JP5222501B2 - Gas diffusion electrode for polymer electrolyte fuel cell and manufacturing method thereof - Google Patents

Gas diffusion electrode for polymer electrolyte fuel cell and manufacturing method thereof Download PDF

Info

Publication number
JP5222501B2
JP5222501B2 JP2007202372A JP2007202372A JP5222501B2 JP 5222501 B2 JP5222501 B2 JP 5222501B2 JP 2007202372 A JP2007202372 A JP 2007202372A JP 2007202372 A JP2007202372 A JP 2007202372A JP 5222501 B2 JP5222501 B2 JP 5222501B2
Authority
JP
Japan
Prior art keywords
gas diffusion
fuel cell
polymer electrolyte
diffusion electrode
electrolyte fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007202372A
Other languages
Japanese (ja)
Other versions
JP2009037932A (en
Inventor
利保 鈴木
拓哉 川口
博己 戸塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP2007202372A priority Critical patent/JP5222501B2/en
Priority to KR1020097013380A priority patent/KR101180172B1/en
Priority to PCT/JP2008/053044 priority patent/WO2008105337A1/en
Priority to US12/528,505 priority patent/US20100098991A1/en
Priority to EP08711818A priority patent/EP2124276A4/en
Priority to TW097106565A priority patent/TW200843169A/en
Publication of JP2009037932A publication Critical patent/JP2009037932A/en
Application granted granted Critical
Publication of JP5222501B2 publication Critical patent/JP5222501B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、固体高分子型燃料電池用ガス拡散電極、それを用いた固体高分子型燃料電池用膜−電極接合体およびその製造方法、ならびにそれを用いた固体高分子型燃料電池に関する。   The present invention relates to a gas diffusion electrode for a polymer electrolyte fuel cell, a membrane-electrode assembly for a polymer electrolyte fuel cell using the same, a method for producing the same, and a polymer electrolyte fuel cell using the same.

燃料電池は、燃料と酸化剤を連続的に供給し、これが電気化学反応したときの化学エネルギーを電力として取り出す発電システムである。この電気化学反応による発電方式を用いた燃料電池は、水の電気分解の逆反応、すなわち水素と酸素が結びついて電子と水が生成する仕組みを利用しており、高効率と優れた環境特性を有することから近年脚光を浴びている。   A fuel cell is a power generation system that continuously supplies fuel and an oxidant, and extracts chemical energy as electric power when the fuel and an oxidant react with each other. Fuel cells using this electrochemical power generation method use the reverse reaction of water electrolysis, that is, a mechanism in which hydrogen and oxygen are combined to produce electrons and water, and have high efficiency and excellent environmental characteristics. In recent years it has been in the spotlight.

燃料電池は、電解質の種類によって、リン酸形燃料電池、溶融炭酸塩形燃料電池、固体酸化物形燃料電池、アルカリ形燃料電池および固体高分子型燃料電池に分別される。近年、特に常温で起動し、かつ起動時間が極めて短い等の利点を有する固体高分子型燃料電池が注目されている。この固体高分子型燃料電池を構成する単セルの基本構造は、固体高分子電解質膜の両側に触媒層を有するガス拡散電極を接合し、その外側の両面にセパレータを配したものである。   Fuel cells are classified into phosphoric acid fuel cells, molten carbonate fuel cells, solid oxide fuel cells, alkaline fuel cells and solid polymer fuel cells depending on the type of electrolyte. In recent years, solid polymer fuel cells that have advantages such as startup at room temperature and extremely short startup time have attracted attention. The basic structure of a single cell constituting this polymer electrolyte fuel cell is such that a gas diffusion electrode having a catalyst layer is bonded to both sides of a polymer electrolyte membrane, and separators are arranged on both outer surfaces thereof.

このような固体高分子型燃料電池では、まず、燃料極側に供給された水素がセパレータ内のガス流路を通ってガス拡散電極に導かれる。次いで、その水素は、ガス拡散電極にて均一に拡散された後に、燃料極側の触媒層に導かれ、白金などの触媒によって水素イオンと電子とに分離される。そして、水素イオンは電解質膜を通って電解質膜を挟んで反対側の酸素極における触媒層に導かれる。一方、燃料極側に発生した電子は、負荷を有する回路を通って、酸素極側のガス拡散層に導かれ、更には酸素側の触媒層に導かれる。これと同時に、酸素極側のセパレータから導かれた酸素は、酸素極側のガス拡散電極を通って、酸素極側の触媒層に到達する。そして、酸素、電子、水素イオンとから水を生成して発電サイクルを完結する。なお、固体高分子型燃料電池に用いられる水素以外の燃料としては、メタノールおよびエタノール等のアルコールがあげられ、それらを直接燃料として用いることもできる。   In such a polymer electrolyte fuel cell, first, hydrogen supplied to the fuel electrode side is guided to the gas diffusion electrode through the gas flow path in the separator. Next, the hydrogen is uniformly diffused by the gas diffusion electrode and then led to the catalyst layer on the fuel electrode side, where it is separated into hydrogen ions and electrons by a catalyst such as platinum. Then, the hydrogen ions are guided through the electrolyte membrane to the catalyst layer in the oxygen electrode on the opposite side across the electrolyte membrane. On the other hand, electrons generated on the fuel electrode side are led to a gas diffusion layer on the oxygen electrode side through a circuit having a load, and further to a catalyst layer on the oxygen side. At the same time, oxygen introduced from the separator on the oxygen electrode side passes through the gas diffusion electrode on the oxygen electrode side and reaches the catalyst layer on the oxygen electrode side. Then, water is generated from oxygen, electrons, and hydrogen ions to complete the power generation cycle. In addition, examples of the fuel other than hydrogen used in the polymer electrolyte fuel cell include alcohols such as methanol and ethanol, and these can be directly used as fuel.

従来、固体高分子型燃料電池のガス拡散層としては、カーボン繊維からなるカーボンペーパーやカーボンクロスが用いられている。このカーボンペーパーやカーボンクロスにおいては、燃料電池運転時の加湿水やカソードでの電極反応で生成した水によるフラッディングを防止する目的で、表面またはその空隙内部に、ポリテトラフルオロエチレン(PTFE)等の撥水性バインダーによって撥水処理が施されている。しかしながら、これらのカーボンペーパーやカーボンクロスは、空孔径が非常に大きいため、十分な撥水効果が得られずに空孔中に水が滞留することがあった。   Conventionally, carbon paper or carbon cloth made of carbon fiber has been used as a gas diffusion layer of a polymer electrolyte fuel cell. In this carbon paper or carbon cloth, for the purpose of preventing flooding due to humidified water during fuel cell operation or water generated by electrode reaction at the cathode, such as polytetrafluoroethylene (PTFE) is formed on the surface or inside the gap. Water repellent treatment is performed with a water repellent binder. However, since these carbon paper and carbon cloth have a very large pore diameter, water may stay in the pores without obtaining a sufficient water repellent effect.

この点を改善するためのものとして、例えば特許文献1に示すように、カーボンペーパーに炭素等からなる導電性フィラーを含む有孔性樹脂を含有させたガス拡散電極が提案されている。しかしながら、特許文献1に示されるようなガス拡散電極は、カーボンペーパー表面上に直接、炭素などからなる導電性フィラーを含む有孔性樹脂を構成する塗料を塗布し、含浸・溶媒抽出・乾燥して作製するために、カーボンペーパーの空隙を多く塞いでしまい、そのため、空隙内部のガス透過性が悪くなり、電池性能を低下させるという問題を有していた。   In order to improve this point, for example, as shown in Patent Document 1, a gas diffusion electrode in which a porous resin containing a conductive filler made of carbon or the like is included in carbon paper has been proposed. However, the gas diffusion electrode as shown in Patent Document 1 is applied directly on the surface of carbon paper with a paint constituting a porous resin containing a conductive filler made of carbon or the like, impregnated, solvent extracted, and dried. Therefore, many gaps in the carbon paper are blocked, and therefore, gas permeability inside the voids is deteriorated, and the battery performance is deteriorated.

また、特許文献2には、ステンレス鋼メッシュにカーボンブラックとPTFEとの混合物を塗布して撥水化層を形成することが記載されている。しかしながら、このような混合物を塗布して形成したものは、ステンレス鋼メッシュの空隙を多く塞いでしまい、そのため空隙内部のガス透過性が悪くなり、電池性能が低下するという問題があった。さらに、燃料電池の製造時には、ガス拡散電極を電解質に密着させたり、接着剤を用いて接着させたりする必要があるが、ガス拡散電極に圧力が付加されると、ガス拡散電極の多孔質膜の空隙がつぶされ、ガス・水の排出が妨げられてしまうという問題もあった。   Patent Document 2 describes that a water repellent layer is formed by applying a mixture of carbon black and PTFE to a stainless steel mesh. However, those formed by applying such a mixture have a problem that many of the gaps in the stainless steel mesh are blocked, resulting in poor gas permeability inside the gaps and a decrease in battery performance. Furthermore, when manufacturing the fuel cell, it is necessary to make the gas diffusion electrode adhere to the electrolyte or to use an adhesive. When pressure is applied to the gas diffusion electrode, the porous film of the gas diffusion electrode There was also a problem that the gap of the gas was crushed and gas / water discharge was hindered.

特許文献3には、粒子径の分布中心の異なる少なくとも2種類の炭素粒子を混合したガス拡散層を備えた固体高分子膜型燃料電池が記載され、粒子径の大きい方の炭素粒子として黒鉛を用いること、フッ素樹脂で被覆して撥水性を付与した炭素粒子を用いて拡散層を形成することが記載されている。しかしながら、この固体高分子型燃料電池は、形成された拡散層の強度が低く、拡散層の撥水性も十分でないという問題があった。
特開2003−303595号公報 特開2000−58072号公報 特開2001−57215号公報
Patent Document 3 describes a solid polymer membrane fuel cell including a gas diffusion layer in which at least two types of carbon particles having different particle size distribution centers are mixed. Graphite is used as the carbon particles having a larger particle size. It is described that the diffusion layer is formed by using carbon particles coated with a fluororesin to impart water repellency. However, this polymer electrolyte fuel cell has a problem that the formed diffusion layer has low strength and the water repellency of the diffusion layer is not sufficient.
JP 2003-303595 A JP 2000-58072 A JP 2001-57215 A

本発明は、以上のような問題点を改善することを目的としてなされたものである。すなわち、本発明の目的は、製造過程において多孔質膜の空隙がつぶされないで多孔質の膜を通してガス拡散性を良好に保ち、それによって電池特性を良好に保ち得る固体高分子型燃料電池用ガス拡散電極を提供することにある。
本発明の他の目的は、上記の固体高分子型燃料電池用ガス拡散電極を用いた固体高分子型燃料電池用膜−電極接合体およびその簡便な製造方法を提供することにある。
本発明の更に他の目的は、上記の固体高分子型燃料電池用ガス拡散電極を用いた電池性能が優れた固体高分子型燃料電池を提供することにある。
The present invention has been made for the purpose of improving the above problems. That is, the object of the present invention is to provide a gas for a polymer electrolyte fuel cell that can maintain good gas diffusivity through the porous membrane without crushing the voids of the porous membrane in the production process, thereby maintaining good battery characteristics. It is to provide a diffusion electrode.
Another object of the present invention is to provide a membrane-electrode assembly for a polymer electrolyte fuel cell using the gas diffusion electrode for a polymer electrolyte fuel cell and a simple production method thereof.
Still another object of the present invention is to provide a polymer electrolyte fuel cell having excellent cell performance using the gas diffusion electrode for a polymer electrolyte fuel cell.

上記課題を解決する本願発明の固体高分子型燃料電池用ガス拡散電極は、ポリアリレート繊維からなる不織布、多孔質フッ素樹脂、ポリテトラフルオロエチレン粒子及び炭素材料を含んだ固体高分子型燃料電池用ガス拡散電極であって、前記不織布にポリテトラフルオロエチレン粒子が定着され、前記不織布が多孔質フッ素樹脂に包含されて多孔質フッ素樹脂の厚さが不織布の厚さよりも厚いことを特徴とする。
不織布は、高温時や高圧力下で分解をせず変形がごくわずかなポリアリレート繊維からなるものである。また、上記不織布が、ポリテトラフルオロエチレン粒子の分散液を含浸若しくは塗布により不織布繊維表面にポリテトラフルオロエチレン粒子が定着されている。
A gas diffusion electrode for a polymer electrolyte fuel cell of the present invention that solves the above problems is for a polymer electrolyte fuel cell comprising a nonwoven fabric made of polyarylate fibers, a porous fluororesin, polytetrafluoroethylene particles, and a carbon material. The gas diffusion electrode is characterized in that polytetrafluoroethylene particles are fixed to the nonwoven fabric, the nonwoven fabric is included in a porous fluororesin, and the thickness of the porous fluororesin is larger than the thickness of the nonwoven fabric .
Nonwoven is to deform without degradation under high temperature and high pressure is a negligible polyarylate fibers. Further, the nonwoven fabric, polytetrafluoroethylene particles to the nonwoven fiber surface by impregnation or coating a dispersion of polytetrafluoroethylene particles that have been fixed.

記多孔質フッ素樹脂が、フッ化オレフィン系樹脂であることが好ましい。また、前記炭素材料が、粒子状であり、カーボンブラックであること、とりわけアセチレンブラックであることが好ましい Upper Symbol porous fluororesin is preferably a fluorinated olefin resin. The carbon material is preferably in the form of particles and is carbon black, particularly acetylene black .

本発明の固体高分子型燃料電池用ガス拡散電極の製造方法は、前記記載の固体高分子型燃料電池用ガス拡散電極を製造する方法であって、ポリテトラフルオロエチレン粒子の分散液をポリアリレート繊維からなる不織布に含浸若しくは塗布し、乾燥して前記不織布にポリテトラフルオロエチレン粒子を定着させた後、フッ素樹脂及び炭素材料を含んだ塗料を、前記ポリテトラフルオロエチレン粒子を定着させた不織布に含浸若しくは塗布し、乾燥することを特徴とする。 The method for producing a gas diffusion electrode for a polymer electrolyte fuel cell according to the present invention is a method for producing the gas diffusion electrode for a polymer electrolyte fuel cell as described above, wherein the polytetrafluoroethylene particle dispersion is polyarylate. After impregnating or applying to a nonwoven fabric made of fibers and drying to fix the polytetrafluoroethylene particles to the nonwoven fabric, a coating containing a fluororesin and a carbon material is applied to the nonwoven fabric to which the polytetrafluoroethylene particles are fixed. It is characterized by impregnating or applying and drying .

本発明の固体高分子型燃料電池用ガス拡散電極は、炭素材料を含有する多孔質フッ素樹脂からなる膜を有し、そして、フッ素樹脂による撥水性・排水性、および炭素材料による導電性を備えた滑らかな表面を有するものである。ただし、多孔質フッ素樹脂のみでは、製造工程にある加熱プレス時に空隙が潰れる問題が生じるので、その補強材として不織布を用いる。本発明における不織布は耐圧縮性に優れるため、不織布の空隙内部に包含される多孔質フッ素樹脂の空隙が不織布によって守られ加熱プレスによって潰れることがない。本発明の固体高分子型燃料電池用ガス拡散電極は、上記の特徴を有しているので、燃料電池運転時の加湿水や生成水によるフラッディングを防止し、また反応ガスの供給、除去を速やかに行うための撥水性、発生した電気を効率よく伝える導電性に優れている。また、不織布の働きにより、燃料電池作製時に負荷されるガス拡散電極への圧力によっても、多孔質であるガス拡散電極の空隙がつぶされることがなく、水やガスの透過を妨げることがない。
また、多孔質フッ素樹脂は触媒層との密着がよく隙間が出来ないので、触媒層と多孔質フッ素樹脂膜との間に水が溜まることがない。また、炭素材料を用いることにより導電性も保たれる。
一方、本発明の固体高分子型燃料電池用ガス拡散電極を用いた燃料電池は、発電サイクルにおいて、ガス・水の排出性、導電性に優れている。また、本発明の固体高分子型燃料電池用ガス拡散電極は滑らかな表面を有するので、従来の炭素繊維シートを用いた場合に比べて、触媒層や高分子固体電解質膜を傷つけたり破壊したりすることが無いという効果もある。
The gas diffusion electrode for a polymer electrolyte fuel cell of the present invention has a membrane made of a porous fluororesin containing a carbon material, and has water repellency / drainage by the fluororesin, and conductivity by the carbon material. It has a smooth surface. However, since only the porous fluororesin has a problem that the voids are crushed during the hot pressing in the manufacturing process, a nonwoven fabric is used as the reinforcing material. Since the nonwoven fabric in this invention is excellent in compression resistance, the space | gap of the porous fluororesin included inside the space | gap of a nonwoven fabric is protected by a nonwoven fabric, and it does not collapse by a heat press. Since the gas diffusion electrode for a polymer electrolyte fuel cell of the present invention has the above-mentioned characteristics, flooding due to humidified water or generated water during operation of the fuel cell is prevented, and supply and removal of the reaction gas are promptly performed. It is excellent in water repellency for conducting the heat and the conductivity that efficiently transmits the generated electricity. Further, due to the function of the non-woven fabric, the voids of the porous gas diffusion electrode are not crushed and the permeation of water and gas is not hindered by the pressure applied to the gas diffusion electrode that is loaded when the fuel cell is manufactured.
In addition, since the porous fluororesin adheres well to the catalyst layer and no gap is formed, water does not accumulate between the catalyst layer and the porous fluororesin film. In addition, conductivity is maintained by using a carbon material.
On the other hand, a fuel cell using the gas diffusion electrode for a polymer electrolyte fuel cell of the present invention is excellent in gas / water discharge and conductivity in a power generation cycle. In addition, since the gas diffusion electrode for a solid polymer fuel cell of the present invention has a smooth surface, the catalyst layer and the polymer solid electrolyte membrane may be damaged or destroyed as compared with the case of using a conventional carbon fiber sheet. There is also an effect that there is nothing to do.

以下、本発明について具体的に説明する。
本発明の固体高分子型燃料電池用ガス拡散電極は、炭素材料を含む多孔質フッ素樹脂を有し、構造保持(空隙潰れ抑止)材料として不織布を用い、前記多孔質フッ素樹脂に不織布を包含する構造である(以下、この構造体を多孔質膜という)。多孔質フッ素樹脂層の厚さが不織布層よりもわずかに厚いため、多孔質膜は滑らかな面を有する。多孔質膜は、フッ素樹脂による撥水性・排水性、および炭素材料による導電性、不織布による強度を備えた滑らかな表面を有するものである。
また、さらには、上記不織布は上記の多孔質フッ素樹脂塗布液を含浸塗布される前に、ポリテトラフルオロエチレン粒子の分散液を含浸若しくは塗布されている。これにより不織布繊維表面にポリテトラフルオロエチレン粒子が定着されるので不織布の繊維表面の撥水性を上げることができて実質的に不織布自体の撥水性を上げたのと同様な効果が得られる。
Hereinafter, the present invention will be specifically described.
The gas diffusion electrode for a polymer electrolyte fuel cell according to the present invention has a porous fluororesin containing a carbon material, uses a non-woven fabric as a structure maintaining (void collapse prevention) material, and includes the non-woven fabric in the porous fluororesin. It is a structure (hereinafter, this structure is referred to as a porous film). Since the porous fluororesin layer is slightly thicker than the nonwoven fabric layer, the porous membrane has a smooth surface. The porous membrane has a smooth surface having water repellency and drainage by a fluororesin, conductivity by a carbon material, and strength by a nonwoven fabric.
Further, the nonwoven fabric is impregnated or coated with a dispersion of polytetrafluoroethylene particles before being impregnated with the porous fluororesin coating solution. As a result, the polytetrafluoroethylene particles are fixed on the surface of the nonwoven fabric fiber, so that the water repellency of the fiber surface of the nonwoven fabric can be increased and the same effect as that of substantially increasing the water repellency of the nonwoven fabric itself can be obtained.

前記不織布としては、炭素繊維、ガラス繊維、アラミド繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維、ポリブチルテレフタレート繊維、ポリアリレート繊維、ポリビニールアルコール繊維、ベンズアゾール繊維、ポリパラフェニレンベンゾビスオキサゾール繊維、ポリフェニレンサルファイド繊維、ポリテトラフルオロエチレン繊維などの繊維からなる不織布を挙げることができる。この中でもポリテトラフルオロエチレン粒子の定着性が優れているポリアリレート繊維から得られた不織布が好ましい。   As the nonwoven fabric, carbon fiber, glass fiber, aramid fiber, polyethylene fiber, polypropylene fiber, polyethylene terephthalate fiber, polybutyl terephthalate fiber, polyarylate fiber, polyvinyl alcohol fiber, benzazole fiber, polyparaphenylene benzobisoxazole fiber, Nonwoven fabrics made of fibers such as polyphenylene sulfide fibers and polytetrafluoroethylene fibers can be mentioned. Among these, non-woven fabrics obtained from polyarylate fibers having excellent fixability of polytetrafluoroethylene particles are preferred.

本発明において、多孔質フッ素樹脂としては、フッ化オレフィン系樹脂、テトラフルオロエチレン樹脂、テトラフルオロエチレン−フルオロアルキルビニルエーテル共重合体、フルオロエチレン−ヘキサフルオロプロピレン共重合体等からなるものがあげられ、これらの1種以上からなるフッ素樹脂を選択して用いることができる。これらの中でも、フッ化オレフィン系樹脂は、耐熱性が高く、機械的強度が良好であるので、特に好ましい。フッ化オレフィン系樹脂は、精度良く多孔質膜を形成することが可能であり、多孔質膜内部の加湿水およびカソードでの生成水を良好に排水することができるという利点を有している。本発明でいうフッ化オレフィン系樹脂とは、フッ化ビニリデンのホモポリマーの他、四フッ化エチレン、六フッ化プロピレン、エチレンからなる群より選ばれる1種類以上のモノマーとフッ化ビニリデンとからなるコポリマーおよび3元以上の多元重合体を包含する。また、これらの樹脂を単独で用いる場合に加えて、2種以上の樹脂を混合して使用することもできる。   In the present invention, examples of the porous fluororesin include those made of fluorinated olefin resin, tetrafluoroethylene resin, tetrafluoroethylene-fluoroalkyl vinyl ether copolymer, fluoroethylene-hexafluoropropylene copolymer, One or more of these fluororesins can be selected and used. Among these, a fluorinated olefin resin is particularly preferable because it has high heat resistance and good mechanical strength. The fluorinated olefin resin has an advantage that a porous membrane can be formed with high accuracy, and humidified water inside the porous membrane and water generated at the cathode can be drained well. The fluorinated olefin-based resin as used in the present invention includes a vinylidene fluoride homopolymer, one or more monomers selected from the group consisting of ethylene tetrafluoride, propylene hexafluoride, and ethylene, and vinylidene fluoride. Includes copolymers and multi-component polymers of 3 or more. Moreover, in addition to the case where these resins are used alone, two or more kinds of resins can be mixed and used.

上記多孔質フッ素樹脂は、重量平均分子量が10万〜120万の範囲にあることが好ましい。重量平均分子量が10万未満の場合は、強度が低くなる場合があり、一方、120万を越えると、溶媒への溶解性が劣ることから、塗料化が困難になったり、塗料の粘度ムラが生じて、最終的なガス拡散電極の厚さ精度が低下し、触媒層との密着性が不均一となる場合がある。   The porous fluororesin preferably has a weight average molecular weight in the range of 100,000 to 1,200,000. When the weight average molecular weight is less than 100,000, the strength may be low. On the other hand, when the weight average molecular weight exceeds 1,200,000, the solubility in a solvent is inferior. As a result, the thickness accuracy of the final gas diffusion electrode may decrease, and the adhesion with the catalyst layer may become non-uniform.

本発明においては、前記不織布の繊維表面を撥水化させるためにポリテトラフルオロエチレン粒子のディスパージョンを含浸若しくは塗布して該不織布にポリテトラフルオロエチレン粒子を定着させる。または、上記多孔質フッ素樹脂の塗布液にポリテトラフルオロエチレン粒子を混合させた後、該混合液を不織布に含浸若しくは塗布して定着させてもよい。
ここで使用されるポリテトラフルオロエチレンの粒子径は1μm以下が好ましく使用され、形状については限定されず、アルコール類や界面活性剤に分散された所謂ディスパージョン(分散液)を使用するのが好ましい。例えば、デュポン三井フロロケミカル製の商品名:31−JR(ポリテトラフルオロエチレンのディスパージョン、粒子径が400nm程度)が使用可能である。
上記多孔質フッ素樹脂とポリテトラフルオロエチレン粒子の重量比は、多孔質フッ素樹脂を1重量部に対して、ポリテトラフルオロエチレン粒子0.1重量部乃至3重量部の範囲が好ましい。さらに好ましくは、0.3重量部乃至1.5重量部の範囲である。ポリテトラフルオロエチレン粒子が0.1重量部より少ないと撥水性の効果が少なく、3重量部より多いと、多孔質膜の内部に充填され過ぎてガス拡散能力が低下しやすい。いずれの場合においても、結果としては、燃料電池性能の低下を引き起こしやすい。
In the present invention, in order to make the fiber surface of the nonwoven fabric water repellent, a dispersion of polytetrafluoroethylene particles is impregnated or applied to fix the polytetrafluoroethylene particles to the nonwoven fabric. Alternatively, after the polytetrafluoroethylene particles are mixed in the porous fluororesin coating solution, the non-woven fabric may be impregnated or coated with the mixture to fix it.
The particle diameter of the polytetrafluoroethylene used here is preferably 1 μm or less, the shape is not limited, and it is preferable to use a so-called dispersion (dispersion) dispersed in alcohols or surfactants. . For example, trade name: 31-JR (dispersion of polytetrafluoroethylene, particle size is about 400 nm) manufactured by DuPont Mitsui Fluorochemical can be used.
The weight ratio of the porous fluororesin and the polytetrafluoroethylene particles is preferably in the range of 0.1 to 3 parts by weight of the polytetrafluoroethylene particles with respect to 1 part by weight of the porous fluororesin. More preferably, it is in the range of 0.3 to 1.5 parts by weight. If the amount of polytetrafluoroethylene particles is less than 0.1 parts by weight, the effect of water repellency is small, and if the amount is more than 3 parts by weight, the porous membrane is filled too much and the gas diffusion capacity tends to be lowered. In either case, the result is likely to cause a decrease in fuel cell performance.

炭素材料は、如何なるものでも利用することが可能であり、粒子状のものが好ましい。例えば、ファーネスブラック、チャネルブラック、アセチレンブラック等に代表される、いわゆるカーボンブラックを用いることができる。カーボンブラックは、比表面積や粒子径の大きさによらず、いずれのグレードのものでも使用可能であり、例えば、ライオンアクゾ社製:ケッチェンEC、キャボット社製:バルカンXC72R、電気化学工業社製:デンカブラック等があげられる。また、これらの中でも、高導電性および塗液中での分散性の点から、カーボンブラックが好適に用いられ、特にアセチレンブラックが好適に用いられる。本発明において、これらの炭素材料は、平均一次粒子径が10〜100nmの範囲のものが好ましい。   Any carbon material can be used, and a particulate material is preferable. For example, so-called carbon black represented by furnace black, channel black, acetylene black and the like can be used. Carbon black can be used in any grade regardless of the specific surface area and particle size. For example, Lion Akzo: Ketjen EC, Cabot: Vulcan XC72R, Electrochemical Industry: For example, Denka Black. Among these, carbon black is preferably used from the viewpoint of high conductivity and dispersibility in the coating liquid, and acetylene black is particularly preferably used. In the present invention, these carbon materials preferably have an average primary particle diameter in the range of 10 to 100 nm.

上記多孔質フッ素樹脂と炭素材料の重量比は、多孔質フッ素樹脂を1重量部に対して、粒子状炭素材料0.1重量部乃至3重量部の範囲が好ましい。さらに好ましくは、0.3重量部乃至1.5重量部の範囲である。炭素材料が0.1重量部より少ないと、炭素繊維で導電性を確保しつつもガス拡散層の導電性の低下が見られ、3重量部より多いと、多孔質膜の内部に充填され過ぎてガス拡散能力が低下しやすい。いずれの場合においても、結果としては、燃料電池性能の低下を引き起こしやすい。   The weight ratio of the porous fluororesin and the carbon material is preferably in the range of 0.1 to 3 parts by weight of the particulate carbon material with respect to 1 part by weight of the porous fluororesin. More preferably, it is in the range of 0.3 to 1.5 parts by weight. If the carbon material is less than 0.1 parts by weight, the conductivity of the gas diffusion layer is lowered while ensuring conductivity with the carbon fiber, and if it is more than 3 parts by weight, the porous membrane is filled too much. Therefore, the gas diffusion capacity tends to decrease. In either case, the result is likely to cause a decrease in fuel cell performance.

本発明の固体高分子型燃料電池用ガス拡散電極には、上記の微粒子状の炭素材料の他に、繊維状の炭素材料(以下、炭素繊維という)を使用してもよい。炭素繊維には、カーボン繊維や昭和電工のカーボンナノファイバー(商品名:VGCF)やカーボンナノチューブが挙げられる。炭素繊維のアスペクト比(繊維の断面の直径と繊維の長さ(曲がっていれば曲がったなりの長さ))は、5乃至1000が好ましい。本発明でもちいる炭素繊維は、グラファイト化が進んだ高い導電性をもつので、ガス拡散電極の抵抗低減に効果がある。
炭素繊維の好適な使用範囲は、重量比で多孔質フッ素樹脂1重量部に対して、炭素繊維は368重量部以下が好ましい。炭素繊維が368重量部より多いと、多孔質膜の内部の多孔質フッ素樹脂への分散性が劣化し、ガス拡散電極の表面に凹凸が生じて、隣接層(例えば触媒層)との間にわずかな隙間が生じ、ガス拡散能力が低下しやすい。いずれの場合においても、結果としては、燃料電池性能の低下を引き起こしやすい。
In the gas diffusion electrode for a polymer electrolyte fuel cell of the present invention, a fibrous carbon material (hereinafter referred to as carbon fiber) may be used in addition to the fine particle carbon material. Examples of the carbon fibers include carbon fibers, Showa Denko's carbon nanofibers (trade name: VGCF), and carbon nanotubes. The aspect ratio of the carbon fiber (the diameter of the cross section of the fiber and the length of the fiber (the bent length if bent)) is preferably 5 to 1000. Since the carbon fiber used in the present invention has high conductivity with advanced graphitization, it is effective in reducing the resistance of the gas diffusion electrode.
The preferred use range of the carbon fiber is preferably 368 parts by weight or less of the carbon fiber with respect to 1 part by weight of the porous fluororesin by weight ratio. If the amount of carbon fiber is more than 368 parts by weight, the dispersibility of the porous membrane in the porous fluororesin will deteriorate, causing irregularities on the surface of the gas diffusion electrode, and between adjacent layers (for example, catalyst layers). A slight gap is generated, and the gas diffusion capacity tends to be lowered. In either case, the result is likely to cause a decrease in fuel cell performance.

本発明においては、さらに上記の炭素材料以外のフィラーを含んでも良い。特に撥水性を向上させるものが良い。フィラーの粒子径としては、いずれの大きさのものでも使用可能であるが、非常に大きい場合は、多孔質の空孔を塞いでしまうという問題が発生する。したがって、一般には、粒子状の炭素材料の粒子径と同程度の粒径範囲、すなわち、10〜500nmの範囲のものが好ましい。   In the present invention, a filler other than the above carbon material may be further included. In particular, those that improve water repellency are good. As the particle size of the filler, any particle size can be used. However, when the particle size is very large, there is a problem that the porous pores are blocked. Therefore, generally, a particle size range comparable to the particle size of the particulate carbon material, that is, a range of 10 to 500 nm is preferable.

また、上記フィラーと多孔質フッ素樹脂の重量比は、多孔質フッ素樹脂1重量部に対して、フィラー3重量部以下が好ましい。さらに好ましくは、0.5重量部以下である。上記フィラーの配合量が3重量部より多いと、多孔質膜の内部に充填され過ぎてしまい、ガス拡散能力の低下および導電性の低下の原因となりやすい。結果的には、燃料電池性能の低下を引き起こしやすい。   The weight ratio of the filler to the porous fluororesin is preferably 3 parts by weight or less of the filler with respect to 1 part by weight of the porous fluororesin. More preferably, it is 0.5 parts by weight or less. When the blending amount of the filler is more than 3 parts by weight, the porous membrane is excessively filled, which tends to cause a decrease in gas diffusion capacity and a decrease in conductivity. As a result, the fuel cell performance is likely to be deteriorated.

また、本発明の固体高分子型燃料電池用ガス拡散電極において、前記不織布、多孔質フッ素樹脂、ポリテトラフルオロエチレン粒子及び炭素材料を含む多孔質膜にシート状の導電性多孔質体が積層されていてもよい。該導電性多孔質体としては、カーボン繊維からなるカーボンペーパー及びカーボンクロス、発泡ニッケル、チタン繊維焼結体等をあげることができる。導電性多孔質体が積層されたガス拡散電極は、多孔質膜と導電性多孔質体とが積層構造を有しているため、前記特許文献1に記載の燃料電池用ガス拡散電極とは異なり、多孔質膜を構成する樹脂及び炭素材料などによって導電性多孔質体の空隙が塞がれることがない。したがって、空隙内部のガス透過性が良好であり、電池性能を低下させるという問題がなくなる。   In the gas diffusion electrode for a polymer electrolyte fuel cell of the present invention, a sheet-like conductive porous body is laminated on the porous membrane containing the nonwoven fabric, porous fluororesin, polytetrafluoroethylene particles, and carbon material. It may be. Examples of the conductive porous body include carbon paper and carbon cloth made of carbon fiber, foamed nickel, titanium fiber sintered body, and the like. The gas diffusion electrode in which the conductive porous body is laminated is different from the fuel cell gas diffusion electrode described in Patent Document 1 because the porous membrane and the conductive porous body have a laminated structure. The voids of the conductive porous body are not blocked by the resin and the carbon material constituting the porous film. Therefore, the gas permeability inside the voids is good, and the problem of reducing battery performance is eliminated.

本発明において、前記固体高分子型燃料電池用ガス拡散電極の多孔質膜の厚みとしては、5μm乃至200μmであることが好ましく、より好ましくは10μm乃至150μmであり、さらに好ましくは15μm乃至70μmである。厚みが5μmより小さいと、保水効果が十分でなく、200μmより大きいと、厚すぎてガス拡散能力、排水能力が低下し、電池性能低下を引き起こしやすい。   In the present invention, the thickness of the porous membrane of the gas diffusion electrode for a polymer electrolyte fuel cell is preferably 5 μm to 200 μm, more preferably 10 μm to 150 μm, and further preferably 15 μm to 70 μm. . If the thickness is smaller than 5 μm, the water retention effect is not sufficient, and if it is larger than 200 μm, it is too thick and the gas diffusion capacity and drainage capacity are lowered, and the battery performance is likely to be lowered.

本発明の固体高分子型燃料電池用ガス拡散電極の多孔質膜は、上記フッ素樹脂により多孔質のフッ素樹脂膜が形成されるが、多孔質膜の構造を測る尺度としては、密度、空隙率、孔径がある。本発明の固体高分子型燃料電池用ガス拡散電極において、多孔質膜の空隙率は、60%〜95%の範囲が好適であり、より好ましくは70%以上、特に好ましくは80%以上の範囲である。空隙率が60%未満では、ガス拡散能および水の排出が不十分であり、95%を超えると、機械的強度が著しく低下し、燃料電池を組み上げるまでの工程で破損しやすくなる。   The porous membrane of the gas diffusion electrode for a polymer electrolyte fuel cell of the present invention is a porous fluororesin membrane formed of the above-mentioned fluororesin, but as a measure for measuring the structure of the porous membrane, density, porosity There is a hole diameter. In the gas diffusion electrode for a polymer electrolyte fuel cell of the present invention, the porosity of the porous membrane is preferably in the range of 60% to 95%, more preferably 70% or more, particularly preferably 80% or more. It is. If the porosity is less than 60%, the gas diffusing capacity and water discharge are insufficient, and if it exceeds 95%, the mechanical strength is remarkably lowered, and the fuel cell is easily damaged in the process until it is assembled.

なお、上記の空隙率は、(多孔質フッ素樹脂の比重)×(多孔質フッ素樹脂の重量含有率)=a、(粒子状の炭素材料の比重)×(多孔質膜における粒子状炭素材料の重量含有率)=b、(ポリテトラフルオロエチレン粒子の比重)×(多孔質膜におけるポリテトラフルオロエチレン粒子の重量含有率)=c、(不織布の比重)×(多孔質膜における不織布の重量含有率)=d、および多孔質膜の密度を下記の式に代入することにより求めることができる。
空隙率(%)=[{(a+b+c+d)― 多孔質フッ素樹脂膜の密度}/(a+b+c+d)]×100
In addition, said porosity is (specific gravity of porous fluororesin) × (weight content of porous fluororesin) = a, (specific gravity of particulate carbon material) × (particulate carbon material in the porous membrane) Weight content) = b, (specific gravity of polytetrafluoroethylene particles) × (weight content of polytetrafluoroethylene particles in porous membrane) = c, (specific gravity of nonwoven fabric) × (weight content of nonwoven fabric in porous membrane) Ratio) = d and the density of the porous membrane can be obtained by substituting the density into the following equation.
Porosity (%) = [{(a + b + c + d) −density of porous fluororesin film} / (a + b + c + d)] × 100

また、密度は、以下に示すように、ガス拡散電極の多孔質膜の膜厚および単位面積当たりの重量で決定でき、0.10乃至0.65g/cmの範囲が上記と同様の理由で好適である。
密度(g/cm)=単位面積当たりの重量/(膜厚×単位面積)
Further, the density can be determined by the thickness of the porous film of the gas diffusion electrode and the weight per unit area as shown below, and the range of 0.10 to 0.65 g / cm 3 is the same as above. Is preferred.
Density (g / cm 3 ) = weight per unit area / (film thickness × unit area)

また、孔径は、0.5μm〜10μmの範囲が好適であり、より好ましくは3μm以上、更に好ましくは5μm以上である。孔径が0.5μm以下であると、ガス拡散性能および水の排出が不十分である。   The pore diameter is preferably in the range of 0.5 μm to 10 μm, more preferably 3 μm or more, and even more preferably 5 μm or more. When the pore diameter is 0.5 μm or less, gas diffusion performance and water discharge are insufficient.

本発明の固体高分子型燃料電池用ガス拡散電極は、次のようにして製造することができる。まず、フッ素樹脂を溶媒に溶解させ、炭素材料、さらに、場合によっては炭素材料以外のフィラーを分散させて溶媒混合物を作製する。次いで、前記フッ素樹脂が溶解する溶媒よりも沸点が高く、且つ前記フッ素樹脂を溶解しない溶媒を混合し、塗料を作製する。フッ素樹脂が溶解する溶媒としては、例えば、1−メチル−2−ピロリドンがあげられる。また、フッ素樹脂を溶解しない溶媒としては、例えば、ジエチレングリコールがあげられる。塗料の溶解・分散・混合は、市販の撹拌機、分散機を用いることができる。得られた塗料を、適当な不織布に塗布し、乾燥することによって導電性の多孔質フッ素樹脂膜を形成し、本発明のガス拡散電極を得ることができる。また、別の方法として上記で得られた塗料の中に、適当な不織布を浸漬させ、適当な間隔をあけたロールなどの隙間で余分な塗料を除去した後に乾燥することによって導電性の多孔質膜を形成し、本発明のガス拡散電極を得ることができる。
さらに別な方法として、適当な基体に上記で得られた塗料を、塗布した後、適当な不織布に転写して、乾燥することによって導電性の多孔質膜を形成し、本発明のガス拡散電極を得ることができる。このときの基体は乾燥後に剥離するか、膜−電極接合体を作製するときに除去する。基体として、例えばポリイミドフィルム、ポリエチレンナフタレートフィルム(PEN)などが好適に使用される。
また、あらかじめ撥水性フィラーであるポリテトラフルオロエチレン粒子のディスパージョンを不織布に含浸若しくは塗布したのち、加熱乾燥し、不織布を撥水化し、その後上記の塗料を不織布に塗布し、乾燥することによって導電性の多孔質膜を形成し、本発明のガス拡散電極を得ることができる。不織布を撥水化する工程以降は、上記と同様の手法を用いてガス拡散電極を作製できる。
The gas diffusion electrode for a polymer electrolyte fuel cell of the present invention can be produced as follows. First, a fluororesin is dissolved in a solvent, and a carbon material and further a filler other than the carbon material in some cases are dispersed to prepare a solvent mixture. Next, a solvent having a boiling point higher than that of the solvent in which the fluororesin is dissolved and not dissolving the fluororesin is mixed to prepare a paint. Examples of the solvent in which the fluororesin dissolves include 1-methyl-2-pyrrolidone. Examples of the solvent that does not dissolve the fluororesin include diethylene glycol. Commercially available stirrers and dispersers can be used for dissolving, dispersing and mixing the paint. The obtained coating material is applied to a suitable nonwoven fabric and dried to form a conductive porous fluororesin film, whereby the gas diffusion electrode of the present invention can be obtained. Alternatively, the conductive porous material can be obtained by dipping a suitable non-woven fabric in the paint obtained above, removing the excess paint through gaps such as rolls at appropriate intervals, and then drying. A gas diffusion electrode of the present invention can be obtained by forming a film.
As another method, after applying the paint obtained above on a suitable substrate, it is transferred to a suitable non-woven fabric and dried to form a conductive porous film. Can be obtained. At this time, the substrate is peeled off after drying or removed when a membrane-electrode assembly is produced. As the substrate, for example, a polyimide film, a polyethylene naphthalate film (PEN) or the like is preferably used.
In addition, after impregnating or applying a dispersion of polytetrafluoroethylene particles, which is a water-repellent filler, to a nonwoven fabric, it is heated and dried to make the nonwoven fabric water-repellent, and then the above-mentioned paint is applied to the nonwoven fabric and dried. By forming a porous film, the gas diffusion electrode of the present invention can be obtained. After the step of making the nonwoven fabric water repellent, a gas diffusion electrode can be produced using the same method as described above.

また、本発明の固体高分子型燃料電池用ガス拡散電極が、上記の多孔質膜にシート状導電性多孔質体を積層した構造の場合には、上記のようにして形成された多孔質膜の上に、シート状導電性多孔質体を重ね、熱プレス等の熱圧手段により加圧して接合することによって作製することができる。   In the case where the gas diffusion electrode for a polymer electrolyte fuel cell of the present invention has a structure in which a sheet-like conductive porous body is laminated on the above porous membrane, the porous membrane formed as described above A sheet-like conductive porous body can be stacked on top of each other and pressed and bonded by hot pressing means such as hot press.

本発明の固体高分子型燃料電池用膜−電極接合体は、上記のようにして作製された固体高分子型燃料電池用ガス拡散電極が、高分子電解質膜の両面に触媒層を介して積層された構造を有するものである。この固体高分子型燃料電池用膜−電極接合体は、次のようにして製造することができる。その製造方法の一つは、まず、基体の上に、上記と同様にして、炭素材料を含む多孔質フッ素樹脂よりなる多孔質膜を形成してガス拡散電極を作製し、その上に触媒層形成用の塗料を塗布して触媒層付きガス拡散電極を作製し、次いで得られた2つの触媒層付きガス拡散電極を、それらの触媒層が高分子電解質膜の両面に接するように載置し、熱プレス等の熱圧手段により高分子電解質膜と触媒付きガス拡散電極とを接合させることによって、固体高分子型燃料電池用の膜−電極接合体を作製することができる。   In the membrane-electrode assembly for a polymer electrolyte fuel cell of the present invention, the gas diffusion electrode for a polymer electrolyte fuel cell produced as described above is laminated on both sides of the polymer electrolyte membrane via a catalyst layer. It has a structured. This membrane-electrode assembly for a polymer electrolyte fuel cell can be produced as follows. One of the manufacturing methods is to form a gas diffusion electrode by first forming a porous film made of a porous fluororesin containing a carbon material on a substrate in the same manner as described above, and a catalyst layer thereon. A gas diffusion electrode with a catalyst layer is prepared by applying a coating material for formation, and then the obtained two gas diffusion electrodes with a catalyst layer are placed so that the catalyst layers are in contact with both surfaces of the polymer electrolyte membrane. A membrane-electrode assembly for a polymer electrolyte fuel cell can be produced by joining the polymer electrolyte membrane and the catalyst-attached gas diffusion electrode by hot pressing means such as hot pressing.

また、他の一つは、高分子電解質膜の両面に触媒層形成用の塗料を塗布して触媒層を形成し、触媒層付き高分子電解質膜を作製する。次いで、触媒層付き高分子電解質膜の触媒層両面に、それぞれ上記のようにして作製されたガス拡散電極を配し、熱プレス等の熱圧手段により触媒層付き高分子電解質膜とガス拡散電極を接合させることによって、固体高分子型燃料電池用膜−電極接合体を作製することができる。   In the other method, a catalyst layer-forming coating material is applied to both surfaces of the polymer electrolyte membrane to form a catalyst layer, thereby producing a polymer electrolyte membrane with a catalyst layer. Next, the gas diffusion electrodes prepared as described above are arranged on both sides of the catalyst layer of the polymer electrolyte membrane with the catalyst layer, respectively, and the polymer electrolyte membrane with the catalyst layer and the gas diffusion electrode by hot pressing means such as hot press The membrane-electrode assembly for a polymer electrolyte fuel cell can be produced by bonding

本発明の膜−電極接合体の製造方法は、上記のように触媒層付きガス拡散電極又は触媒層付き高分子電解質膜を作製し、熱プレスによりそれぞれ高分子電解質膜又はガス拡散電極に接合するのみであるので、膜−電極接合体を非常に簡単に製造することができる。また、形成された膜−電極接合体は、上記のガス拡散電極を備えているので、ガス・水の排出が良く、導電性に優れている。   In the method for producing a membrane-electrode assembly of the present invention, a gas diffusion electrode with a catalyst layer or a polymer electrolyte membrane with a catalyst layer is prepared as described above, and bonded to the polymer electrolyte membrane or the gas diffusion electrode by hot pressing, respectively. Therefore, the membrane-electrode assembly can be manufactured very easily. Further, since the formed membrane-electrode assembly is provided with the gas diffusion electrode described above, the gas / water discharge is good and the conductivity is excellent.

したがって、この膜−電極接合体の両面にカーボンペーパーやクロスを配し、そしてその外側にセパレータを配したセルよりなる本発明の固体高分子型燃料電池は、優れた発電特性を有するものとなる。また、カーボンペーパー類無しでの構成でも本発明のフッ素樹脂からなる多孔質膜は使用可能である。なお、セパレータとしては、固体高分子型燃料電池において使用される公知のものならば如何なるものでも使用することができる。   Therefore, the polymer electrolyte fuel cell of the present invention comprising a cell in which carbon paper or cloth is disposed on both surfaces of the membrane-electrode assembly and a separator is disposed on the outer side thereof has excellent power generation characteristics. . In addition, the porous film made of the fluororesin of the present invention can be used even without a carbon paper. As the separator, any known separator used in solid polymer fuel cells can be used.

本発明を実施例によってより具体的に説明する。以下のように固体高分子型燃料電池用ガス拡散電極を作製し、続いて該ガス拡散電極を燃料極側および酸素極側の何れにも配備した固体高分子型燃料電池を作製し評価した。   The present invention will be described more specifically with reference to examples. A gas diffusion electrode for a polymer electrolyte fuel cell was prepared as follows, and then a polymer electrolyte fuel cell in which the gas diffusion electrode was disposed on both the fuel electrode side and the oxygen electrode side was prepared and evaluated.

(固体高分子型燃料電池用ガス拡散電極の製造)
実施例1〜8
フッ化ビニリデン樹脂30重量部を600重量部の1−メチル−2−ピロリドンに溶解し、更に平均一次粒子径300nmのポリテトラフルオロエチレン粒子を表1記載の重量部を分散し、次いで平均一次粒子径40nmのアセチレンブラックを表1記載の重量部を分散して混合溶媒を得た。次いで、45重量部のジエチレングリコールを混合・撹拌して塗料を得た。得られた塗料を、ポリアリレート繊維不織布にアプリケーターを用いて塗工して塗工膜を得、乾燥させて、表1記載の熱プレス前膜厚の多孔質膜よりなる本発明の固体高分子型燃料電池用ガス拡散電極を得た。
(Manufacture of gas diffusion electrodes for polymer electrolyte fuel cells)
Examples 1-8
30 parts by weight of vinylidene fluoride resin is dissolved in 600 parts by weight of 1-methyl-2-pyrrolidone, and polytetrafluoroethylene particles having an average primary particle diameter of 300 nm are dispersed in parts by weight shown in Table 1, and then the average primary particles A mixed solvent was obtained by dispersing acetylene black having a diameter of 40 nm in parts by weight shown in Table 1. Next, 45 parts by weight of diethylene glycol was mixed and stirred to obtain a paint. The obtained coating material is applied to a polyarylate fiber nonwoven fabric using an applicator to obtain a coating film, dried, and the solid polymer of the present invention comprising a porous film having a film thickness before hot pressing as shown in Table 1 A gas diffusion electrode for a fuel cell was obtained.

実施例9
表1記載のポリテトラフルオロエチレン粒子の固形分重量部となるように濃度調整した平均一次粒子径300nmのポリテトラフルオロエチレン粒子の界面活性剤入り水分散液に、ポリアリレート繊維不織布を含浸し、乾燥させて、ポリテトラフルオロエチレン粒子をポリアリレート繊維不織布に定着させた。
一方、フッ化ビニリデン樹脂30重量部を600重量部の1−メチル−2−ピロリドンに溶解し、更に平均一次粒子径40nmのアセチレンブラックを表1記載の重量部を分散し、混合溶媒を得た。次いで、45重量部のジエチレングリコールを混合・撹拌して塗料を得た。得られた塗料を、上記ポリテトラフルオロエチレン粒子が定着したポリアリレート繊維不織布にアプリケーターを用いて塗工して塗工膜を得、乾燥させて、表1記載の熱プレス前膜厚の多孔質膜よりなる本発明の固体高分子型燃料電池用ガス拡散電極を得た。
Example 9
A polyarylate fiber non-woven fabric is impregnated with a surfactant-containing aqueous dispersion of polytetrafluoroethylene particles having an average primary particle diameter of 300 nm, the concentration of which is adjusted so as to be the solid content parts by weight of the polytetrafluoroethylene particles described in Table 1. The polytetrafluoroethylene particles were fixed to the polyarylate fiber nonwoven fabric by drying.
On the other hand, 30 parts by weight of vinylidene fluoride resin was dissolved in 600 parts by weight of 1-methyl-2-pyrrolidone, and further, acetylene black having an average primary particle size of 40 nm was dispersed in parts by weight as shown in Table 1 to obtain a mixed solvent. . Next, 45 parts by weight of diethylene glycol was mixed and stirred to obtain a paint. The obtained paint is applied to the polyarylate fiber nonwoven fabric to which the polytetrafluoroethylene particles are fixed by using an applicator to obtain a coating film, which is dried, and is porous with a film thickness before heat pressing described in Table 1 A gas diffusion electrode for a polymer electrolyte fuel cell of the present invention comprising a membrane was obtained.

比較例1〜4
フッ化ビニリデン樹脂30重量部を600重量部の1−メチル−2−ピロリドンに溶解し、更に平均一次粒子径40nmのアセチレンブラックを表1記載の重量部を分散し、混合溶媒を得た。次いで、45重量部のジエチレングリコールを混合・撹拌して塗料を得た。得られた塗料を、ポリエチレンナフタレートフィルム(PEN)にアプリケーターを用いて塗工して塗工膜を得、乾燥させて、表1記載の熱プレス前膜厚の多孔質膜よりなる比較用のガス拡散電極を得た。
Comparative Examples 1-4
30 parts by weight of vinylidene fluoride resin was dissolved in 600 parts by weight of 1-methyl-2-pyrrolidone, and further, acetylene black having an average primary particle diameter of 40 nm was dispersed in parts by weight as shown in Table 1 to obtain a mixed solvent. Next, 45 parts by weight of diethylene glycol was mixed and stirred to obtain a paint. The obtained paint is applied to a polyethylene naphthalate film (PEN) using an applicator to obtain a coating film, dried, and a comparative film comprising a porous film having a film thickness before hot pressing described in Table 1 A gas diffusion electrode was obtained.

(物性値測定と空隙潰れ確認試験)
前記実施例1〜9及び比較例1〜4で得たガス拡散電極の単位面積当たりの重量と膜厚を測定した。測定した重量から密度を算出し、空隙率を算出した。続いて、熱プレスによる空隙潰れの程度を確認するため、各ガス拡散電極に熱プレス(120℃、10MPa、10分)して、熱プレス後の膜厚を測定した。続いて、次式の膜厚変化率(%)を求めた。これらの結果を表1に示した(表1中の空隙率は熱プレス前の値である)。
膜厚変化率(%)=(熱プレス前の膜厚―熱プレス後の膜厚)/熱プレス前の膜厚×100
表1の膜厚変化率の結果から明らかなように、実施例1〜9の本発明の固体高分子型燃料電池用ガス拡散電極は、1.5〜5.1%の少ない変化率であった。これは、ガス拡散電極内部の不織布が耐圧縮性に優れるため、不織布の空隙内部に包含される多孔質のフッ化ビニリデン樹脂の空隙が不織布によって守られ加熱プレスによって潰れていないことを示すものである。これに対して、不織布を用いていない比較例1〜4のガス拡散電極では、膜厚変化率が34.8〜35%であり、加熱プレスによって多孔質のフッ化ビニリデン樹脂の空隙が潰れてしまっていることを示している。
(Physical property value measurement and void crush confirmation test)
The weight and film thickness per unit area of the gas diffusion electrodes obtained in Examples 1 to 9 and Comparative Examples 1 to 4 were measured. The density was calculated from the measured weight, and the porosity was calculated. Subsequently, in order to check the degree of void collapse by hot pressing, each gas diffusion electrode was hot pressed (120 ° C., 10 MPa, 10 minutes), and the film thickness after hot pressing was measured. Subsequently, the film thickness change rate (%) of the following equation was obtained. These results are shown in Table 1 (the porosity in Table 1 is the value before hot pressing).
Film thickness change rate (%) = (film thickness before hot pressing−film thickness after hot pressing) / film thickness before hot pressing × 100
As is clear from the results of the film thickness change rate in Table 1, the gas diffusion electrodes for polymer electrolyte fuel cells of Examples 1 to 9 of the present invention have a low change rate of 1.5 to 5.1%. It was. This indicates that the voids of the porous vinylidene fluoride resin contained in the voids of the nonwoven fabric are protected by the nonwoven fabrics and are not crushed by the heating press because the nonwoven fabric inside the gas diffusion electrode is excellent in compression resistance. is there. On the other hand, in the gas diffusion electrodes of Comparative Examples 1 to 4 using no nonwoven fabric, the rate of change in film thickness was 34.8 to 35%, and the voids of the porous vinylidene fluoride resin were crushed by the hot press. It shows that it is trapped.

Figure 0005222501
Figure 0005222501

(固体高分子型燃料電池の作製)
(1)固体高分子型燃料電池の作製1
実施例1〜9及び比較例1〜4で得られた50mm角のガス拡散電極を各々2枚用意した。白金触媒を担持させたカーボンとイオン伝導性樹脂および水とエタノールの混合溶媒からなる触媒塗料を上記2枚のガス拡散電極の多孔質膜の表面にそれぞれ塗布・乾燥し、触媒層を形成し、触媒層付きガス拡散電極を得た。それぞれの白金触媒の量は、0.3mg/cmであった。次いで、2枚の触媒層付きガス拡散電極の間に、触媒層面が電解質膜(デュポン社製、商品名:ナフィオン117)と接するように配し、熱プレス(120℃、10MPa、10分)にて触媒層付きガス拡散電極と電解質膜とを接合し、(比較例ではガス拡散電極製造時に用いた基材であるPENフィルムを剥離除去して)、膜−電極接合体を得た。得られた膜−電極接合体の両側にカーボンペーパーを配し、その外側に黒鉛製セパレータを配し、単セルに組み込んで評価用の固体高分子型燃料電池(実施例1−1〜実施例9−1、比較例1−1〜比較例4−1)を得た。
(Production of polymer electrolyte fuel cell)
(1) Fabrication of polymer electrolyte fuel cell 1
Two 50 mm square gas diffusion electrodes obtained in Examples 1 to 9 and Comparative Examples 1 to 4 were prepared. A catalyst coating composed of a mixed catalyst of carbon and an ion conductive resin carrying water and a platinum catalyst and water and ethanol is applied to the surfaces of the porous films of the two gas diffusion electrodes, respectively, and dried to form a catalyst layer. A gas diffusion electrode with a catalyst layer was obtained. The amount of each platinum catalyst was 0.3 mg / cm 2 . Next, between the two gas diffusion electrodes with a catalyst layer, the catalyst layer surface is placed in contact with the electrolyte membrane (manufactured by DuPont, trade name: Nafion 117) and subjected to hot press (120 ° C., 10 MPa, 10 minutes). Then, the gas diffusion electrode with the catalyst layer and the electrolyte membrane were joined (in the comparative example, the PEN film, which was the base material used in the production of the gas diffusion electrode, was peeled off) to obtain a membrane-electrode assembly. A carbon paper is disposed on both sides of the obtained membrane-electrode assembly, a graphite separator is disposed on the outside thereof, and a solid polymer fuel cell for evaluation (Example 1-1 to Example) is incorporated into a single cell. 9-1, Comparative Example 1-1 to Comparative Example 4-1) were obtained.

(2)固体高分子型燃料電池の作製2
実施例1〜9及び比較例1〜4で得られた50mm角のガス拡散電極を各々2枚用意した。一方、高分子電解質膜(デュポン社製、商品名:ナフィオン117)の両面に、白金触媒を担持させたカーボンとイオン伝導性樹脂および溶媒からなる触媒塗料を塗布・乾燥し、触媒層を形成して、触媒層付き高分子電解質膜を得た。それぞれの白金触媒の量は、0.3mg/cmであった。次いで、上記各実施例及び比較例の2枚のガス拡散電極の間に、ガス拡散電極面が上記触媒層付き高分子電解質膜に接するように配し、熱プレス(120℃、10MPa、10分)にて触媒層付き高分子電解質膜とガス拡散電極とを接合し、(比較例はガス拡散電極製造時に用いた基材であるPENフィルムを剥離除去して)、膜−電極接合体を得た。得られた膜−電極接合体の両面にカーボンペーパーを配し、その外側に黒鉛製セパレータを配し、単セルに組み込んで評価用の固体高分子型燃料電池(実施例1−2〜実施例9−2、比較例1−2〜比較例4−2)を得た。
(2) Fabrication of polymer electrolyte fuel cell 2
Two 50 mm square gas diffusion electrodes obtained in Examples 1 to 9 and Comparative Examples 1 to 4 were prepared. On the other hand, a catalyst coating made of carbon, an ion conductive resin and a solvent carrying a platinum catalyst is applied and dried on both surfaces of a polymer electrolyte membrane (DuPont, Nafion 117) to form a catalyst layer. Thus, a polymer electrolyte membrane with a catalyst layer was obtained. The amount of each platinum catalyst was 0.3 mg / cm 2 . Next, between the two gas diffusion electrodes of each of the above examples and comparative examples, the gas diffusion electrode surface was placed in contact with the polymer electrolyte membrane with the catalyst layer, and hot pressing (120 ° C., 10 MPa, 10 minutes) The polymer electrolyte membrane with a catalyst layer and the gas diffusion electrode are bonded together in (and the PEN film, which is the base material used in the gas diffusion electrode production in the comparative example, is peeled off) to obtain a membrane-electrode assembly. It was. Carbon paper is arranged on both surfaces of the obtained membrane-electrode assembly, a graphite separator is arranged on the outside thereof, and a polymer electrolyte fuel cell for evaluation (Examples 1-2 to Examples) incorporated in a single cell. 9-2, Comparative Example 1-2 to Comparative Example 4-2) were obtained.

(固体高分子型燃料電池の評価)
上記、固体高分子型燃料電池26種(実施例1−1〜実施例9−1、比較例1−1〜比較例4−1)(実施例1−2〜実施例9−2、比較例1−2〜比較例4−2)の発電特性を下記の要領で評価した。固体高分子型燃料電池の供給ガスとして、燃料極側に水素ガスおよび酸素極側に酸素ガスを用いた。水素ガスは85℃の加湿温度で500mL/min、0.1MPaとなるように供給し、酸素ガスは70℃の加湿温度で1000mL/min、0.1MPaとなるように供給した。この条件下で、電流密度1A/cmでの電圧を測定した。その結果を表2に示す。
(Evaluation of polymer electrolyte fuel cells)
26 types of polymer electrolyte fuel cells (Example 1-1 to Example 9-1, Comparative Example 1-1 to Comparative Example 4-1) (Example 1-2 to Example 9-2, Comparative Example) The power generation characteristics of 1-2 to Comparative Example 4-2) were evaluated in the following manner. Hydrogen gas was used on the fuel electrode side and oxygen gas was used on the oxygen electrode side as the supply gas for the polymer electrolyte fuel cell. Hydrogen gas was supplied at a humidification temperature of 85 ° C. so as to be 500 mL / min and 0.1 MPa, and oxygen gas was supplied so as to be 1000 mL / min and 0.1 MPa at a humidification temperature of 70 ° C. Under this condition, the voltage at a current density of 1 A / cm 2 was measured. The results are shown in Table 2.

Figure 0005222501
Figure 0005222501

表2に示すように、実施例1〜9で得られたガス拡散電極を備えた本発明の固体高分子型燃料電池(実施例1−1〜実施例9−1及び実施例1−2〜実施例9−2)は、電圧が0.66〜0.75Vであって、比較例1〜4で得られたガス拡散電極を備えた固体高分子型燃料電池(比較例1−1〜比較例4−1及び比較例1−2〜比較例4−2)の電圧0.58〜0.62Vよりも高く、発電特性が優れていた。これは、本発明のガス拡散電極が、表1の膜厚変化率の値から明らかな通りフッ素樹脂多孔質膜の空隙が構造補強材に不織布を含むことで膜−電極接合体を作製時の熱プレスで潰れることが少なくなったため、燃料電池運転時の加湿水や生成水によるフラッディングを防止することができ、ガス透過性が高くなったため、本ガス拡散電極を用いた固体高分子型燃料電池の発電特性に代表される電池性能が良好となったものである。また、実施例9で得られたガス拡散電極を備えた固体高分子型燃料電池、すなわち、実施例9−1、実施例9−2のガス拡散電極を備えた固体高分子型燃料電池の発電性能が特に優れているのは、ポリテトラフルオロエチレン粒子が不織布であるポリアリレートの撥水性を向上させた効果と考えられる。   As shown in Table 2, the polymer electrolyte fuel cells of the present invention equipped with the gas diffusion electrodes obtained in Examples 1 to 9 (Example 1-1 to Example 9-1 and Example 1-2) In Example 9-2), the voltage is 0.66 to 0.75 V, and the polymer electrolyte fuel cell (Comparative Example 1-1 to Comparative Example 1) provided with the gas diffusion electrode obtained in Comparative Examples 1 to 4 is used. The voltage was higher than the voltage of 0.58 to 0.62 V in Example 4-1 and Comparative Example 1-2 to Comparative Example 4-2), and the power generation characteristics were excellent. This is because when the gas diffusion electrode of the present invention is produced from the value of the rate of change in the film thickness of Table 1, the voids of the fluororesin porous membrane contain a nonwoven fabric in the structural reinforcing material. Since it is less crushed by hot press, it can prevent flooding due to humidified water or generated water during fuel cell operation, and gas permeability is increased, so the polymer electrolyte fuel cell using this gas diffusion electrode The battery performance represented by the power generation characteristics is improved. Further, power generation of the solid polymer fuel cell provided with the gas diffusion electrode obtained in Example 9, that is, the solid polymer fuel cell provided with the gas diffusion electrode of Example 9-1 and Example 9-2. The particularly excellent performance is considered to be the effect of improving the water repellency of the polyarylate in which the polytetrafluoroethylene particles are non-woven fabric.

Claims (6)

ポリアリレート繊維からなる不織布、多孔質フッ素樹脂、ポリテトラフルオロエチレン粒子及び炭素材料を含んだ固体高分子型燃料電池用ガス拡散電極であって、前記不織布にポリテトラフルオロエチレン粒子が定着され、前記不織布が多孔質フッ素樹脂に包含されて多孔質フッ素樹脂の厚さが不織布の厚さよりも厚いことを特徴とする固体高分子型燃料電池用ガス拡散電極。 Nonwoven fabric made of polyarylate fibers, porous fluororesin, a polytetrafluoroethylene particles and a gas diffusion electrode for a polymer electrolyte fuel cell contains a carbon material, polytetrafluoroethylene particles is fixed to the nonwoven fabric, A gas diffusion electrode for a polymer electrolyte fuel cell, wherein the nonwoven fabric is included in a porous fluororesin, and the thickness of the porous fluororesin is greater than the thickness of the nonwoven fabric . 前記多孔質フッ素樹脂が、フッ化オレフィン系樹脂であることを特徴とする請求項1記載の固体高分子型燃料電池用ガス拡散電極。 The gas diffusion electrode for a polymer electrolyte fuel cell according to claim 1 , wherein the porous fluororesin is a fluoroolefin resin. 前記炭素材料が、粒子状であることを特徴とする請求項1に記載の固体高分子型燃料電池用ガス拡散電極。   The gas diffusion electrode for a polymer electrolyte fuel cell according to claim 1, wherein the carbon material is in the form of particles. 前記炭素材料が、カーボンブラックであることを特徴とする請求項1に記載の固体高分子型燃料電池用ガス拡散電極。   The gas diffusion electrode for a polymer electrolyte fuel cell according to claim 1, wherein the carbon material is carbon black. 前記カーボンブラックが、アセチレンブラックであることを特徴とする請求項に記載の固体高分子型燃料電池用ガス拡散電極。 The gas diffusion electrode for a polymer electrolyte fuel cell according to claim 4 , wherein the carbon black is acetylene black. 請求項1に記載の固体高分子型燃料電池用ガス拡散電極を製造する方法であって、ポリテトラフルオロエチレン粒子の分散液をポリアリレート繊維からなる不織布に含浸若しくは塗布し、乾燥して前記不織布にポリテトラフルオロエチレン粒子を定着させた後、フッ素樹脂及び炭素材料を含んだ塗料を、前記ポリテトラフルオロエチレン粒子定着させた不織布に含浸若しくは塗布し、乾燥することを特徴とする固体高分子型燃料電池用ガス拡散電極の製造方法。 A method for producing a gas diffusion electrode for a polymer electrolyte fuel cell according to claim 1, wherein a dispersion of polytetrafluoroethylene particles is impregnated or applied to a nonwoven fabric made of polyarylate fibers, and dried to form the nonwoven fabric. after fixing the polytetrafluoroethylene particles, a paint containing the full fluororesin and carbon material, impregnated or coated to said were established polytetrafluoroethylene particles nonwoven, characterized in that dry solid A method for producing a gas diffusion electrode for a polymer fuel cell.
JP2007202372A 2007-02-28 2007-08-02 Gas diffusion electrode for polymer electrolyte fuel cell and manufacturing method thereof Expired - Fee Related JP5222501B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007202372A JP5222501B2 (en) 2007-08-02 2007-08-02 Gas diffusion electrode for polymer electrolyte fuel cell and manufacturing method thereof
KR1020097013380A KR101180172B1 (en) 2007-02-28 2008-02-22 Gas diffusion electrode for solid polymer fuel cell, membrane-electrode assembly for solid polymer fuel cell and method for producing the same, and solid polymer fuel cell
PCT/JP2008/053044 WO2008105337A1 (en) 2007-02-28 2008-02-22 Gas diffusion electrode for solid polymer fuel cell, membrane-electrode assembly for solid polymer fuel cell and method for producing the same, and solid polymer fuel cell
US12/528,505 US20100098991A1 (en) 2007-02-28 2008-02-22 Gas Diffusion Electrode For Polymer Electrolyte Fuel Cell, Membrane-Electrode Assembly For Polymer Electrolyte Fuel Cell, Production Method Therefor, And Polymer Electrolyte Fuel Cell
EP08711818A EP2124276A4 (en) 2007-02-28 2008-02-22 Gas diffusion electrode for solid polymer fuel cell, membrane-electrode assembly for solid polymer fuel cell and method for producing the same, and solid polymer fuel cell
TW097106565A TW200843169A (en) 2007-02-28 2008-02-26 Gas diffusion electrode for solid polymer fuel cell, film-electrode assembly and method for producing the same, and solid polymer fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007202372A JP5222501B2 (en) 2007-08-02 2007-08-02 Gas diffusion electrode for polymer electrolyte fuel cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009037932A JP2009037932A (en) 2009-02-19
JP5222501B2 true JP5222501B2 (en) 2013-06-26

Family

ID=40439648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007202372A Expired - Fee Related JP5222501B2 (en) 2007-02-28 2007-08-02 Gas diffusion electrode for polymer electrolyte fuel cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5222501B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6131696B2 (en) * 2013-04-26 2017-05-24 日産自動車株式会社 GAS DIFFUSION LAYER, METHOD FOR PRODUCING SAME, MEMBRANE ELECTRODE ASSEMBLY FOR FUEL CELL USING THE SAME, AND FUEL CELL

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2890513B2 (en) * 1989-08-22 1999-05-17 松下電器産業株式会社 Gas diffusion electrode and liquid fuel cell using the same
JP2002313359A (en) * 2001-04-17 2002-10-25 Mitsubishi Heavy Ind Ltd Solid polymer fuel cell
JP2002352807A (en) * 2001-05-30 2002-12-06 Toray Ind Inc Gas diffuser and manufacturing method therefor
US7629071B2 (en) * 2004-09-29 2009-12-08 Giner Electrochemical Systems, Llc Gas diffusion electrode and method of making the same
JP2006269239A (en) * 2005-03-24 2006-10-05 Toyota Motor Corp Membrane electrode assembly for fuel cell

Also Published As

Publication number Publication date
JP2009037932A (en) 2009-02-19

Similar Documents

Publication Publication Date Title
JP6121007B2 (en) Moisture management sheet, gas diffusion sheet, membrane-electrode assembly, and polymer electrolyte fuel cell
JP5107050B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
KR101180172B1 (en) Gas diffusion electrode for solid polymer fuel cell, membrane-electrode assembly for solid polymer fuel cell and method for producing the same, and solid polymer fuel cell
CN108352536B (en) Gas diffusion layer for fuel cell, method for producing same, membrane electrode assembly, and fuel cell
JP2007128671A (en) Gas diffusion electrode, film-electrode assembly and manufacturing method of the same, and solid polymer fuel cell
JP2006324104A (en) Gas diffusion layer for fuel cell and fuel cell using this
JP4348155B2 (en) Catalyst membrane for polymer electrolyte fuel cell, production method thereof and fuel cell using the same
JP2008311180A (en) Membrane electrode assembly, its manufacturing method, and fuel cell using the membrane electrode assembly
JP5193478B2 (en) Gas diffusion electrode, membrane-electrode assembly and method for producing the same, and polymer electrolyte fuel cell
JP2007012424A (en) Gas diffusion electrode, membrane-electrode joined body and its manufacturing method, and solid polymer fuel cell
KR20160009584A (en) Base material for gas diffusion electrode
JP5601779B2 (en) Gas diffusion layer, membrane-electrode assembly and fuel cell
JP2009087614A (en) Diffusion layer of fuel cell, manufacturing method for diffusion layer of fuel cell, and fuel cell
JP2009037933A (en) Gas diffusion electrode for solid polymer fuel cell, membrane-electrode assembly and manufacturing method for the solid polymer fuel cell, and the solid polymer fuel cell
JP2007179870A (en) Gas diffusion electrode, membrane-electrolyte assembly, polymer electrolyte fuel cell and methods for producing them
JP5430486B2 (en) Moisture management sheet, gas diffusion sheet, membrane-electrode assembly, and polymer electrolyte fuel cell
JP5875957B2 (en) Moisture management sheet, gas diffusion sheet, membrane-electrode assembly, and polymer electrolyte fuel cell
JP4828864B2 (en) Gas diffusion electrode for polymer electrolyte fuel cell, membrane-electrode assembly for polymer electrolyte fuel cell, production method thereof, and polymer electrolyte fuel cell
JP5222501B2 (en) Gas diffusion electrode for polymer electrolyte fuel cell and manufacturing method thereof
JP2008311181A (en) Membrane electrode assembly, its manufacturing method, and fuel cell using the membrane electrode assembly
JP4817622B2 (en) Method for producing gas diffusion electrode for polymer electrolyte fuel cell
JP2006318790A (en) Solid polymer type fuel cell, gas diffusion electrode therefor, and its manufacturing method
JP4872202B2 (en) Fuel cell and fuel cell manufacturing method
JP2006019174A (en) Gas diffusion electrode, membrane-electrode assembly, its manufacturing method, and solid polymer fuel cell
JP5426830B2 (en) Gas diffusion electrode for polymer electrolyte fuel cell, membrane-electrode assembly using the same, method for producing the same, and polymer electrolyte fuel cell using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130311

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees