JP5219069B2 - Water treatment method and water treatment material - Google Patents

Water treatment method and water treatment material Download PDF

Info

Publication number
JP5219069B2
JP5219069B2 JP2008015937A JP2008015937A JP5219069B2 JP 5219069 B2 JP5219069 B2 JP 5219069B2 JP 2008015937 A JP2008015937 A JP 2008015937A JP 2008015937 A JP2008015937 A JP 2008015937A JP 5219069 B2 JP5219069 B2 JP 5219069B2
Authority
JP
Japan
Prior art keywords
oil
nat
wastewater
strain
water treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008015937A
Other languages
Japanese (ja)
Other versions
JP2009172544A5 (en
JP2009172544A (en
Inventor
健 佐々木
洋介 山岡
Original Assignee
健 佐々木
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 健 佐々木 filed Critical 健 佐々木
Priority to JP2008015937A priority Critical patent/JP5219069B2/en
Publication of JP2009172544A publication Critical patent/JP2009172544A/en
Publication of JP2009172544A5 publication Critical patent/JP2009172544A5/en
Application granted granted Critical
Publication of JP5219069B2 publication Critical patent/JP5219069B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、外食産業や食品工業等から排出される油含有廃水を、光合成細菌を使用して油分を分解する水処理方法および水処理材に関する。

The present invention relates to a water treatment method and a water treatment material for decomposing oil from waste oil containing oil discharged from the food service industry, food industry, and the like using photosynthetic bacteria.

レストラン等の飲食店の厨房や食品加工工場では、植物油や動物油など多くの食用油を使用している。このような施設からは多くの油含有廃水が生じるが、この廃水をそのまま下水に流してしまうと悪臭や汚染など環境悪化を招いてしまう。このため、廃水処理して油を分解した後に下水に流している。また、近年では食器洗浄器等の普及やレストランなどから排水される厨房排水により、45℃以上の高温排水が増加する傾向にある。   Many kitchen oils such as vegetable oils and animal oils are used in restaurant kitchens and food processing factories. A lot of oil-containing wastewater is generated from such facilities, but if this wastewater is poured into sewage as it is, environmental degradation such as bad odor and pollution will be caused. For this reason, wastewater is treated to decompose oil and then drained into sewage. In recent years, high-temperature wastewater at 45 ° C. or more tends to increase due to the spread of dishwashers and kitchen wastewater drained from restaurants and the like.

廃水処理としては、従来から微生物を用いて廃水中の油分を処理する廃水処理方法が知られており、様々な微生物が使用されている。   As wastewater treatment, a wastewater treatment method for treating oil in wastewater using microorganisms is conventionally known, and various microorganisms are used.

なかでも光合成細菌は、多種類の有機物を比較的早く分解でき、菌体の安全性が高いことが知られている。非特許文献1では、広範な基質資化性と比較的高い増殖度を有するRhodobacter属であるRhodobacter sphaeroides S、Rhodobacter sphaeroides NR−3をアルギン酸ナトリウムや寒天に固定して用い、廃水中の油除去を行っている。Rhodobacter属は耐熱性が低く、20〜35℃が生息条件下であるため、廃水温度を30℃として光合成細菌を使用している。   Among them, it is known that photosynthetic bacteria can decompose many kinds of organic substances relatively quickly and have high cell safety. In Non-Patent Document 1, Rhodobacter sphaeroides S, Rhodobacter sphaeroides NR-3, which is a Rhodobacter genus having a broad substrate utilization and a relatively high degree of proliferation, is fixed to sodium alginate or agar to remove oil in wastewater. Is going. Since Rhodobacter genus has low heat resistance and 20-35 ° C is inhabiting conditions, photosynthetic bacteria are used at a wastewater temperature of 30 ° C.

また、特許文献1では、耐熱性の高いBurkholderia属の微生物を用い、排水温度50℃程度の高温の下で接触させて廃水中の油分を分解している。
「固定化光合成細菌を用いた油含有下水排水の処理:World J Microbiol,Biotechnol. Vol.21,No.8/9,Page1385−1391:2005年12月発行」 特開平9−85283号公報
Moreover, in patent document 1, the microorganisms of the Burkholderia genus with high heat resistance are used, and the oil content in wastewater is decomposed | disassembled by making it contact under the waste water temperature about 50 degreeC high temperature.
"Treatment of oil-containing sewage wastewater using immobilized photosynthetic bacteria: World J Microbiol, Biotechnol. Vol. 21, No. 8/9, Page 1385-1391, issued December 2005" JP-A-9-85283

非特許文献1に代表されるように、従来使用されているRhodobacter属は、耐熱性が低く、45℃以上では全て死滅してしまう。このため、Rhodobacter属に代表される光合成細菌では、排出される45℃以上の高温廃水を処理することができなかった。   As typified by Non-Patent Document 1, the Rhodobacter genus conventionally used has low heat resistance and is all killed at 45 ° C. or higher. For this reason, photosynthetic bacteria represented by the genus Rhobacter cannot treat discharged high-temperature wastewater at 45 ° C. or higher.

また、Rhodobacter属は耐熱性が低いため、事前に高温廃水を30℃程度まで冷却しなければならないので、冷却装置等の設備が必要になりコストが高くなるとともに、冷却時間が必要になるため処理時間が長くなるという課題がある。   In addition, since Rhodobacter genus has low heat resistance, it is necessary to cool high-temperature wastewater to about 30 ° C in advance, which requires equipment such as a cooling device, which increases costs and requires cooling time. There is a problem that the time becomes longer.

特許文献1では廃水温度50℃以上でも処理できるが、Burkholderia属の微生物は光合成細菌ではないので、微生物自体の安全性に問題がある。したがって、処理後の廃水とともに微生物が流れてしまい、環境問題等を起こすおそれがある。そして、微生物を肥料や飼料にリサイクル利用することもできない。   In Patent Document 1, treatment can be performed even at a wastewater temperature of 50 ° C. or higher, but Burkholderia microorganisms are not photosynthetic bacteria, so there is a problem with the safety of the microorganisms themselves. Therefore, microorganisms may flow with the treated wastewater, which may cause environmental problems. In addition, microorganisms cannot be recycled for fertilizer or feed.

本発明は上記事項に鑑みて成されたものであり、耐熱性を有する光合成細菌を用い、厨房等から排出される45℃以上の高温の油含有廃水であっても、高温のまま油分を分解し、且つ、下水に流れてしまっても安全性を損なうことのない油含有廃水の処理方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned matters, and uses oil-synthetic bacteria having heat resistance, and decomposes oil components at high temperatures even in high-temperature oil-containing wastewater of 45 ° C. or higher discharged from kitchens and the like. And it aims at providing the processing method of the oil containing wastewater which does not impair safety even if it flows into sewage.

本発明は、Rhodobacter sphaeroides NAT(受領番号:FERM AP−21486)を用い、油含有廃水中の油分を分解することを特徴とする。   The present invention is characterized by decomposing oil in oil-containing wastewater using Rhodobacter sphaeroides NAT (reception number: FERM AP-21486).

また、本発明は、45℃〜55℃の前記油含有廃水を使用することを特徴とする。   Moreover, this invention uses the said oil-containing waste water of 45 to 55 degreeC, It is characterized by the above-mentioned.

更に、本発明は、前記Rhodobacter sphaeroides NATから前記油含有廃水中にリパーゼを放出させて前記油分を分解することを特徴とする。   Furthermore, the present invention is characterized in that lipase is released from the Rhodobacter sphaeroides NAT into the oil-containing wastewater to decompose the oil.

更に、本発明は、前記Rhodobacter sphaeroides NATをアルギン酸塩に固定化して使用することを特徴とする。   Furthermore, the present invention is characterized in that the Rhodobacter sphaeroides NAT is immobilized on an alginate and used.

本発明に依れば、Rhodobacter sphaeroides NATは耐熱性を有し、45℃以上でも生息できるので、45℃〜55℃の高温廃水においても油分の分解処理をすることができる。   According to the present invention, Rhodobacter sphaeroides NAT has heat resistance and can inhabit even at 45 ° C. or higher, so that oil can be decomposed even in high temperature wastewater at 45 ° C. to 55 ° C.

また、本発明に依れば、上述のように廃水を高温のまま処理できるので、廃水を事前に冷却する必要が無い。このため、冷却装置等の設備が不要となり、設備コストを安くすることができる。   Moreover, according to this invention, since waste water can be processed with high temperature as mentioned above, it is not necessary to cool waste water in advance. For this reason, facilities, such as a cooling device, become unnecessary and an installation cost can be made cheap.

更に、本発明に依れば、上述のように冷却時間が要らないため、処理時間を短くすることができる。   Furthermore, according to the present invention, since the cooling time is not required as described above, the processing time can be shortened.

更に、本発明に依れば、Rhodobacter sphaeroides NATは廃水中にリパーゼを放出するので、表面に接触する油分だけでなく、廃水全体の油分を効率的に分解するため、処理時間が短くなる利点を有する。   Furthermore, according to the present invention, Rhodobacter sphaeroides NAT releases lipase into the wastewater, so that not only the oil contacting the surface but also the oil content of the whole wastewater is efficiently decomposed, so that the processing time is shortened. Have.

更に、本発明に依れば、Rhodobacter sphaeroides NATをアルギン酸塩に固定化して用いることで、1つ1つの細菌を分散させて配置でき、表面積が増加することから、効率的に油分の分解ができ処理時間を更に短くすることができるとともに、細菌が流れていくことを抑えることができるので、長時間使用することもできる。   Furthermore, according to the present invention, Rhodobacter sphaeroides NAT can be used by immobilizing it on alginate, so that each bacterium can be dispersed and arranged, and the surface area increases, so that the oil can be efficiently decomposed. Since the treatment time can be further shortened and the bacteria can be prevented from flowing, it can be used for a long time.

更に、本発明に依れば、Rhodobacter sphaeroides NATは光合成細菌であり安全性の高い細菌なので、たとえ下水に流れてしまっても安全性に問題は無く、環境問題を引き起こすおそれがないという利点がある。   Furthermore, according to the present invention, Rhodobacter sphaeroides NAT is a photosynthetic bacterium and a highly safe bacterium, so that even if it flows into sewage, there is no problem in safety and there is an advantage that there is no risk of causing environmental problems. .

更に、本発明に依れば、Rhodobacter sphaeroides NATは油分の分解に加え、同時にCOD及びリンの除去もできる。   Furthermore, according to the present invention, Rhodobacter sphaeroides NAT can also remove COD and phosphorus at the same time as the decomposition of oil.

更に、本発明に依れば、NAT株を廃水中に介在させるだけで油分の分解が出来るので、既存の浄化槽にNAT株を入れたネット等を介在させるだけで簡単に廃水処理できる利点があり、新たな設備投資の必要がない。   Furthermore, according to the present invention, the oil content can be decomposed only by interposing the NAT strain in the waste water, so that there is an advantage that the waste water treatment can be easily performed only by interposing the net or the like containing the NAT strain in the existing septic tank. There is no need for new capital investment.

本発明は、新規に分離した光合成細菌であるRhodobacter sphaeroides NAT(受領番号:FERM AP−21486)(以下、NAT株)を用い、このNAT株を油含有廃水に添加するだけで油分を分解できる処理方法である。NAT株は45℃以上でも生息し、油分を分解するので、飲食店の厨房から出てくる高温の油含有廃水でも冷却せずにそのまま処理できる。   The present invention uses Rhodobacter sphaeroides NAT (reception number: FERM AP-21486) (hereinafter referred to as NAT strain), which is a newly isolated photosynthetic bacterium, and a treatment capable of decomposing oil by simply adding this NAT strain to oil-containing wastewater. Is the method. NAT strains inhabit at 45 ° C or higher and decompose oil, so even high-temperature oil-containing wastewater that comes out of a restaurant kitchen can be treated as it is without being cooled.

まず、本発明に使用するNAT株について説明する。NAT株は、Kasetsart University(Bangkok,Thailand)内の土壌から分離した新規の光合成細菌である。この光合成細菌が新規の細菌であることを検証した。   First, the NAT strain used in the present invention will be described. The NAT strain is a novel photosynthetic bacterium isolated from soil in Kasetsart University (Bangkok, Thailand). It was verified that this photosynthetic bacterium was a novel bacterium.

土壌から分離した菌を、流動パラフィンを重層した静置培養で、45〜50℃の条件下、約5klux照度(タングステンランプ)で約1週間培養した。紅色に増殖した培養液から、同条件でプレート培養を行って、これを繰り返し、この中で増殖速度の最も大きい菌株をスクリーニングし、NAT株とした。これを前培養に供した。   The bacteria isolated from the soil were cultured for about one week at about 5 klux illuminance (tungsten lamp) in a static culture with a liquid paraffin overlay. Plate culture was performed under the same conditions from the culture medium grown in red, and this was repeated. Among them, the strain having the highest growth rate was screened to obtain a NAT strain. This was subjected to preculture.

スクリーニング、及び前培養培地は、グルタメート・マレ−ト(GM)培地を用いた。前培養は上記同様、静置培養にて行い、1.5lル式培養瓶を用い、40℃の条件下、約5kluxの照度で2日間行った。   As a screening and preculture medium, glutamate maleate (GM) medium was used. The pre-culture was performed by static culture as described above, and was carried out for 2 days at 40 ° C. under an illuminance of about 5 klux using a 1.5-liter culture bottle.

前培養後の菌体は残存の培地成分を多く含んでいるため、菌体洗浄を行った。洗浄方法は、GM培地で増殖した菌体を遠心分離(10,000xg(5,000rpm),15min)により回収し、一度殺菌した脱イオン水に懸濁後、同条件にて再び遠心分離を行った。ここで得られた洗浄菌体をOD666≒10に純水で調整して用いた。   Since the cells after the pre-culture contained many remaining medium components, the cells were washed. The washing method is to collect cells grown in GM medium by centrifugation (10,000 × g (5,000 rpm), 15 min), suspend in deionized water once sterilized, and then centrifuge again under the same conditions. It was. The washed bacterial cells obtained here were adjusted to OD666≈10 with pure water and used.

この洗浄菌体の同定を16S rDNA解析にて行った。Insta Matrix(BIO RAD,CA,USA)によりDNA抽出を行い、MicroSeq 500 16S rDNA Bacterial Identification PCR Kit(Applied Biosystems,CA,USA)およびMicroSeq 500 16S rDNA Bacterial Identification Sequencing Kit(Applied Biosystemus,CA,USA)を用いて、PCRおよびシーケンスを行った。その結果を表1に示す。   The washed cells were identified by 16S rDNA analysis. DNA extraction was performed by Insta Matrix (BIO RAD, CA, USA), and MicroSeq 500 16S rDNA Bacterial Identification PCR Kit (Applied Biosystems, California, USA) and MicroSeq 500 16S rDNA Bc. Used to perform PCR and sequencing. The results are shown in Table 1.

Figure 0005219069
表1に示すように、国際塩基配列データベース検索(Genbank/DDBJ/EMBL)により、Rhodobacter sphaeroides ATCC17029株や2.4.1株、野生株であるIFO12203株などの菌株と本NAT株のDNAは100%の相同率を示している。この結果から、本NAT株はRhodobacter sphaeroides属に属する光合成細菌であることを同定した。
Figure 0005219069
As shown in Table 1, DNA of the present NAT strain and strains such as Rhobacter sphaeroides ATCC17029 strain, 2.4.1 strain, and wild-type IFO12203 strain were determined by international base sequence database search (Genbank / DDBJ / EMBL). % Homology rate. From this result, this NAT strain was identified as a photosynthetic bacterium belonging to the genus Rhodobacter sphaeroides.

次に、NAT株の耐熱性を検討した。500ml振とうフラスコにGM培地200mlを入れ、前述の洗浄菌体を1%(w/v)接種して検討を行った。培養は、振とう培養器TAITEC bio−shaker BR−40LF(130rpm,7cm amplitude)(Shimadzu Co.Ltd. Japan)により、好気暗条件で30℃〜55℃の温度条件下で行った。なお、参考例として、Rhodobacter sphaeroides S(以下、S株)の培養を45℃で行った。   Next, the heat resistance of the NAT strain was examined. A 500 ml shake flask was charged with 200 ml of GM medium, and the above washed cells were inoculated with 1% (w / v) for examination. Cultivation was performed at 30 ° C. to 55 ° C. under aerobic dark conditions using a shake incubator TAITEC bio-shaker BR-40LF (130 rpm, 7 cm amplitide) (Shimadzu Co. Ltd. Japan). As a reference example, Rhodobacter sphaeroides S (hereinafter referred to as S strain) was cultured at 45 ° C.

その結果を図1に示す。NAT株は30℃〜55℃に渡り、全ての温度領域で生息し、増殖していることがわかる。30℃では48時間の培養で乾菌体量約3g/lの紅色の菌体増殖が認められた。また、45〜55℃の高温条件下では、30℃に比べると増殖は少なくなるが、紅色からピンク色で生息しており、NAT株の耐熱性増殖が確認できた。このことから、30℃〜55℃の幅広い温度域で廃水処理に使用できることがわかり、特に、45℃〜55℃の高温排水中においても生息し、油分の分解ができることがわかる。   The result is shown in FIG. It can be seen that the NAT strain inhabited and grew in all temperature ranges over 30 ° C to 55 ° C. At 30 ° C., the growth of red cells with a dry cell mass of about 3 g / l was observed after 48 hours of culture. Also, under high temperature conditions of 45 to 55 ° C., the growth was less than that at 30 ° C., but it was inhabited in red to pink, and heat resistant growth of the NAT strain was confirmed. From this, it can be seen that it can be used for wastewater treatment in a wide temperature range of 30 ° C to 55 ° C. In particular, it can be found in high temperature wastewater of 45 ° C to 55 ° C and can decompose oil.

一方、S株についてはすぐに死滅してしまっている。このように、これまで知られているS株等の光合成細菌では、一般に耐熱性が低いことが知られており、45℃以上の高温廃水中では生息できず、油分の分解はできないことがわかる。   On the other hand, the S strain has been killed immediately. Thus, it is known that the photosynthetic bacteria such as S strains known so far are generally low in heat resistance, cannot live in high temperature wastewater at 45 ° C. or higher, and cannot decompose oil. .

そして、このNAT株を用い、純粋培養系にて液中の油分の分解を行った。500ml 振とうフラスコ(坂口フラスコ)に油含有人工下水を200ml分注し、前述の洗浄菌体を10%(w/v)接種して検討した。温度条件は、45℃の条件下で10日間行い、油分及びリパーゼ活性を分析した。油分はn−Hex.extractとしてJIS K 0102に基き分析した。また、処理した下水を遠心分離(5000xg,10mim)し、得られた上澄みを菌体外リパーゼ活性として、乳化剤無添加法(JIS K 0601)にてリパーゼ活性を分析した。参考例として、NAT株を添加しないもの(対照実験)についても同様に行った。   Then, using this NAT strain, the oil in the liquid was decomposed in a pure culture system. 200 ml of oil-containing artificial sewage was dispensed into a 500 ml shake flask (Sakaguchi flask), and 10% (w / v) of the aforementioned washed cells were inoculated. The temperature was 10 days under the condition of 45 ° C., and the oil and lipase activity were analyzed. The oil content is n-Hex. Analysis was performed based on JIS K 0102 as extract. The treated sewage was centrifuged (5000 × g, 10 mim), and the resulting supernatant was analyzed as the extracellular lipase activity by an emulsifier-free method (JIS K 0601). As a reference example, the same procedure was carried out for a sample to which no NAT strain was added (control experiment).

油含有人工下水は、主にグルコース、ペプトンからなる合成人工下水に油分を添加して用いた。油は、大豆油・菜種油の混合油である調理用サラダ油(日清食品株式会社製)を用いた。本油の脂肪酸組成はオレイン・リノール酸系に分類されており、炭素数が22〜28の不飽和脂肪酸で構成されている。油含有人工下水の組成(それぞれg/l)は、D−glucose:4.0,KHPO:0.015,KHPO:0.006,NaHPO・12HO:0.030,NHCl:0.117,MgSO・7HO:0.056,CaCl:0.010,peptone:0.150,KNO:0.069,Oil(サラダ油):3である。 The oil-containing artificial sewage was used by adding oil to synthetic artificial sewage mainly composed of glucose and peptone. The oil used was a salad oil for cooking (manufactured by Nissin Foods Co., Ltd.), which is a mixed oil of soybean oil and rapeseed oil. The fatty acid composition of the oil is classified as olein / linoleic acid, and is composed of unsaturated fatty acids having 22 to 28 carbon atoms. The composition of the oil-containing artificial sewage (each g / l) was: D-glucose: 4.0, K 2 HPO 4 : 0.015, KH 2 PO 4 : 0.006, Na 2 HPO 4 · 12H 2 O: 0 0.030, NH 4 Cl: 0.117, MgSO 4 .7H 2 O: 0.056, CaCl 2 : 0.010, pettone: 0.150, KNO 3 : 0.069, Oil (salad oil): 3. .

図2にリパーゼ活性及び油含有量の経時変化をグラフにて示す。図2(A)が油含有量、(B)がリパーゼ活性である。   FIG. 2 is a graph showing changes over time in lipase activity and oil content. 2A shows the oil content, and FIG. 2B shows the lipase activity.

図2(A)を見ると、NAT株を添加していない対照実験(Control)では、8日で約10%の油分が減少している。これは、45℃での熱変性或いは分解によるものと考えられる。   Referring to FIG. 2 (A), in a control experiment (Control) in which no NAT strain was added, about 10% of the oil content decreased in 8 days. This is considered due to thermal denaturation or decomposition at 45 ° C.

一方、NAT株を接種したものでは、8日で油含有人工下水に含まれていた約66%の油分が減少している。45℃の高温においてもNAT株により油分を分解、除去できることが確認できた。   On the other hand, in the plant inoculated with the NAT strain, the oil content of about 66% contained in the oil-containing artificial sewage decreased on the 8th. It was confirmed that the oil can be decomposed and removed by the NAT strain even at a high temperature of 45 ° C.

また、図2(B)を見ると、対照実験(Control)では、リパーゼ活性はないが、NAT株を添加した場合、1日後において約1.8unit/mlとリパーゼ活性が高くなっており、NAT株が下水中に油分解酵素であるリパーゼを放出していることが確認できる。これにより、NAT株表面だけで油分を分解するのではなく、下水中にリパーゼを放散させて下水全体で効率的に油分の分解を促進できることがわかる。そして、45℃の高温下でもリパーゼ活性が失活せずに、高温廃水の油分除去が効率的に行えることが確認できる。これまでの光合成菌ではリパーゼを放出する例は報告されておらず、NAT株の特異的な性質を示している。なお、2日目以降リパーゼ活性は低くなっているが、リパーゼが油分の分解に供され活性が低くなったものと考えられる。   In addition, as shown in FIG. 2B, in the control experiment (Control), there is no lipase activity. However, when the NAT strain was added, the lipase activity increased to about 1.8 units / ml one day later. It can be confirmed that the strain releases lipase, an oil-degrading enzyme, in sewage. Thus, it can be seen that the oil content is not decomposed only on the surface of the NAT strain, but the lipase is diffused into the sewage to efficiently promote the decomposition of the oil in the entire sewage. It can be confirmed that the lipase activity is not deactivated even at a high temperature of 45 ° C., and oil removal of the high temperature wastewater can be efficiently performed. No examples of lipase release have been reported so far in photosynthetic bacteria, indicating the specific properties of NAT strains. In addition, although the lipase activity is low after the 2nd day, it is considered that the lipase was subjected to the decomposition of the oil and the activity was lowered.

これまでにRhodobacter sphaeroides株等の光合成細菌では、耐熱性、リパーゼ活性、油分解能の報告はない。本NAT株は、上述のように、45℃以上の高温条件下でも生息できる耐熱性を有し、また、リパーゼ活性を示し、油分解能を持っていることから、従来のRhodobacter sphaeroides株とは異なる新規の光合成細菌であることが確認された。   So far, no photosynthetic bacteria such as Rhodobacter sphaeroides have been reported on heat resistance, lipase activity, and oil resolution. As described above, this NAT strain is different from the conventional Rhodobacter sphaeroides strain because it has heat resistance that can live even under high temperature conditions of 45 ° C. or higher, exhibits lipase activity, and has oil resolution. It was confirmed to be a novel photosynthetic bacterium.

そして、光合成細菌は安全性が高い細菌であることが知られている。したがって、光合成細菌であるNAT株についても無害であり、例えば、廃水処理中に下水に流れても環境問題等が生じることはなく、安全性が非常に高い。また、廃水処理後に魚類や動物用資料としても利用可能であり、再利用に供することもできる。   And it is known that photosynthetic bacteria are highly safe bacteria. Therefore, the NAT strain, which is a photosynthetic bacterium, is harmless. For example, even if it flows into sewage during wastewater treatment, environmental problems do not occur, and the safety is very high. It can also be used as fish and animal data after wastewater treatment and can be reused.

次に、NAT株をアルギン酸塩に固定化し、前述の油含有人工下水の処理を行った。   Next, the NAT strain was immobilized on alginate, and the above-described treatment of oil-containing artificial sewage was performed.

前述の洗浄菌体100mlと4%アルギン酸ナトリウム溶液と混合し、CaCl水溶液(6.62g/l)に滴下した。Na・Ca交換によって、ビーズ状のNAT株をアルギン酸カルシウムに固定化した(以下、アルギン酸ビーズ)。アルギン酸ビーズは、直径が約1cmになるよう調整した。アルギン酸ビーズは、1個当り約1.36g、乾菌体量では、約4.25mg/個の菌体を固定化している。また、開放実験系の対照実験には、菌体を混合せずに調整した無菌アルギン酸ビーズを調整し、実験に用いた。 100 ml of the aforementioned washed cells and 4% sodium alginate solution were mixed and added dropwise to an aqueous CaCl 2 solution (6.62 g / l). The beaded NAT strain was immobilized on calcium alginate by Na / Ca exchange (hereinafter alginate beads). The alginate beads were adjusted to have a diameter of about 1 cm. Alginate beads are immobilized at about 1.36 g per cell, and about 4.25 mg / cell in dry cell mass. Moreover, in the control experiment of the open experimental system, sterile alginate beads prepared without mixing bacterial cells were prepared and used for the experiment.

油含有人工下水の回分処理実験では、排水処理施設での好気的処理を視野に入れ、5l容培養装置MDL(B.E.Marubishi.Co.Ltd)に前述のアルギン酸ビーズを0、5、15、25、50、75g/lずつ処理槽内に投入し、最適投入量について検討した。このうち0gは対照実験(Control)として、処理槽内でエアレーションのみを行ったときのものである。実験条件は、1vvmの通気下、45℃の条件で処理を行い、回転数は100rpmに設定し、油が極力分散するように処理した。また、本実験では、エアフィルターを装着せず、開放系で4日間(96時間)処理をした。pHは7.0±0.1に制御した。pH制御を行わなければ、人工下水の分解ですぐ酸性に移行し、菌の増殖が停止して油除去が困難になるためである。   In the batch treatment experiment of oil-containing artificial sewage, aerobic treatment in a wastewater treatment facility is considered, and the above-mentioned alginate beads are placed in a 5-liter culture apparatus MDL (BE Marubishi. Co. Ltd) with 0, 5, Each of 15, 25, 50, and 75 g / l was introduced into the treatment tank, and the optimum input amount was examined. Of these, 0 g was obtained when only aeration was performed in the treatment tank as a control experiment (Control). The experiment was performed under the conditions of 45 ° C. under ventilation of 1 vvm, the rotation speed was set to 100 rpm, and the oil was dispersed as much as possible. In this experiment, an air filter was not attached, and the treatment was performed for 4 days (96 hours) in an open system. The pH was controlled at 7.0 ± 0.1. If pH control is not performed, it will shift to acidity immediately by the decomposition of artificial sewage, and the growth of bacteria will stop, making it difficult to remove oil.

Figure 0005219069
表2はアルギン酸ビーズを用いて廃水処理した結果である。アルギン酸ビーズを投入した全ての処理槽内において、ビーズによる油除去効果が確認され、本アルギン酸ビーズが油含有高温廃水に有効であることがわかる。特に50gのアルギン酸ビーズを投入した場合では、45℃の高温条件下においても、油除去およびCOD除去が同時に行われ、4日で油が約92%、CODが約96%除去できた。なお、COD除去率は、対照実験(Control)の処理開始時の3600mg/lをベースに算出している。
Figure 0005219069
Table 2 shows the results of wastewater treatment using alginate beads. The oil removal effect by the beads was confirmed in all treatment tanks charged with the alginate beads, and it can be seen that the present alginate beads are effective for oil-containing high-temperature wastewater. In particular, when 50 g of alginate beads were added, oil removal and COD removal were performed simultaneously even under high temperature conditions of 45 ° C., and about 92% of oil and about 96% of COD could be removed in 4 days. The COD removal rate is calculated based on 3600 mg / l at the start of the control experiment (Control).

この結果は、非特許文献1に報告されている30℃条件下、4日間での除去結果(除去率:油65%、COD60%)と比較しても、速やかに除去されている。それに加え、本アルギン酸ビーズはリン除去効果も有しており、油含有高温廃水処理には有用である。   This result is rapidly removed even when compared with the removal results (removal rate: oil 65%, COD 60%) in 4 days under the condition of 30 ° C. reported in Non-Patent Document 1. In addition, the present alginic acid beads have a phosphorus removal effect and are useful for the treatment of oil-containing high-temperature wastewater.

また、対照実験(0g)では、油除去率が約46%、CODも約39%除去されている。これは、開放実験系でpH制御を行ったために、雑菌汚染により除去されたと考えられる。しかしながら、対照実験と比較しても、速やかな水質浄化が見られたNAT株の処理効果は明らかである。それに加え、固定化菌体50gの油除去速度を算出したところ、688.5mg oil/l/dayとなり、30℃の条件で処理した比特許文献1に報告されている285.8mg oil/l/と比較すると、2倍以上の除去速度であり、油分の分解処理が迅速にできることがわかる。   In the control experiment (0 g), the oil removal rate is about 46%, and COD is also about 39% removed. This is considered to have been removed by contamination with various bacteria because the pH was controlled in an open experimental system. However, even when compared with the control experiment, the treatment effect of the NAT strain in which rapid water purification was observed is clear. In addition, the oil removal rate of 50 g of the immobilized cells was calculated to be 688.5 mg oil / l / day, which was 285.8 mg oil / l / reported in Comparative Patent Document 1 treated at 30 ° C. Compared with, the removal rate is twice or more, and it can be seen that the oil can be decomposed quickly.

なお、本アルギン酸ビーズのアルギン酸カルシウムが油を吸着している可能性があるため、アルギン酸ビーズの油吸着量を測定した。実験には無菌アルギン酸ビーズを用い、アルギン酸ビーズ50g/lの廃水接触表面積と同等になるよう算出し、油含有人工下水中に投入した。実験条件は、先の純粋培養実験と同様に無菌的に45℃で4日間行った。振とう後は、ビーズを簡易ネットで回収し、ヘキサンに30分間ほど浸したn−Hexを検出した。実験は3回行い平均を算出した。   In addition, since the calcium alginate of this alginate bead may adsorb | suck oil, the oil adsorption amount of the alginate bead was measured. Sterile alginate beads were used in the experiment, calculated to be equivalent to the waste water contact surface area of 50 g / l of alginate beads, and put into oil-containing artificial sewage. The experimental conditions were aseptically performed at 45 ° C. for 4 days as in the previous pure culture experiment. After shaking, the beads were collected with a simple net, and n-Hex immersed in hexane for about 30 minutes was detected. The experiment was performed three times and the average was calculated.

結果、振とうフラスコ内で約93%、無菌アルギン酸ビーズ表面から全体の約3%の油分がそれぞれ検出され、アルギン酸カルシウムによる少量の油吸着が確認された。残りの4%が熱変性あるいは分解によるものだと考えられる。この油吸着量は3%程度とほぼ無視できる程度であるため、NAT株の油分解能の高さが実証できた。   As a result, about 93% of the oil content was detected in the shake flask and about 3% of the total amount from the surface of the sterile alginate beads, and a small amount of oil adsorption by calcium alginate was confirmed. The remaining 4% is thought to be due to thermal denaturation or decomposition. This oil adsorption amount is about 3%, which is almost negligible, so that the high oil resolution of the NAT strain could be demonstrated.

続いて、実施例2で最も良好な結果を示した、アルギン酸ビーズ50g/lを処理槽内に充填し、45、50、55および60℃の温度条件で実用処理温度範囲を検討した。本実験では対象実験として、無菌アルギン酸ビーズを処理槽内に投入し、同様の条件で処理を行った。その結果を表3に示す。   Subsequently, 50 g / l of alginate beads, which showed the best results in Example 2, were filled in the treatment tank, and the practical treatment temperature range was examined under the temperature conditions of 45, 50, 55 and 60 ° C. In this experiment, as a target experiment, aseptic alginate beads were placed in a treatment tank and treated under the same conditions. The results are shown in Table 3.

Figure 0005219069
45、50、55℃の温度条件下において、それぞれ約91%、80%、76%の油が96時間で除去され、ビーズ投入による油除去効果が顕著に示されている。45℃の条件では、先の実験と同等の結果が得られている。また、CODにおいても、それぞれ93%、87%、81%の高い除去率を示した。
Figure 0005219069
Under the temperature conditions of 45, 50, and 55 ° C., about 91%, 80%, and 76% of oil were removed in 96 hours, respectively, and the oil removing effect by introducing beads was remarkably shown. Under the condition of 45 ° C., a result equivalent to the previous experiment is obtained. Also, COD showed high removal rates of 93%, 87%, and 81%, respectively.

従って、45℃−50℃での油除去は十分可能で、55℃においてもNAT株による油分解できることを確認した。なお、60℃の条件においては、対照実験と比較して油分解、COD除去およびリン除去効果はほぼ同等に近づいており、NAT株があまり作用していない。60℃ではNAT株の死滅や、それに伴う活性低下が生じたものと考えられる。このため、55℃以下の廃水に対して使用することが好ましい。   Accordingly, it was confirmed that oil removal at 45 ° C. to 50 ° C. was sufficiently possible and oil decomposition by NAT strain was possible even at 55 ° C. In addition, under the condition of 60 ° C., the effects of oil decomposition, COD removal and phosphorus removal are almost equal as compared with the control experiment, and the NAT strain does not act much. It is considered that at 60 ° C., the NAT strain was killed and the activity was reduced accordingly. For this reason, it is preferable to use with respect to waste water of 55 degrees C or less.

図3に、NAT株を用いて、油含有廃水を処理装置の一例を示す。処理装置11は飲食店の厨房からの排水管と下水管との間に接続するものである。処理装置11内にはかご状のネット21が設けられており、ネット21内には、NAT株を固定化したアルギン酸ビーズ22が分散して入れられている。   FIG. 3 shows an example of an apparatus for treating oil-containing wastewater using a NAT strain. The processing device 11 is connected between a drain pipe and a sewer pipe from a restaurant kitchen. A basket-like net 21 is provided in the processing apparatus 11, and alginate beads 22 on which NAT strains are immobilized are dispersedly placed in the net 21.

厨房からの配水管を通じて廃水流入口11から油含有廃水23が処理装置11内に流入する。まず油含有廃水23は流入槽12に流入し、その後せき板16によって流れが抑制されながら、嫌気槽13、ばっ気槽14に進む。嫌気槽13及びばっ気槽14にはネット21が設けられている。ネット21にはNAT株を固定化したアルギン酸ビーズ22が入っているので、NAT株によって油含有廃水23の油分が分解除去される。分解された油分は汚泥として沈殿槽に堆積する。そして、処理された廃水が排出口17を介して下水に流れていく仕組みである。   Oil-containing wastewater 23 flows into the treatment device 11 from the wastewater inlet 11 through a water distribution pipe from the kitchen. First, the oil-containing wastewater 23 flows into the inflow tank 12, and then proceeds to the anaerobic tank 13 and the aeration tank 14 while the flow is suppressed by the dam plate 16. A net 21 is provided in the anaerobic tank 13 and the aeration tank 14. Since the net 21 contains the alginate beads 22 on which the NAT strain is immobilized, the oil content of the oil-containing wastewater 23 is decomposed and removed by the NAT strain. The decomposed oil accumulates in the sedimentation tank as sludge. Then, the treated waste water flows into the sewage through the discharge port 17.

NAT株は前述のように耐熱性を有するので45℃以上の高温廃水であっても、冷却することなくそのまま処理することができる。そして、NAT株は油含有廃水23中にリパーゼを放出するので、NAT株表面だけでなく、処理装置11内の全てで油分の除去ができる。   Since the NAT strain has heat resistance as described above, even high-temperature waste water at 45 ° C. or higher can be treated as it is without cooling. Since the NAT strain releases lipase into the oil-containing wastewater 23, the oil content can be removed not only on the surface of the NAT strain but also in the entire processing apparatus 11.

また、NAT株はアルギン酸ビーズ22として固定化して用いており、NAT株一つ一つが分散された形態であるので、表面積が大きくなり効率的、迅速的に油分の分解除去ができる。また、NAT株は前述のように、油分の分解と同時にCODやリンの除去もしている。   In addition, the NAT strain is immobilized and used as alginate beads 22, and each NAT strain is in a dispersed form. Therefore, the surface area is increased, and the oil can be decomposed and removed efficiently and rapidly. Further, as described above, the NAT strain also removes COD and phosphorus simultaneously with the decomposition of the oil.

更に、本処理装置11にはばっ気槽14を設けており、ばっ気によって更なるCOD除去をも促進している。   Further, the present processing apparatus 11 is provided with an aeration tank 14, and further COD removal is promoted by aeration.

なお、NAT株は光合成細菌であるが、光が当たらない場所でも活性を有し油分の分解ができる。したがって、通常浄化槽は光の当たらない場所に設置されていることが多いが、その様な場所においても油含有廃水の処理をすることができる。   Note that the NAT strain is a photosynthetic bacterium, but has activity and can decompose oil even in places where it is not exposed to light. Therefore, the septic tank is usually installed in a place where light is not exposed, but the oil-containing wastewater can be treated even in such a place.

本発明では、耐熱性を有するRhodobacter sphaeroides NATを用いているので、45℃以上の高温廃水でもそのまま油分の分解ができる。このため、外食産業や食品工業等、油を多く使う施設から排出される高温廃水の処理に広く利用できる。   In the present invention, since Rhodobacter sphaeroides NAT having heat resistance is used, oil can be decomposed as it is even in high temperature waste water at 45 ° C. or higher. For this reason, it can be widely used for the treatment of high temperature wastewater discharged from facilities that use a lot of oil, such as the restaurant industry and the food industry.

本発明に用いる光合成細菌の培養時間と培養温度との関係を示すグラフである。It is a graph which shows the relationship between culture | cultivation time and culture | cultivation temperature of photosynthetic bacteria used for this invention. 本発明の処理方法による反応時間とリパーゼ活性及びヘキサン濃度との関係を示すグラフである。It is a graph which shows the relationship between reaction time by the processing method of this invention, lipase activity, and hexane concentration. 本発明による油含有廃水処理方法に用いる装置の一例を示す概略図である。It is the schematic which shows an example of the apparatus used for the oil containing wastewater processing method by this invention.

符号の説明Explanation of symbols

1 処理装置
11 廃水流入口
12 流入槽
13 嫌気槽
14 ばっ気槽
15 最終沈殿槽
16 せき板
17 廃水排出口
21 ネット
22 アルギン酸ビーズ
DESCRIPTION OF SYMBOLS 1 Treatment apparatus 11 Wastewater inflow port 12 Inflow tank 13 Anaerobic tank 14 Aeration tank 15 Final sedimentation tank 16 Scallop 17 Waste water discharge port 21 Net 22 Alginic acid beads

Claims (6)

Rhodobacter sphaeroides NAT(受託番号:FERM −21486)を用い、油含有廃水中の油分を分解することを特徴とする水処理方法。 The water treatment method characterized by decomposing | disassembling the oil component in oil-containing wastewater using Rhodobacter sphaeroides NAT (Accession number: FERM P- 21486). 45℃〜55℃の前記油含有廃水を使用することを特徴とする請求項1に記載の水処理方法。   The water treatment method according to claim 1, wherein the oil-containing waste water at 45 ° C to 55 ° C is used. 前記Rhodobacter sphaeroides NATから前記油含有廃水中にリパーゼを放出させて前記油分を分解することを特徴とする請求項1に記載の水処理方法。   The water treatment method according to claim 1, wherein the oil is decomposed by releasing lipase from the Rhodobacter sphaeroides NAT into the oil-containing wastewater. 前記Rhodobacter sphaeroides NATをアルギン酸塩に固定化して使用することを特徴とする請求項1に記載の水処理方法。   The water treatment method according to claim 1, wherein the Rhodobacter sphaeroides NAT is immobilized on an alginate and used. 水に含まれる油分、COD成分、リンを分解する光合成細菌Rhodobacter sphaeroides NAT(受託番号:FERM −21486)よりなることを特徴とする水処理材。 A water treatment material comprising a photosynthetic bacterium Rhodobacter sphaeroides NAT (accession number: FERM P- 21486) that decomposes oil contained in water, a COD component, and phosphorus. 水に含まれる油分、COD成分、リンを分解する光合成細菌Rhodobacter sphaeroides NAT(受託番号:FERM −21486)をアルギン酸塩に固定してなることを特徴とする水処理材。
A water treatment material comprising a photosynthetic bacterium Rhodobacter sphaeroides NAT (accession number: FERM P- 21486) that decomposes oil contained in water, a COD component, and phosphorus, fixed to an alginate.
JP2008015937A 2008-01-28 2008-01-28 Water treatment method and water treatment material Active JP5219069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008015937A JP5219069B2 (en) 2008-01-28 2008-01-28 Water treatment method and water treatment material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008015937A JP5219069B2 (en) 2008-01-28 2008-01-28 Water treatment method and water treatment material

Publications (3)

Publication Number Publication Date
JP2009172544A JP2009172544A (en) 2009-08-06
JP2009172544A5 JP2009172544A5 (en) 2010-03-18
JP5219069B2 true JP5219069B2 (en) 2013-06-26

Family

ID=41028276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008015937A Active JP5219069B2 (en) 2008-01-28 2008-01-28 Water treatment method and water treatment material

Country Status (1)

Country Link
JP (1) JP5219069B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180079670A1 (en) * 2015-04-13 2018-03-22 Shibata Co., Ltd. Liquid processing method and liquid processing device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192293A (en) * 1985-02-19 1986-08-26 Mitsubishi Gas Chem Co Inc Production of coenzyme q10
JPS61192296A (en) * 1985-02-19 1986-08-26 Mitsubishi Gas Chem Co Inc Production of bacteriochlorophyll
JP2925385B2 (en) * 1991-06-11 1999-07-28 鐘紡株式会社 Method for producing polyhydroxy organic acid ester
JPH10248555A (en) * 1997-03-11 1998-09-22 Idemitsu Kosan Co Ltd Cultivation of photosynthetic bacteria
JP3322855B2 (en) * 1999-10-21 2002-09-09 雪印乳業株式会社 Culture device for red non-sulfur bacteria and low odor wastewater treatment device
JP2002045172A (en) * 2000-05-26 2002-02-12 Taiyo Kagaku Kogyo Kk Novel microorganism and method for decomposing compound by using the novel microorganism

Also Published As

Publication number Publication date
JP2009172544A (en) 2009-08-06

Similar Documents

Publication Publication Date Title
David et al. Biodegradation of palm oil mill effluent (POME) by bacteria.
Tighiri et al. Biotreatment of landfill leachate by microalgae-bacteria consortium in sequencing batch mode and product utilization
KR102026750B1 (en) New microorganism belonging to yarrowia genus, and oil decomposition agent and oil decomposition/removal method using same
El-Bestawy et al. The potentiality of free Gram-negative bacteria for removing oil and grease from contaminated industrial effluents
CN1804023A (en) Microorganisms for assimilating oils or fats, etc. and methods for treating waste liquids and deodorizing by using the same
JP4566207B2 (en) Oil-degrading microorganism and method for treating oil-containing wastewater using the same
JP5448512B2 (en) Microorganism having oil and fat decomposability and method for treating oil and fat-containing wastewater using the same
Lauprasert et al. Effect of selected bacteria as bioremediation on the degradation of fats oils and greases in wastewater from cafeteria grease traps
JP5219069B2 (en) Water treatment method and water treatment material
JP5238513B2 (en) Method for treating oil-containing wastewater using yeast and novel yeast
Ma’an et al. Isolation of bacterial strain for biodegradation of fats, oil and grease
RU2661679C9 (en) Method of oil-processing and petrochemical production sewage waters purification from phenol
JP5339339B2 (en) New microorganisms and their use
JP7230013B2 (en) New oil-degrading microorganisms
JP5874123B2 (en) Polluted water treatment method
JP2021000124A (en) Novel microorganisms that decompose fatty acid-containing fats and oils
RU2501852C2 (en) Preparation for cleaning of soil from oil and oil products
JP2017136032A (en) Oil content-decomposing microorganism
RU2660196C1 (en) Biopreparation for wastewater treatment from oil and grease pollution
KR100693865B1 (en) 0210-09 [-11368] Development of the isolate Pseudomonas fluorescens HYK0210-SK09 against the harmful diatom in fresh water growth control method and bio-agent using the isolate
JP5790983B2 (en) Novel oil-degrading bacteria, oil-degrading bacteria preparation, and method for treating oil-containing wastewater
KR102652220B1 (en) Novel Shinella granuli CK-4 strain with high capability of 1,4-dioxane decomposition and method for treating 1,4-dioxane-containing wastewater using the same
JP7109305B2 (en) New oil-degrading microorganisms
JP7260369B2 (en) New oil-degrading microorganisms
JP2008220201A (en) New microorganism and waste water treatment method and system utilizing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5219069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250