JP2925385B2 - Method for producing polyhydroxy organic acid ester - Google Patents

Method for producing polyhydroxy organic acid ester

Info

Publication number
JP2925385B2
JP2925385B2 JP3324953A JP32495391A JP2925385B2 JP 2925385 B2 JP2925385 B2 JP 2925385B2 JP 3324953 A JP3324953 A JP 3324953A JP 32495391 A JP32495391 A JP 32495391A JP 2925385 B2 JP2925385 B2 JP 2925385B2
Authority
JP
Japan
Prior art keywords
polymer
organic acid
acid ester
cells
polyhydroxy organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3324953A
Other languages
Japanese (ja)
Other versions
JPH0549487A (en
Inventor
晃一 持田
義和 近藤
雅男 松井
邦夫 市橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to PCT/JP1992/000751 priority Critical patent/WO1992022659A1/en
Publication of JPH0549487A publication Critical patent/JPH0549487A/en
Application granted granted Critical
Publication of JP2925385B2 publication Critical patent/JP2925385B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はロドバクター属の微生物
を用いたポリヒドロキシ有機酸エステルの微生物学的製
造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microbiological process for producing polyhydroxy organic acid esters using a microorganism of the genus Rhodobacter.

【0002】[0002]

【従来の技術】従来より各種の微生物が自己の栄養源、
エネルギー源としてポリヒドロキシ酪酸を製造、蓄積す
ることが知られている。微生物が製造するポリヒドロキ
シ酪酸は、生物分解性を有し、これまでも成型樹脂、医
薬・農薬製剤、医療器材などの材料として各方面で利用
が期待されている。
2. Description of the Related Art Conventionally, various microorganisms have their own nutrient sources,
It is known to produce and accumulate polyhydroxybutyric acid as an energy source. Polyhydroxybutyric acid produced by microorganisms has biodegradability and has been expected to be used in various fields as a material for molding resins, pharmaceutical / agrochemical formulations, medical equipment and the like.

【0003】また、最近は環境保護の観点からプラスチ
ックなどの産業廃棄物の処理問題において自然分解性を
有するポリマーが求められており、各種の微生物を利用
したポリマーの製造の提案がなされている。たとえば、
英国特許第1370892 号にはハイフォミクロビウム・ヴァ
リアピレ、シュードモナス・ロゼア種内の特定の菌株
が、また、ジャーナル オブ ジェネラル ミクロバイ
オロジー(J.of GeneralMicrobiology ) 1977,98,265
〜272 頁には、メチロバクテリウム、オルガノフィラム
およびシュードモナスAM-1などが、特開昭56-117793 号
公報にはメチロバクテリウム・オルガノフィラム種が、
特開昭57-74084号公報にはアルカリゲネス属(A.ファ
セカリス、A.ルーランデイイ、A.ラッス、A.アク
アマリヌス、A.ユートロファス)が、特開昭57-15039
3 号公報にはA.ユートロファスが、特開昭59-220192
号公報にはノカルジア、アゾトバクター、バシラス、ミ
クロコッカス、リゾビウム、ロドスピリルム、メチロバ
クテリウム、シュードモナス、ヒドロゲモナスが、特開
昭60-199392 号公報にはアルカリゲネス・レイタスが、
特開昭60-214888 号公報にはアルカリゲネス属が、特開
昭60-251889 号公報にはアゾトバクター・ビネンランデ
ィまたは変異株が、特開昭61-293385 号公報にはアルカ
リゲネス・ユートロファスが、特開昭62-55094号公報に
はプロトモナス属が、特開昭63-198991 号公報にはアゾ
トバクター・ビネンランディ、アルカリゲネス・ユート
ロファス、ズーグレア・ラミゲーラ、バチルス・メガテ
リウムが、特開昭63-226291 号公報にはシュードモナス
・オレオボランス種が、それぞれ記載されている。ま
た、紅色無硫黄細菌に属する微生物の菌体蓄積物として
多糖質、ポリリン酸とともにポリβヒドロキシ酪酸が見
出されている(バージェイズ・マニュアル・オブ・シス
テマティクバクテリオロジー(Bergey′s Manual ofSyst
ematic Bacteriology) 1658 頁参照)が、ロドバクター
属に属する微生物を用いてポリヒドロキシ有機酸エステ
ルを製造する提案はまったくなされていない。
Recently, from the viewpoint of environmental protection, there has been a demand for a polymer having natural degradability in the treatment of industrial waste such as plastics, and production of polymers utilizing various microorganisms has been proposed. For example,
High, in British Patent No. 1370892 follower micro bi um-Variapire, certain strains of the Pseudomonas Rosea species, also, Journal of General Microbiology (J.of GeneralMicrobiology) 1977, 98, 265
Pp. 272, Methylobacterium, Organophilum, Pseudomonas AM-1 and the like; JP-A-56-117793 discloses Methylobacterium organophilum species;
JP-A-57-74084 discloses a genus Alcaligenes (A. faecalis, A. roullandii, A. lass, A. aquamarinus, A. eutrophus).
No. 3 discloses A.I. Utrofus, JP 59-220192
No., Nocardia, Azotobacter, Bacillus, Micrococcus, Rhizobium, Rhodospirillum, Methylobacterium, Pseudomonas, Hydrogenomonas, JP-A-60-199392 discloses Alcaligenes reitas,
Japanese Patent Application Laid-Open No. 60-214888 discloses Alcaligenes, Japanese Patent Application Laid-Open No. 60-251889 discloses Azotobacter binenlandi or a mutant strain, and Japanese Patent Application Laid-Open No. 61-293385 discloses Alcaligenes Eutrophus. JP-A-62-55094 discloses the genus Protomonas, and JP-A-63-198991 discloses Azotobacter binenlandi, Alcaligenes eutrophus, Zugrea ramigera, and Bacillus megaterium. Pseudomonas oleovorans species are each described. In addition, poly-β-hydroxybutyrate has been found along with polysaccharides and polyphosphates as microbial cell accumulations of microorganisms belonging to the red sulfur-free bacteria (Bergey's Manual of Systemic Bacteriology (Bergey's Manual of Systemic Bacteriology)).
ematic Bacteriology), p. 1658), but there is no proposal to produce a polyhydroxy organic acid ester using a microorganism belonging to the genus Rhodobacter.

【0004】したがって、ロドバクター属に属する微生
物を用いたばあいのポリヒドロキシ有機酸の収量に対す
るpHの影響、よりよい炭素源および効果的な添加物に
ついては従来まったく研究されておらず、したがってま
ったく知られていない。
[0004] Accordingly, the effect of pH on the yield of polyhydroxy organic acids when using microorganisms belonging to the genus Rhodobacter, better carbon sources and effective additives have not been studied at all, and are therefore completely unknown. Not.

【0005】また、ポリマーの微生物学的製造に対する
酵母の添加の検討は行なわれたことがなかった。
[0005] Further, no study has been made on the addition of yeast to the microbiological production of polymers.

【0006】[0006]

【発明が解決しようとする課題】本発明は、かかる実情
に鑑み、生産速度が大きく、菌体内蓄積量が大きく、さ
らに安全で取扱いが容易な微生物による、効率的な生分
解性ポリマーの製造法を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above circumstances, the present invention provides a method for efficiently producing a biodegradable polymer by using microorganisms which have a high production rate, a large amount of cells accumulated in cells, and are safe and easy to handle. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】本発明は、ロドバクター
(Rhodobacter )属に属する微生物を、好気条件下で培
養し、ポリヒドロキシ有機酸エステルからなるポリマー
を菌体内に蓄積させることを特徴とするポリヒドロキシ
有機酸エステルの製造法に関する。
SUMMARY OF THE INVENTION The present invention is characterized in that a microorganism belonging to the genus Rhodobacter is cultured under aerobic conditions, and a polymer comprising a polyhydroxy organic acid ester is accumulated in the cells. The present invention relates to a method for producing a polyhydroxy organic acid ester.

【0008】[0008]

【実施例】本発明者らは、前記目的を達成すべく鋭意検
討を重ねた結果、病原性がなく、そのため安全で取扱い
が容易なロドバクター属に属する微生物を用いてポリヒ
ドロキシ有機酸エステルを有効に生産しうること、さら
に驚くべきことに、その際従来常識とされていた嫌気条
件(酸素が存在しない条件)下では生物の増殖速度と菌
体内へのポリヒドロキシ有機酸エステルの蓄積速度が極
めて低く、従来まったく採用されていない好気条件(酸
素を含有する条件)下において非常に有効に蓄積が行な
われることおよび1段階の培養によっても2段階の培養
によっても有効に行なわれることを見出した。
The present inventors have conducted intensive studies to achieve the above-mentioned object, and as a result, have found that a polyhydroxy organic acid ester can be effectively produced by using a microorganism belonging to the genus Rhodoctor which has no pathogenicity and is therefore safe and easy to handle. Surprisingly, the rate of growth of organisms and the rate of accumulation of polyhydroxy organic acid esters in the microbial cells are extremely high under anaerobic conditions (conditions in the absence of oxygen), which has been conventionally accepted as common knowledge. It has been found that accumulation is very effective under aerobic conditions (oxygen-containing conditions) which are low and have not been adopted at all, and that the accumulation is effectively performed by one-stage culture or two-stage culture. .

【0009】また、さらに研究を重ねた結果、ロドバク
ター属に属する微生物を用いたポリヒドロキシ有機酸エ
ステルの微生物学的製造法において、培養液のpHが4.
5 未満になると菌体内に蓄積されたポリヒドロキシ有機
酸エステルの消費が進むこと、培地への酵母添加により
ポリヒドロキシ有機酸エステルの蓄積が増大すること、
および培地成分の炭素源として主にマンニットを用いる
ことによりポリヒドロキシ有機酸エステルの生産が有効
に行われうることを見出した。本発明は前記の多くの知
見にもとづいて完成されたものである。
Further, as a result of further studies, it has been found that, in a microbiological production method of a polyhydroxy organic acid ester using a microorganism belonging to the genus Rhodobacter, the pH of the culture solution is 4.
When it is less than 5, the consumption of the polyhydroxy organic acid ester accumulated in the cells progresses, and the addition of yeast to the culture medium increases the accumulation of the polyhydroxy organic acid ester,
Further, it has been found that the production of polyhydroxy organic acid esters can be effectively performed by mainly using mannitol as a carbon source of the medium components. The present invention has been completed based on many of the above findings.

【0010】つぎに本発明のポリヒドロキシ有機酸エス
テルの製造法について説明する。
Next, a method for producing the polyhydroxy organic acid ester of the present invention will be described.

【0011】本発明において用いられるロドバクター属
に属する微生物としては、好気培養により菌体内に該ポ
リマーを蓄積できるロドバクター属に属する微生物であ
ればいずれも用いられる。たとえばロドバクター キャ
プスレイタス(R.capsulatus)、ロドバクター スフェ
ロイデス(R.sphaeroides )、ロドバクター スルフィ
ドフィルス(R.sulfidophilus )、ロドバクター アド
リアティクス(R.adriaticus)およびロドバクター ベ
ルドカンピィ(R.veldkampii)、ならびにそれらの該ポ
リマー貯蓄変異株などがあげられる。
As the microorganism belonging to the genus Rhodobacter used in the present invention, any microorganism belonging to the genus Rhodobacter which can accumulate the polymer in the cells by aerobic cultivation is used. For example Rhodobacter cap thread Itasu (R.capsulatus), Rhodobacter sphaeroides (R.sphaeroides), Rhodobacter sulfide Filth (R.sulfidophilus), Rhodobacter Adria Genetics (R.adriaticus) and Rhodobacter Berudokanpyi (R.veldkampii), and their the polymer Mutant strains and the like.

【0012】本発明におけるロドバクター属に属する微
生物の培養方法としては、前記のように、嫌気条件下に
おける培養では生物の増殖速度と菌体内へのポリヒドロ
キシ有機酸エステルの蓄積速度が極めて低く、好気条件
下における培養が非常に有効である。好気条件とは、通
常酸素存在下にて培養することである。酸素が存在しな
い条件(嫌気条件)下では、本発明の方法は非常に効率
が低い。
As a method for culturing a microorganism belonging to the genus Rhodobacter according to the present invention, as described above, the cultivation under anaerobic conditions has a very low growth rate of organisms and a very low rate of accumulation of polyhydroxy organic acid esters in the cells. Culture under aerobic conditions is very effective. The aerobic condition usually means culturing in the presence of oxygen. Under conditions in the absence of oxygen (anaerobic conditions), the method of the invention is very inefficient.

【0013】ロドバクター属に属する微生物による該ポ
リマーの製造条件としては、とくに光合成条件下での培
養は必要ない。
[0013] As a condition for producing the polymer by a microorganism belonging to the genus Rhodobacter, culture under photosynthetic conditions is not particularly necessary.

【0014】培養温度は通常45℃以下、好ましくは30〜
40℃である。pHは通常4.5 以上、好ましくは6〜9、
さらに好ましくは6.5 〜8である。
The culturing temperature is usually 45 ° C. or lower, preferably 30 to
40 ° C. pH is usually 4.5 or more, preferably 6-9,
More preferably, it is 6.5-8.

【0015】チッ素源は微生物の増殖には必須である
が、該ポリマーの蓄積には必要ではない。したがって、
チッ素源を含有する培地で菌体を増殖(前培養)させて
収穫したのちチッ素飢餓培養を行ない、菌体内に該ポリ
マーを蓄積させる2段階方式により製造することができ
る。ここでいうチッ素飢餓とは、培地液中に含まれるチ
ッ素分が1g/l 以下、好ましくは0.5g/l以下、さらに好
ましくは0.2g/l以下であることをいう。前培養を行なう
ばあいは、好気条件下、栄養素の制限なしに、対数増殖
期となるまで、すなわち菌数濃度が少なくとも107 /ml
となるまで行なわれる。
The nitrogen source is essential for the growth of the microorganism, but not for the accumulation of the polymer. Therefore,
After the cells are grown (pre-cultured) in a medium containing a nitrogen source and harvested, nitrogen starvation culture is performed, and the polymer can be accumulated in the cells by a two-step method. The term "nitrogen starvation" as used herein means that the nitrogen content in the medium is 1 g / l or less, preferably 0.5 g / l or less, more preferably 0.2 g / l or less. If pre-culture is performed, under aerobic conditions, without nutrient restrictions, until the logarithmic growth phase, i.e., the concentration of the number of bacteria is at least 10 7 / ml
It is performed until it becomes.

【0016】あるいは、前述のように細菌の増殖と、そ
れに続くチッ素飢餓培養による本発明ポリマーの生産と
いう2段階方式ももちろん可能であるが、培地に当初よ
りチッ素源を混入しておき増殖と同時に該ポリマーを蓄
積させる1段階方式によりポリマーを蓄積させることも
可能である。こうして1段階で培養しうることにより、
前培養(チッ素存在下)で増殖してえた菌体を集菌し新
たなチッ素飢餓培地へ移動して培養する必要がなく、工
程の短縮化・コストの低減はもちろん、回収・分離・生
成という工程を経ないために菌体のロスが極めて少な
く、工業的に極めて有利である。
Alternatively, as described above, a two-stage method of growing the bacteria and then producing the polymer of the present invention by nitrogen-starving culture is also possible, but the medium is mixed with a nitrogen source from the beginning to grow. At the same time, it is also possible to accumulate the polymer by a one-stage method of accumulating the polymer. By being able to culture in one stage in this way,
There is no need to collect the cells grown in the preculture (in the presence of nitrogen) and transfer them to a new nitrogen-starved medium for cultivation. Since the production process is not performed, the loss of bacterial cells is extremely small, which is extremely industrially advantageous.

【0017】チッ素源は、無機物たとえば硫酸アンモニ
ウム、塩化アンモニウムなどから選ぶことができ、有機
物としてはアミノ酸、尿素などを利用することができ
る。
The nitrogen source can be selected from inorganic substances such as ammonium sulfate and ammonium chloride, and the organic substances can be amino acids, urea and the like.

【0018】微生物の栄養源としては、微生物の培養を
阻害しない炭素源ならなんでも用いることができる。た
とえばメタノール、エタノール、プロパノールなどのア
ルコール類、酢酸ナトリウム、プロピオン酸ナトリウム
などの有機酸塩、グルコースなどの糖質など安価なもの
があげられる。好ましくは、マンニット、酢酸、プロピ
オン酸、フラクトース、グルコースである。
As a nutrient source of the microorganism, any carbon source which does not inhibit the culture of the microorganism can be used. For example, inexpensive products such as alcohols such as methanol, ethanol and propanol, organic acid salts such as sodium acetate and sodium propionate, and saccharides such as glucose can be used. Preferred are mannitol, acetic acid, propionic acid, fructose, and glucose.

【0019】しかしながら、とくにマンニットを炭素源
とするときは、培養液中に有機酸が蓄積しないため、p
Hが7以下とならない。さらに、培地中に少量のNH4
塩が存在したばあいでもオートクレーブ処理に伴うアミ
ノカルビノール反応がなく、したがって、この反応の生
成物による菌体の増殖抑制が起こらないため、大変有利
である。本発明の製造法の1つは、マンニットを主成分
とした炭素源を用いてロドバクター属に属する微生物を
培養することによってポリヒドロキシ有機酸エステルを
製造する方法である。
However, when mannitol is used as a carbon source, organic acids do not accumulate in the culture solution.
H does not become 7 or less. In addition, a small amount of NH 4
Even in the presence of salt, there is no aminocarbinol reaction associated with the autoclave treatment, and therefore, the product of this reaction does not inhibit the growth of cells, which is very advantageous. One of the production methods of the present invention is a method for producing a polyhydroxy organic acid ester by culturing a microorganism belonging to the genus Rhodobacter using a carbon source containing mannitol as a main component.

【0020】培養液中での炭素源の濃度としては、通常
5%(重量%、以下%という)以下、好ましくは0.5 〜
3%、さらに好ましくは1〜2%である。また、その他
に微生物の培養に必須の成分たとえば、硫酸マグネシウ
ム、リン酸カリウムなどの無機塩、チアミン、ビオチン
などの要求される微量要素、その他当然必要とされる成
分が必要である。これらの成分は試薬を使用してもよ
く、天然物としてえられる材料たとえば廃棄物そのもの
やこれを一部使用した合成培地によることができる。
The concentration of the carbon source in the culture solution is usually 5% or less (% by weight, hereinafter referred to as%), preferably 0.5 to 5%.
3%, more preferably 1-2%. In addition, other components essential for culturing microorganisms, for example, inorganic salts such as magnesium sulfate and potassium phosphate, required trace elements such as thiamine and biotin, and other naturally necessary components are required. These components may use a reagent, and may be a material obtained as a natural product, for example, a waste itself or a synthetic medium partially using the same.

【0021】本発明の製造法の1つは、さらに培地に酵
母を加えることを特徴とするポリヒドロキシ有機酸エス
テルの製造法である。酵母を加えることにより、菌体内
に蓄積するポリヒドロキシ有機酸エステルは著しく増大
する。ここで「酵母」とは、酵母菌体、酵母死菌体また
は酵母エキスを意味する。添加する酵母は酵母エキスが
好ましい。酵母の添加量は通常0.1 〜3g/l 、さらに好
ましくは0.5 〜2g/lであり、酵母エキスの添加量とし
ては通常0.1 〜2g/l 、好ましくは0.2 〜1.5g/l であ
る。
[0021] One of the production methods of the present invention is a method for producing a polyhydroxy organic acid ester, which further comprises adding yeast to a medium. The addition of yeast significantly increases the amount of polyhydroxy organic acid esters that accumulate in the cells. Here, "yeast" means yeast cells, yeast dead cells, or yeast extract. The yeast to be added is preferably a yeast extract. The amount of yeast added is usually 0.1 to 3 g / l, more preferably 0.5 to 2 g / l, and the amount of yeast extract added is usually 0.1 to 2 g / l, preferably 0.2 to 1.5 g / l.

【0022】炭素源など栄養源は、培養初期に投入して
もよいが、通常消費量に応じて随時追加すればよい。た
とえば、連続的に追加したり、断続的に追加することも
できる。
A nutrient source such as a carbon source may be added at the beginning of the cultivation, but may be added at any time depending on the normal consumption. For example, they can be added continuously or intermittently.

【0023】培養中のpHは、炭素源として酸のナトリ
ウム塩などを用いたばあいは、その消費にともなって上
昇するが、炭素源として糖質を用いたばあい、その消費
にともなって下降する。一方、培養液のpHが4.5 未満
となったばあいには、菌体内に蓄積されたポリヒドロキ
シ有機酸エステルの消費が急速に進行する。本発明の製
造法の1つは、蓄積開始後集菌までの培養液のpHを4.
5 以上に、好ましくは6.0 〜9.0 、さらに好ましくは6.
5 〜8.0 に保持することを特徴とする製造法である。p
Hを保持する方法はとくに限定されないが、たとえば、
滅菌した水酸化ナトリウムや水酸化カリウムまたは塩酸
の希釈溶液をpHに連動してポンプを作動せしめて滴下
し、適切なpH値に保持することができる。このように
pHを4.5 以上に保持することで、ポリヒドロキシ有機
酸エステルの収量は著しく増大する。
The pH during cultivation increases with the consumption of an acid sodium salt or the like as a carbon source, but decreases with the consumption of a saccharide as a carbon source. I do. On the other hand, when the pH of the culture solution becomes less than 4.5, the consumption of the polyhydroxy organic acid ester accumulated in the cells progresses rapidly. One of the production methods of the present invention is to adjust the pH of a culture solution to 4.
5 or more, preferably 6.0 to 9.0, more preferably 6.
This is a production method characterized by maintaining the value at 5 to 8.0. p
The method for retaining H is not particularly limited. For example,
A sterilized diluted solution of sodium hydroxide, potassium hydroxide, or hydrochloric acid can be dropped by operating a pump in conjunction with the pH to maintain an appropriate pH value. By maintaining the pH above 4.5, the yield of polyhydroxy organic acid ester is significantly increased.

【0024】細菌中への該ポリマーの蓄積は、光学顕微
鏡や位相差顕微鏡や電子顕微鏡などで監視できる。本発
明における細菌内での該ポリマーの蓄積率は、条件によ
り異なるが通常少なくとも20%、好ましくは少なくとも
40%、さらに好ましくは少なくとも60%である。本発明
の特徴の1つとして、この蓄積率が従来報告されている
値より高く、菌体重量あたりの該ポリマー生産量が大き
く、抽出効率もすぐれている。
The accumulation of the polymer in bacteria can be monitored with an optical microscope, a phase contrast microscope, an electron microscope, or the like. The accumulation rate of the polymer in the bacterium in the present invention varies depending on conditions, but is usually at least 20%, preferably at least 20%.
It is 40%, more preferably at least 60%. One of the features of the present invention is that the accumulation rate is higher than previously reported, the polymer production per cell weight is large, and the extraction efficiency is excellent.

【0025】該ポリマーの蓄積が、少なくとも20%程
度、好ましくは40%以上に達したら、培養液より細菌を
分離する。生成した該ポリマーの菌体内からの分離・回
収方法としては、従来提案されている公知の方法のいず
れによってもよい。
When the accumulation of the polymer reaches at least about 20%, preferably at least 40%, bacteria are separated from the culture solution. As a method for separating and recovering the produced polymer from the cells, any of conventionally known methods may be used.

【0026】たとえば凍結乾燥菌体、熱風乾燥菌体、ア
セトンまたはメタノールによる脱水菌体に無極性溶媒と
してたとえばクロロホルムを加えて該ポリマーを溶出せ
しめ溶媒を留去すれば主として該ポリマーからなる残留
物がえられる。抽出効率を高めるために、前処理も効果
がある。たとえば、菌体懸濁液へ溶菌酵素またはキシレ
ンなどの有機溶剤を加えて溶菌したのち、クロロホルム
などの溶剤により抽出すれば抽出時間が短縮され、精製
も容易になる。
For example, if the polymer is eluted by adding, for example, chloroform as a non-polar solvent to the freeze-dried cells, hot-air-dried cells, or dehydrated cells with acetone or methanol, and the solvent is distilled off, a residue mainly composed of the polymer is obtained. available. Pre-processing is also effective to increase extraction efficiency. For example, if the cell suspension is lysed by adding an organic solvent such as a lytic enzyme or xylene to the cell suspension, and then extracted with a solvent such as chloroform, the extraction time is shortened and purification is facilitated.

【0027】または、菌体内部の生成ポリマーの含有率
が高いばあいは菌体からポリマーを抽出することなく菌
体ごと使用してもよいし、菌体を溶剤、酵素などにて軟
化して使用してもよい。抽出したポリマーは、必要なら
ば精製、または分別処理し、不純物を除去するため再結
することもできる。
Alternatively, when the content of the produced polymer inside the cells is high, the cells may be used together with the cells without extracting the polymer from the cells, or the cells may be softened with a solvent, an enzyme or the like. May be used. The extracted polymer can be purified or fractionated, if necessary, and reconstituted to remove impurities.

【0028】本発明の製造法によりえられるポリヒドロ
キシ有機酸エステルとしては、たとえば下記式で示され
るポリ-3- ヒドロキシ酪酸エステル(以下、PHB とい
う)よりなるポリマーまたはPHB よりなるポリマーが主
成分となるポリマーがあげられる。
As the polyhydroxy organic acid ester obtained by the production method of the present invention, for example, a polymer composed of a poly-3-hydroxybutyrate (hereinafter referred to as PHB) represented by the following formula or a polymer composed of PHB as a main component: Polymers.

【0029】[0029]

【化1】 Embedded image

【0030】他の成分として、炭素数5以上の有機酸エ
ステル成分も含まれてもよいが、その量は通常10重量%
以下である。
As other components, an organic acid ester component having 5 or more carbon atoms may be contained, but the amount is usually 10% by weight.
It is as follows.

【0031】この構造の定性的な分析は、IR、NMR など
によって行なうことができる。また、熱に対する性質は
DSC 、TMA などによって可能である。ポリマーの分子量
は粘度法、GPC 法などにて測定できる。生物分解性は、
該ポリマーをフィルムなどに成型し土中に埋込み、一定
期間中での物性(強度、伸度)や形態(表面、断面)や
分子量の変化などを測定することにより可能となる。
The qualitative analysis of the structure can be performed by IR, NMR and the like. Also, the property to heat is
Possible by DSC, TMA, etc. The molecular weight of the polymer can be measured by a viscosity method, a GPC method, or the like. Biodegradability is
This is possible by molding the polymer into a film or the like, embedding it in soil, and measuring changes in physical properties (strength, elongation), morphology (surface, cross section), molecular weight, and the like over a certain period of time.

【0032】本発明によるポリマーは、有機溶剤、たと
えばクロロホルム、ジクロルメタン、1,2-ジクロルエタ
ン、および1,2-ジクロルプロパンなどに可溶であり、そ
れらの溶剤を使用することにより従来の方法にて抽出で
きる。また、該ポリマーのフィルムを一般的な庭土に埋
めると、約一週間程度からフィルム表面に亀裂が発生し
始め、続いて強度、伸度の低下が見られ、明らかに分解
していることを示す。
The polymers according to the invention are soluble in organic solvents, such as, for example, chloroform, dichloromethane, 1,2-dichloroethane and 1,2-dichloropropane. Can be extracted. In addition, when a film of the polymer is buried in general garden soil, cracks start to be generated on the film surface from about one week, followed by a decrease in strength and elongation, and it is apparent that the film is clearly decomposed. Show.

【0033】本発明によりえられる該ポリマーは、生分
解性を生かした用途、たとえばプラスチックボトル、釣
糸、包装紙、手術用糸、医療用コーティング剤などに有
用である。
The polymer obtained by the present invention is useful for applications utilizing biodegradability, for example, plastic bottles, fishing lines, wrapping paper, surgical lines, medical coating agents and the like.

【0034】つぎに本発明のポリヒドロキシ有機酸エス
テルの製造法を実施例に基づいて説明するが、本発明は
もとよりかかる実施例のみに限定されるものではない。
Next, the method for producing the polyhydroxy organic acid ester of the present invention will be described based on examples, but the present invention is not limited to these examples.

【0035】実施例1 ロドバクター キャプスレイタス ATCC 11166 を保有培
地からニュートリエントブロス10mlを入れたL字管に移
植し、24時間、37℃にて振とう培養(振幅6cm、92回/
分、以下実施例2および3にて同じ)を行なって3代継
代した。つぎに同組成のニュートリエントブロス100ml
を入れた坂口フラスコ10本を調製し、前記継代培養液を
2%の割合となるように移植し、48時間、37℃で振とう
培養後、3000G、15分の条件で遠心分離して集菌した。
これを生理食塩水200ml に懸濁して、再びこれを同様に
遠心分離して集菌した。同じ操作を3回繰り返し洗浄菌
体をえた。
Example 1 Rhodobacter capsulatus ATCC 11166 was transplanted from a holding medium into an L-shaped tube containing 10 ml of nutrient broth and cultured at 37 ° C. for 24 hours with shaking (amplitude 6 cm, 92 times /
And the same in Examples 2 and 3) for 3 passages. Next, 100ml of nutrient broth of the same composition
Was prepared, and the subcultured solution was transplanted to a ratio of 2%, cultured with shaking at 37 ° C. for 48 hours, and then centrifuged at 3000 G for 15 minutes. The bacteria were collected.
This was suspended in 200 ml of physiological saline, and again centrifuged in the same manner to collect cells. The same operation was repeated three times to obtain washed cells.

【0036】つぎに、チッ素飢餓培養を好気条件下で行
なった。すなわち、酢酸ナトリウム10g、リン酸1カリ
ウム1g、リン酸2カリウム1g、硫酸マグネシウム7
水塩0.2 g、塩化カルシウム1水塩0.05g、チアミン塩
酸塩0.005 g、酵母エキス1g、水1リットル、pH7.
0の飢餓培養培地をつくった。前記洗浄菌体を飢餓培養
培地1リットルに加えて混合し、懸濁せしめた。500ml
容坂口フラスコ10本に100ml ずつ分注し、37℃で振とう
培養を8日間行なった。培養後の菌体を遠心分離により
前記と同様の条件で集め、アセトン100ml を加えて懸濁
し10分間静置したのち、遠心分離を3000G、5分間の条
件で行なって菌体を集めた。これを4回繰り返すことに
よって菌体を脱水した。菌体に付着するアセトンを風乾
により揮散させた。
Next, nitrogen starvation culture was performed under aerobic conditions. That is, sodium acetate 10 g, potassium phosphate 1 g, potassium diphosphate 1 g, magnesium sulfate 7
0.2 g of water salt, 0.05 g of calcium chloride monohydrate, 0.005 g of thiamine hydrochloride, 1 g of yeast extract, 1 liter of water, pH 7.
A starvation culture medium of 0 was made. The washed cells were added to one liter of the starvation culture medium, mixed, and suspended. 500ml
100 ml each was dispensed into 10 Nosakaguchi flasks, and shaking culture was carried out at 37 ° C. for 8 days. After culturing, the cells were collected by centrifugation under the same conditions as above, suspended in 100 ml of acetone, allowed to stand for 10 minutes, and then centrifuged at 3000 G for 5 minutes to collect the cells. This was repeated four times to dehydrate the cells. Acetone adhering to the cells was volatilized by air drying.

【0037】つぎにクロロホルム200ml を加えて懸濁液
となし500ml 容ナス型フラスコへ移し、70℃の湯浴中で
還流冷却器を付けて3時間保ったのち、室温まで冷却
後、東洋濾紙No.2濾紙で濾過してクロロホルム溶液と菌
体を分離した。菌体をクロロホルムで洗浄し前記クロロ
ホルム溶液と合わせた。つぎに濾液を500ml 容ナス型フ
ラスコヘ移し、35℃で減圧蒸留してクロロホルムを留去
した。該フラスコ内に残った膜状のポリマーを、メタノ
ール、アセトン、ヘキサンおよびエーテルをこの順番に
用いて洗浄したのち乾燥し、再びクロロホルムに溶解後
一旦濾過してクロロホルム溶液をえた。クロロホルムを
留去して該ポリマーを該フラスコ内に残留せしめて6g
をえることができた。同様の精製操作を3回繰り返し、
ポリ-3- ヒドロキシ酪酸エステルを主成分としたポリマ
ーをえることが出来た。
Next, 200 ml of chloroform was added thereto to form a suspension, and the mixture was transferred to a 500-ml eggplant-shaped flask. The mixture was kept in a 70 ° C. water bath with a reflux condenser for 3 hours. After cooling to room temperature, Toyo Filter Paper No. .2 The solution was filtered through a filter paper to separate the chloroform solution from the cells. The cells were washed with chloroform and combined with the chloroform solution. Next, the filtrate was transferred to a 500 ml eggplant-shaped flask and distilled under reduced pressure at 35 ° C. to remove chloroform. The film-form polymer remaining in the flask was washed with methanol, acetone, hexane and ether in this order, dried, dissolved again in chloroform, and once filtered to obtain a chloroform solution. Chloroform is distilled off, and the polymer is left in the flask to obtain 6 g.
Could be obtained. The same purification operation was repeated three times,
A polymer containing poly-3-hydroxybutyrate as a main component was obtained.

【0038】比較例として、同組成の培地で嫌気照明下
の光合成条件下で培養後、チッ素飢餓培養も嫌気照明下
で培養を全く同じ時間続けたが、該ポリマーの菌体内蓄
積量は乾燥菌体1グラム当りわずか0.2 gであった。
As a comparative example, after culturing under photosynthetic conditions under anaerobic illumination in a medium having the same composition, nitrogen-starved cultivation was continued under anaerobic illumination for exactly the same time. The weight was only 0.2 g per gram of cells.

【0039】この結果から明らかに好気条件下におい
て、ポリヒドロキシ酪酸エステルを主成分としたポリマ
ーの生産が高いことがわかる。
The results clearly show that under aerobic conditions, the production of a polymer containing polyhydroxybutyrate as a main component is high.

【0040】実施例2 チッ素源およびその含有率を変化させたほかは培養を実
施例1とまったく同様にして、培養を実施した。チッ素
源は硫酸アンモニウムを用い、チッ素源と微生物の栄養
である炭素源との比、すなわちC/N を約1.8 〜∞として
培養した。えられた菌体の乾燥菌体当たりの該ポリマー
の菌体内蓄積量を表1に示す。なおチッ素飢餓培養でな
いことは培養後のチッ素源の測定値を見れば残存量が示
されていることから明らかである。
Example 2 Cultivation was carried out in exactly the same manner as in Example 1 except that the nitrogen source and its content were changed. Ammonium sulfate was used as the nitrogen source, and the cells were cultured at a ratio of the nitrogen source to the carbon source that is the nutrient of the microorganism, that is, C / N of about 1.8 to ∞. Table 1 shows the amount of the polymer accumulated in the cells per dried cell of the obtained cells. The fact that the culture is not nitrogen-starved is apparent from the measurement of the nitrogen source after the culture, which indicates the residual amount.

【0041】表1に示されるように、完全なチッ素飢餓
によらなくても該ポリマーの製造は可能であり、チッ素
として2g/l 以下においてはチッ素飢餓状態でのポリマ
ーの生産と何ら変わりのない生産性を有することが分か
る。これは、本発明のロドバクター菌を用いた大きな特
徴である。
As shown in Table 1, the production of the polymer is possible without complete nitrogen starvation, and when the nitrogen content is 2 g / l or less, the production of the polymer in the nitrogen starvation state and the production of the polymer do not increase. It can be seen that there is no change in productivity. This is a great feature using the Rhodobacter bacterium of the present invention.

【0042】[0042]

【表1】 [Table 1]

【0043】実施例3 実施例1に記載の方法と同じ方法にて、飢餓培養におけ
る培養の条件を変え、炭酸源をグルコース、培養温度を
27℃、培養時間を4日間とした。グルコースの初発濃度
は表2に示す。
Example 3 In the same manner as described in Example 1, the culture conditions in starvation culture were changed, the carbon dioxide source was glucose, and the culture temperature was
At 27 ° C., the culture time was 4 days. The initial glucose concentration is shown in Table 2.

【0044】培養後の生菌数を平板希釈培養法で測定し
た結果(YPS 寒天培地を使用)、培養前と大差がなく、
グルコース濃度がいずれのばあいも近似した生菌数を示
し、(2.7 ×7.9 )×107 /mlであった。飢餓培養2日
間後には生菌体のまま位相差顕微鏡で観察すると菌体内
にポリマーの顆粒が蓄積しており、1菌体当たり、3〜
5粒子であった。さらに培養を続け、培養開始後4日目
には菌体の形態は球状(直径1μ)に近いまでに変化
し、しかもすべての菌体内が該ポリマー顆粒で満たされ
るに至った。結果を表2に示す。
The number of viable cells after culturing was measured by a plate dilution culture method (using a YPS agar medium).
In all cases, the number of viable bacteria showed an approximate viable bacterial concentration, and was (2.7 × 7.9) × 10 7 / ml. After 2 days of starvation culture, when observed with a phase contrast microscope with live cells, polymer granules were accumulated in the cells, and 3 to 3 cells per cell were observed.
There were 5 particles. Further culturing was continued, and on the fourth day after the start of the culturing, the morphology of the cells changed to a shape close to a sphere (1 μ in diameter), and all the cells were filled with the polymer granules. Table 2 shows the results.

【0045】以下の結果から、培養温度が27℃において
もポリヒドロキシ酪酸エステルが生産されること、炭素
源として糖類の代表的なグルコースを使用しても該ポリ
マーが生産されることがわかる。4日間培養後には菌体
内が多量の該ポリマーで充満したため、光学顕微鏡を用
いて蓄積過程をモニターできたので、該ポリマーを抽出
して分析するまでもなく培養終了の適期を判定できた。
なお、該ポリマーの確認は、菌体をオブジェクトグラス
上に火炎固定後スダンブラックにより染色後検鏡する従
来の方法にても確認した。
The following results show that polyhydroxybutyrate is produced even at a culture temperature of 27 ° C., and that the polymer is produced even when glucose, a typical sugar, is used as a carbon source. After culturing for 4 days, the cells were filled with a large amount of the polymer, and the accumulation process could be monitored using an optical microscope. Therefore, it was possible to determine an appropriate time for ending the culture without extracting and analyzing the polymer.
The polymer was confirmed by a conventional method in which cells were fixed on an object glass with a flame, stained with Sudan black, and then examined under a microscope.

【0046】[0046]

【表2】 [Table 2]

【0047】実施例4 ロドバクター キャプスレイタス ATCC 11166 をを保有
培地からYPS 培地(以下に組成を示す)10mlを入れた50
0ml 容坂口フラスコに移植し、24〜48時間、37℃にて振
とう培養(振幅3.5cm 、100 回/分、以下すべて同じ)
後、3000G、15分の条件で遠心分離して集菌した。これ
を生理食塩水100ml に懸濁して再びこれを同様に遠心分
離して集菌した。同じ操作を3回繰り返し、洗浄菌体を
えた。
Example 4 A culture medium containing Rhodobacter capsulatus ATCC 11166 containing 10 ml of YPS medium (the composition is shown below) was added.
Transfer to a 0ml Sakaguchi flask and shake culture at 37 ° C for 24 to 48 hours (amplitude 3.5cm, 100 times / min, all the same below)
Then, the cells were collected by centrifugation at 3000 G for 15 minutes. This was suspended in 100 ml of physiological saline, and again centrifuged similarly to collect cells. The same operation was repeated three times to obtain washed cells.

【0048】この菌体を、チッ素飢餓培地に酵母エキス
(ナカライテスク社製)1.0g/l添加したものおよび酵母
エキス(ディフコ社製)1.0g/l添加したものそれぞれ10
0mlを入れた500ml 容坂口フラスコに移植した。
The cells were added to a nitrogen-starved medium with 1.0 g / l of yeast extract (manufactured by Nacalai Tesque) and 1.0 g / l of yeast extract (manufactured by Difco), respectively.
It was transplanted into a 500 ml Sakaguchi flask containing 0 ml.

【0049】 YPS 培地の組成 酵母エキス 0.3 % ポリペプトン 0.3 % MgSO4 ・7H2 O 0.05% CaCl2 0.03% (pH 7.40) チッ素飢餓培地の組成 KH2 PO4 1.0 g/l K2 HPO4 1.0 g/l MgSO4 ・7H2 O 0.2 g/l CaCl2 ・2H2 O 0.05g/l FeSO4 ・6H2 O 0.01g/l チアミン塩酸塩 5mg/l ニコチン酸 2mg/l ビオチン 2mg/l グルコース 10mg/l (pH 7.40) 37℃にて86時間振とう培養を行なったのち、菌体を遠心
分離により前記と同様の条件で集め、アセトン100ml を
加えて懸濁し10分間静置したのち、遠心分離を3000G、
15分間の条件で行って菌体を集めた。これを3回繰り返
すことによって菌体を脱水した。菌体に付着するアセト
ンを風乾により揮散させた。
[0049] 0.3% yeast composition of YPS medium extract polypeptone 0.3% MgSO 4 · 7H 2 O 0.05% CaCl 2 0.03% (pH 7.40) the composition of nitrogen starvation medium KH 2 PO 4 1.0 g / l K 2 HPO 4 1.0 g / l MgSO 4 · 7H 2 O 0.2 g / l CaCl 2 · 2H 2 O 0.05g / l FeSO 4 · 6H 2 O 0.01g / l thiamine hydrochloride 5 mg / l nicotinic acid 2 mg / l biotin 2 mg / l glucose 10mg / l (pH 7.40) After shaking culture at 37 ° C for 86 hours, the cells were collected by centrifugation under the same conditions as above, suspended in 100 ml of acetone, allowed to stand for 10 minutes, and then centrifuged. 3000G,
The reaction was performed for 15 minutes to collect the cells. This was repeated three times to dehydrate the cells. Acetone adhering to the cells was volatilized by air drying.

【0050】つぎにクロロホルム20mlを加えて懸濁液と
なし500ml 容ナス型フラスコへ移し、65℃の湯浴中で還
流冷却器を付けて3時間保ったのち、室温まで冷却後、
東洋濾紙No.2濾紙で濾過してクロロホルム溶液と菌体を
分離した。菌体をクロロホルムで洗浄し前記クロロホル
ム溶液と合わせた。つぎに濾液を500ml 容ナス型フラス
コヘ移し、35℃で減圧蒸留してクロロホルムを留去し
た。該フラスコ内に残った膜状のポリマーを、メタノー
ル、アセトン、ヘキサンおよびエーテルをこの順番に用
いて洗浄したのち乾燥し、再びクロロホルに溶解後一旦
濾過してクロロホルム溶液をえた。クロロホルムを留去
してエステルをえた。同様の精製操作を3回繰り返し、
PHB を主成分としたポリマーをえた。
Next, 20 ml of chloroform was added thereto to form a suspension, and the mixture was transferred to a 500-ml eggplant-shaped flask, kept in a hot water bath at 65 ° C. for 3 hours with a reflux condenser, and cooled to room temperature.
The solution was filtered through Toyo No. 2 filter paper to separate the chloroform solution from the bacterial cells. The cells were washed with chloroform and combined with the chloroform solution. Next, the filtrate was transferred to a 500 ml eggplant-shaped flask and distilled under reduced pressure at 35 ° C. to remove chloroform. The polymer in the form of a film remaining in the flask was washed with methanol, acetone, hexane and ether in this order, dried, dissolved again in chloroform and filtered once to obtain a chloroform solution. Chloroform was distilled off to obtain an ester. The same purification operation was repeated three times,
PHB-based polymer was obtained.

【0051】こうしてえられたポリマーの量は、前者が
0.0953g/l で後者が0.0925g/l であった。また、ポリマ
ーの菌体内含有率(すなわち菌体重量に対するえられた
ポリマー重量割合)はそれぞれ36.0%および41.0%であ
った。
The amount of the polymer thus obtained is determined by the former
0.0953 g / l and the latter at 0.0925 g / l. The intracellular content of the polymer (that is, the ratio of the obtained polymer weight to the weight of the bacterial cells) was 36.0% and 41.0%, respectively.

【0052】以上の結果より、添加する酵母エキスの種
類によって、えられるポリマー生産量および菌体内含有
率に差がないことがわかる。
From the above results, it can be seen that there is no difference in the obtained polymer production amount and in the intracellular content depending on the type of the yeast extract to be added.

【0053】実施例5 ロドバクター キャプスレイタス ATCC 11166 を酵母エ
キス1g/l 添加および無添加で、あとの条件は実施例1
と同様に飢餓培養した。酵母エキスはナカライテスク社
製のものを用いた。32℃にて86時間培養したのち、実施
例1と同様にしてポリマーをえた。
Example 5 Rhodobacter Capsulatus ATCC 11166 was added with and without yeast extract at 1 g / l.
Starvation was performed in the same manner as described above. The yeast extract used was manufactured by Nakarai Tesque. After culturing at 32 ° C. for 86 hours, a polymer was obtained in the same manner as in Example 1.

【0054】酵母エキスを添加したばあいでは、えられ
たポリマーは109.9mg/100ml 培地であり、無添加のばあ
いでは14.1mg/100ml培地であった。ポリマーの菌体内含
有量はそれぞれ38.6%および32.9%であった。
When the yeast extract was added, the obtained polymer was 109.9 mg / 100 ml medium, and when no yeast extract was added, the polymer was 14.1 mg / 100 ml medium. The intracellular content of the polymer was 38.6% and 32.9%, respectively.

【0055】この結果より、培地に酵母エキスを加える
ことにより培地当りのポリマー量が著しく増大すること
がわかる。
From these results, it is found that the amount of polymer per medium is significantly increased by adding yeast extract to the medium.

【0056】しかしながら、飢餓培地にはロドバクター
キャプスレイタス ATCC 11166 の増殖に必須のチアミ
ン、ビオチン、ニコチン酸が充分量添加されているの
で、酵母エキスの添加は一般に知られている増殖のため
の添加ではない。ポリマーの菌体内含有量が増加してい
ることからもわかるように、ここで行なわれた酵母エキ
スの添加は増殖ではなくポリマー蓄積量を増大させる効
果を有する。
However, since the starvation medium contains a sufficient amount of thiamine, biotin, and nicotinic acid, which are essential for the growth of Rhodobacter capsulatus ATCC 11166, the addition of yeast extract is generally known for growth. is not. As can be seen from the increase in the intracellular content of the polymer, the addition of the yeast extract performed here has the effect of increasing the amount of polymer accumulated, not growth.

【0057】実施例6 実施例5とまったく同様にして、チッ素飢餓培地に添加
する酵母エキス(ナカライテスク社製)の割合を変えて
培養を行ないポリマーをえた。以下にその結果を示す。
Example 6 In exactly the same manner as in Example 5, the polymer was obtained by culturing while changing the ratio of the yeast extract (manufactured by Nacalai Tesque) to be added to the nitrogen-starved medium. The results are shown below.

【0058】[0058]

【表3】 [Table 3]

【0059】表3より、以下のことがわかる。Table 3 shows the following.

【0060】(1) 酵母エキス無添加のばあいのポリマー
生産量は培地1リットル当り0.01gであり酵母エキス0.
5g/l添加したばあいの1/10以下である。
(1) When the yeast extract was not added, the amount of polymer produced was 0.01 g per liter of the medium, and the amount of the yeast extract was 0.1 g.
It is 1/10 or less when 5 g / l is added.

【0061】(2) 酵母エキスを2.0g/l添加したばあいに
はポリマー含有量は1.0g/l添加時よりも減少し、菌体内
含有量も減少した。したがって添加量が多くなればなる
ほどポリマー生産量が増大するものではない。
(2) When 2.0 g / l of yeast extract was added, the polymer content was lower than when 1.0 g / l was added, and the intracellular content was also reduced. Therefore, the larger the amount added, the more the polymer production does not increase.

【0062】実施例7 酵母エキスの代わりにエビオス錠(商品名、田辺製薬株
式会社)を乳ばちで粉末にしたものを使用したことを除
いては実施例3と同様にして培養を行なった。結果を表
4に示す。
Example 7 Cultivation was carried out in the same manner as in Example 3, except that instead of yeast extract, Ebios tablets (trade name, Tanabe Seiyaku Co., Ltd.) powdered with milk stick were used. . Table 4 shows the results.

【0063】[0063]

【表4】 [Table 4]

【0064】酵母として、エビオスのような乾燥菌体を
用いても良好な結果がえられることがわかる。エビオス
のばあいでは、培地1リットル当たり1.0 g添加の際に
ポリマー含有率が高い。
It can be seen that good results can be obtained by using dried cells such as Evios as yeast. In the case of shrimp, the polymer content is high when 1.0 g is added per liter of medium.

【0065】実施例8 ロドバクター キャプスレイタス ATCC 11166 を実施例
1と同様にしてYPS 培地300ml に移植して培養し洗浄菌
体をえた。これへ生理食塩水7mlを加えて懸濁液を作
り、その2mlずつをとり、以下に記すチッ素飢餓培地へ
移植した。チッ素飢餓培地は、実施例1に記した組成の
ものに酵母エキス(ディフコ製)を1g/l添加した。p
Hは4.7 、6.0 および7.0 の3種類をつくり、各培地50
mlを500ml容坂口フラスコへ入れて調製した。15時間培
養後、それぞれのpHを1Nの塩酸を用いて4.4 、4.6 〜
4.7 および6.0 〜6.3 とし、さらに50時間培養をつづけ
た。培養後、集菌し、実施例4に記載の方法でポリマー
を抽出して菌体内の含有量を測定した。結果を表5にま
とめた。
Example 8 Rhodocobacter capsulatus ATCC 11166 was transferred to 300 ml of YPS medium and cultured in the same manner as in Example 1 to obtain washed cells. To this, 7 ml of physiological saline was added to prepare a suspension, and 2 ml of each suspension was taken and transplanted to a nitrogen starvation medium described below. A nitrogen-starved medium was prepared by adding 1 g / l of yeast extract (manufactured by Difco) to the composition described in Example 1. p
H makes three types of 4.7, 6.0 and 7.0.
ml was placed in a 500 ml Sakaguchi flask. After culturing for 15 hours, each pH is adjusted to 4.4, 4.6 to 1 using 1N hydrochloric acid.
The culture was 4.7 and 6.0 to 6.3, and the culture was continued for another 50 hours. After the culture, the cells were collected, the polymer was extracted by the method described in Example 4, and the content in the cells was measured. The results are summarized in Table 5.

【0066】すなわち、(1) のポリマーはpH4.4 にお
いては蓄積が著しく低下し、ほとんど蓄積されないこと
を示している。(2) の15時間pH5.9 〜6.1 で培養した
ばあいではポリマーを蓄積したがpH4.6 〜4.7 に50時
間保持したため24%となった。(3) の15時間pH6.6 〜
7.0 とし、以後50時間を6.0 〜6.3 としたばあいには42
%の容量を蓄積した。培養後の菌体収量は大差なかっ
た。
That is, it is shown that the accumulation of the polymer (1) is remarkably reduced at pH 4.4 and hardly accumulated. In the case of culturing at pH 5.9 to 6.1 for 15 hours in (2), the polymer was accumulated, but it was 24% because it was kept at pH 4.6 to 4.7 for 50 hours. (3) 15 hours pH 6.6 ~
If you set the time to 6.0 and 6.3 after 50 hours, 42
% Capacity accumulated. The cell yield after culturing was not much different.

【0067】[0067]

【表5】 [Table 5]

【0068】実施例9 ロドバクター キャプスレイタス ATCC 11166 およびロ
ドバクター スフェロイデス(Rhodobacter Sphaeroide
s )IFO 12203 をそれぞれ実施例4と同様にYSP 培地20
0ml へ移植し、48時間、27℃で培養したのち集菌、洗浄
菌体をえた。
Example 9 Rhodobacter Capsulatus ATCC 11166 and Rhodobacter Sphaeroide
s) IFO 12203 was treated with YSP medium 20 in the same manner as in Example 4.
After transplanting to 0 ml and culturing for 48 hours at 27 ° C., cells were collected and washed cells were obtained.

【0069】飢餓培養の炭素源をマンニット10g/l 、酵
母エキス(ナカライテスク社製)1g/l に調製した実施
例4に記載の培地200ml へ洗浄菌体を移植し、27℃で90
時間振とう培養した。集菌して実施例4と同様にしてポ
リマーを抽出し、菌体内含有量を測定した。結果を表6
に示した。
The washed cells were transplanted into 200 ml of the medium described in Example 4 in which the carbon source for starvation culture was adjusted to 10 g / l of mannitol and 1 g / l of yeast extract (manufactured by Nacalai Tesque, Inc.).
The cells were cultured with shaking for a time. The cells were collected and the polymer was extracted in the same manner as in Example 4, and the content in the cells was measured. Table 6 shows the results
It was shown to.

【0070】[0070]

【表6】 [Table 6]

【0071】この結果より、pHの低下をひき起さず、
アミノカルビノール反応による菌体増殖制御の心配もな
いマンニットが、PHB 生産の際の炭素源として有効に用
いられることがわかる。
From the results, it was found that the pH did not decrease,
It is clear that mannitol, which does not have to worry about control of cell growth by the aminocarbinol reaction, can be effectively used as a carbon source for PHB production.

【0072】実施例10 実施例1に記載の好気培養により製造した該ポリマーの
性状を確認するために分子量分布、熱分析(DSC )、赤
外吸収スペクトル、核磁気共鳴スペクトルを測定した。
NMR による分析の結果、該ポリマーはポリ-3- ヒトロキ
シ酪酸を主成分とし、他の共重合成分として微量(5mo
l %程度)のポリ-3- ヒドロキシ吉草酸からなってい
た。また、GPC 測定の結果、数百のMwを有するオリゴマ
ー部分と数十万のMwを有する高分子量部分にピークを有
していた。DSC 測定の結果、163 〜165 ℃に融点を有し
ている。融解熱の値より、結晶性はかなり高いことが判
明した。
Example 10 In order to confirm the properties of the polymer produced by the aerobic culture described in Example 1, the molecular weight distribution, thermal analysis (DSC), infrared absorption spectrum, and nuclear magnetic resonance spectrum were measured.
As a result of NMR analysis, the polymer was found to contain poly-3-hydroxylbutyric acid as a main component and a trace amount (5 mol
l%) of poly-3-hydroxyvaleric acid. Further, as a result of GPC measurement, it was found that the oligomer portion having several hundred Mw and the high molecular weight portion having several hundred thousand Mw had peaks. As a result of DSC measurement, it has a melting point at 163-165 ° C. The crystallinity was found to be significantly higher than the heat of fusion.

【0073】実施例11 実施例4により製造したポリマーの性状を確認するため
に、熱分析(DSC)、分子量分布測定(GPC )および核
磁気共鳴スペクトルの測定(NMR )を行なった。以下に
その条件と結果を示す。
Example 11 In order to confirm the properties of the polymer produced in Example 4, thermal analysis (DSC), measurement of molecular weight distribution (GPC) and measurement of nuclear magnetic resonance spectrum (NMR) were performed. The conditions and results are shown below.

【0074】(1) GPC (検液)試料約30mgにm-クレゾールを10ml加え40℃にて
完全に溶解したのち、CHCl3 で50mlにメスアップし、0.
45μのメンブランフィルターで濾過したものを検液とし
た。
[0074] (1) GPC (test solution) after the m- cresol sample of about 30mg was completely dissolved at 10ml was added 40 ° C., measured up to 50ml with CHCl 3, 0.
The solution filtered with a 45 μm membrane filter was used as a test solution.

【0075】(測定条件) ポンプ:CCPD(東ソー) カラム:GMHXL (東ソー) 溶離液:m-クレゾール/CHCl3 (1:4 ) 流 量:1.0 ml/min 温 度:40°(恒温槽CO-8011 東ソー) Det. :RI-8010 (東ソー) 注入量:50μl (分子量較正曲線)標準ポリスチレンより作成し、分子
量は標準ポレスチレン分子量の換算値で表わす。
(Measurement conditions) Pump: CCPD (Tosoh) Column: GMHXL (Tosoh) Eluent: m-cresol / CHCl 3 (1: 4) Flow rate: 1.0 ml / min Temperature: 40 ° (thermal bath CO-) 8011 Tosoh) Det .: RI-8010 (Tosoh) Injection amount: 50 μl (Molecular weight calibration curve) Prepared from standard polystyrene, and the molecular weight is represented by the converted value of the standard polystyrene molecular weight.

【0076】(データ)分子量分布曲線を図1に示す。(Data) The molecular weight distribution curve is shown in FIG.

【0077】(結 果)データより実施例4のポリマー
のMwは174 万、Mnは80万であることがわかった。Mw/Mn
は2.2 であった。
(Results) From the data, it was found that the polymer of Example 4 had Mw of 1.74 million and Mn of 800,000. Mw / Mn
Was 2.2.

【0078】(2) DSC 測定結果を図2に示す。(2) FIG. 2 shows the DSC measurement results.

【0079】この結果から、実施例1のポリマーのTmは
163.7 ℃であることがわかった。
From these results, the Tm of the polymer of Example 1 was
It was found to be 163.7 ° C.

【0080】(3) NMR 磁場を300MHzとして、溶媒は重水素化クロロホルムを用
いてNMRを行なった。
(3) NMR NMR was performed with a magnetic field of 300 MHz and deuterated chloroform as a solvent.

【0081】実施例4でえられたポリマーについての 1
H-NMR の測定結果を図3に、13C-NMR の測定結果を図4
に示した。
[0093] 1 for the polymer obtained in Example 4
FIG. 3 shows the results of H-NMR measurement, and FIG. 4 shows the results of 13 C-NMR measurement.
It was shown to.

【0082】NMR の結果より、実施例4でえたポリマー
はヒドロキシ酪酸(PHB )、ヒドロキシ吉草酸(PHV )
単位を含むことおよびその比が約95:5であることがわ
かった。
From the NMR results, it was found that the polymer obtained in Example 4 was hydroxybutyric acid (PHB) and hydroxyvaleric acid (PHV)
It was found to contain units and the ratio was about 95: 5.

【0083】実施例12 実施例2のExp. No.4 で回収したポリマーおよび実施例
4で生成・回収した本発明によるポリマーをクロロホル
ムに溶解しガラス板上にキャスト、風乾しフィルム成型
した。このフィルムを当研究所庭(防府市鐘紡町4番1
号)に埋めて強度、伸度、形態的な経時変化を観察し
た。結果を表7に示すが、約60日で完全に強度を失うま
でに分解することがわかる。
Example 12 The polymer recovered in Exp. No. 4 of Example 2 and the polymer produced and recovered in Example 4 according to the present invention were dissolved in chloroform, cast on a glass plate, and air-dried to form a film. This film was transferred to our laboratory (4-1, Kanebocho, Hofu City).
No.) and observed the strength, elongation, and morphological changes over time. The results are shown in Table 7, and it can be seen that the composition was decomposed until the strength was completely lost in about 60 days.

【0084】[0084]

【表7】 [Table 7]

【0085】[0085]

【発明の効果】本発明のポリヒドロキシ有機酸の製造法
は、従来提案されている方法に比べてポリマーの生産効
率、菌体内蓄積率が高く、また、生成ポリマーの安定性
も高いなど、従来見出されていない大きな特徴を有す
る。また、菌体内蓄積率が非常に高くできるために、ポ
リマーの抽出や精製にも非常に有利である。さらに光エ
ネルギーを使用せず、またチッ素飢餓によってもよらな
くても該ポリマーを製造することができるなど製造プロ
セス、条件が従来の方法に比べて非常に工業的に有利で
ある。したがって、その経済的価値も非常に大きい。
According to the method for producing a polyhydroxy organic acid of the present invention, the production efficiency of the polymer, the rate of accumulation in cells and the stability of the produced polymer are higher than those of the conventionally proposed method. It has a major feature that has not been found. Further, since the intracellular accumulation rate can be extremely high, it is very advantageous for polymer extraction and purification. Further, the production process and conditions are very industrially advantageous as compared with conventional methods, such that the polymer can be produced without using light energy and without depending on nitrogen starvation. Therefore, its economic value is also very large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例4でえたポリマーの分子量分布曲線であ
る。
FIG. 1 is a molecular weight distribution curve of a polymer obtained in Example 4.

【図2】実施例4でえたポリマーの熱分析の測定結果を
表わすグラフである。
FIG. 2 is a graph showing the measurement results of thermal analysis of the polymer obtained in Example 4.

【図3】実施例4でえたポリマーの 1H-NMR スペクトル
分析の結果を表わすチャートである。
FIG. 3 is a chart showing the result of 1 H-NMR spectrum analysis of a polymer obtained in Example 4.

【図4】実施例4でえたポリマーの13C-NMR スペクトル
分析の結果を表わすチャートである。
FIG. 4 is a chart showing the results of 13 C-NMR spectrum analysis of a polymer obtained in Example 4.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 NATO ASI Series. E.Applied Science s,Vol.186,p.427−430(1990) Archives of Micro biology,Vol.155,No. 4,p.337−340(1991) Prog.Biomed.Eng. (Polymers in Medic ine ▲III▼),p.19−26 (1988) Prikladnaya Biokh imiya i Mikrobiolo giya,Vol.25,No.6,p. 785−789(1989) (58)調査した分野(Int.Cl.6,DB名) C12P 7/62 ──────────────────────────────────────────────────続 き Continued on the front page (56) References NATO ASI Series. Applied Sciences, Vol. 186, p. 427-430 (1990) Archives of Microbiology, Vol. 155, No. 4, p. 337-340 (1991) Prog. Biomed. Eng. (Polymers in Medicine III), p. 19-26 (1988) Prikladaya Bioh imiyai Mikrobiolo giya, Vol. 25, No. 6, p. 785-789 (1989) (58) Fields investigated (Int. Cl. 6 , DB name) C12P 7/62

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ロドバクター属に属する微生物を、好気
条件下で培養し、ポリヒドロキシ有機酸エステルからな
るポリマーを生産させることを特徴とするポリヒドロキ
シ有機酸エステルの製造法。
1. A method for producing a polyhydroxy organic acid ester, comprising culturing a microorganism belonging to the genus Rhodobacter under aerobic conditions to produce a polymer comprising the polyhydroxy organic acid ester.
【請求項2】 ロドバクター属に属する微生物の培養
が、チッ素源を含有する培地中、1段階で行なわれる請
求項1記載のポリヒドロキシ有機酸エステルの製造法。
2. The method for producing a polyhydroxy organic acid ester according to claim 1, wherein the culturing of a microorganism belonging to the genus Rhodobacter is performed in one step in a medium containing a nitrogen source.
【請求項3】 ロドバクター属に属する微生物の培養
が、増殖のための前培養と、それに続くチッ素飢餓培養
の2段階で行なわれる請求項1記載のポリヒドロキシ有
機酸エステルの製造法。
3. The method for producing a polyhydroxy organic acid ester according to claim 1, wherein the cultivation of the microorganism belonging to the genus Rhodobacter is performed in two stages: a preculture for growth and a subsequent nitrogen starvation culture.
【請求項4】 ポリマー蓄積開始後集菌までの培養液の
pHを4.5 以上に保持して培養し、菌体内に該ポリマー
を蓄積せしめる請求項1、2または3記載のポリヒドロ
キシ有機酸エステルの製造法。
4. The polyhydroxy organic acid ester according to claim 1, 2 or 3, wherein the culture is maintained while maintaining the pH of the culture solution from the start of polymer accumulation until the cell collection to 4.5 or more, and the polymer is accumulated in the cells. Manufacturing method.
【請求項5】 蓄積開始後集菌までの培養液のpHを4.
5 〜8.5 に保持する請求項4記載のポリヒドロキシ有機
酸エステルの製造法。
5. The pH of the culture solution from the start of accumulation to the collection of bacteria is adjusted to 4.
5. The method for producing a polyhydroxy organic acid ester according to claim 4, wherein said ester is kept at 5 to 8.5.
【請求項6】 菌体内に該ポリマーを蓄積させるための
培地に酵母を添加する請求項1、2、3、4または5記
載のポリヒドロキシ有機酸エステルの製造法。
6. The method for producing a polyhydroxy organic acid ester according to claim 1, wherein yeast is added to a medium for accumulating the polymer in cells.
【請求項7】 培地に添加する酵母が酵母エキスである
請求項6記載のポリヒドロキシ有機酸エステルの製造
法。
7. The method for producing a polyhydroxy organic acid ester according to claim 6, wherein the yeast added to the medium is a yeast extract.
【請求項8】 炭素源の主成分がマンニットである培地
を用いる請求項1、2、3、4、5、6または7記載の
ポリヒドロキシ有機酸エステルの製造法。
8. The method for producing a polyhydroxy organic acid ester according to claim 1, wherein a medium in which the main component of the carbon source is mannitol is used.
【請求項9】 ポリヒドロキシ有機酸エステルがポリ-3
- ヒドロキシ酪酸を主成分とするポリマーである請求項
1記載の方法。
9. The polyhydroxy organic acid ester is poly-3
The method according to claim 1, which is a polymer containing hydroxybutyric acid as a main component.
【請求項10】 ポリヒドロキシ有機酸エステルが炭素
数5以上の有機酸エステルユニットを含有するコポリマ
ーである請求項1または9記載の方法。
10. The method according to claim 1, wherein the polyhydroxy organic acid ester is a copolymer containing an organic acid ester unit having 5 or more carbon atoms.
JP3324953A 1991-06-11 1991-12-10 Method for producing polyhydroxy organic acid ester Expired - Lifetime JP2925385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1992/000751 WO1992022659A1 (en) 1991-06-11 1992-06-11 Process for producing polyhydroxy organic acid ester

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3-167811 1991-06-11
JP16781191 1991-06-11

Publications (2)

Publication Number Publication Date
JPH0549487A JPH0549487A (en) 1993-03-02
JP2925385B2 true JP2925385B2 (en) 1999-07-28

Family

ID=15856548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3324953A Expired - Lifetime JP2925385B2 (en) 1991-06-11 1991-12-10 Method for producing polyhydroxy organic acid ester

Country Status (1)

Country Link
JP (1) JP2925385B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3673711B2 (en) 1999-12-27 2005-07-20 キヤノン株式会社 Polyhydroxyalkanoate and its production method using microorganism
JP3684150B2 (en) 1999-12-27 2005-08-17 キヤノン株式会社 Polyhydroxyalkanoate
US6479621B2 (en) 2000-02-29 2002-11-12 Canon Kabushiki Kaisha Polyhydroxyalkanoate containing 3-hydroxythienylalkanoic acid as monomer unit and method for producing the same
KR100462543B1 (en) 2000-09-14 2004-12-17 캐논 가부시끼가이샤 Polyhydroxyalkanoate and manufacturing method thereof
US6777153B2 (en) 2001-03-27 2004-08-17 Canon Kabushiki Kaisha Polyhydroxyalkanoate containing unit with thienyl structure in the side chain, process for its production, charge control agent, toner binder and toner which contain this polyhydroxyalkanoate, and image-forming method and image-forming apparatus which make use of the toner
JP5219069B2 (en) * 2008-01-28 2013-06-26 健 佐々木 Water treatment method and water treatment material
JP7196848B2 (en) * 2017-08-29 2022-12-27 三菱瓦斯化学株式会社 Polyester manufacturing method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Archives of Microbiology,Vol.155,No.4,p.337−340(1991)
NATO ASI Series.E.Applied Sciences,Vol.186,p.427−430(1990)
Prikladnaya Biokhimiya i Mikrobiologiya,Vol.25,No.6,p.785−789(1989)
Prog.Biomed.Eng.(Polymers in Medicine ▲III▼),p.19−26(1988)

Also Published As

Publication number Publication date
JPH0549487A (en) 1993-03-02

Similar Documents

Publication Publication Date Title
EP0582567B1 (en) POLY-$g(b)-HYDROXY ALKANOATE (PHA) COPOLYMER, METHOD OF ITS PRODUCTION, THE MICROBE WHICH PRODUCES IT, AND PHA COPOLYMER BLEND
Jiang et al. High poly (β-hydroxybutyrate) production by Pseudomonas fluorescens A2a5 from inexpensive substrates
US20070161097A1 (en) Deregulated bacteria with improved polyhydroxyalkanoate production
US5138029A (en) Biodegradable or biocompatible copolymer and process for producing same
JP2925385B2 (en) Method for producing polyhydroxy organic acid ester
EP0440165A2 (en) Biodegradable or biocompatible copolymer and process for producing same
JP3036833B2 (en) Microbiological production of polyester
JPH0889264A (en) Production of polyester copolymer
JP2989175B1 (en) Polyester and method for producing the same
Kumar et al. Production of PHB (bioplastics) using bio-effluent as substrate by Alcaligens eutrophus
JPH05236973A (en) Microbiological production of copolymer
JPH0523189A (en) Production of polyester copolymer
US7129068B2 (en) Process for the isolation of polyhydroxybutyrate from Bacillus mycoides RLJ B-017
Patel et al. Detection & characterization of PHB (polyhydroxybutyrate) Producers halophilic bacteria isolated from marine water sample of Valsad District
JPH01304891A (en) Production of polyester copolymer
JPS63269989A (en) Copolymer and production thereof
JP4104932B2 (en) Biodegradable polymer and novel microorganism producing the same, method for producing biodegradable polymer, biodegradable random copolymer and method for isolating the same
JP2770378B2 (en) Method for producing polyester copolymer
JPH0412713B2 (en)
KR930009560B1 (en) New microorganism alcaligenes sp.
WO1992022659A1 (en) Process for producing polyhydroxy organic acid ester
JPH06181784A (en) Production of copolyester
JP2001238669A (en) Microorganism producing polyhydroxyalkanoate and method for producing polyhydroxyalkanoate using the microorganism
JPH0564592A (en) Production of bio-polyester
JPH03216193A (en) Preparation of copolyester