JP5221936B2 - Surface water ratio measurement system and surface water ratio measurement method - Google Patents

Surface water ratio measurement system and surface water ratio measurement method Download PDF

Info

Publication number
JP5221936B2
JP5221936B2 JP2007295921A JP2007295921A JP5221936B2 JP 5221936 B2 JP5221936 B2 JP 5221936B2 JP 2007295921 A JP2007295921 A JP 2007295921A JP 2007295921 A JP2007295921 A JP 2007295921A JP 5221936 B2 JP5221936 B2 JP 5221936B2
Authority
JP
Japan
Prior art keywords
wall surface
radiation
ground material
measurement
surface water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007295921A
Other languages
Japanese (ja)
Other versions
JP2009121930A (en
Inventor
隆幸 神戸
卓矢 伊勢
悦久 高田
紀夫 滝口
聰 鈴木
昭 武井
隆 青野
芳治 海瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2007295921A priority Critical patent/JP5221936B2/en
Publication of JP2009121930A publication Critical patent/JP2009121930A/en
Application granted granted Critical
Publication of JP5221936B2 publication Critical patent/JP5221936B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、地盤材料の表面水率を測定する表面水率測定システム及び表面水率測定方法に関するものである。   The present invention relates to a surface water ratio measuring system and a surface water ratio measuring method for measuring the surface water ratio of a ground material.

近年のダム建設にあっては、材料の合理化、設計の合理化、及び施工の合理化を図るために、台形CSGダムに関する研究が盛んに行われている。台形CSGダムとは、地盤材料であるCSG材に水とコンクリートを混合してなるCSG(Cemented Sand and Gravel)を用いた台形状のダムである。また、CSG材とは、河床砂礫等の岩石質の母材で、分級等の調整を行っていないものであり、建設現場周辺で容易に採取可能なものである。このように、台形CSGダムでは、CSG材といった比較的確保しやすい材料が用いられるので、従来の重力式コンクリートダムに比較して、環境保全やコスト縮減が図られる。   In recent dam construction, research on trapezoidal CSG dams has been actively conducted in order to rationalize materials, rationalize design, and rationalize construction. The trapezoidal CSG dam is a trapezoidal dam using CSG (Cemented Sand and Gravel), which is a mixture of water and concrete with CSG material, which is the ground material. The CSG material is a rocky base material such as riverbed gravel, etc., which is not adjusted for classification, etc., and can be easily collected around the construction site. As described above, since the trapezoidal CSG dam uses a material that is relatively easy to secure, such as a CSG material, environmental conservation and cost reduction can be achieved as compared with a conventional gravity concrete dam.

このようなCSG材は、前述のように分級等の調整がされていないことから、粒度や表面水率にバラツキがあることを前提とした管理が必要である。特に、CSGの強度を管理するためには、CSG材に混合する水の量を適切に制御することが必要である。例えば、台形CSGダムの施工にあたり、施工当日のCSG材の品質管理としては、1時間に1回程度の表面水率測定を行って混合する水の量を補正することが業界内で推奨されている。このようなCSG材に混合する水の量の適切な制御には、CSG材の表面水率を正確に得ることが必要となる。ここで、従来、CSG材の表面水率を測定する簡易的な方法としては、「電子レンジ法」や「フライパン法」と称される方法等が知られている(下記非特許文献1参照。)。
「土質試験の方法と解説」,社団法人地盤工学会,2000年3月,第一回改訂版,p.61−67.
Since such CSG material is not adjusted for classification or the like as described above, it is necessary to manage on the assumption that there are variations in particle size and surface water ratio. In particular, in order to manage the strength of CSG, it is necessary to appropriately control the amount of water mixed into the CSG material. For example, in the construction of trapezoidal CSG dams, it is recommended within the industry to correct the amount of water to be mixed by measuring the surface water rate once per hour as the quality control of CSG materials on the day of construction. Yes. In order to appropriately control the amount of water mixed in such a CSG material, it is necessary to accurately obtain the surface water ratio of the CSG material. Here, conventionally, as a simple method for measuring the surface water content of the CSG material, a method called “microwave method” or “fry pan method” is known (see Non-Patent Document 1 below). ).
"Method and explanation of soil test", Geotechnical Society of Japan, March 2000, first revised edition, p. 61-67.

ところが、上記電子レンジ法やフライパン法によれば、最低1時間程度の測定時間が必要であり、上記の推奨される管理を円滑に実現することは難しい。更に、上記電子レンジ法やフライパン法では、表面水率を即時的に連続的に得ることはできないので、混合する水の量を自動的に制御することは困難である。従って、CSG材の表面水率を即時的かつ連続的に得ることが可能な測定の方式が求められる。   However, according to the microwave oven method and the frying pan method, a measurement time of at least about 1 hour is required, and it is difficult to smoothly realize the recommended management. Furthermore, in the above microwave oven method and frying pan method, it is difficult to automatically control the amount of water to be mixed because the surface water ratio cannot be obtained immediately and continuously. Therefore, there is a need for a measurement method that can instantaneously and continuously obtain the surface water ratio of the CSG material.

そこで、本発明は、即時的かつ連続的に地盤材料の表面水率を得ることを可能とする表面水率測定システム及び表面水率測定方法を提供することを目的とする。   Then, an object of this invention is to provide the surface water rate measuring system and surface water rate measuring method which can obtain the surface water rate of a ground material immediately and continuously.

本発明の表面水率測定システムは、地盤材料の表面水率を連続的に測定する表面水率測定システムにおいて、地盤材料が搬送される搬送路を画成する筒状の搬送筒部と、放射線を出射する放射線出射部と、放射線出射部からの放射線を入射させる放射線入射部と、を有し、搬送筒部内を搬送される地盤材料に放射線を透過させて地盤材料の表面水率に関連する物理量を連続的に測定するRI測定装置と、を備え、放射線出射部及び放射線入射部は、互いの間に搬送路の少なくとも一部を挟んで、互いの間の直線距離が、RI測定装置による物理量の有効な測定を可能とする範囲の最大距離として定義される有効測定最大距離以下となるように、搬送筒部の外壁面に設置され、搬送筒部の外壁面は、互いに直交する方向に延在する第1の壁面及び第2の壁面を有しており、放射線出射部は、第1の壁面に取り付けられ、放射線入射部は、第2の壁面に取り付けられており、搬送筒部の外壁面は、第1の壁面に対向する第3の壁面と、第2の壁面に対向する第4の壁面と、を更に有し、放射線出射部は、第4の壁面よりも第2の壁面に近い位置に取り付けられており、搬送筒部は、上下両端に開口を有する筒状体の一部であり、筒状体の下部において断面積が絞られた部分であることを特徴とする。 The surface water rate measuring system of the present invention is a surface water rate measuring system that continuously measures the surface water rate of the ground material, and includes a cylindrical transfer cylinder part that defines a transfer path through which the ground material is transferred, and radiation. A radiation emitting part that emits radiation, and a radiation incident part that makes the radiation from the radiation emitting part enter , and the radiation is transmitted through the ground material transported in the transporting cylinder part and related to the surface water ratio of the ground material An RI measuring device that continuously measures a physical quantity, and the radiation emitting unit and the radiation incident unit sandwich at least a part of the transport path between each other, and the linear distance between them is determined by the RI measuring device. as the effective maximum measuring distance below is defined as the maximum distance in the range that allows an effective measurement of the physical quantity is installed on the outer wall surface of the conveyance tubular portion, the outer wall surface of the conveyance tubular portion in a direction orthogonal to each other First wall surface extending and It has a second wall surface, the radiation emitting portion is attached to the first wall surface, the radiation incident portion is attached to the second wall surface, and the outer wall surface of the transfer cylinder portion is the first wall surface. And a fourth wall surface facing the second wall surface, and the radiation emitting portion is attached to a position closer to the second wall surface than the fourth wall surface. The transport cylinder part is a part of a cylindrical body having openings at both upper and lower ends, and is a part having a reduced cross-sectional area at the lower part of the cylindrical body .

また、本発明の表面水率測定方法は、地盤材料の表面水率を連続的に測定する表面水率測定方法において、筒状の搬送筒部で画成される搬送路で地盤材料を搬送させる搬送ステップと、放射線を出射する放射線出射部と、放射線出射部からの放射線を入射させる放射線入射部と、を有するRI測定装置で、搬送筒部内の搬送中の地盤材料に放射線を透過させて地盤材料の表面水率に関連する物理量を連続的に測定するRI測定ステップと、を備え、RI測定ステップでは、放射線出射部及び放射線入射部を、互いの間に搬送路の少なくとも一部を挟んで、互いの間の直線距離が、RI測定装置による物理量の有効な測定を可能とする範囲の最大距離として定義される有効測定最大距離以下となるように、搬送筒部の外壁面に設置し、搬送筒部の外壁面は、互いに直交する方向に延在する第1の壁面及び第2の壁面を有しており、放射線出射部は、第1の壁面に取り付けられ、放射線入射部は、第2の壁面に取り付けられており、搬送筒部の外壁面は、第1の壁面に対向する第3の壁面と、第2の壁面に対向する第4の壁面と、を更に有し、放射線出射部は、第4の壁面よりも第2の壁面に近い位置に取り付けられており、搬送筒部は、上下両端に開口を有する筒状体の一部であり、筒状体の下部において断面積が絞られた部分であることを特徴とする。 Further, the surface water ratio measuring method of the present invention is a surface water ratio measuring method for continuously measuring the surface water ratio of the ground material, wherein the ground material is transported by a transport path defined by a cylindrical transport cylinder portion. An RI measuring device having a transport step, a radiation emitting section for emitting radiation, and a radiation incident section for making radiation from the radiation emitting section incident, and transmitting the radiation to the ground material being transported in the transport cylinder section An RI measurement step for continuously measuring a physical quantity related to the surface water content of the material, and in the RI measurement step, the radiation emitting part and the radiation incident part are sandwiched between each other with at least a part of the transport path. The linear distance between them is set on the outer wall surface of the transport cylinder so that the effective distance of the physical quantity measured by the RI measuring apparatus is not more than the maximum effective measurement distance defined as the maximum distance, Transport cylinder The outer wall surface has a first wall surface and a second wall surface extending in directions orthogonal to each other, the radiation emitting portion is attached to the first wall surface, and the radiation incident portion is attached to the second wall surface. The outer wall surface of the transfer cylinder portion further includes a third wall surface facing the first wall surface and a fourth wall surface facing the second wall surface, and the radiation emitting portion is 4 is attached to a position closer to the second wall surface than the wall surface of 4, and the transfer cylinder part is a part of a cylindrical body having openings at both upper and lower ends, and the cross-sectional area is reduced at the lower part of the cylindrical body It is a part .

このシステム及び方法によれば、搬送筒部で画成された搬送路を地盤材料が搬送される。この搬送筒部の外壁面には、搬送路の少なくとも一部を挟むように、RI測定装置の放射線出射部と放射線入射部とが設置される。そして、RI測定装置により、搬送筒部内の搬送路で搬送される地盤材料に放射線が透過され、表面水率に関する物理量が即時的に連続的に測定される。このとき、地盤材料の搬送流量を大きくすべく搬送路が太く設計されている場合にも、放射線出射部と放射線入射部との直線距離はRI測定装置の有効測定最大距離未満となるように設置されているので、搬送筒部内で搬送される地盤材料の物理量の測定が有効に行われる。また、このシステム及び方法では、搬送筒部の外壁面は、互いに直交する方向に延在する第1の壁面及び第2の壁面を有しており、放射線出射部は、第1の壁面に取り付けられ、放射線入射部は、第2の壁面に取り付けられている。このような外壁面の構成や、放射線出射部及び放射線入射部の配置により、放射線出射部と放射線入射部とを近接させやすくなり、RI測定装置による有効な測定がより容易になる。さらに、このシステム及び方法では、搬送筒部の外壁面は、第1の壁面に対向する第3の壁面と、第2の壁面に対向する第4の壁面と、を更に有し、放射線出射部は、第4の壁面よりも第2の壁面に近い位置に取り付けられている。この構成により、放射線出射部と放射線入射部とを更に近接させることができる。 According to this system and method, the ground material is transported along the transport path defined by the transport cylinder. A radiation emitting part and a radiation incident part of the RI measurement apparatus are installed on the outer wall surface of the transport cylinder part so as to sandwich at least a part of the transport path. Then, radiation is transmitted through the ground material transported by the transport path in the transport cylinder portion by the RI measuring device, and a physical quantity related to the surface water ratio is immediately and continuously measured. At this time, even when the transport path is designed to be thick so as to increase the transport flow of the ground material, the linear distance between the radiation emitting part and the radiation incident part is set to be less than the maximum effective measurement distance of the RI measuring device. Therefore, the measurement of the physical quantity of the ground material conveyed in the conveyance cylinder part is performed effectively. Further, in this system and method, the outer wall surface of the transfer cylinder portion has a first wall surface and a second wall surface extending in directions orthogonal to each other, and the radiation emitting portion is attached to the first wall surface. The radiation incident part is attached to the second wall surface. Such a configuration of the outer wall surface and the arrangement of the radiation emitting part and the radiation incident part make it easy to bring the radiation emitting part and the radiation incident part close to each other, and effective measurement by the RI measurement apparatus becomes easier. Further, in this system and method, the outer wall surface of the transport cylinder portion further includes a third wall surface facing the first wall surface and a fourth wall surface facing the second wall surface, and the radiation emitting portion Is attached at a position closer to the second wall surface than the fourth wall surface. With this configuration, the radiation emitting unit and the radiation incident unit can be brought closer to each other.

本発明の表面水率測定システムは、地盤材料の表面水率を連続的に測定する表面水率測定システムにおいて、地盤材料が搬送される搬送路を画成する筒状の搬送筒部と、放射線を出射する放射線出射部と、放射線出射部からの放射線を入射させる放射線入射部と、を有し、搬送筒部内を搬送される地盤材料に放射線を透過させて地盤材料の表面水率に関連する物理量を連続的に測定するRI測定装置と、を備え、放射線出射部及び放射線入射部は、互いの間に搬送路の少なくとも一部を挟んで、互いの間の直線距離が、RI測定装置による物理量の有効な測定を可能とする範囲の最大距離として定義される有効測定最大距離以下となるように、搬送筒部の外壁面に設置され、搬送筒部の外壁面は、互いに直交する方向に延在する第1の壁面及び第2の壁面を有しており、放射線出射部は、第1の壁面に取り付けられ、放射線入射部は、第2の壁面に取り付けられており、搬送筒部の外壁面は、第1の壁面に対向する第3の壁面と、第2の壁面に対向する第4の壁面と、を更に有し、放射線入射部は、第3の壁面よりも第1の壁面に近い位置に取り付けられており、搬送筒部は、上下両端に開口を有する筒状体の一部であり、筒状体の下部において断面積が絞られた部分であることを特徴とする。 The surface water rate measuring system of the present invention is a surface water rate measuring system that continuously measures the surface water rate of the ground material, and includes a cylindrical transfer cylinder part that defines a transfer path through which the ground material is transferred, and radiation. A radiation emitting part that emits radiation, and a radiation incident part that makes the radiation from the radiation emitting part enter , and the radiation is transmitted through the ground material transported in the transporting cylinder part and related to the surface water ratio of the ground material An RI measuring device that continuously measures a physical quantity, and the radiation emitting unit and the radiation incident unit sandwich at least a part of the transport path between each other, and the linear distance between them is determined by the RI measuring device. as the effective maximum measuring distance below is defined as the maximum distance in the range that allows an effective measurement of the physical quantity is installed on the outer wall surface of the conveyance tubular portion, the outer wall surface of the conveyance tubular portion in a direction orthogonal to each other First wall surface extending and It has a second wall surface, the radiation emitting portion is attached to the first wall surface, the radiation incident portion is attached to the second wall surface, and the outer wall surface of the transfer cylinder portion is the first wall surface. And a fourth wall surface facing the second wall surface, and the radiation incident portion is attached to a position closer to the first wall surface than the third wall surface. The transport cylinder part is a part of a cylindrical body having openings at both upper and lower ends, and is a part having a reduced cross-sectional area at the lower part of the cylindrical body .

また、本発明の表面水率測定方法は、地盤材料の表面水率を連続的に測定する表面水率測定方法において、筒状の搬送筒部で画成される搬送路で地盤材料を搬送させる搬送ステップと、放射線を出射する放射線出射部と、放射線出射部からの放射線を入射させる放射線入射部と、を有するRI測定装置で、搬送筒部内の搬送中の地盤材料に放射線を透過させて地盤材料の表面水率に関連する物理量を連続的に測定するRI測定ステップと、を備え、RI測定ステップでは、放射線出射部及び放射線入射部を、互いの間に搬送路の少なくとも一部を挟んで、互いの間の直線距離が、RI測定装置による物理量の有効な測定を可能とする範囲の最大距離として定義される有効測定最大距離以下となるように、搬送筒部の外壁面に設置し、搬送筒部の外壁面は、互いに直交する方向に延在する第1の壁面及び第2の壁面を有しており、放射線出射部は、第1の壁面に取り付けられ、放射線入射部は、第2の壁面に取り付けられており、搬送筒部の外壁面は、第1の壁面に対向する第3の壁面と、第2の壁面に対向する第4の壁面と、を更に有し、放射線入射部は、第3の壁面よりも第1の壁面に近い位置に取り付けられており、搬送筒部は、上下両端に開口を有する筒状体の一部であり、筒状体の下部において断面積が絞られた部分であることを特徴とする。 Further, the surface water ratio measuring method of the present invention is a surface water ratio measuring method for continuously measuring the surface water ratio of the ground material, wherein the ground material is transported by a transport path defined by a cylindrical transport cylinder portion. An RI measuring device having a transport step, a radiation emitting section for emitting radiation, and a radiation incident section for making radiation from the radiation emitting section incident, and transmitting the radiation to the ground material being transported in the transport cylinder section An RI measurement step for continuously measuring a physical quantity related to the surface water content of the material, and in the RI measurement step, the radiation emitting part and the radiation incident part are sandwiched between each other with at least a part of the transport path. The linear distance between them is set on the outer wall surface of the transport cylinder so that the effective distance of the physical quantity measured by the RI measuring apparatus is not more than the maximum effective measurement distance defined as the maximum distance, Transport cylinder The outer wall surface has a first wall surface and a second wall surface extending in directions orthogonal to each other, the radiation emitting portion is attached to the first wall surface, and the radiation incident portion is attached to the second wall surface. The outer wall surface of the transfer cylinder portion further includes a third wall surface facing the first wall surface and a fourth wall surface facing the second wall surface, and the radiation incident portion is 3 is attached to a position closer to the first wall surface than the wall surface 3, and the transport cylinder part is a part of a cylindrical body having openings at both upper and lower ends, and the cross-sectional area is reduced at the lower part of the cylindrical body It is a part .

このシステム及び方法によれば、搬送筒部で画成された搬送路を地盤材料が搬送される。この搬送筒部の外壁面には、搬送路の少なくとも一部を挟むように、RI測定装置の放射線出射部と放射線入射部とが設置される。そして、RI測定装置により、搬送筒部内の搬送路で搬送される地盤材料に放射線が透過され、表面水率に関する物理量が即時的に連続的に測定される。このとき、地盤材料の搬送流量を大きくすべく搬送路が太く設計されている場合にも、放射線出射部と放射線入射部との直線距離はRI測定装置の有効測定最大距離未満となるように設置されているので、搬送筒部内で搬送される地盤材料の物理量の測定が有効に行われる。また、このシステム及び方法では、搬送筒部の外壁面は、互いに直交する方向に延在する第1の壁面及び第2の壁面を有しており、放射線出射部は、第1の壁面に取り付けられ、放射線入射部は、第2の壁面に取り付けられている。このような外壁面の構成や、放射線出射部及び放射線入射部の配置により、放射線出射部と放射線入射部とを近接させやすくなり、RI測定装置による有効な測定がより容易になる。さらに、このシステム及び方法では、搬送筒部の外壁面は、第1の壁面に対向する第3の壁面と、第2の壁面に対向する第4の壁面と、を更に有し、放射線入射部は、第3の壁面よりも第1の壁面に近い位置に取り付けられている。この構成により、放射線出射部と放射線入射部とを更に近接させることができる。 According to this system and method, the ground material is transported along the transport path defined by the transport cylinder. A radiation emitting part and a radiation incident part of the RI measurement apparatus are installed on the outer wall surface of the transport cylinder part so as to sandwich at least a part of the transport path. Then, radiation is transmitted through the ground material transported by the transport path in the transport cylinder portion by the RI measuring device, and a physical quantity related to the surface water ratio is immediately and continuously measured. At this time, even when the transport path is designed to be thick so as to increase the transport flow of the ground material, the linear distance between the radiation emitting part and the radiation incident part is set to be less than the maximum effective measurement distance of the RI measuring device. Therefore, the measurement of the physical quantity of the ground material conveyed in the conveyance cylinder part is performed effectively. Further, in this system and method, the outer wall surface of the transfer cylinder portion has a first wall surface and a second wall surface extending in directions orthogonal to each other, and the radiation emitting portion is attached to the first wall surface. The radiation incident part is attached to the second wall surface. Such a configuration of the outer wall surface and the arrangement of the radiation emitting part and the radiation incident part make it easy to bring the radiation emitting part and the radiation incident part close to each other, and effective measurement by the RI measurement apparatus becomes easier. Further, in this system and method, the outer wall surface of the transfer cylinder portion further includes a third wall surface facing the first wall surface, and a fourth wall surface facing the second wall surface, and the radiation incident portion Is attached at a position closer to the first wall surface than the third wall surface. With this configuration, the radiation emitting unit and the radiation incident unit can be brought closer to each other.

また、本発明の表面水率測定システムでは、搬送路に直交する面内における搬送筒部の最小幅が、RI測定装置の有効測定最大距離よりも大きいこととしてもよい。この場合、RI測定装置の放射線出射部及び放射線入射部を、対面させて搬送筒部の外壁面に設置するとすれば、放射線出射部と放射線入射部との直線距離は、RI測定装置の有効測定最大距離よりも大きくならざるを得ない。本発明は、搬送筒部がこのような構成をもつ場合に、特に、好適に適用でき、放射線出射部と放射線入射部との直線距離を、RI測定装置の有効測定最大距離以下にすることができる。   In the surface water ratio measurement system according to the present invention, the minimum width of the transfer cylinder portion in the plane orthogonal to the transfer path may be larger than the effective measurement maximum distance of the RI measurement apparatus. In this case, if the radiation emitting part and the radiation incident part of the RI measuring device are arranged to face each other on the outer wall surface of the transport cylinder part, the linear distance between the radiation emitting part and the radiation incident part is an effective measurement of the RI measuring apparatus. It must be larger than the maximum distance. The present invention can be suitably applied particularly when the transport cylinder portion has such a configuration, and the linear distance between the radiation emitting portion and the radiation incident portion can be made equal to or less than the effective measurement maximum distance of the RI measurement apparatus. it can.

また、本発明の表面水率測定システムは、上記RI測定装置を複数備えており、RI測定装置のうちの1つは、地盤材料が含有する水分量を測定するRI水分計であり、RI測定装置の他のうちの1つは、地盤材料の密度を測定するRI密度計であることとしてもよい。   Further, the surface water content measurement system of the present invention includes a plurality of the RI measurement devices, and one of the RI measurement devices is an RI moisture meter that measures the amount of water contained in the ground material, and the RI measurement. One of the other devices may be an RI density meter that measures the density of the ground material.

また、この場合、本発明の表面水率測定システムは、RI水分計で測定された地盤材料が含有する水分量の値と、RI密度計で測定された地盤材料の密度の値と、に基づいて、地盤材料の表面水率を算出する表面水率算出手段を更に備えてもよい。   In this case, the surface water content measurement system of the present invention is based on the value of the moisture content contained in the ground material measured by the RI moisture meter and the value of the density of the ground material measured by the RI density meter. In addition, surface water ratio calculating means for calculating the surface water ratio of the ground material may be further provided.

また、本発明の表面水率測定システムにおいて、上記の地盤材料は、CSG材であってもよい。   In the surface water content measurement system of the present invention, the ground material may be a CSG material.

本発明の表面水率測定システム及び表面水率測定方法によれば、即時的かつ連続的に地盤材料の表面水率を得ることが可能になる。   According to the surface water content measurement system and the surface water content measurement method of the present invention, it is possible to obtain the surface water content of the ground material immediately and continuously.

以下、図面を参照しつつ本発明に係る表面水率測定システム及び表面水率測定方法の好適な一実施形態について詳細に説明する。   Hereinafter, a preferred embodiment of a surface water ratio measurement system and a surface water ratio measurement method according to the present invention will be described in detail with reference to the drawings.

図1に示すCSG製造設備10は、台形CSGダムの建設現場周辺で採取される地盤材料としてのCSG材に、セメントと水とを混合し、台形CSGダムの材料として用いられるCSG(Cemented Sand and Gravel)を製造するための設備である。ここで、CSG材とは、河床砂礫等の岩石質の母材で、分級等の調整を行っていないため大小様々な粒径の礫が混在したものである。このようなCSG材は、台形CSGダムの建設現場周辺で容易に採取可能であるため、骨材として利用することで建設コスト削減に寄与する。なお、CSG製造設備10に導入されるCSG材は、予め、オーバーサイズの礫を除去・破砕するといった処理が施されており、CSG材の最大粒径は約80mmとされている。   A CSG manufacturing facility 10 shown in FIG. 1 is a CSG (Cemented Sand and CSG) used as a material of a trapezoidal CSG dam by mixing cement and water with a CSG material as a ground material collected around the construction site of the trapezoidal CSG dam. Equipment for manufacturing Gravel). Here, the CSG material is a rocky base material such as riverbed gravel, and is not adjusted for classification and the like, and is mixed with gravels of various sizes. Such a CSG material can be easily collected around the construction site of the trapezoidal CSG dam, and therefore contributes to a reduction in construction cost by using it as an aggregate. Note that the CSG material introduced into the CSG manufacturing facility 10 has been previously subjected to a process of removing and crushing oversized gravel, and the maximum particle size of the CSG material is about 80 mm.

このCSG製造設備10は、CSG材を導入するベルトコンベア3と、CSG材が投入されるホッパ5と、ホッパ5を通過したCSG材を搬送するベルトコンベア7と、混合装置9とを備えている。更に、CSG製造設備10は、ベルトコンベア7で搬送されるCSG材に、セメントを添加するセメント添加部13と、水を添加する給水部15とを備えている。上記ベルトコンベア3、ホッパ5、ベルトコンベア7、及び混合装置9は、この順にCSG材を搬送する搬送路Aを構成している。CSG製造設備10に導入されたCSG材は、この搬送路Aを搬送されながら、ベルトコンベア7においてセメント及び水が添加され、混合装置9で混合されて、CSGに加工される。   The CSG manufacturing facility 10 includes a belt conveyor 3 for introducing a CSG material, a hopper 5 into which the CSG material is charged, a belt conveyor 7 for conveying the CSG material that has passed through the hopper 5, and a mixing device 9. . Furthermore, the CSG manufacturing facility 10 includes a cement addition unit 13 for adding cement to the CSG material conveyed by the belt conveyor 7 and a water supply unit 15 for adding water. The belt conveyor 3, the hopper 5, the belt conveyor 7, and the mixing device 9 constitute a conveyance path A that conveys the CSG material in this order. While the CSG material introduced into the CSG manufacturing facility 10 is transported along the transport path A, cement and water are added in the belt conveyor 7, mixed by the mixing device 9, and processed into CSG.

このCSG製造設備10で製造されるCSGの強度を管理するためには、給水部15からの給水量を適切に制御することが必要である。そして、給水量の制御には、CSG材の表面水率の情報が必要であるので、CSG材の表面水率を即時的に連続的に得ることが必要となる。そこで、このCSG製造設備10は、給水部15よりも上流側において、搬送路Aを搬送されるCSG材の表面水率を得る表面水率測定システム1を備えている。   In order to manage the strength of the CSG produced by the CSG production facility 10, it is necessary to appropriately control the amount of water supplied from the water supply unit 15. And since control of the amount of water supply requires information on the surface water ratio of the CSG material, it is necessary to immediately and continuously obtain the surface water ratio of the CSG material. Therefore, the CSG manufacturing facility 10 includes the surface water ratio measurement system 1 that obtains the surface water ratio of the CSG material conveyed through the conveyance path A on the upstream side of the water supply unit 15.

表面水率測定システム1は、ホッパ5に設置されたRI水分計(RI測定装置)21及びRI密度計(RI測定装置)23と、RI水分計21及びRI密度計23から得られる情報に基づいてCSG材の表面水率を求める表面水率算出部(表面水率算出手段)25とを備えている。また、CSG製造設備10は、上記表面水率算出部25を含み、得られた上記表面水率に基づいて給水部15の給水量を制御する制御情報管理部17を有している。制御情報管理部17としては、例えば、パーソナルコンピュータ等が用いられてもよい。なお、制御情報管理部17は、セメント添加部13を制御し、CSG材に添加するセメント量を調整する機能も有している。   The surface water content measurement system 1 is based on information obtained from an RI moisture meter (RI measurement device) 21 and an RI density meter (RI measurement device) 23, and an RI moisture meter 21 and an RI density meter 23 installed in the hopper 5. And a surface water ratio calculating unit (surface water ratio calculating means) 25 for determining the surface water ratio of the CSG material. Further, the CSG manufacturing facility 10 includes the surface water rate calculation unit 25 and has a control information management unit 17 that controls the amount of water supplied from the water supply unit 15 based on the obtained surface water rate. For example, a personal computer or the like may be used as the control information management unit 17. The control information management unit 17 also has a function of controlling the cement addition unit 13 and adjusting the amount of cement added to the CSG material.

以下、図2〜図4を参照し、RI水分計21、RI密度計23、及びホッパ5について詳細に説明する。図に示すように、ホッパ5は、ベルトコンベア3からのCSG材100を受ける立方体形状のホッパ本体部31を備えている。そして、ホッパ本体部31の下方には、断面積が絞られた排出筒部33が設けられている。ベルトコンベア3の下流端から落下したCSG材100は、ホッパ本体部31の上部の開口からホッパ本体部31内に投入され、ホッパ本体部31内で下方に搬送され、更に排出筒部33を通じて鉛直下方に搬送され、下部の開口からベルトコンベア7(図1)に排出される(搬送ステップ)。   Hereinafter, the RI moisture meter 21, the RI density meter 23, and the hopper 5 will be described in detail with reference to FIGS. As shown in the figure, the hopper 5 includes a cubic hopper body 31 that receives the CSG material 100 from the belt conveyor 3. A discharge cylinder 33 having a reduced cross-sectional area is provided below the hopper body 31. The CSG material 100 dropped from the downstream end of the belt conveyor 3 is introduced into the hopper body 31 from the upper opening of the hopper body 31, is transported downward in the hopper body 31, and further vertically through the discharge cylinder 33. It is conveyed downward and discharged from the lower opening to the belt conveyor 7 (FIG. 1) (conveying step).

排出筒部33は、正方形断面の筒状をなす部分であり、搬送路A(図1)の一部である搬送路A1を画成する搬送筒部を構成している。この排出筒部33の断面積は、搬送路AにおけるCSG材100の必要流量が十分確保できるような面積に設定されており、排出筒部33の水平断面は、例えばここでは、一辺70cmの正方形とされている。この排出筒部33は、鉛直面をなす4つの外壁面331,332,333,334を有している。このうち、外壁面332はベルトコンベア3の搬送方向の前方側に位置している。また、外壁面334は、外壁面332に平行に対向し上記搬送方向の後方側に位置している。   The discharge cylinder part 33 is a part having a square cross-section, and constitutes a conveyance cylinder part that defines a conveyance path A1 that is a part of the conveyance path A (FIG. 1). The cross-sectional area of the discharge cylinder portion 33 is set to an area that can sufficiently secure the necessary flow rate of the CSG material 100 in the conveyance path A. The horizontal cross section of the discharge cylinder portion 33 is, for example, a square having a side of 70 cm here. It is said that. The discharge cylinder portion 33 has four outer wall surfaces 331, 332, 333, and 334 that form a vertical surface. Among these, the outer wall surface 332 is located on the front side in the transport direction of the belt conveyor 3. Further, the outer wall surface 334 faces the outer wall surface 332 in parallel and is located on the rear side in the transport direction.

更に、外壁面331及び外壁面333は、上記外壁面332,334に直交する外壁面であり、互いに平行に対向している。なお、排出筒部33においては、上記各外壁面331〜334同士が交差する辺として、4つの稜線が形成されるが、以下の説明において、外壁面331と外壁面332との間の稜線を稜線E1、外壁面332と外壁面333との間の稜線を稜線E2、外壁面333と外壁面334との間の稜線を稜線E3、外壁面334と外壁面331との間の稜線を稜線E4、と称する。   Further, the outer wall surface 331 and the outer wall surface 333 are outer wall surfaces orthogonal to the outer wall surfaces 332 and 334 and face each other in parallel. In the discharge cylinder portion 33, four ridge lines are formed as sides where the outer wall surfaces 331 to 334 intersect with each other. In the following description, a ridge line between the outer wall surface 331 and the outer wall surface 332 is used. Edge line E1, edge line between outer wall surface 332 and outer wall surface 333 is edge line E2, edge line between outer wall surface 333 and outer wall surface 334 is edge line E3, and edge line between outer wall surface 334 and outer wall surface 331 is edge line E4 .

RI水分計21は、対象物に中性子線を透過させて対象物に含有される水分量を測定する装置である。RI水分計21は、中性子線を出射する出射ユニット21aと、対象物透過後の出射ユニット21aからの中性子線を入射させ検出する入射ユニット21bと、入射ユニット21bで検出された中性子線を分析して対象物の含水量を得る制御部(図示せず)と、を備えている。RI密度計23は、対象物にガンマ線を透過させて対象物の密度を測定する装置である。RI密度計23は、ガンマ線を出射する出射ユニット23aと、対象物透過後の出射ユニット23aからのガンマ線を入射させ検出する入射ユニット23bと、入射ユニット23bで検出されたガンマ線を分析して対象物の密度を得る制御部(図示せず)と、を備えている。なお、上記したRI水分計21の制御部及びRI密度計23の制御部は、制御情報管理部17に含まれてもよい。   The RI moisture meter 21 is a device that measures the amount of moisture contained in an object by transmitting the neutron beam through the object. The RI moisture meter 21 analyzes an emission unit 21a that emits a neutron beam, an incident unit 21b that receives and detects a neutron beam from the emission unit 21a that has passed through the object, and a neutron beam detected by the incidence unit 21b. And a control unit (not shown) for obtaining the water content of the object. The RI density meter 23 is a device that measures the density of an object by transmitting gamma rays through the object. The RI density meter 23 analyzes the gamma ray detected by the incident unit 23b, the incident unit 23b that emits and detects the gamma ray from the emission unit 23a that has passed through the object, and the gamma ray detected by the incident unit 23b. And a control unit (not shown) for obtaining the density of. The control unit of the RI moisture meter 21 and the control unit of the RI density meter 23 described above may be included in the control information management unit 17.

このようなRI水分計21及びRI密度計23にあっては、出射ユニット21a(23a)と入射ユニット21b(23b)との間の直線距離が大きくなるほど、正確な測定値が得難くなる。従って、この種のRI水分計21及びRI密度計23では、満足な測定精度が得られる有効な測定を可能とするための、出射ユニット21a(23a)と入射ユニット21b(23b)との最大の距離が設定される。あるいは、このような最大距離が、機器の仕様として設定されている場合もある。この距離を、以下の説明では「有効測定最大距離」と称する。RI水分計、RI密度計における有効測定最大距離は、一般には、35cm程度である。ここでは、RI水分計21及びRI密度計23の有効測定最大距離が、共に35cmと設定されている場合を例として説明する。   In such RI moisture meter 21 and RI density meter 23, it becomes more difficult to obtain an accurate measurement value as the linear distance between the emission unit 21a (23a) and the incident unit 21b (23b) increases. Therefore, in this type of RI moisture meter 21 and RI density meter 23, the maximum of the emission unit 21a (23a) and the incidence unit 21b (23b) for enabling effective measurement with satisfactory measurement accuracy. The distance is set. Alternatively, such a maximum distance may be set as a specification of the device. This distance is referred to as “effective measurement maximum distance” in the following description. The maximum effective measurement distance in the RI moisture meter and RI density meter is generally about 35 cm. Here, the case where the effective measurement maximum distances of the RI moisture meter 21 and the RI density meter 23 are both set to 35 cm will be described as an example.

ここで、前述のように排出筒部33の水平断面は一辺70cmの正方形であることから、排出筒部33の水平断面内での最小幅は70cmであり、上記有効測定最大距離35cmよりも大きい。従って、出射ユニット21aと出射ユニット21aとを対面させる向きで排出筒部33の外壁面に設置しようとすれば、出射ユニット21aと出射ユニット21aとの直線距離が有効測定最大距離の35cmを超えてしまう。その結果、RI水分計21によるCSG材の含水量測定は不可能となってしまう。また、同様に、RI密度計23によるCSG材の密度測定も不可能となってしまう。一方、排出筒部33の寸法を小さくしようとすれば、CSG製造装置10におけるCSG材の必要流量が確保できなくなるおそれがある。   Here, since the horizontal cross section of the discharge cylinder part 33 is a square having a side of 70 cm as described above, the minimum width in the horizontal cross section of the discharge cylinder part 33 is 70 cm, which is larger than the effective measurement maximum distance 35 cm. . Accordingly, if the emission unit 21a and the emission unit 21a are arranged on the outer wall surface of the discharge cylinder 33 so as to face each other, the linear distance between the emission unit 21a and the emission unit 21a exceeds the effective measurement maximum distance of 35 cm. End up. As a result, it becomes impossible to measure the water content of the CSG material with the RI moisture meter 21. Similarly, it is impossible to measure the density of the CSG material by the RI density meter 23. On the other hand, if the size of the discharge cylinder portion 33 is to be reduced, the required flow rate of the CSG material in the CSG manufacturing apparatus 10 may not be ensured.

そこで、この表面水率測定システム1では、上記RI水分計21の出射ユニット21aが、排出筒部33の外壁面331(第1の壁面)に取り付けられており、排出筒部33の内側に向けて(すなわち、搬送路A1に向けて)中性子線を出射することができる。そして、外壁面331に隣接する外壁面332(第2の壁面)には、上記中性子線を入射させるための入射ユニット21bが取り付けられている。また、出射ユニット21aの設置位置は外壁面334(第4の壁面)よりも外壁面332(第2の壁面)に近い位置であり、入射ユニット21bの設置位置は外壁面333(第3の壁面)よりも外壁面331(第1の壁面)に近い位置である。また、出射ユニット21aと入射ユニット21bとは、稜線E1から同じ距離だけ離れて設置され、同じ高さに位置している。   Therefore, in this surface water content measurement system 1, the emission unit 21 a of the RI moisture meter 21 is attached to the outer wall surface 331 (first wall surface) of the discharge tube portion 33, and faces the inside of the discharge tube portion 33. (I.e., toward the transport path A1). An incident unit 21b for making the neutron beam incident is attached to an outer wall surface 332 (second wall surface) adjacent to the outer wall surface 331. The installation position of the emission unit 21a is closer to the outer wall surface 332 (second wall surface) than the outer wall surface 334 (fourth wall surface), and the installation position of the incident unit 21b is set to the outer wall surface 333 (third wall surface). ) Is closer to the outer wall surface 331 (first wall surface). Further, the exit unit 21a and the entrance unit 21b are installed at the same distance from the ridgeline E1 and are located at the same height.

このような配置により、出射ユニット21aと入射ユニット21bとが稜線E1を挟んで直近に位置することになるので、出射ユニット21aと入射ユニット21bとの直線距離を小さくすることができる。この配置によれば、排出筒部33の水平断面内における最小幅がRI水分計21の有効測定最大距離35cmよりも大きい場合であっても、出射ユニット21aと入射ユニット21bとの直線距離を有効測定最大距離35cm以下にすることが可能になる。例えば、図に示した例では、出射ユニット21aと入射ユニット21bとの直線距離は、幾何学的な関係から、20〜30cm程度にすることが可能である。   With such an arrangement, the output unit 21a and the incident unit 21b are positioned closest to each other with the ridge line E1 interposed therebetween, so that the linear distance between the output unit 21a and the incident unit 21b can be reduced. According to this arrangement, even if the minimum width in the horizontal cross section of the discharge cylinder portion 33 is larger than the effective measurement maximum distance 35 cm of the RI moisture meter 21, the linear distance between the emission unit 21a and the incident unit 21b is effective. The maximum measurement distance can be 35 cm or less. For example, in the example shown in the figure, the linear distance between the emission unit 21a and the incidence unit 21b can be set to about 20 to 30 cm due to a geometric relationship.

この構成に基づき、出射ユニット21aが排出筒部33の内側に向けて中性子線を出射すると、中性子線は、稜線E1の近辺にあるCSG材100を透過して、入射ユニット21bに入射する。そして、RI水分計21の制御部では、入射ユニット21bで検出された中性子線に基づいて所定の演算が行われ、CSG材100の単位重量当たりの含水量が得られる(RI測定ステップ)。なお、この含水量の演算に用いる各パラメータは、事前の校正試験により決定され上記制御部に組み込まれている。ここで得られた含水量の値は、制御情報管理部17の表面水率算出部25(図1)に入力される。   Based on this configuration, when the emission unit 21a emits a neutron beam toward the inside of the discharge tube portion 33, the neutron beam passes through the CSG material 100 in the vicinity of the ridgeline E1 and enters the incident unit 21b. And in the control part of RI moisture meter 21, a predetermined calculation is performed based on the neutron beam detected by incident unit 21b, and the moisture content per unit weight of CSG material 100 is obtained (RI measurement step). Each parameter used for the calculation of the water content is determined by a prior calibration test and incorporated in the control unit. The value of the water content obtained here is input to the surface water ratio calculation unit 25 (FIG. 1) of the control information management unit 17.

以上のように、出射ユニット21aと入射ユニット21bとの直線距離を有効測定最大距離35cm以下にすることにより、RI水分計21を用いて、出射ユニット21aと入射ユニット21bとの間にある搬送路A1内のCSG材の含水量を測定することができる。また、RI水分計を採用したことにより、即時的に測定値を得ることができ、搬送路A1内の搬送中のCSG材の含水量を連続的に得ることができる。   As described above, by setting the linear distance between the emission unit 21a and the incident unit 21b to be an effective measurement maximum distance of 35 cm or less, the RI moisture meter 21 is used to convey the conveyance path between the emission unit 21a and the incident unit 21b. The water content of the CSG material in A1 can be measured. Further, by adopting the RI moisture meter, it is possible to obtain a measured value instantly and to continuously obtain the moisture content of the CSG material being conveyed in the conveyance path A1.

また、同様に、上記RI密度計23の出射ユニット23aは、排出筒部33の外壁面334に取り付けられ、排出筒部33の内側に向けて(すなわち、搬送路A1に向けて)ガンマ線を出射することができる。また、入射ユニット23bは、外壁面333に取り付けられる。そして、出射ユニット23aは、外壁面331よりも外壁面333に近い位置に取り付けられ、入射ユニット23bは、外壁面332よりも外壁面334に近い位置に取り付けられている。また、出射ユニット23aと入射ユニット23bとは、稜線E3から同じ距離だけ離れて設置され、同じ高さに位置している。   Similarly, the emission unit 23a of the RI density meter 23 is attached to the outer wall surface 334 of the discharge cylinder portion 33, and emits gamma rays toward the inside of the discharge cylinder portion 33 (that is, toward the conveyance path A1). can do. Further, the incident unit 23 b is attached to the outer wall surface 333. The emission unit 23 a is attached to a position closer to the outer wall surface 333 than the outer wall surface 331, and the incident unit 23 b is attached to a position closer to the outer wall surface 334 than the outer wall surface 332. In addition, the exit unit 23a and the entrance unit 23b are installed at the same distance from the ridgeline E3 and located at the same height.

このような配置により、出射ユニット23aと入射ユニット23bとが稜線E3を挟んで直近に位置することになるので、出射ユニット23aと入射ユニット23bとの直線距離を小さくすることができる。このような配置によれば、排出筒部33の水平断面内における最小幅がRI密度計23の有効測定最大距離35cmよりも大きい場合であっても、出射ユニット23aと入射ユニット23bとの直線距離を有効測定最大距離35cm以下にすることが可能になる。   With such an arrangement, the output unit 23a and the incident unit 23b are positioned closest to each other with the ridge line E3 interposed therebetween, so that the linear distance between the output unit 23a and the incident unit 23b can be reduced. According to such an arrangement, even if the minimum width in the horizontal cross section of the discharge cylinder portion 33 is larger than the effective measurement maximum distance 35 cm of the RI density meter 23, the linear distance between the exit unit 23a and the entrance unit 23b. Can be set to an effective measurement maximum distance of 35 cm or less.

この構成に基づき、出射ユニット23aが排出筒部33の内側に向けてガンマ線を出射すると、ガンマ線は、稜線E3の近辺にあるCSG材100を透過して、入射ユニット23bに入射する。そして、RI密度計23の制御部では、入射ユニット23bで検出されたガンマ線に基づいて所定の演算が行われ、CSG材100の密度が得られる(RI測定ステップ)。なお、この密度の演算に用いる各パラメータは、事前の校正試験により決定され上記制御部に組み込まれている。ここで得られた密度の値は、制御情報管理部17の表面水率算出部25(図1)に入力される。   Based on this configuration, when the emission unit 23a emits gamma rays toward the inside of the discharge cylinder portion 33, the gamma rays pass through the CSG material 100 in the vicinity of the ridge line E3 and enter the incident unit 23b. Then, the controller of the RI density meter 23 performs a predetermined calculation based on the gamma rays detected by the incident unit 23b to obtain the density of the CSG material 100 (RI measurement step). Each parameter used for the density calculation is determined by a prior calibration test and incorporated in the control unit. The density value obtained here is input to the surface water ratio calculation unit 25 (FIG. 1) of the control information management unit 17.

以上のように、前述のRI水分計21と同様に、出射ユニット23aと入射ユニット23bとの直線距離を有効測定最大距離以下にすることにより、RI密度計23を用いて、出射ユニット23aと入射ユニット23bとの間にある搬送路A1内のCSG材の密度を測定することができる。また、RI密度計を採用したことにより、即時的に測定値を得ることができ、搬送路A1内の搬送中のCSG材の密度を連続的に得ることができる。   As described above, similarly to the RI moisture meter 21 described above, by setting the linear distance between the emission unit 23a and the incident unit 23b to be equal to or less than the effective measurement maximum distance, the RI unit 23 is used to enter the incident unit 23a. The density of the CSG material in the transport path A1 between the unit 23b can be measured. Moreover, by adopting the RI density meter, it is possible to obtain a measured value instantly and to obtain continuously the density of the CSG material being conveyed in the conveyance path A1.

前述のとおり、表面水率算出部25には、RI水分計21からの含水量の値(ρmRとする)と、RI密度計からの密度の値(ρtRとする)とが入力される。そして、表面水率算出部25は、下式(1),(2)によりCSG材100の表面水率HRI(%)を算出する。
wRI=ρmR・100/(ρtR−ρmR) …(1)
HRI=(wRI−Q)/(1+Q/100) …(2)
ここで、wRIはCSG材100の含水比(%)を表している。また、QはCSG材100の吸水率(%)を表しており、Qの値は、制御情報管理部17に別途入力される。
As described above, the surface water content calculation unit 25 receives the moisture content value (referred to as ρmR) from the RI moisture meter 21 and the density value (referred to as ρtR) from the RI density meter. And the surface water rate calculation part 25 calculates the surface water rate HRI (%) of the CSG material 100 by the following formulas (1) and (2).
wRI = ρmR · 100 / (ρtR−ρmR) (1)
HRI = (wRI−Q) / (1 + Q / 100) (2)
Here, wRI represents the water content ratio (%) of the CSG material 100. Q represents the water absorption rate (%) of the CSG material 100, and the value of Q is separately input to the control information management unit 17.

制御情報管理部17は、表面水率算出部25が算出した表面水率が急変した等の場合には、給水量を補正するように給水部15を制御する。例えば、表面水率HRIが急激に増加した場合には給水量を減少させ、表面水率HRIが急激に減少した場合には給水量を増加させるように給水部15を制御する。このような給水量の制御により、CSG材の表面水率の変動に関わらず、台形CSGダムの材料であるCSGの強度を一定に管理することができる。   The control information management unit 17 controls the water supply unit 15 to correct the water supply amount when the surface water rate calculated by the surface water rate calculation unit 25 changes suddenly. For example, the water supply unit 15 is controlled so as to decrease the water supply amount when the surface water rate HRI rapidly increases and to increase the water supply amount when the surface water rate HRI decreases rapidly. By controlling the amount of water supplied in this way, the strength of the CSG, which is the material of the trapezoidal CSG dam, can be managed uniformly regardless of the fluctuation of the surface water ratio of the CSG material.

また、フライパン法や電子レンジ法でCSG材の表面水率を測定する場合には、CSG材のサンプリング方法によって結果が偏る場合があるところ、上述した表面水率測定システム1及び表面水率測定方法によれば、サンプリングが不要であるので、このような問題が発生しない点で優れている。また、表面水率測定システム1及び表面水率測定方法では、フライパン法や電子レンジ法に比べて、CSG材を直接パーソナルコンピュータ等に入力することができ、給水部15の自動制御を図ることもできるので、CSGの品質管理の省力化が可能である。また、また、表面水率測定システム1及び表面水率測定方法は、ホッパ3の外壁面に出射ユニット21a,23aと入射ユニット21b,23bを取付けることで、複雑な改造等を必要とすることなく、既存のホッパ3を利用することができる。   Moreover, when measuring the surface water rate of the CSG material by a frying pan method or a microwave oven method, the result may be biased depending on the sampling method of the CSG material. The surface water rate measuring system 1 and the surface water rate measuring method described above. According to the method, sampling is unnecessary, which is excellent in that such a problem does not occur. Further, in the surface water ratio measurement system 1 and the surface water ratio measurement method, the CSG material can be directly input to a personal computer or the like, compared with the frying pan method or the microwave oven method, and automatic control of the water supply unit 15 can be achieved. This makes it possible to save labor in CSG quality control. In addition, the surface water content measurement system 1 and the surface water content measurement method are not required to be complicatedly modified by attaching the emission units 21a, 23a and the incident units 21b, 23b to the outer wall surface of the hopper 3. The existing hopper 3 can be used.

ところで、上述した表面水率測定システム1及び表面水率測定方法によれば、稜線E1近辺を通過する一部のCSG材100の含水量が測定され、稜線E3近辺を通過する他の一部のCSG材100の密度が測定され、これらの測定値に基づいて表面水率が算出されることになる。ここで、CSG材100の粒度分布がホッパ5内で均質であるとは限らないので、得られた表面水率が、CSG材100全体としての表面水率を正しく表していないことも考えられる。例えば、図2に示すように、CSG材がベルトコンベア3で搬送されホッパ5に投入される場合には、粒径が大きいものほどベルトコンベア3からの落下の際に前方側に投げ出されるので、ホッパ5の外壁面332に近い側に粒径が大きいものが偏ってしまう傾向があると考えられる。   By the way, according to the surface water percentage measurement system 1 and the surface water percentage measurement method described above, the water content of some CSG materials 100 passing near the ridgeline E1 is measured, and some other parts passing near the ridgeline E3. The density of the CSG material 100 is measured, and the surface water percentage is calculated based on these measured values. Here, since the particle size distribution of the CSG material 100 is not necessarily uniform in the hopper 5, it is also conceivable that the obtained surface water ratio does not correctly represent the surface water ratio of the CSG material 100 as a whole. For example, as shown in FIG. 2, when the CSG material is transported by the belt conveyor 3 and put into the hopper 5, the larger the particle size, the more it is thrown forward when dropping from the belt conveyor 3. It is considered that the one having a large particle size tends to be biased toward the side near the outer wall surface 332 of the hopper 5.

そこで、本発明者らは、上述したCSG製造設備10において、表面水率測定システム1及び表面水率測定方法の実効性を評価する実験を行った。この実験では、同じCSG材のサンプルに対して、上述の表面水率測定システム1による表面水率の測定と、JIS A 1203:1999に規定された乾燥法による表面水率の測定と、を行い両測定値を比較した。そして、測定した全データについて、両測定値の相関図を図5に示し、両測定値の偏差のヒストグラムを図6に示した。   Therefore, the present inventors conducted an experiment to evaluate the effectiveness of the surface water ratio measurement system 1 and the surface water ratio measurement method in the CSG manufacturing facility 10 described above. In this experiment, for the same CSG material sample, the surface water ratio is measured by the above-mentioned surface water ratio measuring system 1 and the surface water ratio is measured by the drying method specified in JIS A 1203: 1999. Both measurements were compared. For all the measured data, a correlation diagram of both measured values is shown in FIG. 5, and a histogram of deviations of both measured values is shown in FIG.

図5、図6によれば、大半のデータが、偏差±1.0%の範囲内(図5では破線の間の範囲内)に分布していることが判る。この結果により、表面水率測定システム1及び表面水率測定方法は、実効精度が1.0%以内であり、CSG材の表面水量を測定するにあたり、乾燥法と同様に採用可能であることが確認された。なお、偏差が極端に大きいデータは、特異点として、図5において×印で示し、図6において斜線部として示している。   5 and 6, it can be seen that most of the data is distributed within the range of deviation ± 1.0% (in the range between the broken lines in FIG. 5). As a result, the surface water content measurement system 1 and the surface water content measurement method have an effective accuracy within 1.0%, and can be employed in the same manner as the drying method in measuring the surface water content of the CSG material. confirmed. Note that data having an extremely large deviation are indicated as x in FIG. 5 as singular points and as hatched portions in FIG.

更に、本発明者らは、上述した表面水率測定システム1から、RI密度計23による密度測定を省略した場合についても、同様に、実効性を評価する実験を行った。すなわち、この場合、表面水率算出部25には、RI密度計23の測定値に代えて、固定値を入力した。これは、同じ現場から採取されたCSG材であれば、密度の変動は小さいと考えられるからである。そして、同じCSG材のサンプルに対して、RI密度計23を省略した表面水率測定システム1による表面水率の測定と、乾燥法による表面水率の測定と、を行い両測定値を比較した。そして、測定した全データについて、両測定値の相関図を図7に示し、両測定値の偏差のヒストグラムを図8に示した。   Furthermore, the present inventors similarly conducted an experiment for evaluating the effectiveness even when the density measurement by the RI densitometer 23 was omitted from the surface water ratio measurement system 1 described above. That is, in this case, a fixed value was input to the surface water ratio calculation unit 25 instead of the measurement value of the RI density meter 23. This is because the variation in density is considered to be small if the CSG material is collected from the same site. And the measurement of the surface water rate by the surface water rate measurement system 1 omitting the RI density meter 23 and the measurement of the surface water rate by the drying method were performed on the same CSG material sample, and the measured values were compared. . For all the measured data, a correlation diagram of both measurement values is shown in FIG. 7, and a histogram of deviations of both measurement values is shown in FIG.

図7、図8によれば、大半のデータが、偏差±1.0%の範囲内(図7では破線の間の範囲内)に分布していることが判る。この結果により、RI密度計23による密度測定を省略した場合でも、表面水率測定システム1及び表面水率測定方法の実効精度は、1.0%以内であることが確認された。この結果から、同じ現場から採取されたCSG材を使用する限り、RI密度計23による密度測定を省略しても、表面水率測定システム1及び表面水率測定方法は、同様の実効精度が期待できることが判った。なお、偏差が極端に大きいデータは、特異点として、図7において×印で示し、図8において斜線部として示している。   7 and 8, it can be seen that most of the data is distributed within the range of deviation ± 1.0% (in the range between the broken lines in FIG. 7). From this result, even when the density measurement by the RI densitometer 23 was omitted, it was confirmed that the effective accuracy of the surface water content measurement system 1 and the surface water content measurement method was within 1.0%. From this result, as long as the CSG material collected from the same site is used, even if the density measurement by the RI densitometer 23 is omitted, the surface water rate measurement system 1 and the surface water rate measurement method are expected to have the same effective accuracy. I found that I can do it. Note that data having an extremely large deviation are indicated as cross points in FIG. 7 as singular points and as hatched portions in FIG.

本発明は、前述した実施形態に限定されるものではない。例えば、表面水率測定システム1では、排出筒部33の断面形状を正方形としているが、他の正多角形、円形などの他の断面形状としてもよい。例えば、排出筒部33に代えて、図9に示す円形断面の排出筒部35を採用した場合を考えると、出射ユニット21a(23a)の取付け面に接する平面35aと、入射ユニット21b(23b)の取付け面に接する平面35bとが交差する角度αが、30°以上になるように、両ユニットの取付け位置を設定することが好ましい。このような取付け位置であれば、幾何学的な条件から、出射ユニット21a(23a)と入射ユニット21b(23b)との間の直線距離を35cmとしたときに、中性子線(ガンマ線)を、CSG材100の粒径80mmの粒子の中心に透過させることができ、正確な測定を行うことができる。   The present invention is not limited to the embodiment described above. For example, in the surface water ratio measurement system 1, the cross-sectional shape of the discharge cylinder portion 33 is a square, but other cross-sectional shapes such as other regular polygons and circles may be used. For example, in consideration of the case where a circular discharge section 35 shown in FIG. 9 is adopted instead of the discharge section 33, a flat surface 35a in contact with the mounting surface of the emission unit 21a (23a) and an incident unit 21b (23b) It is preferable to set the mounting positions of both units so that the angle α at which the flat surface 35b in contact with the mounting surface intersects is 30 ° or more. In such an attachment position, neutron rays (gamma rays) are converted into CSG when the linear distance between the emission unit 21a (23a) and the incident unit 21b (23b) is 35 cm due to geometric conditions. The material 100 can be transmitted through the center of a particle having a particle diameter of 80 mm, and an accurate measurement can be performed.

また、表面水率測定システム1では、RI水分計21の出射ユニット21aと入射ユニット21bとを、稜線E1を挟んで近接させるように設置し、RI密度計23の出射ユニット23aと入射ユニット23bとを、稜線E3を挟んで近接させるように設置しているが、RI水分計21及びRI密度計23の設置位置は、これ以外の組み合わせとしてもよい。なお、上記のような位置関係で出射ユニットと入射ユニットとを稜線E1〜E4を挟んで近接させるようにRI測定装置を設置することを、以下の説明では、例えば「RI測定装置を稜線E1位置に設置する」等と簡易的に表現する。   Further, in the surface water content measurement system 1, the emission unit 21a and the incidence unit 21b of the RI moisture meter 21 are installed so as to be close to each other with the ridge line E1 interposed therebetween, and the emission unit 23a and the incidence unit 23b of the RI density meter 23 are arranged. However, the installation positions of the RI moisture meter 21 and the RI density meter 23 may be a combination other than this. In the following description, for example, “the RI measurement device is positioned at the ridgeline E1 position” so that the exit unit and the incident unit are placed close to each other with the ridgelines E1 to E4 in the positional relationship as described above. It is simply expressed as “installed in”.

例えば、図10に示すように、RI水分計21を稜線E1位置に設置し、RI密度計23を稜線E2位置に設置してもよい。この構成によれば、ホッパ5内におけるCSG材の粒度分布の対称性から、ほぼ同じ粒度組成のCSG材について含水量値と密度値とが測定され、表面水率が算出されるので、より正確な表面水率が得られる。   For example, as shown in FIG. 10, the RI moisture meter 21 may be installed at the ridgeline E1 position, and the RI density meter 23 may be installed at the ridgeline E2 position. According to this configuration, the moisture content value and the density value are measured for the CSG material having almost the same particle size composition from the symmetry of the particle size distribution of the CSG material in the hopper 5, and the surface water content is calculated. A high surface water ratio.

また、図11に示すように、RI水分計21及びRI密度計23を同じ稜線位置に上下に並べて設置すれば、ほぼ同じ位置のCSG材の含水量値と密度値とに基づいて表面水率が算出されるので、より正確な表面水率が得られるといった点で好ましいと考えられる。一方で、上述の表面水率測定システム1や図10の形態では、RI水分計21及びRI密度計23の各ユニットを上下方向に並べるスペースが必要ないので、排出筒部33の上下方向の寸法を抑えられる点で好ましい。   In addition, as shown in FIG. 11, if the RI moisture meter 21 and the RI density meter 23 are installed vertically at the same ridge line position, the surface water content is based on the water content value and density value of the CSG material at substantially the same position. Therefore, it is considered preferable in that a more accurate surface water ratio can be obtained. On the other hand, in the above-described surface water content measurement system 1 and the embodiment shown in FIG. 10, there is no need for a space for arranging the units of the RI moisture meter 21 and the RI density meter 23 in the vertical direction. It is preferable at the point which can suppress.

また、図12に示すように、RI水分計21及びRI密度計23を複数(ここでは、2個ずつ)として、稜線E1〜E4位置に設置してもよい。また、前述の通り、排出筒部33にはRI水分計21のみを設置してRI密度計23を省略し、制御情報管理部17には密度の固定値を入力するようにしてもよい。この場合にも、RI水分計21を複数用いてもよい。また、表面水率測定システム1では、RI水分計21及びRI密度計23の2種類の機器を準備しているが、双方の機能を併せ持つRI水分密度計を採用することにより、出射/入射ユニットの設置スペースを削減してもよい。   In addition, as shown in FIG. 12, a plurality of RI moisture meters 21 and RI density meters 23 (two in this case) may be installed at the positions of the ridgelines E1 to E4. Further, as described above, only the RI moisture meter 21 may be installed in the discharge cylinder unit 33, the RI density meter 23 may be omitted, and a fixed value of density may be input to the control information management unit 17. Also in this case, a plurality of RI moisture meters 21 may be used. In the surface water content measurement system 1, two types of equipment, an RI moisture meter 21 and an RI density meter 23, are prepared. By adopting an RI moisture density meter having both functions, an exit / incident unit is provided. The installation space may be reduced.

また、この表面水率測定システム1は、RI密度計23による測定データを用いて、CSG材のレキ率(粒径25.6mmの割合)を推定し、粒度の判定や異種材料混入を判定するといった利用方法にも展開できる可能性がある。なお、上述した各構成は、適宜組み合わせて採用してもよい。   Further, the surface water content measurement system 1 uses the measurement data obtained by the RI densitometer 23 to estimate the recoil rate (ratio of particle size 25.6 mm) of the CSG material to determine the particle size and the mixing of different materials. There is a possibility that it can be expanded to other usage methods. In addition, you may employ | adopt combining each structure mentioned above suitably.

本発明に係る表面水率測定システム及び表面水率測定方法が適用されるCSG製造設備を示すブロック図である。It is a block diagram which shows the CSG manufacturing equipment with which the surface water rate measuring system and surface water rate measuring method which concern on this invention are applied. 図1のCSG製造設備に含まれるベルトコンベア及びホッパを示す斜視図である。It is a perspective view which shows the belt conveyor and hopper which are contained in the CSG manufacturing equipment of FIG. 図2のホッパの鉛直方向の断面図である。It is sectional drawing of the perpendicular direction of the hopper of FIG. 図2のホッパの排出筒部における水平断面図である。It is a horizontal sectional view in the discharge cylinder part of the hopper of FIG. 本発明者らによる実験の結果を示す相関図である。It is a correlation diagram which shows the result of the experiment by the present inventors. 本発明者らによる実験の結果を示すヒストグラムである。It is a histogram which shows the result of the experiment by the present inventors. 本発明者らによる実験の結果を示す相関図である。It is a correlation diagram which shows the result of the experiment by the present inventors. 本発明者らによる実験の結果を示すヒストグラムである。It is a histogram which shows the result of the experiment by the present inventors. 円形断面をもつ排出筒部に出射ユニットと入射ユニットとを設置する例を示す水平断面図である。It is a horizontal sectional view which shows the example which installs an output unit and an incident unit in the discharge cylinder part which has a circular cross section. ホッパの排出筒部にRI水分計及びRI密度計を設置する他の例を示す水平断面図である。It is a horizontal sectional view showing other examples which install RI moisture meter and RI density meter in the discharge cylinder part of a hopper. ホッパの排出筒部にRI水分計及びRI密度計を設置する更に他の例を示す斜視図である。It is a perspective view which shows the further another example which installs RI moisture meter and RI density meter in the discharge cylinder part of a hopper. ホッパの排出筒部にRI水分計及びRI密度計を設置する更に他の例を示す水平断面図である。It is a horizontal sectional view showing other examples which install RI moisture meter and RI density meter in the discharge cylinder part of a hopper.

符号の説明Explanation of symbols

1…表面水率測定システム、21…RI水分計(RI測定装置)、21a…出射ユニット(放射線出射部)、21b…入射ユニット(放射線入射部)、23…RI密度計(RI測定装置)、23a…出射ユニット(放射線出射部)、23b…入射ユニット(放射線入射部)、25…表面水率算出部(表面水率算出手段)、33…排出筒部(搬送筒部)、331…外壁面(第1の壁面)、332…外壁面(第2の壁面)、333…外壁面(第3の壁面)、334…外壁面(第4の壁面)、100…CSG材(地盤材料)、A,A1…搬送路。   DESCRIPTION OF SYMBOLS 1 ... Surface water content measurement system, 21 ... RI moisture meter (RI measuring device), 21a ... Ejection unit (radiation emitting part), 21b ... Incident unit (radiation incident part), 23 ... RI density meter (RI measuring device), 23a ... Ejecting unit (radiation emitting part), 23b ... Injecting unit (radiation incident part), 25 ... Surface water ratio calculating part (surface water ratio calculating means), 33 ... Discharge cylinder part (conveying cylinder part), 331 ... Outer wall (First wall surface), 332 ... outer wall surface (second wall surface), 333 ... outer wall surface (third wall surface), 334 ... outer wall surface (fourth wall surface), 100 ... CSG material (ground material), A , A1... Transport path.

Claims (8)

地盤材料の表面水率を連続的に測定する表面水率測定システムにおいて、
前記地盤材料が搬送される搬送路を画成する筒状の搬送筒部と、
放射線を出射する放射線出射部と、前記放射線出射部からの前記放射線を入射させる放射線入射部と、を有し、前記搬送筒部内を搬送される前記地盤材料に前記放射線を透過させて前記地盤材料の前記表面水率に関連する物理量を連続的に測定するRI測定装置と、を備え、
前記放射線出射部及び前記放射線入射部は、
互いの間に前記搬送路の少なくとも一部を挟んで、
互いの間の直線距離が、前記RI測定装置による前記物理量の有効な測定を可能とする範囲の最大距離として定義される有効測定最大距離以下となるように、
前記搬送筒部の外壁面に設置され、
前記搬送筒部の前記外壁面は、互いに直交する方向に延在する第1の壁面及び第2の壁面を有しており、
前記放射線出射部は、前記第1の壁面に取り付けられ、
前記放射線入射部は、前記第2の壁面に取り付けられており、
前記搬送筒部の前記外壁面は、前記第1の壁面に対向する第3の壁面と、前記第2の壁面に対向する第4の壁面と、を更に有し、
前記放射線出射部は、前記第4の壁面よりも前記第2の壁面に近い位置に取り付けられており、
前記搬送筒部は、上下両端に開口を有する筒状体の一部であり、前記筒状体の下部において断面積が絞られた部分であることを特徴とする表面水率測定システム。
In the surface water content measurement system that continuously measures the surface water content of the ground material,
A cylindrical transport cylinder portion defining a transport path through which the ground material is transported;
The ground material has a radiation emitting part that emits radiation and a radiation incident part that causes the radiation from the radiation emitting part to enter , and transmits the radiation to the ground material that is transported in the transport cylinder part. An RI measuring device that continuously measures a physical quantity related to the surface water ratio of
The radiation emitting part and the radiation incident part are:
Sandwiching at least part of the transport path between each other,
The linear distance between each other is less than or equal to the maximum effective measurement distance defined as the maximum distance of the range that allows effective measurement of the physical quantity by the RI measurement device,
It is installed on the outer wall surface of the transfer cylinder part,
The outer wall surface of the transport cylinder portion has a first wall surface and a second wall surface extending in directions orthogonal to each other,
The radiation emitting unit is attached to the first wall surface,
The radiation incident part is attached to the second wall surface,
The outer wall surface of the transfer cylinder portion further includes a third wall surface facing the first wall surface, and a fourth wall surface facing the second wall surface,
The radiation emitting portion is attached at a position closer to the second wall surface than the fourth wall surface,
The surface water rate measurement system according to claim 1, wherein the transfer cylinder part is a part of a cylindrical body having openings at both upper and lower ends, and is a part having a reduced cross-sectional area at a lower part of the cylindrical body .
地盤材料の表面水率を連続的に測定する表面水率測定システムにおいて、
前記地盤材料が搬送される搬送路を画成する筒状の搬送筒部と、
放射線を出射する放射線出射部と、前記放射線出射部からの前記放射線を入射させる放射線入射部と、を有し、前記搬送筒部内を搬送される前記地盤材料に前記放射線を透過させて前記地盤材料の前記表面水率に関連する物理量を連続的に測定するRI測定装置と、を備え、
前記放射線出射部及び前記放射線入射部は、
互いの間に前記搬送路の少なくとも一部を挟んで、
互いの間の直線距離が、前記RI測定装置による前記物理量の有効な測定を可能とする範囲の最大距離として定義される有効測定最大距離以下となるように、
前記搬送筒部の外壁面に設置され、
前記搬送筒部の前記外壁面は、互いに直交する方向に延在する第1の壁面及び第2の壁面を有しており、
前記放射線出射部は、前記第1の壁面に取り付けられ、
前記放射線入射部は、前記第2の壁面に取り付けられており、
前記搬送筒部の前記外壁面は、前記第1の壁面に対向する第3の壁面と、前記第2の壁面に対向する第4の壁面と、を更に有し、
前記放射線入射部は、前記第3の壁面よりも前記第1の壁面に近い位置に取り付けられており、
前記搬送筒部は、上下両端に開口を有する筒状体の一部であり、前記筒状体の下部において断面積が絞られた部分であることを特徴とする表面水率測定システム。
In the surface water content measurement system that continuously measures the surface water content of the ground material,
A cylindrical transport cylinder portion defining a transport path through which the ground material is transported;
The ground material has a radiation emitting part that emits radiation and a radiation incident part that causes the radiation from the radiation emitting part to enter , and transmits the radiation to the ground material that is transported in the transport cylinder part. An RI measuring device that continuously measures a physical quantity related to the surface water ratio of
The radiation emitting part and the radiation incident part are:
Sandwiching at least part of the transport path between each other,
The linear distance between each other is less than or equal to the maximum effective measurement distance defined as the maximum distance of the range that allows effective measurement of the physical quantity by the RI measurement device,
It is installed on the outer wall surface of the transfer cylinder part,
The outer wall surface of the transport cylinder portion has a first wall surface and a second wall surface extending in directions orthogonal to each other,
The radiation emitting unit is attached to the first wall surface,
The radiation incident part is attached to the second wall surface,
The outer wall surface of the transfer cylinder portion further includes a third wall surface facing the first wall surface, and a fourth wall surface facing the second wall surface,
The radiation incident part is attached to a position closer to the first wall surface than the third wall surface,
The surface water rate measurement system according to claim 1, wherein the transfer cylinder part is a part of a cylindrical body having openings at both upper and lower ends, and is a part having a reduced cross-sectional area at a lower part of the cylindrical body .
前記搬送路に直交する面内における前記搬送筒部の最小幅が、前記RI測定装置の前記有効測定最大距離よりも大きいことを特徴とする請求項1又は2に記載の表面水率測定システム。 The surface water rate measurement system according to claim 1 or 2 , wherein a minimum width of the transfer cylinder portion in a plane orthogonal to the transfer path is larger than the effective measurement maximum distance of the RI measurement apparatus. 前記RI測定装置を複数備えており、
前記RI測定装置のうちの1つは、前記地盤材料が含有する水分量を測定するRI水分計であり、
前記RI測定装置の他のうちの1つは、前記地盤材料の密度を測定するRI密度計であることを特徴とする請求項1〜の何れか1項に記載の表面水率測定システム。
A plurality of the RI measuring devices;
One of the RI measuring devices is an RI moisture meter that measures the amount of moisture contained in the ground material,
The surface water rate measuring system according to any one of claims 1 to 3 , wherein one of the other RI measuring devices is an RI density meter that measures the density of the ground material.
前記RI水分計で測定された前記地盤材料が含有する水分量の値と、前記RI密度計で測定された前記地盤材料の密度の値と、に基づいて、前記地盤材料の表面水率を算出する表面水率算出手段を更に備えたことを特徴とする請求項に記載の表面水率測定システム。 Based on the water content value of the ground material measured by the RI moisture meter and the density value of the ground material measured by the RI density meter, the surface water content of the ground material is calculated. The surface water ratio measuring system according to claim 4 , further comprising a surface water ratio calculating means. 前記地盤材料は、CSG材であることを特徴とする請求項1〜の何れか1項に記載の表面水率測定システム。 The surface water rate measurement system according to any one of claims 1 to 5 , wherein the ground material is a CSG material. 地盤材料の表面水率を連続的に測定する表面水率測定方法において、
筒状の搬送筒部で画成される搬送路で前記地盤材料を搬送させる搬送ステップと、
放射線を出射する放射線出射部と、前記放射線出射部からの前記放射線を入射させる放射線入射部と、を有するRI測定装置で、前記搬送筒部内の搬送中の前記地盤材料に前記放射線を透過させて前記地盤材料の前記表面水率に関連する物理量を連続的に測定するRI測定ステップと、を備え、
前記RI測定ステップでは、
前記放射線出射部及び前記放射線入射部を、
互いの間に前記搬送路の少なくとも一部を挟んで、
互いの間の直線距離が、前記RI測定装置による前記物理量の有効な測定を可能とする範囲の最大距離として定義される有効測定最大距離以下となるように、
前記搬送筒部の外壁面に設置し、
前記搬送筒部の前記外壁面は、互いに直交する方向に延在する第1の壁面及び第2の壁面を有しており、
前記放射線出射部は、前記第1の壁面に取り付けられ、
前記放射線入射部は、前記第2の壁面に取り付けられており、
前記搬送筒部の前記外壁面は、前記第1の壁面に対向する第3の壁面と、前記第2の壁面に対向する第4の壁面と、を更に有し、
前記放射線出射部は、前記第4の壁面よりも前記第2の壁面に近い位置に取り付けられており、
前記搬送筒部は、上下両端に開口を有する筒状体の一部であり、前記筒状体の下部において断面積が絞られた部分であることを特徴とする表面水率測定方法。
In the surface water content measurement method that continuously measures the surface water content of the ground material,
A transport step for transporting the ground material in a transport path defined by a cylindrical transport tube section;
An RI measurement device having a radiation emitting unit that emits radiation and a radiation incident unit that makes the radiation from the radiation emitting unit incident thereon, and transmits the radiation to the ground material being conveyed in the conveying cylinder unit. A RI measurement step for continuously measuring a physical quantity related to the surface water ratio of the ground material,
In the RI measurement step,
The radiation emitting part and the radiation incident part are
Sandwiching at least part of the transport path between each other,
The linear distance between each other is less than or equal to the maximum effective measurement distance defined as the maximum distance of the range that allows effective measurement of the physical quantity by the RI measurement device,
Installed on the outer wall surface of the transfer cylinder part,
The outer wall surface of the transport cylinder portion has a first wall surface and a second wall surface extending in directions orthogonal to each other,
The radiation emitting unit is attached to the first wall surface,
The radiation incident part is attached to the second wall surface,
The outer wall surface of the transfer cylinder portion further includes a third wall surface facing the first wall surface, and a fourth wall surface facing the second wall surface,
The radiation emitting portion is attached at a position closer to the second wall surface than the fourth wall surface,
The method for measuring the surface water ratio , wherein the transport cylinder part is a part of a cylindrical body having openings at both upper and lower ends, and a cross-sectional area is reduced at a lower part of the cylindrical body .
地盤材料の表面水率を連続的に測定する表面水率測定方法において、
筒状の搬送筒部で画成される搬送路で前記地盤材料を搬送させる搬送ステップと、
放射線を出射する放射線出射部と、前記放射線出射部からの前記放射線を入射させる放射線入射部と、を有するRI測定装置で、前記搬送筒部内の搬送中の前記地盤材料に前記放射線を透過させて前記地盤材料の前記表面水率に関連する物理量を連続的に測定するRI測定ステップと、を備え、
前記RI測定ステップでは、
前記放射線出射部及び前記放射線入射部を、
互いの間に前記搬送路の少なくとも一部を挟んで、
互いの間の直線距離が、前記RI測定装置による前記物理量の有効な測定を可能とする範囲の最大距離として定義される有効測定最大距離以下となるように、
前記搬送筒部の外壁面に設置し、
前記搬送筒部の前記外壁面は、互いに直交する方向に延在する第1の壁面及び第2の壁面を有しており、
前記放射線出射部は、前記第1の壁面に取り付けられ、
前記放射線入射部は、前記第2の壁面に取り付けられており、
前記搬送筒部の前記外壁面は、前記第1の壁面に対向する第3の壁面と、前記第2の壁面に対向する第4の壁面と、を更に有し、
前記放射線入射部は、前記第3の壁面よりも前記第1の壁面に近い位置に取り付けられており、
前記搬送筒部は、上下両端に開口を有する筒状体の一部であり、前記筒状体の下部において断面積が絞られた部分であることを特徴とする表面水率測定方法。
In the surface water content measurement method that continuously measures the surface water content of the ground material,
A transport step for transporting the ground material in a transport path defined by a cylindrical transport tube section;
An RI measurement device having a radiation emitting unit that emits radiation and a radiation incident unit that makes the radiation from the radiation emitting unit incident thereon, and transmits the radiation to the ground material being conveyed in the conveying cylinder unit. A RI measurement step for continuously measuring a physical quantity related to the surface water ratio of the ground material,
In the RI measurement step,
The radiation emitting part and the radiation incident part are
Sandwiching at least part of the transport path between each other,
The linear distance between each other is less than or equal to the maximum effective measurement distance defined as the maximum distance of the range that allows effective measurement of the physical quantity by the RI measurement device,
Installed on the outer wall surface of the transfer cylinder part,
The outer wall surface of the transport cylinder portion has a first wall surface and a second wall surface extending in directions orthogonal to each other,
The radiation emitting unit is attached to the first wall surface,
The radiation incident part is attached to the second wall surface,
The outer wall surface of the transfer cylinder portion further includes a third wall surface facing the first wall surface, and a fourth wall surface facing the second wall surface,
The radiation incident part is attached to a position closer to the first wall surface than the third wall surface,
The method for measuring the surface water ratio , wherein the transport cylinder part is a part of a cylindrical body having openings at both upper and lower ends, and a cross-sectional area is reduced at a lower part of the cylindrical body .
JP2007295921A 2007-11-14 2007-11-14 Surface water ratio measurement system and surface water ratio measurement method Expired - Fee Related JP5221936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007295921A JP5221936B2 (en) 2007-11-14 2007-11-14 Surface water ratio measurement system and surface water ratio measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007295921A JP5221936B2 (en) 2007-11-14 2007-11-14 Surface water ratio measurement system and surface water ratio measurement method

Publications (2)

Publication Number Publication Date
JP2009121930A JP2009121930A (en) 2009-06-04
JP5221936B2 true JP5221936B2 (en) 2013-06-26

Family

ID=40814240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007295921A Expired - Fee Related JP5221936B2 (en) 2007-11-14 2007-11-14 Surface water ratio measurement system and surface water ratio measurement method

Country Status (1)

Country Link
JP (1) JP5221936B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2285248B1 (en) 2008-06-13 2016-09-28 Koninklijke Philips N.V. Epilator having a drivable massaging member
JP7374577B2 (en) 2016-08-15 2023-11-07 株式会社大林組 Concrete measurement method and concrete evaluation method
JP7076228B2 (en) * 2018-03-01 2022-05-27 大成建設株式会社 Water volume measurement system using RI moisture meter
JP7269827B2 (en) * 2019-08-09 2023-05-09 大成建設株式会社 Moisture content measurement method and moisture content measurement system using RI moisture meter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649945A (en) * 1979-07-05 1981-05-06 Kensetsusho Hokurikuchihou Kensetsukyoku Method for automatic detection of water quantity on surface of aggregate
JPH0694790B2 (en) * 1987-12-01 1994-11-24 大豊建設株式会社 Excavation management method for earth pressure type shield machine
JPH05281123A (en) * 1992-03-31 1993-10-29 Soil & Lock Eng Kk Automatic apparatus of detecting moisture of aggregate
JP4801393B2 (en) * 2005-08-11 2011-10-26 大成建設株式会社 Kneading equipment

Also Published As

Publication number Publication date
JP2009121930A (en) 2009-06-04

Similar Documents

Publication Publication Date Title
CN105158215B (en) Air slide analyzer system and method
JP5221936B2 (en) Surface water ratio measurement system and surface water ratio measurement method
JP6725916B2 (en) Cement-based mixed material manufacturing system and cement-based mixed material manufacturing method
US11714053B2 (en) Conveyor system and measuring device for determining water content of a construction material
Johnson et al. Feedbacks between erosion and sediment transport in experimental bedrock channels
US10101192B2 (en) Radiometric measuring arrangement and method for detection of accretion formation in a radiometric measuring arrangement
JP6651945B2 (en) Soil classification device and soil classification method
US20180275078A1 (en) Alternative Fuels Analyzer
US11286116B2 (en) Proppant metering and loading in a hydraulic fracturing blender
WO2008020762A1 (en) Method for real time measurement of mass flow rate of bulk solids
Marjavaara et al. Filling the gap between buffer and rock in the deposition hole
CN106940176B (en) A kind of thickness of feed layer detection device and method
JP7076228B2 (en) Water volume measurement system using RI moisture meter
JP6708776B1 (en) Coal ash processing equipment
Patel et al. Estimation of fractional critical tractive stress from fractional bed load transport measurements of unimodal and bimodal sediments
JP2015179044A (en) Grain size measurement method and system for ground material
JP2020159785A (en) Quality measurement/management method and quality measurement/management system for csg material
JP2015021905A (en) Method of measuring unit water content of fresh concrete or fresh mortar
JP6050729B2 (en) Method and system for measuring moisture content of ground material
US9638555B2 (en) Method to determine or monitor the amount or the distribution of additional material present in a flow of a flowable substance
JP2021028599A (en) Moisture content measurement method and moisture content measurement system using RI moisture meter
JP2017119254A (en) Incineration ash treatment system and method
CN103791799B (en) A kind of weir sports school surveys device and method is surveyed in school
JP2006044343A (en) Particulate matter loading device and particulate matter discharging device
Matlou et al. Strategy to Maintain Consistency of Backfill Strength and Improve Backfill Performance Underground

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5221936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees