JP6050729B2 - Method and system for measuring moisture content of ground material - Google Patents

Method and system for measuring moisture content of ground material Download PDF

Info

Publication number
JP6050729B2
JP6050729B2 JP2013158093A JP2013158093A JP6050729B2 JP 6050729 B2 JP6050729 B2 JP 6050729B2 JP 2013158093 A JP2013158093 A JP 2013158093A JP 2013158093 A JP2013158093 A JP 2013158093A JP 6050729 B2 JP6050729 B2 JP 6050729B2
Authority
JP
Japan
Prior art keywords
ground material
moisture content
ground
constituent
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013158093A
Other languages
Japanese (ja)
Other versions
JP2015028446A (en
Inventor
勝利 藤崎
勝利 藤崎
昭 武井
昭 武井
隆幸 神戸
隆幸 神戸
小林 弘明
弘明 小林
篤 大井
篤 大井
真幸 森田
真幸 森田
俊憲 岩崎
俊憲 岩崎
謙次 小貫
謙次 小貫
岡本 道孝
道孝 岡本
大道 三上
大道 三上
健一 川野
健一 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2013158093A priority Critical patent/JP6050729B2/en
Publication of JP2015028446A publication Critical patent/JP2015028446A/en
Application granted granted Critical
Publication of JP6050729B2 publication Critical patent/JP6050729B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は地盤材料の水分量計測方法及びシステムに関し,とくに様々な粒径が混在する地盤材料の水分量を計測する方法及びシステムに関する。   The present invention relates to a method and system for measuring the moisture content of a ground material, and more particularly, to a method and system for measuring the moisture content of a ground material having various particle sizes.

CSG(Cemented Sand and Gravel),セメント改良土,コンクリート等の構造材料を使用してダム,防潮堤(堤防)等の盛土,その他の土木構造物を建設する工事において,構造物の品質(とくに強度)を管理する観点から,その構造材料に含まれる水分量を適宜計測して管理すると共に,その原材料であるCSG材,セメント改良土母材,骨材等の地盤材料(様々な粒径の泥,砂,礫その他の構成材料が混在する土木材料)に含まれる水分量を計測・管理することが求められることがある。例えば,材料合理化の観点から現場付近で調達又は発生する岩砕材料・砂材料・砂礫材料その他の地盤材料を原材料として構造材料を製造する工事現場では,その原材料の粒度や水分量にバラツキがあることから,その原材料及びそれを用いた製品(構造材料)の水分量を計測・監視して構造物の品質を管理することが必要とされる(例えば非特許文献1のCSG工事を参照)。   The quality of structures (especially strength) in the construction of embankments such as dams, seawalls (embankments), and other civil engineering structures using structural materials such as CSG (Cemented Sand and Gravel), cement improved soil, concrete, etc. From the viewpoint of managing the amount of water contained in the structural material, and the ground materials such as the CSG material, cement-modified soil base material, and aggregate (the mud of various particle sizes). It is sometimes required to measure and manage the amount of water contained in civil engineering materials that contain sand, gravel and other components. For example, from the viewpoint of material rationalization, there are variations in the particle size and water content of the raw materials at construction sites where structural materials are produced from the use of crushed materials, sand materials, gravel materials and other ground materials procured or generated near the site. Therefore, it is necessary to measure and monitor the moisture content of the raw material and the product (structural material) using the raw material and to control the quality of the structure (see, for example, CSG work in Non-Patent Document 1).

一般に様々な粒径が混在する地盤材料に含まれる水分量(含水比又は含水率)は,その地盤材料を110(±5)℃の恒温乾燥炉で乾燥したときに失われる質量から求めることができる(JISA1203の含水比試験方法,非特許文献2参照)。ただし,地盤材料を乾燥炉で乾燥させるには18〜24時間を要するので,この方法は1回/1日程度の頻度で実施することしかできない問題点がある。より迅速に水分量を計測する方法として,地盤材料を電子レンジで乾燥させる含水比試験方法(地盤工学会基準JGS0122,非特許文献3参照),及び地盤材料をフライパンで炙って直接加熱する含水比試験方法(非特許文献4参照)が実施されている。また,地盤材料に放射線(中性子線)を照射し,透過又は反射した放射線(中性子線)からRI(ラジオアイソトープ)計器により水分量(含水比又は含水率)を計測する方法も実用化されている(特許文献1,2参照)。   In general, the amount of water (water content ratio or water content) contained in a ground material with various particle sizes is obtained from the mass lost when the ground material is dried in a constant temperature drying furnace at 110 (± 5) ° C. (Refer to non-patent document 2) However, since it takes 18 to 24 hours to dry the ground material in the drying furnace, there is a problem that this method can be performed only once / one day. The moisture content test method (see Geotechnical Society Standard JGS0122, Non-Patent Document 3) and the moisture content ratio that heats the ground material directly in a frying pan as a method for measuring moisture content more quickly. A test method (see Non-Patent Document 4) has been implemented. In addition, a method of measuring moisture content (moisture content or moisture content) by irradiating the ground material with radiation (neutron beam) and using a radioisotope (RI) instrument from the transmitted or reflected radiation (neutron beam) has been put into practical use. (See Patent Documents 1 and 2).

特開昭56−049945号公報JP 56-049945 A 特開2009−121930号公報JP 2009-121930 A 特公昭61−061623号公報Japanese Examined Patent Publication No. 61-061623 特開平06−229917号公報Japanese Patent Laid-Open No. 06-229917

柳川城二「ダム事業における新技術−台形CSGダム−」建設工業調査会出版,ベース設計資料,No.136土木編,2008年3月20日発行,インターネット(URL:http://www.kenkocho.co.jp/html/136/sa_136.html)Jyuji Yanagawa "New technology in dam business-trapezoidal CSG dam" published by Construction Industry Research Committee, Base Design Material, No. 136 Civil Engineering, published on March 20, 2008, Internet (URL: http://www.kenkocho.co.jp/html/136/sa_136.html) 社団法人地盤工学会「地盤材料試験の方法と解説」,丸善出版,2009年11月,pp.104〜105Geotechnical Society of Japan “Ground Material Testing Methods and Explanations”, Maruzen Publishing, November 2009, pp. 104-105 社団法人地盤工学会「地盤材料試験の方法と解説」,丸善出版,2009年11月,pp.106〜107Geotechnical Society of Japan “Ground Material Testing Methods and Explanations”, Maruzen Publishing, November 2009, pp. 106-107 財団法人ダム技術センター「台形CSGダム施工・品質管理技術資料」,平成19年9月,pp.4〜19Dam Technology Center, “Taraki CSG Dam Construction and Quality Control Technical Data”, September 2007, pp. 4-19 JISA1109 細骨材の密度及び吸水率試験方法JIS A1109 Fine aggregate density and water absorption test method JISA1110 粗骨材の密度及び吸水率試験方法JISA1110 Coarse aggregate density and water absorption test method

しかし,上述した電子レンジを用いた含水比試験方法,及びフライパンを用いた含水比試験方法は,いずれも10分〜30分程度で水分量を計測できるものの,工事現場に供給される地盤材料から抜き取った一部分の水分量を計測することしかできず,供給される地盤材料の水分量を連続的に計測することができない問題点がある。例えば現場付近で調達又は発生する岩砕材料・砂材料・砂礫材料その他の地盤材料を用いて構造物を建設する工事では,品質管理の観点からバラツキのある地盤材料の水分量をできるだけ頻繁に計測・確認することが求められており(非特許文献1参照),調達又は発生場所から順次供給される地盤材料の水分量を連続的に計測して要求品質が常に満足されていることを監視できる技術の開発が望まれている。   However, the water content ratio test method using the microwave oven and the water content ratio test method using the frying pan can measure the water content in about 10 to 30 minutes, but the ground material supplied to the construction site can be used. There is a problem that it is only possible to measure the moisture content of the extracted part, and it is not possible to continuously measure the moisture content of the supplied ground material. For example, in the construction of a structure using crushed material, sand material, gravel material or other ground materials procured or generated near the site, the moisture content of the ground material with variations is measured as frequently as possible from the viewpoint of quality control. -It is required to check (see Non-Patent Document 1), and it is possible to monitor that the required quality is always satisfied by continuously measuring the moisture content of the ground material that is sequentially supplied from the procurement or generation site. Technology development is desired.

これに対し,RI計器を用いて水分量を計測する方法は,例えば地盤材料を搬送する搬送路(投入ホッパ等)にRI計器を設置することにより,工事現場に順次供給される大量の地盤材料の水分量を連続的に監視することが期待できる(特許文献1,2参照)。ただし,本発明者の予備的な実験によれば,RI計器は原則として密封状態で地盤材料の水分量を計測するため,密封された計測部に地盤材料が閉塞又は付着しやすく,その閉塞又は付着した地盤材料の水分量が常に計測されてしまう可能性があり,計測値に多くの誤差が内在している問題点がある。また,様々な粒径の構成材料が混在する地盤材料の水分量は粒度分布の変動の影響を受けるが,RI計器では粒度分布の変動を考慮して地盤材料の水分量を計測できないことも誤差の原因となる。バラツキのある地盤材料を用いて高品質の土木構造物を建設するため,大量の地盤材料の水分量を連続的に且つ精度よく計測できる技術の開発が望まれている。   On the other hand, the method of measuring the amount of water using an RI instrument is, for example, a large amount of ground material that is sequentially supplied to the construction site by installing the RI instrument in a transport path (such as a loading hopper) that transports the ground material. It can be expected to continuously monitor the amount of water (see Patent Documents 1 and 2). However, according to the inventor's preliminary experiment, since the RI instrument measures the moisture content of the ground material in a sealed state, the ground material tends to block or adhere to the sealed measuring section. There is a possibility that the moisture content of the attached ground material is always measured, and there is a problem that many errors are inherent in the measured value. In addition, although the moisture content of the ground material mixed with constituent materials of various particle sizes is affected by fluctuations in the particle size distribution, it is also an error that the RI instrument cannot measure the moisture content of the ground material in consideration of the fluctuations in the particle size distribution. Cause. In order to construct a high-quality civil engineering structure using uneven ground materials, it is desired to develop a technology that can continuously and accurately measure the moisture content of a large amount of ground materials.

そこで本発明の目的は,地盤材料に含まれる水分量を連続的に精度よく計測することができる方法及びシステムを提供することにある。   Accordingly, an object of the present invention is to provide a method and system capable of continuously and accurately measuring the amount of water contained in the ground material.

本発明者は,近赤外光(用いた水分計測方法に着目した(特許文献3,4参照)。例えば図8に示すように,0.7μm〜2.5μm程度の波長範囲の近赤外光を水に照射すると所定波長λi(例えばλ1=1.2μm,λ2=1.45μm,λ3=1.94μm)において吸収がおこり,その所定波長λiの反射光又は透過光が対象中の水分量(含水比)に応じて減衰するので,その反射率又は透過率Siから対象中の水分量(含水比)を求めることができる。具体的には,(1)式に示すように所定波長λiの反射率又は透過率Si(以下,単に反射率Siということがある)と対象中の水分量Wとの比例パラメタP((1)式の係数a,b,c,d)を予めキャリブンレーションにより検出し,計測対象の所定波長λiの吸収量Siを(1)式へ代入することにより水分量を算出する。或いは,水分の影響を受けにくい特定波長(参照波長)の反射率又は透過率R(以下,単に反射率Rということがある)を併せて求め,(2)式に示すように所定波長λiの反射率Siと参照波長の反射率Rとの差に基づき比例パラメタP((2)式の係数a,b,c,d)をキャリブンレーションする。なお,(1)式及び(2)式では3つの波長λiの吸収量Siから水分量を算出しているが,算出に用いる波長λiの数は1つ,2つ,又は4つ以上としてもよい。
W=a・S1+b・S2+c・S3+d ……………………………………(1)
W=a・ln(R/S1)+b・ln(R/S2)
+c・ln(R/S3)+d …………………(2)
The present inventor has paid attention to near-infrared light (refer to Patent Documents 3 and 4). For example, as shown in FIG. 8, the near-infrared light having a wavelength range of about 0.7 μm to 2.5 μm. When water is irradiated with water, absorption occurs at a predetermined wavelength λi (for example, λ1 = 1.2 μm, λ2 = 1.45 μm, λ3 = 1.94 μm), and the reflected light or transmitted light of the predetermined wavelength λi is the amount of water in the object. Since it attenuates according to (water content ratio), the water content (water content ratio) in the object can be obtained from the reflectance or transmittance Si, specifically, a predetermined wavelength λi as shown in equation (1). A proportional parameter P (coefficients a, b, c, d in the equation (1)) between the reflectance or transmittance Si (hereinafter sometimes simply referred to as reflectance Si) and the amount of water W in the object is previously calibrated. The absorption amount Si of the predetermined wavelength λi to be measured is expressed by equation (1) The amount of moisture is calculated by substitution, or the reflectance or transmittance R (hereinafter also referred to simply as reflectance R) of a specific wavelength (reference wavelength) that is not easily affected by moisture is also obtained (2 ), The proportional parameter P (coefficients a, b, c, d in equation (2)) is calibrated based on the difference between the reflectance Si of the predetermined wavelength λi and the reflectance R of the reference wavelength. , (1) and (2) calculate the amount of moisture from the absorption amounts Si of the three wavelengths λi, but the number of wavelengths λi used for the calculation may be one, two, or four or more. .
W = a · S1 + b · S2 + c · S3 + d …………………………………… (1)
W = a · ln (R / S1) + b · ln (R / S2)
+ C · ln (R / S3) + d (2)

図7は,特許文献4の開示する近赤外線を用いた水分計測装置を示す。図示例の装置は,対象Nに近赤外光を照射する光源ランプ41と,対象Nからの反射光を入力して(1)式又は(2)式により水分量Wを算出するコンピュータ10とを有する。図示例の光源ランプ41は,レンズ42,フィルタホイール43,平面鏡45,及びレンズ46を経由して計測対象Nに所定波長λi及び参照波長を含む近赤外光を照射する。対象Nからの反射光は,凹面鏡47,凸面鏡48,赤外線透過フィルタ49を経由して受光素子50に導かれ,受光素子50において所定波長λi及び参照波長は反射光量に応じた電気信号(所定波長λi及び参照波長の反射率)Si,Rに変換される。この変換された電気信号Si,Rを,増幅器51,サンプルホールド回路52,及びAD変換器53を経由してコンピュータ10に入力する。コンピュータ10において,入力信号Si,Rを(1)式又は(2)式へ代入することにより水分量Wを算出すると共に,必要に応じて温度,湿度等の補正演算を施す。   FIG. 7 shows a moisture measuring device using near infrared rays disclosed in Patent Document 4. The apparatus of the illustrated example includes a light source lamp 41 that irradiates near-infrared light to a target N, a computer 10 that calculates the amount of water W according to formula (1) or formula (2) by inputting reflected light from the target N, and Have The light source lamp 41 in the illustrated example irradiates a measurement target N with near infrared light including a predetermined wavelength λi and a reference wavelength via a lens 42, a filter wheel 43, a plane mirror 45, and a lens 46. The reflected light from the object N is guided to the light receiving element 50 through the concave mirror 47, the convex mirror 48, and the infrared transmission filter 49, and the predetermined wavelength λi and the reference wavelength in the light receiving element 50 are electrical signals (predetermined wavelengths) corresponding to the reflected light amount. λi and reference wavelength reflectivity) Si, R. The converted electrical signals Si and R are input to the computer 10 via the amplifier 51, the sample hold circuit 52, and the AD converter 53. In the computer 10, the moisture amount W is calculated by substituting the input signals Si and R into the equation (1) or (2), and correction operations such as temperature and humidity are performed as necessary.

例えば図7に示す水分計測装置を工事現場の地盤材料の搬送路(コンベアベルト等)に設置すれば,工事現場の順次搬送される大量の地盤材料の水分量を連続的に計測することが期待できる。ただし,本発明者の予備的実験によれば,近赤外線の反射率は地盤材料の粒度分布の変動の影響を受けるため,(1)式又は(2)式で地盤材料の水分量Wを算出すると誤差が大きくなる問題点がある。すなわち,ダム,防潮堤(堤防),盛土その他の建設工事で用いる地盤材料は最大粒径(例えば150mm程度)が最小粒径(例えば0.075mm程度)の2000倍にも達しうる粒径範囲の広いものであり,その最大粒径の水分量と最小粒径の水分量とを同じ比例パラメタP((1)式又は(2)式の係数a,b,c,d)で算出することは困難である。そのように粒径範囲の広い地盤材料の水分量を近赤外線の反射率によって計測するためには,粒度分布の変動を考慮して比例パラメタPを調整することが必要である。本発明は,この着想に基づく研究開発の結果,完成に至ったものである。   For example, if the moisture measuring device shown in Fig. 7 is installed in the ground material conveyance path (conveyor belt, etc.) at the construction site, it is expected to continuously measure the moisture content of a large amount of ground material that is sequentially conveyed at the construction site. it can. However, according to the preliminary experiment by the present inventor, the near-infrared reflectance is affected by fluctuations in the particle size distribution of the ground material, so the water content W of the ground material is calculated by the equation (1) or (2). Then, there is a problem that the error becomes large. That is, the ground material used in construction works such as dams, seawalls (embankments), embankments, etc. has a particle size range in which the maximum particle size (for example, about 150 mm) can reach 2000 times the minimum particle size (for example, about 0.075 mm). It is wide, and the water content of the maximum particle size and the water content of the minimum particle size are calculated by the same proportional parameter P (coefficients a, b, c, d in the equation (1) or (2)) Have difficulty. In order to measure the moisture content of the ground material having such a wide particle size range by the near infrared reflectance, it is necessary to adjust the proportional parameter P in consideration of the variation of the particle size distribution. The present invention has been completed as a result of research and development based on this idea.

図1のブロック図及び図2の流れ図を参照するに,本発明による地盤材料の水分量計測方法は,様々な粒径が混在する地盤材料NのサンプルTを所定粒径範囲別の複数の構成材料T1,T2,……Tnに分割し,構成材料Tiの各々に近赤外光を照射したときの所定波長λiの反射率又は透過率Siとその構成材料Tiの水分量Wiとの比例パラメタPi(例えば図6に示す比例パラメタai,bi,ci,di)を検出し且つその比例パラメタPiを構成材料Ti毎の粒径範囲に応じて重み付け(Ii)した合成パラメタQ(例えば図6に示す合成パラメタΣ(Ii・ai),Σ(Ii・bi),Σ(Ii・ci),Σ(Ii・di))を作成し,計測対象の地盤材料Nに近赤外光を照射したときの所定波長λiの反射率又は透過率Siと合成パラメタQとからその地盤材料Nの水分量Wを算出してなるものである。   Referring to the block diagram of FIG. 1 and the flowchart of FIG. 2, the ground material moisture content measuring method according to the present invention includes a sample T of a ground material N in which various particle sizes are mixed in a plurality of configurations according to predetermined particle size ranges. A proportional parameter between the reflectance or transmittance Si of a predetermined wavelength λi and the moisture content Wi of the constituent material Ti when the constituent materials Ti are divided into materials T1, T2,. Pi (for example, proportional parameters ai, bi, ci, di shown in FIG. 6) is detected, and the proportional parameter Pi is weighted (Ii) according to the particle size range for each constituent material Ti (for example, in FIG. 6). When the composite parameters Σ (Ii · ai), Σ (Ii · bi), Σ (Ii · ci), and Σ (Ii · di)) shown are created and the ground material N to be measured is irradiated with near infrared light And a reflectance or transmittance Si of a predetermined wavelength λi In which from the Rameta Q formed by calculating the water content W of the ground material N.

また,図1のブロック図を参照するに,本発明による地盤材料の水分量計測システムは,様々な粒径が混在する地盤材料Nに近赤外光を照射して所定波長λiの反射率又は透過率Siを測定する光量測定装置34,地盤材料NのサンプルTを所定粒径範囲別に分割した複数の構成材料T1,T2,……Tnの各々に近赤外光を照射したときの所定波長λiの反射率又は透過率Siとその構成材料Tiの水分量Wiとの比例パラメタPi(例えば図6に示す比例パラメタai,bi,ci,di)を検出し且つその比例パラメタPiを構成材料Ti毎の粒径範囲に応じて重み付け(Ii)して作成した合成パラメタQ(例えば図6に示す合成パラメタΣ(Ii・ai),Σ(Ii・bi),Σ(Ii・ci),Σ(Ii・di))を記憶する記憶手段16,及び計測対象の地盤材料Nに近赤外光を照射したときの所定波長λiの反射率又は透過率Siと合成パラメタQとからその地盤材料Nの水分量Wを算出する算出手段22を備えてなるものである。   Further, referring to the block diagram of FIG. 1, the water content measurement system for ground material according to the present invention irradiates near-infrared light to the ground material N in which various particle sizes are mixed, or the reflectance of a predetermined wavelength λi or A light quantity measuring device 34 for measuring transmittance Si, a predetermined wavelength when each of a plurality of constituent materials T1, T2,... Tn obtained by dividing a sample T of the ground material N by a predetermined particle size range is irradiated with near infrared light. The proportional parameter Pi (for example, the proportional parameters ai, bi, ci, di shown in FIG. 6) between the reflectance or transmittance Si of λi and the moisture content Wi of the constituent material Ti is detected, and the proportional parameter Pi is detected as the constituent material Ti. A composite parameter Q created by weighting (Ii) according to each particle size range (for example, composite parameters Σ (Ii · ai), Σ (Ii · bi), Σ (Ii · ci), Σ ( Ii ・ di)) 16 and calculating means 22 for calculating the water content W of the ground material N from the reflectance or transmittance Si of the predetermined wavelength λi and the synthetic parameter Q when the near-infrared light is irradiated to the ground material N to be measured. It is prepared.

好ましくは,合成パラメタQを,各構成材料Tiの重量比,体積比,表面積比,平均粒径,その何れかと当該構成材料の吸水率との積,又はそれらの逆数により構成材料Ti毎の比例パラメタPiを重み付けして作成したものとする。望ましい実施例では,図3及び図4に示すように,地盤材料Nを連続的に搬送するベルトコンベア7上の特定部位に光量測定装置34を設け,近赤外光の照射時に算出手段22により連続的に算出される水分量Wの所定時間Eの平均値(=ΣW/E)として地盤材料Nの水分量Wを求める平滑化手段23を設ける(図1参照)。更に望ましい実施例では,図4に示すように,記憶手段16に地盤材料Nの水分量Wの管理基準値Cを記憶し,地盤材料の水分量の算出値W又はその所定時間Eの平均値(=ΣW/E)と管理基準値Cとを比較して地盤材料Nの水分量Wの適否を判定する判定手段24を設ける。   Preferably, the composite parameter Q is proportional to each constituent material Ti by the weight ratio, volume ratio, surface area ratio, average particle diameter of each constituent material Ti, the product of any one of them and the water absorption rate of the constituent material, or the reciprocal thereof. It is assumed that the parameter Pi is created by weighting. In a preferred embodiment, as shown in FIGS. 3 and 4, a light quantity measuring device 34 is provided at a specific portion on the belt conveyor 7 that continuously conveys the ground material N, and is calculated by the calculation means 22 when irradiated with near infrared light. Smoothing means 23 for obtaining the moisture content W of the ground material N as an average value (= ΣW / E) of the moisture content W continuously calculated for a predetermined time E is provided (see FIG. 1). In a further preferred embodiment, as shown in FIG. 4, the management reference value C of the moisture content W of the ground material N is stored in the storage means 16, and the calculated value W of the moisture content of the ground material or an average value thereof for a predetermined time E is stored. (= ΣW / E) is compared with the management reference value C, and determination means 24 for determining the suitability of the water content W of the ground material N is provided.

本発明による地盤材料の水分量計測方法及びシステムは,地盤材料NのサンプルTを所定粒径範囲別に分割した複数の構成材料T1,T2,……Tnの各々に近赤外光を照射したときの所定波長λiの反射率又は透過率Siとその構成材料Tiの水分量Wiとの比例パラメタPiを検出し,その比例パラメタPiに対して構成材料Ti毎の粒径範囲に応じた重み付けIiを施すことにより合成パラメタQを作成し,計測対象の地盤材料Nに近赤外光を照射したときの所定波長λiの反射率又は透過率Siと合成パラメタQとからその地盤材料Nの水分量Wを算出するので,次の有利な効果を奏する。   The ground material moisture content measuring method and system according to the present invention irradiates near infrared light to each of a plurality of constituent materials T1, T2,. The proportional parameter Pi between the reflectance or transmittance Si of the predetermined wavelength λi and the moisture content Wi of the constituent material Ti is detected, and a weighting Ii corresponding to the particle size range for each constituent material Ti is detected with respect to the proportional parameter Pi. A composite parameter Q is created by applying the reflectance or transmittance Si at a predetermined wavelength λi when the ground material N to be measured is irradiated with near-infrared light, and the water content W of the ground material N from the composite parameter Q. The following advantageous effects are obtained.

(イ)近赤外線の所定粒径範囲別の比例パラメタPiをその粒径範囲に応じて重み付けした合成パラメタQを用いることにより,粒径範囲の広い地盤材料Nの水分量Wを近赤外線によって精度よく算出することができる。
(ロ)例えば地盤材料Nの搬送路に本発明を適用することにより,工事現場に順次供給されるバラツキのある地盤材料Nの水分量Wを連続的に精度よく計測することができる。
(ハ)順次供給される地盤材料Nの水分量Wを連続的に計測しつつ管理基準値Cと比較することにより,要求品質を満足しない地盤材料Nの混入を監視し,既往の技術では把握することが困難であった構造物の品質不良を減少させることができる。
(ニ)また,地盤材料Nの水分量Wを連続的に計測することで水分量Wの変動傾向を迅速に把握し,水分量Wの調整等の対策を早期に講じることが可能となり,ひいては土木構造物の品質の安定性を飛躍的に向上させることができる。
(ホ)更に,地盤材料Nの水分量Wを連続的に計測することにより,地盤材料Nを用いる工事において必須の品質管理試験の頻度を合理的に減少させ,或いは異常値の発生に応じて品質管理試験の頻度を合理的に増やすことができる。
(B) By using the synthetic parameter Q obtained by weighting the proportional parameter Pi for each predetermined particle size range of the near infrared ray according to the particle size range, the water content W of the ground material N having a wide particle size range can be accurately measured by the near infrared ray. It can be calculated well.
(B) For example, by applying the present invention to the conveyance path of the ground material N, the water content W of the ground material N having a variation sequentially supplied to the construction site can be continuously and accurately measured.
(C) By continuously measuring the water content W of the ground material N that is sequentially supplied and comparing it with the control reference value C, the contamination of the ground material N that does not satisfy the required quality is monitored, and the existing technology grasps it. It is possible to reduce the quality defect of the structure that was difficult to do.
(D) In addition, by continuously measuring the moisture content W of the ground material N, it is possible to quickly grasp the fluctuation tendency of the moisture content W and take measures such as adjusting the moisture content W at an early stage. The stability of the quality of civil engineering structures can be dramatically improved.
(E) Furthermore, by continuously measuring the water content W of the ground material N, the frequency of quality control tests essential in construction using the ground material N can be rationally reduced, or in response to the occurrence of abnormal values. The frequency of quality control tests can be increased reasonably.

以下,添付図面を参照して本発明を実施するための形態及び実施例を説明する。
本発明の水分量計測システムの一実施例のブロック図である。 本発明の水分量計測方法の流れ図の一例である。 本発明の水分量計測システムの他の実施例の説明図である。 図1の平滑化手段の作用を示す説明図である。 本発明の水分量計測方法を用いた水分量測定値と従来の含水比試験法による測定値との相関を示すグラフの一例である。 本発明による合成パラメタの作成方法の一例の説明図である。 従来の近赤外線を用いた水分計測装置の説明図である。 近赤外線を用いた水分計測の原理を示す説明図である。
Hereinafter, embodiments and examples for carrying out the present invention will be described with reference to the accompanying drawings.
It is a block diagram of one Example of the moisture content measuring system of this invention. It is an example of the flowchart of the moisture content measuring method of this invention. It is explanatory drawing of the other Example of the moisture content measuring system of this invention. It is explanatory drawing which shows the effect | action of the smoothing means of FIG. It is an example of the graph which shows the correlation with the moisture content measured value using the moisture content measuring method of this invention, and the measured value by the conventional water content ratio test method. It is explanatory drawing of an example of the preparation method of the synthetic | combination parameter by this invention. It is explanatory drawing of the moisture measuring apparatus using the conventional near infrared rays. It is explanatory drawing which shows the principle of the water | moisture content measurement using near infrared rays.

図1は,本発明の水分量計測システムのブロック図を示す。図示例のシステムは,地盤材料N(又はそのサンプルT)に近赤外光を照射して所定波長λ(例えばλ1=1.2μm,λ2=1.45μm,λ3=1.94μmの3つの所定波長及び参照波長)の反射率Si,Rを測定する光量測定装置34と,その反射率Si,Rを入力して地盤材料Nの水分量Wを算出するコンピュータ10とを有する。例えば図3に示すように,現場付近で調達され又は発生した岩砕材料その他の地盤材料Nを原材料として構造材料(CSG,セメント改良土,コンクリート等)を製造する工事現場において,ダンプトラック等の運搬機械3で調達又は発生場所から工事現場に順次搬入される地盤材料Nの搬送路(例えばベルトコンベア7)上に光量測定装置34を設置し,その光量測定装置34で測定した反射率Si,Rをコンピュータ10へ入力して地盤材料Nの水分量Wを連続的に計測する。ただし,本発明の適用対象は岩砕材料に限らず,水分量の計測が求められる砂材料・砂礫材料その他の地盤材料Nにも広く適用することができる。   FIG. 1 shows a block diagram of a moisture content measuring system of the present invention. The system in the illustrated example irradiates near-infrared light to the ground material N (or its sample T) and has three predetermined wavelengths λ (for example, λ1 = 1.2 μm, λ2 = 1.45 μm, λ3 = 1.94 μm). A light quantity measuring device 34 for measuring the reflectance Si, R of the wavelength and the reference wavelength, and a computer 10 for calculating the moisture content W of the ground material N by inputting the reflectance Si, R. For example, as shown in FIG. 3, at a construction site where a structural material (CSG, cement-modified soil, concrete, etc.) is produced using a rock material or other ground material N procured or generated near the site as a raw material, a dump truck, etc. The light quantity measuring device 34 is installed on the transport path (for example, the belt conveyor 7) of the ground material N that is procured by the transporting machine 3 from the place where it is procured or sequentially generated to the construction site, and the reflectance Si measured by the light quantity measuring device 34, R is input to the computer 10 and the moisture content W of the ground material N is continuously measured. However, the application object of the present invention is not limited to the crushed material, but can be widely applied to sand materials, gravel materials and other ground materials N for which measurement of water content is required.

図示例の光量測定装置34は,図7を参照して上述した従来の水分計測装置と同様の構成とすることができ,例えば0.7μm〜2.5μm程度の波長範囲の近赤外光を出力する光源ランプと,その出力光を地盤材料N(又はそのサンプルT)まで導く光学系と,地盤材料Nからの反射光中の所定波長λi(及び参照波長)の光量を電気信号(反射率)Si,Rに変換する受光素子と,地盤材料Nからの反射光を受光素子まで導く光学系とを備え,その変換された電気信号Si,RをAD変換器経由でコンピュータ10へ出力するものである。図示例の装置は,可視光を照射する光源ランプを用い,その光源ランプと地盤材料Nとの間に所定波長λi(及び参照波長)の近赤外光を透過させるフィルタホイール43を設けている。ただし,本発明で用いる光量測定装置34は図7の例に限定されず,近赤外光を用いて所定波長λi(及び参照波長)の反射率Si,Rを測定する他の装置とすることも可能である。   The light quantity measuring device 34 in the illustrated example can have the same configuration as that of the conventional moisture measuring device described above with reference to FIG. 7. For example, near-infrared light having a wavelength range of about 0.7 μm to 2.5 μm can be obtained. A light source lamp for output, an optical system for guiding the output light to the ground material N (or its sample T), and a light quantity of a predetermined wavelength λi (and a reference wavelength) in the reflected light from the ground material N as an electrical signal (reflectivity) ) Equipped with a light receiving element for converting to Si, R and an optical system for guiding the reflected light from the ground material N to the light receiving element, and outputting the converted electric signals Si, R to the computer 10 via an AD converter It is. The illustrated apparatus uses a light source lamp that emits visible light, and a filter wheel 43 that transmits near-infrared light having a predetermined wavelength λi (and a reference wavelength) is provided between the light source lamp and the ground material N. . However, the light quantity measuring device 34 used in the present invention is not limited to the example of FIG. 7, and is another device that measures the reflectance Si, R of the predetermined wavelength λi (and the reference wavelength) using near infrared light. Is also possible.

図示例のコンピュータ10は,キーボード等の入力装置11と,ディスプレイ等の出力装置12と,一次又は二次記憶装置等の記憶手段16とを有する。記憶装置16には,地盤材料Nの水分量Wを算出するために必要な後述する合成パラメタQ等を記憶する。また内蔵プログラムとして,光量測定装置34から所定波長λiの反射率Si,Rその他のデータを入力する入力手段14と,その反射率Si,Rと合成パラメタQとから地盤材料Nの水分量Wを算出する算出手段22と,算出した水分量W等を出力装置12へ出力する出力手段15とを有している。なお,図示例のコンピュータ10は,内臓プログラムとして合成パラメタQを作成する作成手段21を有しているが,本発明は合成パラメタQが記憶手段16に記憶されていれば足り,合成パラメタ作成手段21は本発明に必須のものではない。また,図示例の水分量計測システムは,合成パラメタQを作成するために必要な分離装置31,重量計測器32,含水比試験装置33を有しているが,合成パラメタQが記憶手段16に予め記憶されている場合は,これらの装置を省略できる。   The computer 10 in the illustrated example includes an input device 11 such as a keyboard, an output device 12 such as a display, and storage means 16 such as a primary or secondary storage device. The storage device 16 stores a later-described synthesis parameter Q and the like necessary for calculating the moisture content W of the ground material N. As a built-in program, the moisture content W of the ground material N is calculated from the input means 14 for inputting the reflectance Si, R and other data of the predetermined wavelength λi from the light quantity measuring device 34 and the reflectance Si, R and the composite parameter Q. Calculation means 22 for calculating and output means 15 for outputting the calculated water content W and the like to the output device 12 are provided. The computer 10 in the illustrated example has a creation means 21 for creating the synthesis parameter Q as a built-in program. However, the present invention only requires that the synthesis parameter Q is stored in the storage means 16, and the synthesis parameter creation means. 21 is not essential to the present invention. In addition, the moisture content measurement system of the illustrated example has a separation device 31, a weight measuring device 32, and a water content ratio testing device 33 that are necessary for creating the synthesis parameter Q, but the synthesis parameter Q is stored in the storage means 16. If stored in advance, these devices can be omitted.

図2は,図1のシステムを用いて地盤材料Nの水分量Wを計測する方法の流れ図を示す。以下,図2の流れ図を参照して図1のシステムを説明する。図2のステップS101〜S104は,コンピュータ10の合成パラメタ作成手段21により,粒径範囲の広い地盤材料Nの所定波長λiの反射率Si,Rからその地盤材料Nの水分量Wを算出するための合成パラメタQを作成する初期処理を示す。先ずステップS101において,地盤材料NのサンプルTを用い,そのサンプルTを図1の分離装置31によって所定粒径範囲別の複数の構成材料T1,T2,……Tnに分割する。例えば分離装置31を篩分け装置とし,サンプルTを粒径0〜5mm,5〜10mm,10〜20mm,20〜40mm,及び40〜80mmの5つの構成材料T1〜T5に分割するが,各地盤材料Tiの粒径範囲は,後述する同じ比例パラメタPが適用できる範囲内において任意に設定可能である。地盤材料N(又はそのサンプルT)が80mm以上の構成材料を含む場合は,80〜150mmの構成材料T6を含む6つの構成材料T1〜T6に分割してもよい。   FIG. 2 shows a flowchart of a method for measuring the water content W of the ground material N using the system of FIG. The system of FIG. 1 will be described below with reference to the flowchart of FIG. Steps S101 to S104 in FIG. 2 are used to calculate the water content W of the ground material N from the reflectance Si, R of the ground material N having a wide particle size range at a predetermined wavelength λi by the composite parameter creating means 21 of the computer 10. The initial process for creating the composite parameter Q is shown. First, in step S101, a sample T of the ground material N is used, and the sample T is divided into a plurality of constituent materials T1, T2,. For example, the separation device 31 is a sieving device, and the sample T is divided into five constituent materials T1 to T5 having a particle size of 0 to 5 mm, 5 to 10 mm, 10 to 20 mm, 20 to 40 mm, and 40 to 80 mm. The particle diameter range of the material Ti can be arbitrarily set within a range in which the same proportional parameter P described later can be applied. When the ground material N (or the sample T thereof) includes a constituent material of 80 mm or more, it may be divided into six constituent materials T1 to T6 including a constituent material T6 of 80 to 150 mm.

ステップS102において,含水比試験装置33により各構成材料Tiの水分量Wiを測定し,重量計測器32により各構成材料Tiの重量比(サンプルTの全体重量に対する割合(%))を測定する。含水比試験装置33は,上述した恒温乾燥炉,電子レンジ,又はフライパンを用いて乾燥したときに失われる質量から各構成材料Tiの水分量Wiを求めたものとすることができる。また,ステップS103において,光量測定装置34により各構成材料Tiに近赤外光を照射して所定波長λiの反射率Si,Rを測定し,その反射率Si,Rと水分量Wとが上述した(1)式又は(2)式を満たすように,各構成材料Tiの比例パラメタPi((1)式又は(2)式の係数a,b,c,d)をキャリブンレーションにより検出する。図6は,サンプルTを分割した構成材料T1,T2,……Tn毎に,(1)式又は(2)式を満たす係数ai,bi,ci,diが比例パラメタPiとして検出できることを示している。ステップS103で検出された各構成材料Tiの比例パラメタPiは記憶手段16に記憶しておく。   In step S102, the moisture content Wi of each constituent material Ti is measured by the water content ratio testing device 33, and the weight ratio (ratio (%) to the total weight of the sample T) of each constituent material Ti is measured by the weight measuring device 32. The water content ratio testing device 33 can determine the moisture content Wi of each constituent material Ti from the mass lost when drying using the above-described constant temperature drying oven, microwave oven, or frying pan. In step S103, the light quantity measuring device 34 irradiates each constituent material Ti with near-infrared light to measure the reflectance Si, R of the predetermined wavelength λi, and the reflectance Si, R and the water content W are described above. Thus, the proportional parameter Pi (coefficients a, b, c, d in the formula (1) or (2)) of each constituent material Ti is detected by calibration so that the formula (1) or (2) is satisfied. . FIG. 6 shows that the coefficients ai, bi, ci, di satisfying the equation (1) or (2) can be detected as the proportional parameter Pi for each of the constituent materials T1, T2,. Yes. The proportional parameter Pi of each constituent material Ti detected in step S103 is stored in the storage means 16.

次いで,ステップS104において,各構成材料Tiの比例パラメタPiに対して構成材料Ti毎の粒径範囲に応じた重み付けIiを施すことにより,粒径範囲の広い地盤材料Nに適用可能な合成パラメタQを作成する。例えば図6に示すように,ステップS102で測定した各構成材料Tiの重量比を重み付けIiとし,各構成材料Tiの比例パラメタPi((1)式又は(2)式を満たす係数ai,bi,ci,di)に重み付けIiを乗じたうえで合成することにより,合成パラメタQ(=Σ(Ii・ai),Σ(Ii・bi),Σ(Ii・ci),Σ(Ii・di))を作成する。表1は,地盤材料NのサンプルTを粒径0〜5mm,5〜10mm,10〜20mm,20〜40mm,及び40〜80mmの5つの構成材料T1〜T5に分割し,各構成材料Tiの比例パラメタPi及び重量比(重み付け)Iiを検出したうえで,図6と同様に各構成材料Tiの比例パラメタPiと重量比Iiとを乗算して作成した合成パラメタQの一例を示す。   Next, in step S104, weighting Ii corresponding to the particle size range for each constituent material Ti is applied to the proportional parameter Pi of each constituent material Ti, so that the composite parameter Q applicable to the ground material N having a wide particle size range is obtained. Create For example, as shown in FIG. 6, the weight ratio of each constituent material Ti measured in step S102 is set as a weight Ii, and proportional parameters Pi of the constituent materials Ti (coefficients ai, bi, ci, di) is multiplied by weighting Ii, and then synthesized to obtain a synthesis parameter Q (= Σ (Ii · ai), Σ (Ii · bi), Σ (Ii · ci), Σ (Ii · di)) Create Table 1 shows that the sample T of the ground material N is divided into five constituent materials T1 to T5 having a particle size of 0 to 5 mm, 5 to 10 mm, 10 to 20 mm, 20 to 40 mm, and 40 to 80 mm. An example of the composite parameter Q created by detecting the proportional parameter Pi and the weight ratio (weighting) Ii and multiplying the proportional parameter Pi of each constituent material Ti by the weight ratio Ii in the same manner as in FIG.

ステップS104において,各構成材料Tiの重量比を重み付けIiとして各々の比例パラ1メタPiから合成パラメタQを作成することにより,後述するように従来の恒温乾燥炉,電子レンジ,又はフライパンを用いた含水比試験と高い相関性のある水分量Wを算出することができる(図5参照)。また,合成パラメタQによって含水比試験と高い相関性のある水分量Wが求まるように,各構成材料Tiの比例パラメタPiに重量比Iiと共に適当な補正係数を乗じることも有効であり,表1の合成パラメタQはそのような補正係数を乗じて作成したものである。ただし,構成材料Ti毎の粒径範囲に応じた重み付けIiは質量比に限らず,含水比試験と高い相関性のある水分量Wが求まるように,例えば各構成材料Tiの体積比,表面積比,平均粒径,又はそれらの逆数とすることも可能である。ステップS104で作成された合成パラメタQは記憶手段16に記憶して後述の水分量の算出(ステップS106)で使用する。   In step S104, the weight ratio of each constituent material Ti is used as a weighting Ii to create a synthesis parameter Q from each proportional parameter 1 Meta Pi, thereby using a conventional constant temperature drying oven, a microwave oven, or a frying pan as described later. It is possible to calculate the water content W highly correlated with the water content ratio test (see FIG. 5). It is also effective to multiply the proportional parameter Pi of each constituent material Ti by an appropriate correction factor together with the weight ratio Ii so that the moisture content W highly correlated with the water content ratio test can be obtained by the synthesis parameter Q. Table 1 The composite parameter Q is created by multiplying such a correction coefficient. However, the weighting Ii corresponding to the particle size range for each constituent material Ti is not limited to the mass ratio, and for example, the volume ratio and the surface area ratio of each constituent material Ti are obtained so that the water content W highly correlated with the water content ratio test can be obtained. , Average particle size, or their reciprocal. The synthesis parameter Q created in step S104 is stored in the storage means 16 and used in the calculation of the moisture amount (step S106) described later.

また,ステップS104において,各構成材料Tiの重み付けIiに,各構成材料Tiの重量比,体積比,表面積比,平均粒径と共に,各構成材料Tiの吸水率を反映させることも有効である。一般的に地盤座標Nの各構成材料Tiは,吸水率が大きいほど密度が小さいことが知られており,吸水率が内部の空隙量(保水能力)と密接な関係があることが知れられている。従って,例えば各構成材料Tiの重量比(又は体積比,表面積比,平均粒径)と吸水率との積(重量比×吸水率)を重み付けIiとすることにより,各構成材料Tiの内部の空隙量(保水能力)に応じて各構成材料Tiの比例パラメタPiを合成することができる。この場合は,例えばステップS102において各構成材料Tiの重量比(又は体積比,表面積比,平均粒径)を測定すると共に,各構成材料Tiの吸水率を従来方法で測定する(非特許文献5及び6参照)。   In step S104, it is also effective to reflect the water absorption rate of each constituent material Ti together with the weight ratio, volume ratio, surface area ratio, and average particle diameter of each constituent material Ti in the weighting Ii of each constituent material Ti. It is generally known that each component Ti of the ground coordinate N has a smaller density as the water absorption rate increases, and that the water absorption rate is closely related to the internal void volume (water retention capacity). Yes. Therefore, for example, by setting the product (weight ratio × water absorption) of the weight ratio (or volume ratio, surface area ratio, average particle diameter) of each constituent material Ti and the water absorption rate to weight Ii, The proportional parameter Pi of each constituent material Ti can be synthesized according to the void amount (water retention capacity). In this case, for example, in step S102, the weight ratio (or volume ratio, surface area ratio, average particle diameter) of each constituent material Ti is measured, and the water absorption rate of each constituent material Ti is measured by a conventional method (Non-Patent Document 5). And 6).

また,一般的にダムや防潮堤などの建設工事に使用する地盤材料のうち粗粒材料においては,要求品質を満たす高品質(低吸水率)の材料を用いることから,相対的な吸水率は粒径0〜5mmの構成材料T1が非常に大きく,粒径5mm以上の構成材料T2〜T5では極めて小さいことが知られている。従って,例えば粒径0〜5mmの構成材料T1の比例パラメタPiのみを重量比×吸水率により重み付けし,他の構成材料T2〜T5の比例パラメタPiは重量比で重み付けし,それらを合成することにより,地盤材料Nの全体の保水量に対する粒径0〜5mmの構成材料T1の保水能力の貢献度を反映した合成パラメタQを作成することも有効である。更に,各構成材料Tiの重量比(又は体積比,表面積比,平均粒径)と吸水率との積の逆数(重量比×吸水率の逆数)を重み付けIiとすることも考えられる。   In addition, since the coarse-grained material used for construction work such as dams and seawalls is generally a high-quality (low water absorption) material that satisfies the required quality, the relative water absorption rate is It is known that the constituent material T1 having a particle diameter of 0 to 5 mm is very large, and the constituent materials T2 to T5 having a particle diameter of 5 mm or more are extremely small. Therefore, for example, only the proportional parameter Pi of the constituent material T1 having a particle diameter of 0 to 5 mm is weighted by the weight ratio × water absorption, and the proportional parameters Pi of the other constituent materials T2 to T5 are weighted by the weight ratio and synthesized. Thus, it is also effective to create a composite parameter Q that reflects the contribution of the water retention capacity of the constituent material T1 having a particle diameter of 0 to 5 mm to the total water retention amount of the ground material N. Furthermore, the reciprocal of the product of the weight ratio (or volume ratio, surface area ratio, average particle diameter) of each constituent material Ti and the water absorption (weight ratio × reciprocal of water absorption) may be considered as the weight Ii.

なお,ステップS101〜S104の合成パラメタQの作成処理は,必ずしも工事現場で行う必要はなく,例えば実験室等において地盤材料NのサンプルTを用いて予め作成し,その合成パラメタQを現場のコンピュータ10に入力して記憶手段16に記憶することも可能である。この場合は,ステップS101〜S104に代えて関係式Kをコンピュータ10に入力するステップを設ければ足り,地盤材料NのサンプルTから合成パラメタQを作成するステップS101〜S104は省略可能である。   It should be noted that the process of creating the composite parameter Q in steps S101 to S104 is not necessarily performed at the construction site. For example, the composite parameter Q is created in advance using a sample T of the ground material N in a laboratory or the like, and the composite parameter Q is generated on the site computer. It is also possible to input to 10 and store in the storage means 16. In this case, it suffices to provide a step for inputting the relational expression K to the computer 10 instead of steps S101 to S104, and steps S101 to S104 for creating the synthesis parameter Q from the sample T of the ground material N can be omitted.

図2のステップS105〜S106は,記憶手段16に記憶した合成パラメタQに基づき,計測対象の地盤材料Nの水分量Wを算出する処理を示す。先ずステップS105において,光量測定装置34により計測対象の地盤材料Nに近赤外光を照射して所定波長λiの反射率Si,Rを測定し,ステップS106において,コンピュータ10の算出手段22によりその反射率Si,Rと合成パラメタQとから地盤材料Nの水分量Wを算出する。図5のグラフは,地盤材料Nの所定波長λiの反射率Si,Rから表1の合成パラメタQによって算出した水分量Wと,従来の恒温乾燥炉,電子レンジ,又はフライパンを用いた含水比試験によって求めたその地盤材料Nの水分量とを比較した実験結果を示す。図5の実験結果は,合成パラメタQにより算出した水分量Wが,従来の含水比試験法により求めた水分量と高い相関性(相関係数=0.992程度の相関性)があることを表しており,上述した合成パラメタQを用いることにより,粒径範囲の広い地盤材料Nの水分量Wを近赤外線によって精度よく計測できることを示している。   Steps S <b> 105 to S <b> 106 in FIG. 2 indicate processing for calculating the moisture content W of the ground material N to be measured based on the synthesis parameter Q stored in the storage unit 16. First, in step S105, the light quantity measuring device 34 irradiates near-infrared light to the ground material N to be measured to measure the reflectances Si and R of the predetermined wavelength λi, and in step S106, the calculation means 22 of the computer 10 calculates the reflectance. The water content W of the ground material N is calculated from the reflectance Si, R and the composite parameter Q. The graph of FIG. 5 shows the moisture content W calculated from the reflectance Si, R of the ground material N at a predetermined wavelength λi by the synthesis parameter Q in Table 1 and the water content ratio using a conventional constant temperature drying oven, microwave oven, or pan. The experimental result which compared the moisture content of the ground material N calculated | required by the test is shown. The experimental results in FIG. 5 show that the water content W calculated by the synthesis parameter Q has a high correlation (correlation coefficient = correlation of about 0.992) with the water content obtained by the conventional water content ratio test method. This shows that the moisture content W of the ground material N having a wide particle size range can be accurately measured by near infrared rays by using the synthetic parameter Q described above.

また,図3に示すように,光量測定装置34を地盤材料Nの搬送ベルトコンベア7上の特定部位に設置し,その光量測定装置34の測定値(反射率Si,R)をコンピュータ10の算出手段22へ入力するステップS105と,合成パラメタQにより水分量Wを算出するステップS106とを繰り返すことにより,バラツキのある地盤材料Nの水分量Wを連続的に精度よく計測することができる。図4の連続計測のグラフは,ステップS105〜S106のサイクルの繰り返しにより連続的に計測される地盤材料Nの水分量Wの一例を示す。   Further, as shown in FIG. 3, the light quantity measuring device 34 is installed at a specific portion of the ground material N on the conveyor belt conveyor 7 and the measured value (reflectance Si, R) of the light quantity measuring device 34 is calculated by the computer 10. By repeating step S105 input to the means 22 and step S106 of calculating the moisture content W using the synthesis parameter Q, the moisture content W of the ground material N having variations can be measured continuously and accurately. The continuous measurement graph of FIG. 4 shows an example of the moisture content W of the ground material N that is continuously measured by repeating the cycle of steps S105 to S106.

図2のステップS110〜S111は,算出手段22により連続的に算出された地盤材料Nの水分量Wをコンピュータ10の判定手段24に入力し,判定手段24において,地盤材料Nの水分量Wを管理基準値Cと比較して水分量Wの適否(地盤材料Nの品質)を判定する処理を示す。このような管理基準値Cとして,例えば水分量Wの異なる地盤材料Nを用いて複数の構造材料を製造し,その構造材料の各々の強度(例えば一軸圧縮強度)を試験して要求強度を満足する水分量Wの上限値(又は下限値)を予め求め,その試験で求めた水分量の上限値(又は下限値)を例えばステップS101において記憶手段16に登録しておくことができる。強度だけでなく,構造材料の密度,施工性(トラフィカビリティなど)等に基づき管理基準値Cを設定することもできる。   In steps S110 to S111 in FIG. 2, the moisture content W of the ground material N continuously calculated by the calculation means 22 is input to the determination means 24 of the computer 10, and the determination means 24 determines the moisture content W of the ground material N. The process which determines the propriety (the quality of the ground material N) of the water content W compared with the management reference value C is shown. As such a control standard value C, for example, a plurality of structural materials are manufactured using ground materials N having different moisture contents W, and the strength (for example, uniaxial compressive strength) of each structural material is tested to satisfy the required strength. The upper limit value (or lower limit value) of the moisture amount W to be obtained can be obtained in advance, and the upper limit value (or lower limit value) of the moisture amount obtained in the test can be registered in the storage means 16 in step S101, for example. The management reference value C can be set based not only on the strength but also on the density of the structural material, workability (trafficability, etc.), and the like.

ステップS111において地盤材料Nの水分量Wが管理基準値Cから外れたときは,例えばステップS112において地盤材料Nの水分量Wを調整したうえでステップS105へ戻り,上述したステップS105〜S111の繰り返しによって地盤材料Nの水分量Wを再判定することができる。このように地盤材料Nの水分量Wを連続的に計測しながら管理基準値Cと比較することにより,要求品質を満足しない地盤材料Nの混入を防ぎ,従来の含水比試験方法では把握すらできなかった構造材料の品質不良を大幅に減少させ,ひいては土木構造物の品質の安定性を向上させることができる。   When the water content W of the ground material N deviates from the management reference value C in step S111, for example, after the water content W of the ground material N is adjusted in step S112, the process returns to step S105, and the above-described steps S105 to S111 are repeated. Thus, the moisture content W of the ground material N can be re-determined. In this way, by continuously measuring the moisture content W of the ground material N and comparing it with the control reference value C, contamination of the ground material N that does not satisfy the required quality can be prevented, and even the conventional moisture content test method can grasp it. It is possible to greatly reduce the quality defects of the structural materials that were not present, and to improve the quality stability of civil engineering structures.

図3の実施例では,地盤材料Nに水及びセメント(固化材)を投入して構造材料(CSG,セメント改良土,コンクリート等)を製造するミキサ前段のベルトコンベア7において地盤材料Nの水分量Wを図2の流れ図に沿って計測すると共に,ミキサ後段のベルトコンベア7において地盤材料Nを含む構造材料の水分量Wを図2の流れ図に沿って計測している。ミキサ8で製造する構造材料が要求品質(例えば強度)を満足するような水分量Wを管理基準値Cとしてコンピュータ10の記憶手段16に登録し,ミキサ前段で計測された地盤材料Nの水分量Wと管理基準値Cとの差に基づいてミキサ8への水及びセメントの投入量を調整することにより,要求品質を満足する構造材料を製造する。また,ミキサ前段で計測された構造材料の水分量Wと管理基準値Cとを比較し,ステップS111において構造材料の水分量Wが管理基準値Cの範囲内に納まっていることを確認する。水分量Wが管理基準値Cから外れたときは,ステップS112においてミキサ8への水及びセメントの投入量を再調整する。   In the embodiment of FIG. 3, the water content of the ground material N in the belt conveyor 7 at the front stage of the mixer for manufacturing the structural material (CSG, cement improved soil, concrete, etc.) by adding water and cement (solidifying material) to the ground material N. 2 is measured along the flowchart of FIG. 2, and the moisture content W of the structural material including the ground material N is measured along the flowchart of FIG. The amount of moisture W of the ground material N measured in the previous stage of the mixer is registered in the storage means 16 of the computer 10 as a management reference value C, such that the amount of moisture W that the structural material manufactured by the mixer 8 satisfies the required quality (for example, strength). A structural material that satisfies the required quality is manufactured by adjusting the amount of water and cement charged into the mixer 8 based on the difference between W and the control reference value C. Further, the moisture content W of the structural material measured in the previous stage of the mixer is compared with the management reference value C, and it is confirmed in step S111 that the moisture content W of the structural material is within the range of the management reference value C. When the moisture amount W deviates from the control reference value C, the amounts of water and cement charged into the mixer 8 are readjusted in step S112.

図2のステップS111において地盤材料Nの水分量Wが管理基準値Cの範囲内であると判定された場合はステップS113へ進み,例えばステップS106で計測された水分量Wをコンピュータ10の記憶手段16に累積記憶したのち,ステップS114において地盤材料Nの水分量計測を継続するか否かを判断する。継続する場合はステップS105へ戻り,次回供給される地盤材料Nについて上述したステップS105〜S112を繰り返す。ステップS113において連続的に計測される地盤材料Nの水分量Wを記憶手段16に累積記憶しておくことにより,次回以降のステップS110〜112の判定処理において,判定手段24により供給材料Nの水分量Wの経時的変化(移動平均)を判定し,地盤材料Nの品質の変化を迅速に把握することが可能となる。   When it is determined in step S111 in FIG. 2 that the water content W of the ground material N is within the range of the management reference value C, the process proceeds to step S113. For example, the water content W measured in step S106 is stored in the storage means of the computer 10. After accumulative storage in step 16, it is determined in step S114 whether or not to continue measuring the moisture content of the ground material N. When continuing, it returns to step S105 and repeats step S105-S112 mentioned above about the ground material N supplied next time. By accumulating the moisture content W of the ground material N continuously measured in step S113 in the storage means 16, the determination means 24 determines the moisture content of the supply material N in the determination process of steps S110 to 112 next time. It is possible to determine the change over time (moving average) of the amount W and quickly grasp the change in the quality of the ground material N.

こうして本発明の目的である「地盤材料に含まれる水分量を連続的に精度よく計測することができる方法及びシステム」の提供を達成できる。   Thus, it is possible to provide the “method and system capable of continuously and accurately measuring the amount of water contained in the ground material”, which is an object of the present invention.

図2のステップS107〜S109は,算出手段22により連続的に算出された地盤材料Nの水分量Wをコンピュータ10の平滑化手段23へ入力し,平滑化手段23において,所定時間Eの平均値(=ΣW/E)として地盤材料Nの水分量Wを求める処理を示す。粒径範囲の広い地盤材料Nの場合は,程度の違いはあるが計測部位によって水分量Wの計測値のバラツキを避けることができず,例えば従来の含水比比試験では一定量以上の地盤材料Nを対象とすることで計測値のバラツキの影響を避けている。これに対して近赤外線を用いる本発明では,近赤外光を照射する局所的な部位の水分量W(例えば構成材料の1粒の水分量W)を連続的に計測することになるので,図4の連続計測のグラフに示すように,水分量Wの計測値のバラツキが大きくなりうる。平準化手段23において,連続的に算出される水分量Wの計測値を所定時間Eで平均化し,その平均値(=ΣW/E)を水分量Wとすることにより,計測値のバラツキの影響を避けることができる。   In steps S107 to S109 of FIG. 2, the moisture content W of the ground material N continuously calculated by the calculation means 22 is input to the smoothing means 23 of the computer 10, and the smoothing means 23 averages the predetermined time E. The process for obtaining the water content W of the ground material N as (= ΣW / E) is shown. In the case of the ground material N having a wide particle size range, although there is a difference in degree, it is not possible to avoid variations in the measured value of the water content W depending on the measurement site. By avoiding the influence of variation in measured values. On the other hand, in the present invention using the near infrared ray, the moisture content W (for example, the moisture content W of one grain of the constituent material) of the local part irradiated with the near infrared light is continuously measured. As shown in the continuous measurement graph of FIG. 4, the variation in the measured value of the water content W can be large. In the leveling means 23, the measurement value of the moisture amount W calculated continuously is averaged over a predetermined time E, and the average value (= ΣW / E) is set as the moisture amount W, thereby affecting the variation of the measurement value. Can be avoided.

ステップS107において水分量Wの計測値を平準化するか否かを判断し,平準化するときはステップS108において所定時間Eの水分量Wの計測値を待ち合わせる。すでに所定時間Eの水分量Wの計測値が算出されているときは,ステップS109において,今回算出された水分量Wの計測値と記憶手段16に記録された前回までの所定時間Eの水分量Wの計測値とを平準化手段23へ入力し,所定時間Eの平均値(=ΣW/E)として地盤材料Nの水分量Wを算出する。図4の移動平均のグラフは,ステップS109において算出された地盤材料Nの水分量Wの一例を示す。図4の2つのグラフの比較から,所定時間の平均値(=ΣW/E)を水分量Wとすることにより,計測値のバラツキの影響を避けられることが分かる。   In step S107, it is determined whether or not the measured value of the water content W is leveled. When leveling, the measured value of the water content W for a predetermined time E is waited in step S108. When the measured value of the moisture amount W for the predetermined time E has already been calculated, the measured amount of the moisture amount W calculated this time and the moisture amount for the predetermined time E recorded in the storage means 16 in step S109. The measured value of W is input to the leveling means 23, and the moisture content W of the ground material N is calculated as an average value (= ΣW / E) for a predetermined time E. The moving average graph of FIG. 4 shows an example of the water content W of the ground material N calculated in step S109. From the comparison of the two graphs in FIG. 4, it can be seen that the influence of variation in the measured values can be avoided by setting the average value (= ΣW / E) for a predetermined time as the water content W.

平準化手段23において移動平均を求める所定時間Eは,例えばベルトコンベア7(図3参照)による地盤材料Nの1m当たりの搬送時間として,予めコンピュータ10の記憶手段16に登録しておくことができる。そのような搬送時間を用いることで,ステップS109において地盤材料Nの1m当たりの水分量Wを算出することができる。また,また,ステップS109において,平準化手段23によって地盤材料Nの10mないし100m当たりの水分量Wを算出し,1m当たりの水分量Wと10mないし100m当たりの水分量Wとの両者を同時に出力装置12へ出力・表示することにより,地盤材料Nの水分量Wの長期的変動傾向と短期的変動傾向との両者を同時に確認し,その両面から地盤材料Nの品質を管理,監視することも可能である。 The predetermined time E for obtaining the moving average in the leveling means 23 can be registered in advance in the storage means 16 of the computer 10 as the transport time per 1 m 3 of the ground material N by the belt conveyor 7 (see FIG. 3), for example. it can. By using such a conveyance time, the water content W per 1 m 3 of the ground material N can be calculated in step S109. Furthermore, also, in step S109, to 10 m 3 without the ground material N by leveling means 23 calculates the water content W per 100 m 3, to no water content W and 10 m 3 per 1 m 3 and the water content W per 100 m 3 By simultaneously outputting and displaying both to the output device 12, both the long-term fluctuation tendency and the short-term fluctuation tendency of the moisture content W of the ground material N can be confirmed simultaneously, and the quality of the ground material N can be controlled from both sides. , It is also possible to monitor.

1…採取場 2…破砕装置
3…運搬装置 5…重量計測器
6…投入ホッパー 7…ベルトコンベア
8…ミキサ
10…コンピュータ 11…入力装置
12…出力装置 14…入力手段
15…出力手段 16…記憶手段
21…合成パラメタ作成手段 22…算出手段
23…平滑化手段 24…判定手段
31…分離装置 32…重量計測器
33…含水比試験装置 34…光量測定装置
41…光源 42…レンズ
43…フィルタホイール 44…モータ
45…平面鏡 46…レンズ
47…凹面鏡 48…凸面鏡
49…赤外線透過フィルタ 50…受光素子
51…増幅器 52…サンプルホールド回路
53…AD変換器
N…地盤材料 T…地盤材料サンプル
W…水分量(含水比) I…重み付け(係数)
S,R…反射率又は透過率
C…管理基準値 E…所定時間
P…比例パラメタ Q…合成パラメタ
DESCRIPTION OF SYMBOLS 1 ... Sampling place 2 ... Crushing device 3 ... Transport device 5 ... Weight measuring device 6 ... Loading hopper 7 ... Belt conveyor 8 ... Mixer 10 ... Computer 11 ... Input device 12 ... Output device 14 ... Input means 15 ... Output means 16 ... Memory Means 21 ... Synthetic parameter creation means 22 ... Calculation means 23 ... Smoothing means 24 ... Determination means 31 ... Separation device 32 ... Weight measuring device 33 ... Moisture ratio test device 34 ... Light quantity measurement device 41 ... Light source 42 ... Lens 43 ... Filter wheel 44 ... Motor 45 ... Plane mirror 46 ... Lens 47 ... Concave mirror 48 ... Convex mirror 49 ... Infrared transmission filter 50 ... Light receiving element 51 ... Amplifier 52 ... Sample hold circuit 53 ... AD converter N ... Ground material T ... Ground material sample W ... Water content (Water content) I ... Weighting (coefficient)
S, R ... reflectance or transmittance C ... management reference value E ... predetermined time P ... proportional parameter Q ... composite parameter

Claims (8)

様々な粒径が混在する地盤材料のサンプルを所定粒径範囲別の複数の構成材料に分割し,前記構成材料の各々に近赤外光を照射したときの所定波長の反射率又は透過率と当該構成材料の水分量との比例パラメタを検出し且つその比例パラメタを構成材料毎の粒径範囲に応じて重み付けした合成パラメタを作成し,計測対象の前記地盤材料に前記近赤外光を照射したときの所定波長の反射率又は透過率と前記合成パラメタとから当該地盤材料の水分量を算出してなる地盤材料の水分量計測方法。 A sample of a ground material in which various particle sizes are mixed is divided into a plurality of constituent materials according to a predetermined particle size range, and the reflectance or transmittance of a predetermined wavelength when each of the constituent materials is irradiated with near infrared light Detecting a proportional parameter with the moisture content of the constituent material, creating a composite parameter that weights the proportional parameter according to the particle size range for each constituent material, and irradiating the ground material to be measured with the near infrared light A method for measuring a moisture content of a ground material, which is obtained by calculating a moisture content of the ground material from the reflectance or transmittance at a predetermined wavelength and the synthetic parameter. 請求項1の計測方法において,前記合成パラメタを,前記各構成材料の重量比,体積比,表面積比,平均粒径,その何れかと当該構成材料の吸水率との積,又はそれらの逆数により構成材料毎の比例パラメタを重み付けして作成したものとしてなる地盤材料の水分量計測方法。 2. The measurement method according to claim 1, wherein the synthetic parameter is configured by a weight ratio, a volume ratio, a surface area ratio, an average particle diameter of each of the constituent materials, a product of any one of them and a water absorption rate of the constituent materials, or an inverse number thereof. A method for measuring the moisture content of ground materials, which is created by weighting proportional parameters for each material. 請求項1又は2の計測方法において,前記地盤材料をベルトコンベアで連続的に搬送しながら前記近赤外光をベルトコンベア上の特定部位に照射し,その照射時に連続的に算出される水分量の所定時間の平均値として地盤材料の水分量を求めてなる地盤材料の水分量計測方法。 3. The measurement method according to claim 1 or 2, wherein the near-infrared light is irradiated to a specific part on the belt conveyor while the ground material is continuously conveyed by a belt conveyor, and the moisture amount calculated continuously at the time of irradiation. A method for measuring the amount of water in a ground material obtained by obtaining the amount of water in the ground material as an average value for a predetermined time. 請求項1から3の何れかの計測方法において,前記地盤材料の水分量の管理基準値を定め,前記地盤材料の水分量の算出値又はその所定時間の平均値と管理基準値とを比較して当該地盤材料の水分量の適否を判定してなる地盤材料の水分量計測方法。 The measurement method according to any one of claims 1 to 3, wherein a management reference value for the moisture content of the ground material is determined, and a calculated value of the moisture content of the ground material or an average value thereof for a predetermined time is compared with a management reference value. A method for measuring the moisture content of a ground material, which is determined by determining whether the moisture content of the ground material is appropriate. 様々な粒径が混在する地盤材料に近赤外光を照射して所定波長の反射率又は透過率を測定する光量測定装置,前記地盤材料のサンプルを所定粒径範囲別に分割した複数の構成材料の各々に前記近赤外光を照射したときの所定波長の反射率又は透過率と当該構成材料の水分量との比例パラメタを検出し且つその比例パラメタを構成材料毎の粒径範囲に応じて重み付けして作成した合成パラメタを記憶する記憶手段,及び計測対象の前記地盤材料に前記近赤外光を照射したときの所定波長の反射率又は透過率と前記合成パラメタとから当該地盤材料の水分量を算出する算出手段を備えてなる地盤材料の水分量計測システム。 A light quantity measuring device that measures the reflectance or transmittance of a predetermined wavelength by irradiating near-infrared light to a ground material in which various particle sizes are mixed, and a plurality of constituent materials obtained by dividing the ground material sample into predetermined particle size ranges Detecting a proportional parameter between the reflectance or transmittance at a predetermined wavelength when the near infrared light is irradiated to each of the above and the moisture content of the constituent material, and the proportional parameter is determined according to the particle size range for each constituent material. Storage means for storing weighted synthetic parameters, and moisture of the ground material from the reflectance or transmittance of a predetermined wavelength when the ground material to be measured is irradiated with the near infrared light and the synthetic parameters A water content measurement system for a ground material comprising a calculation means for calculating the amount. 請求項5の計測システムにおいて,前記合成パラメタを,前記各構成材料の重量比,体積比,表面積比,平均粒径,その何れかと当該構成材料の吸水率との積,又はそれらの逆数により構成材料毎の比例パラメタを重み付けして作成したものとしてなる地盤材料の水分量計測システム。 6. The measurement system according to claim 5, wherein the composite parameter is configured by a weight ratio, a volume ratio, a surface area ratio, an average particle diameter of each constituent material, a product of any one of them and a water absorption rate of the constituent material, or an inverse number thereof. Moisture content measurement system for ground materials, created by weighting proportional parameters for each material. 請求項5又は6の計測システムにおいて,前記地盤材料を連続的に搬送するベルトコンベア上の特定部位に前記光量測定装置を設け,前記近赤外光の照射時に前記算出手段により連続的に算出される水分量の所定時間の平均値として地盤材料の水分量を求める平滑化手段を設けてなる地盤材料の水分量計測システム。 7. The measurement system according to claim 5 or 6, wherein the light quantity measuring device is provided at a specific portion on a belt conveyor that continuously conveys the ground material, and is continuously calculated by the calculating means when the near infrared light is irradiated. A water content measurement system for a ground material provided with a smoothing means for determining the water content of the ground material as an average value of a predetermined amount of water content. 請求項5から7の何れかの計測システムにおいて,前記記憶手段に地盤材料の水分量の管理基準値を記憶し,前記地盤材料の水分量の算出値又はその所定時間の平均値と管理基準値とを比較して当該地盤材料の水分量の適否を判定する判定手段を設けてなる地盤材料の水分量計測システム。 The measurement system according to any one of claims 5 to 7, wherein a management reference value of the moisture content of the ground material is stored in the storage means, and a calculated value of the moisture content of the soil material or an average value and a management reference value for a predetermined time thereof. And a water content measurement system for the ground material provided with a determination means for determining whether or not the water content of the ground material is appropriate.
JP2013158093A 2013-07-30 2013-07-30 Method and system for measuring moisture content of ground material Active JP6050729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013158093A JP6050729B2 (en) 2013-07-30 2013-07-30 Method and system for measuring moisture content of ground material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013158093A JP6050729B2 (en) 2013-07-30 2013-07-30 Method and system for measuring moisture content of ground material

Publications (2)

Publication Number Publication Date
JP2015028446A JP2015028446A (en) 2015-02-12
JP6050729B2 true JP6050729B2 (en) 2016-12-21

Family

ID=52492214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013158093A Active JP6050729B2 (en) 2013-07-30 2013-07-30 Method and system for measuring moisture content of ground material

Country Status (1)

Country Link
JP (1) JP6050729B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109632411B (en) * 2018-11-27 2021-01-15 中国农业大学 Integrated system for pretreatment and rapid component spectrum detection of culture medium

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281570A (en) * 1993-01-29 1994-10-07 Tokyo Met Gov Gesuidou Service Kk Dehydrator with infrared moisture sensor
US6115644A (en) * 1993-03-11 2000-09-05 Cedarapids, Inc., Moisture content measuring apparatus and method
JPH0847920A (en) * 1994-08-04 1996-02-20 Nittetsu Hokkaido Seigyo Syst Kk Manufacture of ready-mixed concrete
JP3091376B2 (en) * 1994-11-30 2000-09-25 オルガノ株式会社 Infrared moisture measurement device
JP3091375B2 (en) * 1994-11-30 2000-09-25 東京都下水道サービス株式会社 Infrared moisture measurement device

Also Published As

Publication number Publication date
JP2015028446A (en) 2015-02-12

Similar Documents

Publication Publication Date Title
JP6173894B2 (en) Surface water volume management method and system for ground material
US9784699B2 (en) Quantitative X-ray analysis—matrix thickness correction
JP6976369B2 (en) Measurement of porous film
JP5582806B2 (en) Granule size measurement system and program
JP2012528319A5 (en)
Myers et al. Obtaining the complex optical constants n and k via quantitative absorption measurements in KBr pellets
JP6050729B2 (en) Method and system for measuring moisture content of ground material
Korang-Yeboah et al. Spectroscopic-based chemometric models for quantifying low levels of solid-state transitions in extended release theophylline formulations
Raventós et al. A Monte Carlo approach for scattering correction towards quantitative neutron imaging of polycrystals
Sung et al. Complex dielectric properties of microcrystalline cellulose, anhydrous lactose, and α-lactose monohydrate powders using a microwave-based open-reflection resonator sensor
CN105938112B (en) Quantitative X-ray analysis-ratio correction
Stals et al. The use of portable equipment for the activity concentration index determination of building materials: method validation and survey of building materials on the Belgian market
Hu et al. Constraining the magnetic field on white dwarf surfaces; Zeeman effects and fine structure constant variation
Kinoshita et al. Sound velocity of liquid Fe–P at high pressure
Huber et al. Density measurement of recycled materials with the nuclear gauge and rubber balloon method in earthworks
Laumer et al. Analysis of the influence of different flowability on part characteristics regarding the simultaneous laser beam melting of polymers
Jenkins et al. Compressibility of synthetic glaucophane
Chen et al. Characterization and modeling of photon absorption for improved accuracy and consistency of density measurement using nuclear gauge with hydrogen effects
KR20110036622A (en) Method for obtaining a structure factor of an amorphous material, in particular amorphous glass
Radebe et al. Evaluation of QNI corrections in porous media applications
JP7374577B2 (en) Concrete measurement method and concrete evaluation method
Baltazar-Rodrigues et al. Determination of X-ray photoelectric absorption of Ge and Si avoiding solid-state effects
Sidhu et al. Simplified two media method: A modified approach for measuring linear attenuation coefficient of odd shaped archaeological samples of unknown thickness
JP2015179044A (en) Grain size measurement method and system for ground material
Marrone et al. Impact of theoretical reactor flux uncertainties and of the near detector on the JUNO measurements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161125

R150 Certificate of patent or registration of utility model

Ref document number: 6050729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250