー部とからなる浸漬ランスにおいて、前記先端部を単管構造とし、その全表面をカロライズ処理し、更にその外周を耐火物で被覆することにより、浸漬ランス先端部の溶損防止を図る技術が開示されている。   As described above, the immersion lance used in the blowing acid feeding method has a severe wear of the immersion part, and means for improving this has been proposed. For example, in Patent Document 3, in a dipping lance composed of a tip part immersed in molten metal and a holder part holding the tip part, the tip part has a single tube structure, and the entire surface thereof is calorized. Furthermore, a technique is disclosed in which the outer periphery of the immersion lance is covered with a refractory to prevent the tip of the immersion lance from being melted.

また、特許文献4には、二重管構造の浸漬ランスの内管と外管との間隙を、管軸の長手方向に交差する断面で少なくとも2つの冷却ガス流路に仕切るように、管軸の長手方向に沿う仕切部材を設け、溶銑に該ランスを傾斜して浸漬させ、内管から気体酸素と精錬用フラックスを、外管から冷却ガスを吹き込む技術が開示されている。この技術は、炭化水素系ガスは加熱されると分解し、分解する際に吸熱するので、この吸熱を利用して浸漬ランスの先端部を冷却し、更に仕切部材を設けることで、溶損が著しい、傾斜した浸漬ランス上面側の冷却を促進させるという技術である。
特開昭53−78913号公報 特開昭56−169716号公報 実開平6−6447号公報 特開平11−246902号公報
Further, Patent Document 4 discloses a tube shaft so that a gap between an inner tube and an outer tube of a double tube structure immersion lance is divided into at least two cooling gas flow paths in a cross section intersecting with the longitudinal direction of the tube shaft. A technique is disclosed in which a partition member along the longitudinal direction is provided, the lance is inclined and immersed in the hot metal, and gaseous oxygen and refining flux are blown from the inner pipe and cooling gas is blown from the outer pipe. In this technique, hydrocarbon-based gas decomposes when heated, and absorbs heat when it is decomposed. By using this heat absorption, the tip of the immersion lance is cooled, and a partition member is provided to prevent melting damage. This technique promotes the cooling of the upper surface side of the inclined dip lance that is significantly inclined.
JP-A-53-78913 JP-A-56-169716 Japanese Utility Model Publication No. 6-6447 JP-A-11-246902

しかしながら、上記の特許文献3及び特許文献4においては以下の問題がある。即ち、溶融金属中に精錬剤とともに気体酸素を吹き込むに当たり、特許文献3のように、浸漬部をカロライズパイプとしてその周囲を耐火物で被覆する技術においては、供給する酸素源としては酸化鉄が主体であり、気体酸素の比率、つまり総酸素供給量(酸化鉄(気体酸素に換算)+気体酸素)に対する気体酸素供給量の割合は、20〜30%が上限である。気体酸素の比率を高めた場合には、発熱が激しく単管構造では耐え切れないからである。酸化反応による発熱を有効利用するためには気体酸素比率は100%が望ましいが、この技術では気体酸素のみの吹き込みに対する耐用性が十分でない。   However, the above Patent Document 3 and Patent Document 4 have the following problems. That is, in blowing gaseous oxygen together with the refining agent into the molten metal, as in Patent Document 3, in the technique of covering the periphery with a refractory as a calorized pipe, iron oxide is used as the oxygen source to be supplied. The upper limit of the ratio of gaseous oxygen to the ratio of gaseous oxygen, that is, the ratio of gaseous oxygen supply to the total oxygen supply (iron oxide (converted to gaseous oxygen) + gaseous oxygen) is 20 to 30%. This is because when the ratio of gaseous oxygen is increased, heat generation is intense and the single tube structure cannot withstand. In order to effectively use the heat generated by the oxidation reaction, the gas oxygen ratio is preferably 100%, but this technique does not have sufficient durability against blowing of gaseous oxygen alone.

また、特許文献4に開示された方法では、炭化水素系ガスの分解吸熱により、浸漬ランス先端部の冷却が行われ、更に仕切部材によって溶損の著しい浸漬ランス上面側の冷却を促進できるが、吹き込みガス流量が大きくなった場合には、ガスの反力や溶銑からの浮力などの負荷が浸漬ランスに大きく働くため、処理中のランス振動が大きくなり、浸漬ランス外殻の耐火物被覆層に物理的な割れ・剥離損傷(スポーリング)が発生し、使用不可になるという問題がある。   Further, in the method disclosed in Patent Document 4, the tip of the immersion lance is cooled by the decomposition endotherm of the hydrocarbon-based gas, and further, the partition member can promote the cooling of the upper surface side of the immersion lance that is significantly melted, When the flow rate of the blown gas increases, loads such as gas reaction force and buoyancy from the hot metal act on the immersion lance, which increases the lance vibration during processing and causes the refractory coating layer on the outer shell of the immersion lance to increase. There is a problem that physical cracking / peeling damage (spalling) occurs and the device becomes unusable.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、浸漬ランスを介して気体酸素を溶銑中に吹き込んで溶銑を脱珪処理するに際し、浸漬ランスの損傷が少なく、従来に比べて多数回に亘っての浸漬ランスの使用が可能であり、製造コストの削減を可能とする、溶銑の脱珪処理方法を提供することである。   The present invention has been made in view of the above circumstances. The purpose of the present invention is to reduce the damage of the immersion lance when degassing the molten iron by blowing gaseous oxygen into the molten iron through the immersion lance. The present invention is to provide a hot metal desiliconization method that can use a dipping lance many times as compared with the manufacturing cost.

上記課題を解決するための本発明に係る溶銑の脱珪処理方法は、浸漬ランスの下端部側面に、逆T字状に分岐した2孔の吐出孔を有し、内管及び外管からなる2重管構造の浸漬ランスを溶銑に垂直に浸漬させ、内管から気体酸素を吹き込むとともに、内管と外管との間隙から炭化水素系ガスを内管からの気体酸素の吹き込み流量の5〜20vol %の流量で吹き込み、且つ、内管からの気体酸素の吹き込み流量と吐出孔部での内管の総断面積との比が下記の(1)式を満足するように気体酸素を吹き込んで、溶銑に脱珪処理を施すことを特徴とするものである。但し、(1)式において、QO2は、内管からの気体酸素の吹き込み流量(Nm3/S)、Aは、吐出孔部での内管の総断面積(m2 )である。 In order to solve the above problems, the hot metal desiliconization method according to the present invention has two discharge holes branched in an inverted T shape on the side surface of the lower end of the immersion lance, and consists of an inner tube and an outer tube. A dipping lance having a double-pipe structure is immersed vertically in the hot metal, and gaseous oxygen is blown from the inner pipe, and hydrocarbon gas is blown from the gap between the inner pipe and the outer pipe, and the flow rate of gaseous oxygen from the inner pipe is 5 to 5. Injecting gaseous oxygen so that the ratio of the flow rate of gaseous oxygen from the inner pipe and the total cross-sectional area of the inner pipe at the discharge hole satisfies the following formula (1): The hot metal is desiliconized. In Equation (1), Q O2 is the flow rate of gaseous oxygen blown from the inner pipe (Nm 3 / S), and A is the total cross-sectional area (m 2 ) of the inner pipe at the discharge hole.

250≦QO2/A≦750 …(1) 250 ≦ Q O2 / A ≦ 750 (1)

本発明によれば、浸漬ランスの下端部側面に、逆T字状に分岐した2孔の吐出孔を有し、内管及び外管からなる2重管構造の浸漬ランスを溶銑に垂直に浸漬させ、内管からは気体酸素を、内管と外管との間隙からは炭化水素系ガスを内管からの気体酸素流量の5〜20vol %の流量で吹き込むとともに、内管からの吹き込み流量(QO2)と吐出孔部での内管の総断面積(A)との比(QO2/A)が250〜750の範囲内になるように調整するので、浸漬ランスの溶損が防止され、浸漬ランスを安定的に長寿命化することができる。その結果、脱珪反応による発熱を有効利用できるなどによって、製造コストの削減が達成される。 According to the present invention, the immersion lance having a double-pipe structure consisting of an inner tube and an outer tube is vertically immersed in the hot metal, having a discharge hole having two holes branched in an inverted T shape on the side surface of the lower end portion of the immersion lance. In addition, gaseous oxygen is blown from the inner pipe, and hydrocarbon gas is blown from the gap between the inner pipe and the outer pipe at a flow rate of 5 to 20 vol% of the gaseous oxygen flow rate from the inner pipe. since the ratio of the total cross-sectional area (a) of the inner tube at the Q O2) and the discharge hole (Q O2 / a) is adjusted within a range of 250 to 750, erosion of the immersion lance is prevented The immersion lance can be stably extended in life. As a result, a reduction in manufacturing cost is achieved, for example, by effectively utilizing the heat generated by the desiliconization reaction.

以下、本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described.

本発明者らは、上記課題を解決すべく、混銑車を模した水モデル装置における水モデル実験及び実機混銑車における溶銑の脱珪処理を種々の条件下で実施し、調査・検討を行った。その結果、内管及び外管から構成される二重管構造の浸漬ランスの内管と外管との間隙から、プロパンガスなどの炭化水素系ガスを冷却用ガスとして導入することで浸漬ランス先端の溶損は軽減されるものの、ガス吹き込み時に浸漬ランス自体の振動が大きくなると、外管の外周に施工した耐火物被覆層に物理的な割れ・剥離損傷(スポーリング)が発生し、使用不可能になってしまうことが明らかとなった。   In order to solve the above-mentioned problems, the present inventors conducted a water model experiment in a water model apparatus simulating a chaotic vehicle and a desiliconization treatment of hot metal in an actual chaotic vehicle under various conditions, and investigated and examined them. . As a result, the tip of the immersion lance is introduced by introducing a hydrocarbon-based gas such as propane gas as a cooling gas from the gap between the inner tube and the outer tube of the immersion lance having a double tube structure composed of an inner tube and an outer tube. However, if the vibration of the immersion lance itself increases when the gas is blown, the refractory coating layer applied to the outer circumference of the outer tube will cause physical cracking and peeling damage (spoling), which will not be used. It became clear that it would be possible.

上記の結果から、本発明者らは、溶銑に浸漬された二重管構造の浸漬ランスの振動を抑制することが、耐火物被覆層の割れ防止及び浸漬ランスの長寿命化につながると考え、浸漬ランスの振動を抑制する方法について検討した。ガス吹き込み処理中の浸漬ランスには、主に、(1)吹き込みガスの反力、(2)溶銑からの浮力、が働き、これらの力が大きすぎる場合に振動が大きくなり、耐火物被覆層に割れが生じる。従って、ガスの反力と溶銑からの浮力とを極力低減させることが必要である。   From the above results, the present inventors believe that suppressing the vibration of the immersion lance of the double tube structure immersed in the hot metal leads to the prevention of cracking of the refractory coating layer and the extension of the life of the immersion lance, A method for suppressing the vibration of the immersion lance was studied. The immersion lance during the gas blowing process mainly has (1) reaction force of the blowing gas and (2) buoyancy from the hot metal. When these forces are too large, the vibration becomes large and the refractory coating layer Cracks occur. Therefore, it is necessary to reduce the reaction force of the gas and the buoyancy from the hot metal as much as possible.

そこで、本発明者らは、ガスの反力及び溶銑からの浮力を低減するために、従来、先端部にL字型の曲げ部を有し、この曲げ部の先端に1つの吐出孔を有する浸漬ランス(「L字型・1孔浸漬ランス」と称す)を、前記曲げ部が略水平になるように、溶銑に傾斜して浸漬させていたのに替えて、溶銑浴面に垂直に浸漬させるタイプの浸漬ランスに変更することを検討した。溶銑浴面に垂直に浸漬ランスを浸漬することで、溶銑から受ける浮力が小さくなると考えられ、更に、浸漬ランスの下端部側面に逆T字状にガスの吐出孔を2孔、左右対称に配置することでガスの反力が相殺されるものと考えられる。この浸漬ランスを「逆T字型・2孔浸漬ランス」と称す。尚、混銑車は開口部が狭いことから、ガス吹き込みによる攪拌力を混銑車内の溶銑に広く伝えるために、混銑車では浸漬ランスを溶銑浴面に対して斜めに浸漬させることが一般的である。   Therefore, in order to reduce the gas reaction force and the buoyancy from the hot metal, the present inventors conventionally have an L-shaped bent portion at the tip portion and one discharge hole at the tip of the bent portion. Immersion lance (referred to as “L-shaped, 1-hole immersion lance”) is immersed perpendicularly to the hot metal bath surface instead of being immersed in the hot metal so that the bent part is substantially horizontal. It was considered to change to the type of immersion lance to be used. It is considered that the buoyancy received from the hot metal is reduced by immersing the immersion lance perpendicularly to the hot metal bath surface. Further, two gas discharge holes are arranged symmetrically in the left and right sides of the lower end of the immersion lance. This is thought to offset the reaction force of the gas. This immersion lance is referred to as an “inverted T-shaped two-hole immersion lance”. In addition, since the kneading vehicle has a narrow opening, in order to widely convey the stirring force generated by gas blowing to the molten iron in the kneading vehicle, it is common to immerse the dipping lance obliquely with respect to the molten metal bath surface. .

上記の考えが妥当かどうかを検証するために、本発明者らは混銑車を模した水モデル装置を用いて実験を行った。実験は、図1に示す「傾斜浸漬タイプ(L字型・1孔)」及び図2に示す「垂直浸漬タイプ(逆T字型・2孔)」の浸漬ランスについて行い、混銑車を模した容器9に収容された水10に水モデル浸漬ランス8を浸漬させ、水モデル浸漬ランス8から窒素ガスを水中に吹き込み、そのときの水モデル浸漬ランス8の振動の振幅をレーザー変位計11を用いて測定した。水モデル浸漬ランス8の浸漬深さやガス流量などの条件は同一とした。実験条件及び結果を表1に示す。   In order to verify whether the above idea is valid, the present inventors conducted an experiment using a water model device simulating a chaotic vehicle. The experiment was carried out on an immersion lance of “inclined immersion type (L-shaped, 1 hole)” shown in FIG. 1 and “vertical immersion type (reverse T-shaped, 2 holes)” shown in FIG. A water model immersion lance 8 is immersed in water 10 accommodated in a container 9, nitrogen gas is blown into the water from the water model immersion lance 8, and the vibration amplitude of the water model immersion lance 8 at that time is measured using a laser displacement meter 11. Measured. The conditions such as the immersion depth and gas flow rate of the water model immersion lance 8 were the same. The experimental conditions and results are shown in Table 1.

Figure 0005223228
Figure 0005223228

表1に示すように、傾斜浸漬タイプでは水モデル浸漬ランスの振動の振幅が4.5〜5.5mmであったのに対し、垂直浸漬タイプでは1.5〜2.5mmとなり、大幅に振動の振幅が低減することが明らかとなった。   As shown in Table 1, the vibration amplitude of the water model immersion lance was 4.5 to 5.5 mm in the tilted immersion type, whereas it was 1.5 to 2.5 mm in the vertical immersion type, which greatly increased the vibration. It has been clarified that the amplitude of.

この水モデル実験の結果から、垂直浸漬タイプ(逆T字型・2孔)では、ランスの振動が抑制できることが分った。   From the results of this water model experiment, it was found that the vibration of the lance can be suppressed in the vertical immersion type (inverted T-shape, two holes).

そこで、振動を抑制することが、ランス耐火物の割れ防止及び長寿命化につながることを確認するために、図3に示すように、実機混銑車において脱珪処理実験を行った。実験は、図4に示すような、浸漬ランス1の下端部側面に、逆T字状に分岐させた2孔の吐出孔5を有し、内管2及び外管3からなる2重管構造の浸漬ランス1を、混銑車6に収容された溶銑7に垂直浸漬させ、内管2から気体酸素を0.5Nm3 /s、内管2と外管3との間隙からプロパンガスを0.05Nm3 /s吹き込む水準(逆T字型2孔・垂直浸漬)と、図5に示すような、L字型1孔タイプの二重管構造の浸漬ランス1Aを混銑車6に収容された溶銑7に傾斜浸漬させ、同様に、内管2からは気体酸素を0.5Nm3/s、内管2と外管3との間隙からはプロパンガスを0.05Nm3 /s吹き込む水準(L字型1孔・傾斜浸漬)とを行った。脱珪処理条件及び試験結果を表2に示す。尚、図4及び図5において、符号4は耐火物被覆層である。 Therefore, in order to confirm that suppressing the vibration leads to prevention of cracking of the lance refractory and extending its life, a desiliconization treatment experiment was conducted in an actual mixed car as shown in FIG. In the experiment, as shown in FIG. 4, a double-pipe structure comprising an inner tube 2 and an outer tube 3 having two discharge holes 5 branched in an inverted T shape on the side surface of the lower end portion of the immersion lance 1. The immersion lance 1 is immersed vertically in the hot metal 7 accommodated in the kneading wheel 6, gaseous oxygen is 0.5 Nm 3 / s from the inner tube 2, and propane gas is 0. 0 through the gap between the inner tube 2 and the outer tube 3. 05Nm 3 / s blowing level (inverted T-shaped 2 holes / vertical immersion) and L-shaped 1-hole type double pipe structure immersion lance 1A as shown in FIG. 7 is inclined and immersed, and similarly, 0.5 Nm 3 / s of gaseous oxygen is blown from the inner tube 2 and 0.05 Nm 3 / s is blown from the gap between the inner tube 2 and the outer tube 3 (L-shaped). Mold 1 hole / tilted immersion). Table 2 shows the silicon removal treatment conditions and test results. 4 and 5, reference numeral 4 denotes a refractory coating layer.

Figure 0005223228
Figure 0005223228

実験の結果、L字型1孔・傾斜浸漬の場合には、ランス振動が大きいため、ランス胴部の物理的破損(スポーリング)が発生し、平均ランス寿命は3.1チャージ(ch)であった。一方、逆T字型2孔・垂直浸漬の場合には、L字型1孔・傾斜浸漬の場合と比較してランス振動が小さく、耐火物のスポーリングは発生しなかった。しかしながら、逆T字型2孔・垂直浸漬の場合において、実験後のランス吐出孔周りの状況を観察すると、図6に示すように、吐出孔上部の耐火物被覆層4の溶損が発生し、平均ランス寿命は4.0chとなり、L字型1孔・傾斜浸漬の場合に比較して、大幅なランス長寿命化は達成できなかった。   As a result of the experiment, in the case of the L-shaped single hole / tilted immersion, the lance vibration is large, resulting in physical damage (spalling) of the lance body, and the average lance life is 3.1 charges (ch) there were. On the other hand, in the case of inverted T-shaped two holes / vertical immersion, the lance vibration was smaller than in the case of L-shaped one hole / tilted immersion, and spalling of the refractory did not occur. However, in the case of the inverted T-shaped two holes / vertical immersion, when the situation around the lance discharge hole after the experiment is observed, the refractory coating layer 4 on the upper side of the discharge hole is melted as shown in FIG. The average lance life was 4.0 ch, and it was not possible to achieve a significant increase in lance life compared to the L-shaped single hole / tilted immersion.

本発明者らは、この要因として、吐出孔から流出する気体酸素が浸漬ランスの周囲を伝って上昇するために吐出孔近傍上部の耐火物が溶損すると考えた。そこで、吐出孔からの気体酸素が浸漬ランスの周囲を伝って上昇することを回避するための条件について、再度水モデル実験により検討を重ねた。その結果、吐出孔からのガスの水平方向の線流速が大きいほど、ガスは浸漬ランスから離れた位置に到達して上昇することが明らかとなった。線流速が遅い場合、吐出孔から出たガスが浸漬ランスの周囲を伝って上昇することが確認できた。   The present inventors considered that as this factor, the gaseous oxygen flowing out from the discharge hole rises along the periphery of the immersion lance, so that the refractory in the vicinity of the discharge hole melts down. Therefore, the conditions for avoiding the gaseous oxygen from the discharge hole rising along the periphery of the immersion lance were examined again by the water model experiment. As a result, it has been clarified that the gas reaches the position away from the immersion lance and rises as the linear flow velocity in the horizontal direction of the gas from the discharge hole increases. When the linear flow rate was slow, it was confirmed that the gas exiting the discharge hole rose along the circumference of the immersion lance.

この結果に基づき、実機混銑車において、吐出孔からの気体酸素の水平方向の線流速を変更して脱珪処理を実施し、気体酸素の水平方向の線流速とランス寿命との関係について調査した。ここで、気体酸素は溶銑から熱を受けて膨張することから吐出孔における気体酸素の実際の線速度を求めることは困難であるので、気体酸素の線速度の指標として、気体酸素の吹き込み流量(QO2:単位「Nm3 /S」)と吐出孔部における内管の総断面積(A:単位「m2 」)との比(QO2/A:単位「m/s」)を設定し、比(QO2/A)のランス寿命に及ぼす影響について調査した。 Based on this result, in the actual mixed car, the desiliconization process was carried out by changing the horizontal flow velocity of the gaseous oxygen from the discharge hole, and the relationship between the horizontal flow velocity of the gaseous oxygen and the lance life was investigated. . Here, since the gaseous oxygen expands by receiving heat from the hot metal, it is difficult to determine the actual linear velocity of the gaseous oxygen in the discharge hole. Therefore, the gaseous oxygen blowing flow rate ( Q O2 : Unit “Nm 3 / S”) and the ratio (Q O2 / A: Unit “m / s”) of the total cross-sectional area (A: Unit “m 2 ”) of the inner pipe at the discharge hole The effect of the ratio (Q O2 / A) on the lance life was investigated.

その結果、比(QO2/A)が250未満では、ランス寿命は3〜5chであったが、比(QO2/A)が250以上になると、ランス寿命は安定して10ch以上になることが分った。一方、比(QO2/A)が750を越えると気体酸素の線速度が大き過ぎ、混銑車内の溶銑の揺動が激しくなり、スプラッシュ(容器からの溶銑飛散)が多くなり操業阻害をもたらすことが分った。従って、比(QO2/A)は250以上750以下の範囲に制御する必要のあることが分った。 As a result, when the ratio (Q O2 / A) is less than 250, the lance life is 3 to 5 ch. However, when the ratio (Q O2 / A) is 250 or more, the lance life is stably 10 ch or more. I found out. On the other hand, if the ratio (Q O2 / A) exceeds 750, the linear velocity of gaseous oxygen is too high, the fluctuation of the hot metal in the kneading vehicle becomes intense, and the splash (spattering of molten iron from the container) increases, resulting in operational hindrance I found out. Therefore, it has been found that the ratio (Q O2 / A) needs to be controlled in the range of 250 to 750.

また、内管と外管との間隙から吹き込む炭化水素系ガスの流量にも適正範囲があり、内管から吹き込む気体酸素の吹き込み流量の5〜20vol %の流量で吹き込む必要のあることが分った。炭化水素系ガスの流量が気体酸素の吹き込み流量の5vol %未満では、炭化水素系ガスの冷却効果が十分でなく、吐出孔部での溶損が激しくなる。一方、炭化水素系ガスの流量が気体酸素の吹き込み流量の20vol %を超えると、炭化水素系ガスの耐火物被覆層に対する冷却効果は十分に得られるが、溶銑まで冷却されてしまい、溶銑の熱余裕が少なくなるので、望ましくない。   Further, the flow rate of the hydrocarbon-based gas blown from the gap between the inner tube and the outer tube also has an appropriate range, and it is understood that it is necessary to blow at a flow rate of 5 to 20 vol% of the flow rate of gaseous oxygen blown from the inner tube. It was. When the flow rate of the hydrocarbon-based gas is less than 5 vol% of the flow rate of gaseous oxygen, the cooling effect of the hydrocarbon-based gas is not sufficient, and the erosion loss at the discharge hole portion becomes severe. On the other hand, when the flow rate of the hydrocarbon-based gas exceeds 20 vol% of the flow rate of gaseous oxygen, the cooling effect of the hydrocarbon-based gas on the refractory coating layer can be sufficiently obtained, but it is cooled to the hot metal and the heat of the hot metal This is not desirable because there is less room.

本発明は、これらの試験結果に基づきなされたものであり、本発明に係る溶銑の脱珪処理方法は、前述した図3及び図4に示すように、浸漬ランス1の下端部側面に、逆T字状に分岐させた2孔の吐出孔5を有し、内管2及び外管3からなる2重管構造の浸漬ランス1を溶銑7に垂直に浸漬させ、内管2から気体酸素を吹き込むとともに、内管2と外管3との間隙から炭化水素系ガスを内管2からの気体酸素の吹き込み流量の5〜20vol %の流量で吹き込み、且つ、内管2からの気体酸素の吹き込み流量(QO2)と吐出孔部での内管の総断面積(A)との比(QO2/A)が250以上750以下の範囲を満足するように気体酸素を吹き込んで、溶銑7に脱珪処理を施すことを特徴としている。 The present invention has been made on the basis of these test results, and the hot metal desiliconization method according to the present invention is reversed on the side surface of the lower end portion of the immersion lance 1 as shown in FIGS. An immersion lance 1 having a double-pipe structure comprising an inner tube 2 and an outer tube 3 is immersed perpendicularly to the hot metal 7 so that gaseous oxygen is discharged from the inner tube 2. While blowing, hydrocarbon gas is blown from the gap between the inner tube 2 and the outer tube 3 at a flow rate of 5 to 20 vol% of the flow rate of gaseous oxygen from the inner tube 2, and gaseous oxygen is blown from the inner tube 2. Gaseous oxygen was blown into the hot metal 7 so that the ratio (Q O2 / A) of the flow rate (Q O2 ) to the total cross-sectional area (A) of the inner pipe at the discharge hole was in the range of 250 to 750. It is characterized by desiliconization treatment.

浸漬ランス1の耐火物被覆層4を構成する耐火物材料は特に規定する必要はなく、SiO2を10〜40質量%含有するAl23 −SiO2系不定形耐火物、MgOを5〜30質量%含有するAl23 −MgO系不定形耐火物などを用いることができる。耐火物被覆層4の厚みは、ランス寿命を考慮すれば、25mm以上程度が好ましい。また、内管2及び外管3は、ステンレス鋼鋼管や炭素鋼鋼管を用いることができる。 The refractory material constituting the refractory coating layer 4 of the immersion lance 1 is not particularly required to be specified. Al 2 O 3 —SiO 2 amorphous refractory containing 10 to 40% by mass of SiO 2 , MgO 5 to An Al 2 O 3 —MgO-based amorphous refractory containing 30% by mass can be used. The thickness of the refractory coating layer 4 is preferably about 25 mm or more in consideration of the lance life. The inner tube 2 and the outer tube 3 can be stainless steel tubes or carbon steel tubes.

本発明において、溶銑7の脱珪処理を行う場合、内管2から酸素ガスを吹き込み、内管2と外管3との間隙から炭化水素系ガスを吹き込んで脱珪処理を行うが、その際に、非浸漬型の上吹きランスによる酸素ガス添加などの他の酸素ガス供給手段を併用しても構わない。また、内管2からの酸素ガスの吹き込み流量を低下させる際に、窒素ガス、Arガスといった不活性ガスを酸素ガスに混合させてもよいし、富酸素空気などの酸素含有ガスを適宜利用してもよい。酸素濃度は必要とされる酸素量から適宜決定すればよい。内管2からの酸素ガス吹き込み流量の変更に伴って、内管2と外管3との間隙からの炭化水素系ガスの吹き込み流量を低下させる際にも、窒素ガス、Arガスといった不活性ガスを炭化水素系ガスに混合させてもよい。炭化水素ガスとしては、プロパン(C38 )、メタン(CH4 )、エタン(C26 )、ブタン(C410)などが比較的低温で熱分解し、分解吸熱も大きいため製鋼プロセスでは利用しやすい。 In the present invention, when performing desiliconization treatment of the molten iron 7, oxygen gas is blown from the inner tube 2, and hydrocarbon gas is blown from the gap between the inner tube 2 and the outer tube 3 to perform the desiliconization treatment. In addition, other oxygen gas supply means such as oxygen gas addition by a non-immersion type upper blowing lance may be used in combination. Further, when the flow rate of the oxygen gas blown from the inner pipe 2 is reduced, an inert gas such as nitrogen gas or Ar gas may be mixed with the oxygen gas, or an oxygen-containing gas such as oxygen-rich air may be used as appropriate. May be. What is necessary is just to determine an oxygen concentration suitably from the amount of oxygen required. An inert gas such as nitrogen gas or Ar gas is used to reduce the flow rate of the hydrocarbon-based gas from the gap between the inner tube 2 and the outer tube 3 in accordance with the change in the flow rate of the oxygen gas blow-in from the inner tube 2. May be mixed in a hydrocarbon-based gas. As hydrocarbon gas, propane (C 3 H 8 ), methane (CH 4 ), ethane (C 2 H 6 ), butane (C 4 H 10 ), etc. are thermally decomposed at a relatively low temperature and have a large decomposition endotherm. Easy to use in steelmaking process.

以上説明したように、本発明によれば、内管2と外管3との間隙からは炭化水素系ガスを内管2からの気体酸素流量の5〜20vol %の流量で吹き込むとともに、内管2からの吹き込み流量(QO2)と吐出孔部での内管2の総断面積(A)との比(QO2/A)が250〜750の範囲内になるように調整するので、浸漬ランス1を安定的に長寿命化することが可能となる。 As described above, according to the present invention, the hydrocarbon-based gas is blown from the gap between the inner tube 2 and the outer tube 3 at a flow rate of 5 to 20 vol% of the gas oxygen flow rate from the inner tube 2, and the inner tube 2 is adjusted so that the ratio (Q O2 / A) of the flow rate from the nozzle 2 (Q O2 ) to the total cross-sectional area (A) of the inner pipe 2 at the discharge hole is in the range of 250 to 750. It is possible to stably extend the life of the lance 1.

上述の水モデル実験及び実機混銑車実験で得た知見を基に、前述した図3に示すような実機混銑車において、図4に示す逆T字型・2孔タイプの二重管構造の浸漬ランスを溶銑に垂直に浸漬させて脱珪処理実験を行い、種々の調査を行った。一部の実験では、比較例として図5に示すL字型・1孔タイプの二重管構造の浸漬ランスを用いた実験も行った。試験条件及び試験結果を表3に示す。   Based on the knowledge obtained in the water model experiment and the actual mixed car experiment described above, in the actual mixed car as shown in FIG. 3 described above, the reverse T-shaped / two-hole type double pipe structure shown in FIG. 4 is immersed. The lance was immersed vertically in the hot metal to conduct a desiliconization treatment experiment, and various investigations were conducted. In some experiments, an experiment using an immersion lance having an L-shaped and one-hole type double tube structure shown in FIG. 5 was also performed as a comparative example. Table 3 shows test conditions and test results.

Figure 0005223228
Figure 0005223228

本発明例1〜9において、逆T字型・2孔の二重管構造の浸漬ランスを垂直に浸漬させ、内管から気体酸素、内管と外管との間隙からプロパンガスを内管気体酸素の5〜20vol %の流量で吹き込み、内管からの吹き込み気体酸素量(QO2:[Nm3/s])と吐出孔部での内管の総断面積(A:[m2])との比(QO2/A)を250〜750とした結果、平均ランス寿命は何れも10chを超え、溶銑温度も約30℃程度上昇し、操業阻害の要因となるスプラッシュ発生量も問題なかった。 In Inventive Examples 1 to 9, an immersion lance having an inverted T-shaped double-hole double tube structure is vertically immersed, and oxygen gas is supplied from the inner tube, and propane gas is supplied from the gap between the inner tube and the outer tube to the inner tube gas. Blowing in at a flow rate of 5 to 20 vol% of oxygen, the amount of gaseous oxygen blown from the inner pipe (Q O2 : [Nm 3 / s]) and the total cross-sectional area of the inner pipe at the discharge hole (A: [m 2 ]) As a result of setting the ratio (Q O2 / A) to 250 to 750, the average lance life exceeded 10 ch, the hot metal temperature increased by about 30 ° C., and there was no problem with the amount of splash generated that hindered operation. .

一方、比較例1に示すように、L字型・1孔タイプの二重管構造の浸漬ランスを傾斜浸漬させた場合には、ランス振動が大きく、ランス胴部にスポーリング割れが発生するために、平均ランス寿命は3.1chであった。   On the other hand, as shown in Comparative Example 1, when an immersion lance having an L-shaped / single-hole type double tube structure is immersed in an inclined manner, the lance vibration is large and spalling cracks occur in the lance body. The average lance life was 3.1 ch.

比較例2は、逆T字型・2孔の二重管ランスを垂直に浸漬させたが、内管と外管との間隙からのプロパンガスが内管気体酸素の4vol %の流量であった。この場合、プロパンガスの冷却不足のために、ランス吐出孔部が損傷し、結果として平均ランス寿命は2.9chと低位であった。比較例3は、逆T字型・2孔の二重管ランスを垂直に浸漬させ、プロパンガスを内管気体酸素の22vol %としたが、プロパンガスの冷却効果が強すぎるため、溶銑温度の効果的な上昇を得ることができなかった。   In Comparative Example 2, an inverted T-shaped two-hole double tube lance was vertically immersed, but the propane gas from the gap between the inner tube and the outer tube had a flow rate of 4 vol% of the inner tube gas oxygen. . In this case, due to insufficient cooling of propane gas, the lance discharge hole was damaged, and as a result, the average lance life was as low as 2.9 ch. In Comparative Example 3, an inverted T-shaped double-hole double-tube lance was immersed vertically, and propane gas was 22 vol% of the inner tube gas oxygen. However, since the cooling effect of propane gas was too strong, An effective rise could not be obtained.

比較例4,6,8は、逆T字型・2孔の二重管ランスを垂直に浸漬させたが、比(QO2/A)が250よりも小さい場合であり、何れも吐出孔からの気体酸素が浸漬ランスの周囲を伝って上昇して、吐出孔近傍上部の耐火物が溶損したため、平均ランス寿命は3.2〜4.6Chと低位であった。 In Comparative Examples 4, 6, and 8, a double-tube lance with an inverted T-shape and two holes was immersed vertically, but the ratio (Q O2 / A) was smaller than 250, both from the discharge holes The gaseous oxygen increased along the periphery of the immersion lance and the refractory near the upper portion of the discharge hole melted, so the average lance life was as low as 3.2 to 4.6 Ch.

比較例5,7,9は、逆T字型・2孔の二重管ランスを垂直に浸漬させたが、比(QO2/A)が750よりも大きい場合であり、平均ランス寿命は良好であったが、吐出孔からの気体酸素の線流速が大きくなり過ぎて混銑車内の溶銑の揺動が激しくなり、スプラッシュが多くなり操業阻害をもたらした。 In Comparative Examples 5, 7, and 9, a double-tube lance with an inverted T-shape and two holes was vertically immersed, but the ratio (Q O2 / A) was larger than 750, and the average lance life was good. However, the linear flow velocity of gaseous oxygen from the discharge hole became too large, and the hot metal in the kneading vehicle fluctuated vigorously, resulting in increased splash and hindered operation.

このように、本発明を用いることによって、溶銑に浸漬ランスを介して気体酸素を吹き込む脱珪処理において浸漬ランスを安定的に長寿命化することができ、その結果、脱珪反応による発熱を有効利用でき、製造コストの低減などの効果を得ることが可能となった。   Thus, by using the present invention, it is possible to stably extend the life of the immersion lance in the desiliconization process in which gaseous oxygen is blown into the hot metal via the immersion lance, and as a result, the heat generated by the desiliconization reaction is effectively increased. It can be used, and effects such as reduction in manufacturing cost can be obtained.

傾斜浸漬タイプの水モデル実験装置の概略図である。It is the schematic of an inclination immersion type water model experiment apparatus. 垂直浸漬タイプの水モデル実験装置の概略図である。It is the schematic of a vertical immersion type water model experimental apparatus. 浸漬ランスから気体酸素を吹き込んで混銑車に収容された溶銑を脱珪処理する状況を示す図である。It is a figure which shows the condition which desiliconizes the hot metal accommodated in the kneading vehicle by blowing gaseous oxygen from an immersion lance. 本発明で使用した気体酸素吹き込み用浸漬ランスの概略断面図である。It is a schematic sectional drawing of the immersion lance for gaseous oxygen blowing used by this invention. 比較のために使用した気体酸素吹き込み用浸漬ランスの概略断面図である。It is a schematic sectional drawing of the immersion lance for gaseous oxygen blowing used for the comparison. 気体酸素吹き込み用浸漬ランスの溶損状況を示す概略図である。It is the schematic which shows the melting damage condition of the immersion lance for gaseous oxygen blowing.

符号の説明Explanation of symbols

1 浸漬ランス
2 内管
3 外管
4 耐火物被覆層
5 吐出孔
6 混銑車
7 溶銑
8 水モデル浸漬ランス
9 容器
10 水
11 レーザー変位計
DESCRIPTION OF SYMBOLS 1 Immersion lance 2 Inner pipe 3 Outer pipe 4 Refractory coating layer 5 Discharge hole 6 Chaotic wheel 7 Hot metal 8 Water model immersion lance 9 Container 10 Water 11 Laser displacement meter

Claims (1)

浸漬ランスの下端部側面に、逆T字状に分岐した2孔の吐出孔を有し、内管及び外管からなる2重管構造の浸漬ランスを、混銑車に収容された溶銑に垂直に浸漬させ、内管から気体酸素を吹き込むとともに、内管と外管との間隙から炭化水素系ガスを内管からの気体酸素の吹き込み流量の5〜20vol %の流量で吹き込み、且つ、内管からの気体酸素の吹き込み流量と吐出孔部での内管の総断面積との比が下記の(1)式を満足するように気体酸素を吹き込んで、混銑車に収容された溶銑に脱珪処理を施すことを特徴とする、溶銑の脱珪処理方法。
250≦QO2/A≦750 …(1)
但し、(1)式において、QO2は、内管からの気体酸素の吹き込み流量(Nm3 /S)、Aは、吐出孔部での内管の総断面積(m2 )である。
The immersion lance has a double- holed immersion lance consisting of an inner tube and an outer tube, perpendicular to the hot metal contained in the kneading wheel, and has a discharge hole with two holes branched in an inverted T shape on the side of the lower end of the immersion lance. It is immersed, and gaseous oxygen is blown from the inner pipe, and hydrocarbon gas is blown from the gap between the inner pipe and the outer pipe at a flow rate of 5 to 20 vol% of the flow rate of gaseous oxygen from the inner pipe. Gas oxygen is blown so that the ratio of the flow rate of gaseous oxygen to the total cross-sectional area of the inner pipe at the discharge hole satisfies the following formula (1), and desiliconization treatment is applied to the hot metal contained in the kneading car A method for desiliconizing hot metal.
250 ≦ Q O2 / A ≦ 750 (1)
In Equation (1), Q O2 is the flow rate of gaseous oxygen blown from the inner pipe (Nm 3 / S), and A is the total cross-sectional area (m 2 ) of the inner pipe at the discharge hole.
JP2007107815A 2007-04-17 2007-04-17 Hot metal desiliconization method Expired - Fee Related JP5223228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007107815A JP5223228B2 (en) 2007-04-17 2007-04-17 Hot metal desiliconization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007107815A JP5223228B2 (en) 2007-04-17 2007-04-17 Hot metal desiliconization method

Publications (2)

Publication Number Publication Date
JP2008266674A JP2008266674A (en) 2008-11-06
JP5223228B2 true JP5223228B2 (en) 2013-06-26

Family

ID=40046557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007107815A Expired - Fee Related JP5223228B2 (en) 2007-04-17 2007-04-17 Hot metal desiliconization method

Country Status (1)

Country Link
JP (1) JP5223228B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169716A (en) * 1980-05-31 1981-12-26 Nippon Steel Corp Removal of si from molten pig iron by blowing of oxygen gas
JPS6229465Y2 (en) * 1981-06-16 1987-07-29
JPS58221210A (en) * 1982-06-14 1983-12-22 Kawasaki Steel Corp Preliminary treatment of molten iron
JPS59140317A (en) * 1983-01-29 1984-08-11 Nippon Steel Corp Treatment of molten metal
JPS6473011A (en) * 1987-09-16 1989-03-17 Kawasaki Steel Co Method for pretreating molten iron

Also Published As

Publication number Publication date
JP2008266674A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
KR101021349B1 (en) Injection lance for refining, injection lance equipment for refining, hot-metal desiliconization process, and hot-metal pretreatment process
JP5109408B2 (en) Oxygen gas blowing lance for refining and method of desiliconization of hot metal
JP4923623B2 (en) Smelting lance equipment and method for desiliconization of hot metal
JP5223228B2 (en) Hot metal desiliconization method
JP4483713B2 (en) Melting method of ultra low sulfur high clean steel
JP4345769B2 (en) Melting method of ultra low sulfur high clean steel
JP2009084670A (en) Oxygen gas blowing lance and molten iron desiliconization method
JP6540632B2 (en) Dephosphorization method of hot metal
JP5332487B2 (en) Hot metal desiliconization method
JP5292752B2 (en) Oxygen gas blowing lance and hot metal desiliconization method
JP2009191289A (en) Method and apparatus for desulfurizing molten steel
JP5194677B2 (en) Oxygen gas blowing lance and hot metal desiliconization method
JP5691208B2 (en) Hot metal refining method
KR100334945B1 (en) Simple ladle refining method
JP4419594B2 (en) Hot metal refining method
JP2005248219A (en) Molten iron pretreatment method
JP4025713B2 (en) Dephosphorization method of hot metal
WO2021014918A1 (en) Molten iron dephosphorization method
JP2005146335A (en) Method for dephosphorizing molten pig iron
JP6897613B2 (en) Desiliconization method of hot metal
JP3825733B2 (en) Hot metal refining method
CN101535508A (en) Process for producing ingot of ultralow-sulfur high-cleanliness steel
JP2000119725A (en) Converter steelmaking method with high productivity
JP2004018915A (en) Process for refining molten metal
JP3861618B2 (en) Dephosphorization method of hot metal using converter.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100325

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130225

R150 Certificate of patent or registration of utility model

Ref document number: 5223228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees