JP5218487B2 - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
JP5218487B2
JP5218487B2 JP2010161818A JP2010161818A JP5218487B2 JP 5218487 B2 JP5218487 B2 JP 5218487B2 JP 2010161818 A JP2010161818 A JP 2010161818A JP 2010161818 A JP2010161818 A JP 2010161818A JP 5218487 B2 JP5218487 B2 JP 5218487B2
Authority
JP
Japan
Prior art keywords
core
valve
movable
stopper
protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010161818A
Other languages
Japanese (ja)
Other versions
JP2011137442A (en
Inventor
啓太 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010161818A priority Critical patent/JP5218487B2/en
Priority to DE102010062420.9A priority patent/DE102010062420B4/en
Publication of JP2011137442A publication Critical patent/JP2011137442A/en
Application granted granted Critical
Publication of JP5218487B2 publication Critical patent/JP5218487B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0685Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature and the valve being allowed to move relatively to each other or not being attached to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/042The valves being provided with fuel passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • F02M61/12Other injectors with elongated valve bodies, i.e. of needle-valve type characterised by the provision of guiding or centring means for valve bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/30Fuel-injection apparatus having mechanical parts, the movement of which is damped
    • F02M2200/306Fuel-injection apparatus having mechanical parts, the movement of which is damped using mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/90Selection of particular materials
    • F02M2200/9053Metals
    • F02M2200/9069Non-magnetic metals

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

本発明は、噴孔から内燃機関へ燃料を噴射する燃料噴射弁に関する。   The present invention relates to a fuel injection valve that injects fuel from an injection hole to an internal combustion engine.

従来、固定コア側へ可動コアを移動させるための磁気吸引力につき、弁ハウジングの噴孔を開く開弁作動ではコイルへの通電によって発生する一方、噴孔を閉じる閉弁作動では当該通電の停止によって消失させる燃料噴射弁が、知られている。   Conventionally, the magnetic attraction force for moving the movable core toward the fixed core is generated by energizing the coil in the valve opening operation that opens the nozzle hole of the valve housing, while the energization is stopped in the valve closing operation that closes the nozzle hole. Fuel injection valves that are extinguished by are known.

こうした燃料噴射弁の一種として特許文献1,2に開示のものでは、燃料噴射を断続するために往復移動によって噴孔を開閉する弁部材に、可動コアを貫通する弁貫通部から突出して可動コアに固定コア側から当接可能なフランジが、設けられている。この燃料噴射弁によると、噴孔を閉じた状態から開弁作動を開始して噴孔を開くときには、スプリングの復原力によって固定コアとは反対側へ付勢される弁部材のフランジに対し、磁気吸引力を受けた可動コアが固定コア側から当接する。その結果、可動コアが移動して固定コアに衝突するときには、弁部材は、スプリングの復原力に抗した移動を慣性力によって継続することで、可動コアに対して弁貫通部を相対移動させつつ可動コアからフランジを離間させることになる。故に、衝突反力によって可動コアが固定コアとは反対側へ跳ね返っても、その跳ね返り力がフランジに伝播され難い弁部材については、噴孔を誤って閉じることにより燃料噴射量のばらつきを招く事態を回避され得る。   In the one disclosed in Patent Documents 1 and 2 as a kind of such fuel injection valve, a valve member that opens and closes an injection hole by reciprocating movement to interrupt fuel injection protrudes from a valve penetrating part that penetrates the movable core. A flange capable of abutting from the fixed core side is provided. According to this fuel injection valve, when starting the valve opening operation from the state in which the nozzle hole is closed and opening the nozzle hole, against the flange of the valve member that is biased to the opposite side of the fixed core by the restoring force of the spring, The movable core that has received the magnetic attraction force contacts from the fixed core side. As a result, when the movable core moves and collides with the fixed core, the valve member continues the movement against the restoring force of the spring by the inertial force, while moving the valve penetrating portion relative to the movable core. The flange is separated from the movable core. Therefore, even if the movable core bounces away from the fixed core due to the collision reaction force, the valve member, whose bounce force is difficult to propagate to the flange, will cause a variation in the fuel injection amount by accidentally closing the injection hole Can be avoided.

特開2009−108842号公報JP 2009-108842 A 独国特許出願公開第102006046833A1号明細書German Patent Application No. 102006046833A1

さて、特許文献1に開示の燃料噴射弁では、コイルへの通電の停止状態において、弁部材のフランジと可動コアとが互いに当接する状態となる。そのため、噴孔を開く開弁作動では、停止状態の弁部材及び可動コアを共に移動させるための磁気吸引力につき、コイルへの通電によって当該開弁作動の開始時点から可動コアに与えなければならない。それ故に開弁作動の初期段階では、弁部材の移動速度が上がらないため、噴孔を開くのに必要な弁部材の移動時間が長くなり、燃料の最小噴射量を低減する上において不利となってしまう。   Now, in the fuel injection valve disclosed in Patent Document 1, the flange of the valve member and the movable core are brought into contact with each other in a state where energization of the coil is stopped. Therefore, in the valve opening operation for opening the nozzle hole, the magnetic attraction force for moving both the stopped valve member and the movable core must be applied to the movable core from the start of the valve opening operation by energizing the coil. . Therefore, in the initial stage of the valve opening operation, the moving speed of the valve member does not increase, so that the moving time of the valve member necessary to open the nozzle hole becomes long, which is disadvantageous in reducing the minimum fuel injection amount. End up.

そこで、特許文献2に開示の燃料噴射弁では、コイルへの通電停止状態において、弁部材のフランジと可動コアとの間に隙間が形成される。これにより、開弁作動の開始時点においては、弁部材を伴わずに可動コアを移動させるだけの磁気吸引力を、コイルへの通電によって当該可動コアに与えれば、よいこととなる。その結果、フランジとの間の隙間分移動することによって加速された可動コアは、運動量に応じた衝撃力をフランジとの衝突によって当該フランジへと与えることができるので、噴孔を開くのに必要な距離分の弁部材移動が短時間にて実現可能となる。   Therefore, in the fuel injection valve disclosed in Patent Document 2, a gap is formed between the flange of the valve member and the movable core in a state where energization of the coil is stopped. As a result, at the start of the valve opening operation, it is sufficient to apply a magnetic attraction force for moving the movable core without the valve member to the movable core by energizing the coil. As a result, the movable core accelerated by moving by the gap between the flange can apply the impact force according to the momentum to the flange by the collision with the flange, so it is necessary to open the nozzle hole. The movement of the valve member for a proper distance can be realized in a short time.

しかし、特許文献2に開示の燃料噴射弁では、フランジが弁部材に圧入且つ溶接されることによって、当該フランジと可動コアとの間の隙間がサイズ管理されている。そのため、製造時におけるフランジの圧入状態や溶接状態に応じて、当該フランジと可動コアとの間では、隙間のサイズがばらつき易い。換言すれば、隙間のサイズを正確に管理することは、困難となっている。故に開弁作動において、隙間分の可動コアの移動によりフランジに与えられる衝撃力にも、ばらつきが生じてしまうため、弁部材の移動時間については、上述の如き短い時間の中でのばらつき率が増大し、その結果、燃料噴射量の制御精度が低下してしまうのである。   However, in the fuel injection valve disclosed in Patent Document 2, the size of the gap between the flange and the movable core is controlled by press-fitting and welding the flange to the valve member. For this reason, the size of the gap is likely to vary between the flange and the movable core according to the press-fitted state or welded state of the flange at the time of manufacture. In other words, it is difficult to accurately manage the size of the gap. Therefore, in the valve opening operation, the impact force applied to the flange due to the movement of the movable core corresponding to the gap also varies, so the movement rate of the valve member has a variation rate within a short time as described above. As a result, the control accuracy of the fuel injection amount decreases.

加えて、特許文献2に開示の燃料噴射弁では、弁貫通部から突出して可動コアに固定コア側から当接可能な第一のフランジに加え、当該弁貫通部から突出して可動コアに固定コアとは反対側から当接可能な第二のフランジが、弁部材に設けられている。それと共に、特許文献2に開示の燃料噴射弁は、弁部材を固定コアとは反対側へ付勢する第一のスプリングに加え、可動コア及び第二のフランジ間に介装されて可動コアを固定コアとは反対側へ付勢する第二のスプリングを、備えている。このような構成において、噴孔を開いた状態から閉弁作動を開始して噴孔を閉じるときには、第一のスプリングの復原力によって固定コアとは反対側へ付勢される弁部材が、第一のフランジを可動コアに対して固定コア側から当接させる。このとき、磁気吸引力は消失させられているので、第一のスプリングの復原力によって可動コアは、固定コアとは反対側へ弁部材と共に移動する。その結果、第二のスプリングの復原力によって固定コアと反対側へ付勢されると共に慣性力の作用する可動コアに対しては、噴孔を閉じることによって移動を停止する弁部材の第二のフランジが、当該反対側から当接することとなる。故に、可動コアと第二のフランジとの当接によって振動した弁部材が噴孔を誤って開くことで、想定外の二次噴射を招くおそれがあった。   In addition, in the fuel injection valve disclosed in Patent Document 2, in addition to the first flange that protrudes from the valve penetrating portion and can contact the movable core from the fixed core side, the fuel injection valve protrudes from the valve penetrating portion and is fixed to the movable core. The valve member is provided with a second flange that can contact from the opposite side. At the same time, in the fuel injection valve disclosed in Patent Document 2, in addition to the first spring that biases the valve member to the side opposite to the fixed core, the movable core is interposed between the movable core and the second flange. A second spring is provided for biasing to the opposite side of the fixed core. In such a configuration, when the valve closing operation is started from the state in which the nozzle hole is opened and the nozzle hole is closed, the valve member that is biased to the side opposite to the fixed core by the restoring force of the first spring is One flange is brought into contact with the movable core from the fixed core side. At this time, since the magnetic attractive force is lost, the movable core moves together with the valve member to the opposite side of the fixed core by the restoring force of the first spring. As a result, the second spring of the valve member that is biased to the opposite side of the fixed core by the restoring force of the second spring and stops moving by closing the nozzle hole is applied to the movable core on which the inertial force acts. A flange will contact | abut from the said opposite side. Therefore, the valve member oscillated by the contact between the movable core and the second flange may accidentally open the injection hole, leading to unexpected secondary injection.

本発明は、以上説明した問題に鑑みてなされたものであって、その目的は、燃料噴射量を高精度に制御可能な燃料噴射弁を提供することにある。   The present invention has been made in view of the problems described above, and an object thereof is to provide a fuel injection valve capable of controlling the fuel injection amount with high accuracy.

請求項1に記載の発明は、内燃機関へ燃料を噴射する噴孔を有する弁ハウジングと、弁ハウジングに固定される固定コアと、磁気吸引力の作用により固定コア側へ移動する可動コアと、噴孔を開く開弁作動において通電により磁気吸引力を発生する一方、噴孔を閉じる閉弁作動において通電の停止により磁気吸引力を消失させるコイルと、可動コアを貫通する弁貫通部、並びに弁貫通部から突出して可動コアに固定コア側から当接可能な弁突部を有し、往復移動により噴孔を開閉して燃料の噴射を断続する弁部材と、可動コアを貫通して可動コアの固定コア側の端面から突出するストッパ貫通部を有し、コイルへの通電の停止状態において、弁突部に対してストッパ貫通部を固定コアとは反対側から当接させることにより、当該弁突部と、係止した可動コアとの間に隙間を形成する可動ストッパと、を備えることを特徴とする。   The invention according to claim 1 is a valve housing having an injection hole for injecting fuel to an internal combustion engine, a fixed core fixed to the valve housing, a movable core that moves to the fixed core side by the action of magnetic attraction, A coil that generates a magnetic attractive force by energization in the valve opening operation to open the nozzle hole, while a coil that eliminates the magnetic attraction force by stopping energization in the valve closing operation to close the nozzle hole, a valve penetrating portion that penetrates the movable core, and a valve A valve member that protrudes from the penetrating portion and has a valve protrusion that can come into contact with the movable core from the fixed core side, opens and closes the injection hole by reciprocating movement, and interrupts fuel injection, and the movable core penetrates the movable core A stopper penetrating portion that protrudes from the end surface of the fixed core side, and when the energization to the coil is stopped, the valve penetrating portion is brought into contact with the valve protruding portion from the side opposite to the fixed core, thereby Projection and engagement Characterized in that it comprises and the movable stopper to form a gap between the movable core, the.

このような構成では、コイルへの通電の停止状態において、弁部材のうち可動コアを貫通する弁貫通部から突出の弁突部と、可動コアとの間には、隙間が形成される。これにより、噴孔を開く開弁作動の開始時点において可動コアは、弁突部との間の隙間分、弁部材を伴うことなく移動する。その結果、加速された可動コアが弁突部に衝突すると、当該衝突時点での運動量に応じた衝撃力が弁突部へと与えられるので、噴孔を開くのに必要な距離分の弁部材の移動時間について短縮可能となる。   In such a configuration, a gap is formed between the movable core and the valve protrusion that protrudes from the valve penetrating portion that penetrates the movable core of the valve member in a state in which energization of the coil is stopped. As a result, the movable core moves without a valve member by a gap between the movable core and the valve projection at the start of the valve opening operation for opening the nozzle hole. As a result, when the accelerated movable core collides with the valve protrusion, an impact force corresponding to the momentum at the time of the collision is given to the valve protrusion, so that the valve member for a distance necessary to open the nozzle hole The travel time can be shortened.

ここで、コイルへの通電停止状態では可動コアを係止する可動ストッパにおいて、当該可動コアを貫通して可動コアの固定コア側端面から突出するストッパ貫通部は、弁突部に対して固定コアとは反対側から当接することで、可動コア及び弁突部間の隙間を形成する。このように、特定動作状態での二部材の当接により確保される隙間のサイズは、製造状態に起因するばらつきを抑えられ得るので、開弁作動において当該隙間分の可動コアの移動により弁突部に与えられる衝撃力には、ばらつきが生じ難くなる。これによれば、弁部材の移動時間について、上述の如き短い時間の中でのばらつき率を低減することができるので、燃料噴射量の制御精度を高めることが可能となるのである。   Here, in the movable stopper that locks the movable core in the state where the energization of the coil is stopped, the stopper penetrating portion that penetrates the movable core and protrudes from the fixed core side end surface of the movable core is fixed to the valve protrusion. A gap between the movable core and the valve protrusion is formed by abutting from the opposite side. As described above, the gap size secured by the contact between the two members in the specific operation state can suppress variations caused by the manufacturing state. The impact force applied to the part is less likely to vary. According to this, since the variation rate in the short time as described above can be reduced with respect to the movement time of the valve member, the control accuracy of the fuel injection amount can be increased.

請求項2に記載の発明によると、可動ストッパは、ストッパ貫通部から突出して可動コアに固定コアとは反対側から当接可能なストッパ突部、を有する。これによれば、コイルへの通電停止状態において可動ストッパは、ストッパ貫通部から突出のストッパ突部を固定コアとは反対側から可動コアに、またストッパ貫通部を当該反対側から弁突部に当接させることで、係止した可動コアと弁突部との間に安定サイズの隙間を確実に確保し得る。したがって、隙間サイズのばらつきを抑えて、燃料噴射量の高い制御精度を実現することができるのである。 According to the second aspect of the present invention, the movable stopper has a stopper protrusion that protrudes from the stopper penetrating portion and can contact the movable core from the side opposite to the fixed core. According to this, in a state where energization of the coil is stopped, the movable stopper is configured such that the stopper protrusion protruding from the stopper penetration is the movable core from the side opposite to the fixed core, and the stopper penetration is from the opposite side to the valve protrusion. By abutting, a stable size gap can be reliably ensured between the locked movable core and the valve protrusion. Therefore, it is possible to achieve high control accuracy of the fuel injection amount while suppressing the gap size variation.

請求項3に記載の発明によると、弁ハウジングに対して弁部材を固定コアとは反対側へ付勢する第一復原力を発生する第一弾性部材と、可動コアを固定コアとは反対側へ付勢し且つ可動ストッパを固定コア側へ付勢する第二復原力を発生する第二弾性部材と、弁ハウジングに対して可動コアを固定コア側へ付勢する第三復原力を発生する第三弾性部材と、を備え、可動ストッパは、弁部材に対して固定コア及びその反対側へ相対移動可能に設けられる。   According to the third aspect of the present invention, the first elastic member for generating the first restoring force for urging the valve member to the opposite side of the fixed core with respect to the valve housing, and the movable core on the opposite side of the fixed core And a second elastic member for generating a second restoring force for urging the movable stopper toward the fixed core and a third restoring force for urging the movable core toward the fixed core with respect to the valve housing. A movable stopper is provided so as to be movable relative to the fixed core and the opposite side with respect to the valve member.

このような構成では、噴孔を開いた状態から閉弁作動を開始して噴孔を閉じるとき、第一弾性部材の第一復原力によって固定コアとは反対側へ付勢される弁部材は、可動コアを貫通する弁貫通部から突出の弁突部を、可動コアに対して固定コア側から当接させる。このとき、可動コアを固定コア側へ移動させるための磁気吸引力はコイルへの通電停止によって消失させられているので、弁突部を介して第一弾性部材の第一復原力を受ける可動コアは、固定コアとは反対側へ弁部材と共に移動する。その結果、噴孔を閉じることによって弁部材が移動を停止しても、第二弾性部材の第二復原力によって固定コアとは反対側へと付勢されると共に慣性力が作用する可動コアに対しては、可動ストッパのストッパ突部が当該反対側から当接することになる。   In such a configuration, when starting the valve closing operation from the state where the nozzle hole is opened and closing the nozzle hole, the valve member biased to the opposite side to the fixed core by the first restoring force of the first elastic member is The valve protrusion protruding from the valve penetration that penetrates the movable core is brought into contact with the movable core from the fixed core side. At this time, since the magnetic attraction force for moving the movable core toward the fixed core is eliminated by stopping energization of the coil, the movable core that receives the first restoring force of the first elastic member via the valve projection Moves with the valve member to the opposite side of the fixed core. As a result, even when the valve member stops moving by closing the nozzle hole, the second elastic force of the second elastic member urges the movable core to the side opposite to the fixed core and the inertial force acts on the movable core. On the other hand, the stopper protrusion of the movable stopper abuts from the opposite side.

この後、第二弾性部材の第二復原力によって可動コア及び可動ストッパは、それぞれ固定コアに対する反対側及び固定コア側へと付勢されることで、可動コア及びストッパ突部の当接状態のまま慣性によって移動を継続する。このとき、停止した弁部材に対して固定コアとは反対側へ相対移動する可動ストッパのストッパ貫通部は、それより突出するストッパ突部が固定コア側の可動コアによって押圧されることで、弁突部から離間することになる。それと共に、可動コアに対して固定コアとは反対側への移動を継続させるように働く慣性力(荷重)は、可動コアを固定コア側へと付勢する第三弾性部材の第三復原力の作用によって減衰され得る。これらによれば、可動コアとストッパ突部とが当接することによって発生する振動は、弁突部には伝播され難くなるので、そうした振動によって弁部材が噴孔を誤って開いて想定外の二次噴射を招く事態を、回避することができる。   Thereafter, the movable core and the movable stopper are urged toward the opposite side and the fixed core side by the second restoring force of the second elastic member, respectively, so that the movable core and the stopper protrusion are in contact with each other. Continue moving with inertia. At this time, the stopper penetrating portion of the movable stopper that moves relative to the stationary valve member relative to the stationary valve member is pressed by the movable core on the stationary core side, so that the stopper projection protruding from the movable stopper core is pressed. It will be separated from the protrusion. At the same time, the inertial force (load) that works to continue the movement of the movable core to the opposite side of the fixed core is the third restoring force of the third elastic member that urges the movable core toward the fixed core. It can be attenuated by the action of According to these, the vibration generated when the movable core and the stopper protrusion come into contact with each other is difficult to propagate to the valve protrusion. A situation in which the next injection is caused can be avoided.

加えて、噴孔を閉じた状態から開弁作動を開始して噴孔を開くとき、コイルへの通電によって発生する磁気吸引力を受けることで可動コアは、まずは弁部材を伴わずに移動する。その結果、弁突部との間の隙間分移動した可動コアは、第一弾性部材の第一復原力を受けて固定コアとは反対側へ付勢されている弁部材の弁突部に対し、当該反対側から当接することになる。その結果、可動コアが弁突部を押圧しながら固定コア側へと移動して、固定コアに衝突すると、慣性力によって弁部材が第一復原力に抗した移動を継続することで、弁貫通部が可動コアに対して相対移動しつつ弁突部が可動コアから離間する。故に、衝突反力によって可動コアが固定コアとは反対側へ跳ね返ったとしても、その跳ね返り力が弁突部に伝播され難い弁部材については、噴孔を誤って閉じることで燃料噴射量のばらつきを招く事態を回避することができる。   In addition, when opening the nozzle hole by starting the valve opening operation from the state in which the nozzle hole is closed, the movable core first moves without the valve member by receiving the magnetic attraction generated by energizing the coil. . As a result, the movable core that has moved by the gap between the valve protrusion and the valve protrusion of the valve member that receives the first restoring force of the first elastic member and is biased to the opposite side of the fixed core. , It comes in contact from the opposite side. As a result, when the movable core moves toward the fixed core while pressing the valve protrusion and collides with the fixed core, the valve member continues to move against the first restoring force by the inertial force. The valve protrusion moves away from the movable core while the portion moves relative to the movable core. Therefore, even if the movable core bounces away from the fixed core due to the collision reaction force, for the valve member where the bounce force is difficult to propagate to the valve projection, the fuel injection amount varies by closing the nozzle hole accidentally. Can be avoided.

以上説明したことから、請求項3に記載の発明によれば、開弁作動及び閉弁作動の双方において弁部材による噴孔の開閉を想定通り実現して、燃料噴射量を高精度に制御し得るのである。   As described above, according to the invention described in claim 3, the opening and closing of the nozzle hole by the valve member is realized as expected in both the valve opening operation and the valve closing operation, and the fuel injection amount is controlled with high accuracy. To get.

請求項4に記載の発明によると、第二復原力は、閉弁作動において第三復原力よりも大きい。これによれば、可動コアは、固定コア側へ向かって作用する第三弾性部材の第三復原力よりも、固定コアとは反対側へ向かって作用する第二弾性部材の第二復原力が大きいので、閉弁作動時に弁部材が移動停止するのに伴って、当該反対側のストッパ突部に確実に当接する。故に、この当接後においては、固定コアとは反対側へ慣性移動を継続する可動コアによりストッパ突部を押圧して、弁突部からストッパ貫通部を離間させることで、弁部材への振動伝播の抑制が確固たるものとなる。したがって、閉弁作動における想定外の二次噴射を回避して、高精度な噴射量制御に貢献することができる。   According to the invention described in claim 4, the second restoring force is larger than the third restoring force in the valve closing operation. According to this, the movable core has a second restoring force of the second elastic member acting toward the side opposite to the fixed core, rather than a third restoring force of the third elastic member acting toward the fixed core side. Since it is large, when the valve member stops moving during the valve closing operation, it is surely brought into contact with the stopper protrusion on the opposite side. Therefore, after this abutment, the stopper projection is pressed by the movable core that continues the inertial movement to the opposite side of the fixed core, and the stopper penetration is separated from the valve projection, thereby vibrating the valve member. Propagation suppression is solid. Therefore, unexpected secondary injection in the valve closing operation can be avoided, and it is possible to contribute to highly accurate injection amount control.

また、請求項4に記載の発明によると、閉弁作動によって弁部材、可動コア及び可動ストッパが移動停止した状態の可動コアにおいては、第二弾性部材の第二復原力の作用が第三弾性部材の第三復原力の作用よりも大きくなる。これにより第二復原力の作用側へ、即ち固定コアとは反対側へ付勢される可動コアは、同復原力により固定コア側へと付勢される可動ストッパのストッパ突部に当該固定コア側から当接して、確実に係止され得るので、固定コアとの間の隙間が一定距離に保たれる。故に、閉弁作動後の開弁作動によって噴孔を開くときには、コイルの発生する磁気吸引力によって可動コアを固定コアとの衝突位置まで移動させる距離、ひいてはその移動時間を安定させ得るのである。したがって、開弁作動による燃料噴射量のばらつきを抑えて、高精度な噴射量制御に貢献することができる。   According to the fourth aspect of the present invention, in the movable core in which the valve member, the movable core, and the movable stopper are stopped by the valve closing operation, the action of the second restoring force of the second elastic member is the third elasticity. It becomes larger than the action of the third restoring force of the member. As a result, the movable core urged toward the acting side of the second restoring force, that is, the side opposite to the fixed core, is fixed on the stopper protrusion of the movable stopper urged toward the fixed core side by the restoring force. Since it can contact | abut from the side and can be latched reliably, the clearance gap between fixed cores is maintained at a fixed distance. Therefore, when the nozzle hole is opened by the valve opening operation after the valve closing operation, the distance by which the movable core is moved to the collision position with the fixed core, and the movement time thereof, can be stabilized by the magnetic attractive force generated by the coil. Therefore, it is possible to contribute to highly accurate injection amount control by suppressing variation in the fuel injection amount due to the valve opening operation.

請求項5に記載の発明によると、第二復原力と第三復原力との差分は、閉弁作動において設定値以下に抑えられる。これによれば、閉弁作動によって弁部材、可動コア及び可動ストッパが移動を停止した状態下、第二弾性部材の第二復原力は、設定値以下に抑えられた差分をもって第三弾性部材の第三復原力よりも大きくなる。故に、閉弁作動後の開弁作動によって噴孔を開くときには、コイルへの通電によって比較的小さな磁気吸引力を発生させただけでも、固定コア側への可動コアの移動を開始することができる。その結果、磁気吸引力の発生開始から可動コアによる弁部材の移動開始までの所要時間が短縮され得るので、開弁応答性を高めることが可能となる。   According to the fifth aspect of the present invention, the difference between the second restoring force and the third restoring force is suppressed to a set value or less in the valve closing operation. According to this, in a state where the valve member, the movable core, and the movable stopper are stopped by the valve closing operation, the second restoring force of the second elastic member has a difference that is suppressed to a set value or less, and the third elastic member has a difference. It becomes larger than the third restoration power. Therefore, when the nozzle hole is opened by the valve opening operation after the valve closing operation, the movement of the movable core toward the fixed core can be started only by generating a relatively small magnetic attractive force by energizing the coil. . As a result, since the time required from the start of generation of the magnetic attractive force to the start of movement of the valve member by the movable core can be shortened, it is possible to improve the valve opening response.

請求項6に記載の発明によると、弁ハウジングに対して弁部材を固定コアとは反対側へ付勢する第一復原力を発生する第一弾性部材と、可動コアを固定コアとは反対側へ付勢し且つ可動ストッパを固定コア側へ付勢する第二復原力を発生する第二弾性部材と、弁ハウジングに対して可動ストッパを固定コア側へ付勢する第三復原力を発生する第三弾性部材と、を備え、可動ストッパは、弁部材に対して固定コア及びその反対側へ相対移動可能に設けられる。このような構成では、上述の如き請求項3に記載の発明に準ずる作動及び作用効果が実現され得るが、特に次に説明する点について請求項3に記載の発明とは異なっている。   According to the invention described in claim 6, the first elastic member for generating the first restoring force for urging the valve member to the opposite side of the fixed core with respect to the valve housing, and the movable core on the opposite side of the fixed core And a second elastic member for generating a second restoring force for urging the movable stopper toward the fixed core, and a third restoring force for urging the movable stopper toward the fixed core with respect to the valve housing. A movable stopper is provided so as to be movable relative to the fixed core and the opposite side with respect to the valve member. With such a configuration, the operation and effects similar to those of the invention described in claim 3 as described above can be realized, but in particular the points described below are different from the invention described in claim 3.

ここで、請求項3に記載の発明と異なる点について説明すると、閉弁作動においてストッパ貫通部が弁突部から離間する際、ストッパ突部が固定コアとは反対側から当接する可動コアには、固定コア側へ可動ストッパを付勢する第三弾性部材の第三復原力が、当該ストッパ突部を介して作用する。故にこのとき、可動コアに対して固定コアとは反対側への移動を継続させるように働く慣性力(荷重)は、ストッパ突部を介した可動コアへの第三復原力の作用によって減衰され得る。したがって、請求項6に記載の発明においても、可動コアとストッパ突部とが当接することで発生する振動は、弁突部には伝播され難くなるので、そうした振動によって弁部材が噴孔を誤って開くことで想定外の二次噴射を招く事態を、回避することができる。   Here, the difference from the invention according to claim 3 will be described. When the stopper penetrating part is separated from the valve projecting part in the valve closing operation, the stopper projecting part comes into contact with the movable core from the side opposite to the fixed core. The third restoring force of the third elastic member that urges the movable stopper toward the fixed core acts via the stopper protrusion. Therefore, at this time, the inertial force (load) that works to continue the movement of the movable core to the opposite side of the fixed core is attenuated by the action of the third restoring force on the movable core via the stopper protrusion. obtain. Therefore, in the invention described in claim 6 as well, the vibration generated when the movable core and the stopper protrusion come into contact with each other is difficult to propagate to the valve protrusion. By opening the door, it is possible to avoid a situation in which an unexpected secondary injection is caused.

以上説明したことから、請求項6に記載の発明によれば、開弁作動及び閉弁作動の双方において弁部材による噴孔の開閉を想定通り実現して、燃料噴射量を高精度に制御し得るのである。   As described above, according to the invention described in claim 6, the opening and closing of the nozzle hole by the valve member is realized as expected in both the valve opening operation and the valve closing operation, and the fuel injection amount is controlled with high accuracy. To get.

請求項7に記載の発明によると、可動ストッパは、ストッパ貫通部を弁突部に離間可能に当接させた状態下、可動コア及び弁突部の間と可動コア及びストッパ突部の間とのうち、燃料噴射弁の作動に応じた少なくとも一方に、隙間を形成する。これによれば、閉弁作動においてストッパ突部を可動コアに当接させた可動ストッパが、固定コアとは反対側への移動を慣性力によって継続するときには、可動コア及び弁突部の間だけでなく、互いに離間するストッパ貫通部及び弁突部の間にも隙間が形成される。そして、この後において可動コアは、固定コア側へ向かって作用する第三弾性部材の第三復原力により慣性力を減衰させられると、当該固定コア側へと跳ね返ることになる。その結果、第二弾性部材の第二復原力により固定コア側へと付勢されている可動ストッパは、ストッパ突部を固定コアとは反対側から可動コアに当接させたまま移動することで、ストッパ貫通部を当該反対側から弁突部に当接させる。このとき、固定コア側の弁突部との間に隙間が確保された状態となっている可動コアは、弁部材に振動を与えるような弁突部への当接を、当該隙間の存在によって抑制され得る。故に、固定コア側へ跳ね返った可動コアが弁突部と当接することで想定外の二次噴射を招く事態を回避して、高精度な噴射量制御に貢献することができるのである。   According to the seventh aspect of the present invention, the movable stopper is disposed between the movable core and the valve protrusion and between the movable core and the stopper protrusion, with the stopper penetrating portion being in contact with the valve protrusion so as to be separable. Among these, a gap is formed in at least one of the fuel injection valves according to the operation. According to this, when the movable stopper having the stopper projection abutted against the movable core in the valve closing operation continues to move to the opposite side of the fixed core by the inertial force, it is only between the movable core and the valve projection. In addition, a gap is also formed between the stopper penetrating portion and the valve protrusion that are separated from each other. After that, when the inertial force is attenuated by the third restoring force of the third elastic member acting toward the fixed core side, the movable core rebounds toward the fixed core side. As a result, the movable stopper urged toward the fixed core by the second restoring force of the second elastic member moves while the stopper protrusion is in contact with the movable core from the side opposite to the fixed core. The stopper penetrating portion is brought into contact with the valve protrusion from the opposite side. At this time, the movable core in a state where a gap is secured between the valve protrusion on the fixed core side makes contact with the valve protrusion that vibrates the valve member due to the presence of the gap. Can be suppressed. Therefore, the movable core that has bounced back to the fixed core abuts against the valve protrusion, thereby avoiding an unexpected secondary injection and contributing to highly accurate injection amount control.

尚、こうした請求項7に記載の発明では、請求項3に記載の構成を採用して第二及び第三復原力を請求項4に記載の如く設定した場合、閉弁作動によって弁部材、可動コア及び可動ストッパが移動停止した状態下、第二復原力が第三復原力よりも大きくなる。これにより可動コアについては、上述の如くストッパ突部に確実に係止され得るので、固定コアとの間の隙間だけでなく、固定コア側の弁突部との間の隙間を確保することも、確固たるものとなる。故に、閉弁作動後の開弁作動においては、コイルの発生する磁気吸引力によって固定コア側への移動を開始する可動コアは、まずはストッパ突部との間の隙間を拡大しながら、弁突部と当接するまでは弁部材を伴わずに移動後、弁部材と共に移動して固定コアに衝突する。こうした移動形態によれば、弁部材を伴わない可動コアの移動によって生じる運動量を、その後の弁部材の移動に利用して、開弁作動における弁部材の移動時間を短縮し得る。それと共に請求項7に記載の発明では、請求項3に記載の構成を採用して第二及び第三復原力を請求項4に記載の如く設定することにより、可動コアを固定コアとの衝突位置まで移動させる時間について、安定させ得る。これらのことから、所定量の燃料を短時間で噴射する場合にあっても、その噴射量のばらつきを抑えて高精度な噴射量制御に貢献することができる。   In the invention according to the seventh aspect, when the second and third restoring forces are set as described in the fourth aspect by adopting the configuration according to the third aspect, the valve member is moved by the valve closing operation. With the core and the movable stopper stopped moving, the second restoring force is greater than the third restoring force. As a result, the movable core can be reliably locked to the stopper protrusion as described above, so that not only the clearance between the movable core and the valve protrusion on the fixed core side can be secured. It will be solid. Therefore, in the valve opening operation after the valve closing operation, the movable core that starts moving toward the fixed core side by the magnetic attraction force generated by the coil first expands the gap between the stopper protrusion and the valve protrusion. After moving without the valve member until it comes into contact with the part, it moves with the valve member and collides with the fixed core. According to such a movement mode, the momentum generated by the movement of the movable core without the valve member can be used for the subsequent movement of the valve member, thereby shortening the movement time of the valve member in the valve opening operation. At the same time, in the invention described in claim 7, by adopting the configuration described in claim 3 and setting the second and third restoring forces as described in claim 4, the movable core collides with the fixed core. The time to move to the position can be stabilized. For these reasons, even when a predetermined amount of fuel is injected in a short time, variations in the injection amount can be suppressed, contributing to highly accurate injection amount control.

また一方、請求項7に記載の発明では、請求項6に記載の構成を採用した場合、閉弁作動により弁部材、可動コア及び可動ストッパが移動停止した状態下、可動ストッパが受ける第二及び第三復原力によりストッパ突部は、固定コア側へ向かって付勢される。したがって、第二復原力により固定コアと反対側へ付勢される可動コアは、かくの如く固定コア側へと付勢されるストッパ突部に当該固定コア側から当接して、確実に係止され得る。これにより可動コアについては、固定コアとの間の隙間だけでなく、固定コア側の弁突部との間の隙間を確保することも、確固たるものとなる。故に、閉弁作動後の開弁作動においては、コイルの発生する磁気吸引力によって固定コア側への移動を開始する可動コアは、まずはストッパ突部との間の隙間を拡大しながら、弁突部と当接するまで弁部材を伴うことなく移動後、弁部材と共に移動して固定コアに衝突する。こうした移動形態によれば、弁部材を伴わない可動コアの移動によって生じる運動量を、その後の弁部材の移動に利用して、開弁作動における弁部材の移動時間を短縮し得る。それと共に請求項7に記載の発明では、移動停止状態において可動コアが上述の如くストッパ突部に確実に係止され得る請求項6に記載の構成を採用することにより、可動コアを固定コアとの衝突位置まで移動させる時間について安定させ得る。これらのことから、所定量の燃料を短時間で噴射する場合にあっても、その噴射量のばらつきを抑えて高精度な噴射量制御に貢献することができるのである。   On the other hand, in the invention according to claim 7, when the configuration according to claim 6 is adopted, the second and second movable stoppers receive the valve member, the movable core, and the movable stopper while the valve member, the movable core, and the movable stopper are stopped by the valve closing operation. The stopper protrusion is biased toward the fixed core by the third restoring force. Therefore, the movable core urged to the opposite side of the fixed core by the second restoring force comes into contact with the stopper protrusion urged to the fixed core side as described above from the fixed core side and is securely locked. Can be done. As a result, not only the gap between the movable core and the fixed core, but also the gap between the fixed core and the valve protrusion on the fixed core can be secured. Therefore, in the valve opening operation after the valve closing operation, the movable core that starts moving toward the fixed core side by the magnetic attraction force generated by the coil first expands the gap between the stopper protrusion and the valve protrusion. After moving without the valve member until it comes into contact with the part, it moves with the valve member and collides with the fixed core. According to such a movement mode, the momentum generated by the movement of the movable core without the valve member can be used for the subsequent movement of the valve member, thereby shortening the movement time of the valve member in the valve opening operation. At the same time, in the invention described in claim 7, by adopting the configuration according to claim 6 in which the movable core can be reliably locked to the stopper projection as described above in the movement stop state, the movable core is fixed to the fixed core. It is possible to stabilize the time for moving to the collision position. For these reasons, even when a predetermined amount of fuel is injected in a short time, variations in the injection amount can be suppressed to contribute to highly accurate injection amount control.

請求項8に記載の発明によると、弁部材を固定コアとは反対側へ付勢する第一復原力を発生する第一弾性部材と、可動コアを固定コアとは反対側へ付勢し且つ可動ストッパを固定コア側へ付勢する第二復原力を発生する第二弾性部材と、を備え、可動ストッパは、弁部材に対して固定コア及びその反対側へ一体移動可能に固定される。   According to the invention described in claim 8, the first elastic member for generating the first restoring force for urging the valve member to the side opposite to the fixed core, the urging the movable core to the side opposite to the fixed core, and And a second elastic member that generates a second restoring force that urges the movable stopper toward the fixed core, and the movable stopper is fixed to the valve member so as to be movable integrally with the fixed core and the opposite side thereof.

このような構成では、噴孔を開いた状態から閉弁作動を開始して噴孔を閉じるとき、第一弾性部材の第一復原力によって固定コアとは反対側へ付勢される弁部材は、可動コアを貫通する弁貫通部から突出の弁突部を、可動コアに対して固定コア側から当接させる。このとき、可動コアを固定コア側へ移動させるための磁気吸引力はコイルへの通電停止によって消失させられているので、弁突部を介して第一弾性部材の第一復原力を受ける可動コアは、一体となっている弁部材及び可動ストッパと共に、固定コアとは反対側へ移動する。その結果、噴孔を閉じることによって弁部材及び可動ストッパが移動を停止しても、第二弾性部材の第二復原力によって固定コアとは反対側へ付勢されると共に慣性力が作用する可動コアに対しては、可動ストッパのストッパ突部が当該反対側から当接する。したがって、可動コアも、ストッパ突部により係止された状態にて、移動を停止することとなる。   In such a configuration, when starting the valve closing operation from the state where the nozzle hole is opened and closing the nozzle hole, the valve member biased to the opposite side to the fixed core by the first restoring force of the first elastic member is The valve protrusion protruding from the valve penetration that penetrates the movable core is brought into contact with the movable core from the fixed core side. At this time, since the magnetic attraction force for moving the movable core toward the fixed core is eliminated by stopping energization of the coil, the movable core that receives the first restoring force of the first elastic member via the valve projection Moves together with the integral valve member and movable stopper to the opposite side of the fixed core. As a result, even if the valve member and the movable stopper stop moving by closing the nozzle hole, the second elastic member is biased to the opposite side of the fixed core by the second restoring force, and the inertial force acts. The stopper protrusion of the movable stopper abuts against the core from the opposite side. Therefore, the movable core also stops moving while being locked by the stopper projection.

こうして噴孔を閉じた状態から開弁作動を開始して噴孔を開くときには、コイルへの通電によって発生する磁気吸引力を受けることで可動コアが、まずは弁部材を伴わずに移動する。その結果、弁突部との間の隙間分移動した可動コアは、第一弾性部材の第一復原力を受けて固定コアとは反対側へ付勢されている弁部材の弁突部に対し、当該反対側から当接することになる。その結果、可動コアが弁突部を押圧しながら固定コア側へと移動して、固定コアに衝突すると、慣性力によって弁部材が第一復原力に抗した移動を継続することで、弁貫通部が可動コアに対して相対移動しつつ弁突部が可動コアから離間する。故に、衝突反力によって可動コアが固定コアとは反対側へ跳ね返ったとしても、その跳ね返り力が弁突部に伝播され難い弁部材については、噴孔を誤って閉じることにより燃料噴射量のばらつきを招く事態を回避することができる。   Thus, when the valve opening operation is started from the state where the nozzle hole is closed and the nozzle hole is opened, the movable core first moves without the valve member by receiving the magnetic attractive force generated by energizing the coil. As a result, the movable core that has moved by the gap between the valve protrusion and the valve protrusion of the valve member that receives the first restoring force of the first elastic member and is biased to the opposite side of the fixed core. , It comes in contact from the opposite side. As a result, when the movable core moves toward the fixed core while pressing the valve protrusion and collides with the fixed core, the valve member continues to move against the first restoring force by the inertial force. The valve protrusion moves away from the movable core while the portion moves relative to the movable core. Therefore, even if the movable core bounces away from the fixed core due to the collision reaction force, the valve member is difficult to propagate to the valve protrusion. Can be avoided.

以上説明したことから、請求項8に記載の発明によれば、特に開弁作動において弁部材による噴孔の開放を想定通り実現して、燃料噴射量を高精度に制御することが可能となるのである。   As described above, according to the eighth aspect of the present invention, it is possible to control the fuel injection amount with high accuracy by realizing the opening of the injection hole by the valve member as expected, particularly in the valve opening operation. It is.

請求項9に記載の発明によると、可動ストッパは、ストッパ貫通部を弁突部に当接させた状態下、可動コア及び弁突部の間と可動コア及びストッパ突部の間とのうち、燃料噴射弁の作動に応じた少なくとも一方に、隙間を形成する。これによれば、閉弁作動において弁部材及び可動ストッパが移動停止することでストッパ突部に当接した可動コアは、固定コア側へ跳ね返ったとしても、当該固定コア側の弁突部には、確保される隙間の存在によって当接し難い。故に、可動コアが弁突部に当接して振動を与えることにより想定外の二次噴射を招くような事態を回避して、高精度な噴射量制御に貢献することができるのである。   According to the invention of claim 9, the movable stopper is between the movable core and the valve projection and between the movable core and the stopper projection, with the stopper penetrating portion in contact with the valve projection. A gap is formed in at least one according to the operation of the fuel injection valve. According to this, even when the movable core that has come into contact with the stopper protrusion due to the valve member and the movable stopper moving and stopped in the valve closing operation bounces back to the fixed core side, the valve protrusion on the fixed core side does not , It is difficult to abut due to the existence of a gap to be secured. Therefore, it is possible to contribute to highly accurate injection amount control by avoiding a situation in which unexpected secondary injection is caused by the movable core coming into contact with the valve protrusion and applying vibration.

また、請求項9に記載の発明では、閉弁作動による弁部材、可動コア及び可動ストッパの移動停止状態下、第二復原力により固定コアとは反対側へ付勢される可動コアは、同復原力により固定コア側へ付勢されるストッパ突部に当該固定コア側から当接し、確実に係止され得る。これにより可動コアについては、固定コアとの間の隙間だけでなく、固定コア側の弁突部との間の隙間を確保することも、確固たるものとなる。故に、閉弁作動後の開弁作動においては、コイルの発生する磁気吸引力によって固定コア側への移動を開始する可動コアは、まずはストッパ突部との間の隙間を拡大しながら、弁突部と当接するまで弁部材を伴うことなく移動後、弁部材と共に移動して固定コアに衝突する。こうした移動形態によれば、弁部材を伴わない可動コアの移動によって生じる運動量を、その後の弁部材の移動に利用して、開弁作動における弁部材の移動時間を短縮し得る。それと共に請求項9に記載の発明では、移動停止状態において可動コアが上述の如くストッパ突部に確実に係止され得るので、可動コアを固定コアとの衝突位置まで移動させる時間について安定させ得る。これらのことから、所定量の燃料を短時間で噴射する場合にあっても、その噴射量のばらつきを抑えて高精度な噴射量制御に貢献することができるのである。   In the invention according to claim 9, the movable core that is urged to the opposite side by the second restoring force when the valve member, the movable core, and the movable stopper are stopped by the valve closing operation. The stopper protrusion that is urged toward the fixed core by the restoring force comes into contact with the fixed core and can be reliably locked. As a result, not only the gap between the movable core and the fixed core, but also the gap between the fixed core and the valve protrusion on the fixed core can be secured. Therefore, in the valve opening operation after the valve closing operation, the movable core that starts moving toward the fixed core side by the magnetic attraction force generated by the coil first expands the gap between the stopper protrusion and the valve protrusion. After moving without the valve member until it comes into contact with the part, it moves with the valve member and collides with the fixed core. According to such a movement mode, the momentum generated by the movement of the movable core without the valve member can be used for the subsequent movement of the valve member, thereby shortening the movement time of the valve member in the valve opening operation. In addition, according to the ninth aspect of the present invention, since the movable core can be reliably locked to the stopper protrusion as described above in the movement stop state, the time for moving the movable core to the collision position with the fixed core can be stabilized. . For these reasons, even when a predetermined amount of fuel is injected in a short time, variations in the injection amount can be suppressed to contribute to highly accurate injection amount control.

請求項10に記載の発明によると、ストッパ貫通部は、筒状の可動コアの内周側において弁貫通部が挿入される筒状に、形成される。これによれば、筒状の可動コアを貫通し且つ当該可動コアの内周側にて弁貫通部が挿入される筒状のストッパ貫通部は、径方向の可及的に狭い範囲にて弁突部と当接可能となる。故に、かかるストッパ貫通部の外周側において可動コアが当接することになる弁突部については、径方向のサイズを縮小することができるので、当該弁突部の外周側においては、可動コアと固定コアとの対向面積を大きく確保することができる。したがって、開弁作動によって噴孔を開くときには、それらコアの対向面積に依存した大きさの磁気吸引力を発生させることで、その発生開始から可動コアによる弁部材の移動開始までの所要時間が短縮され得るので、開弁応答性を高めることが可能となる。   According to the invention described in claim 10, the stopper penetrating portion is formed in a cylindrical shape into which the valve penetrating portion is inserted on the inner peripheral side of the cylindrical movable core. According to this, the cylindrical stopper penetrating portion that penetrates the cylindrical movable core and into which the valve penetrating portion is inserted on the inner peripheral side of the movable core is provided with a valve in the narrowest possible range in the radial direction. It can come into contact with the protrusion. Therefore, since the size in the radial direction can be reduced for the valve protrusion that the movable core abuts on the outer peripheral side of the stopper penetrating portion, the movable core is fixed on the outer peripheral side of the valve protrusion. A large area facing the core can be secured. Therefore, when opening the nozzle hole by opening the valve, the time required from the start of generation to the start of movement of the valve member by the movable core is shortened by generating a magnetic attractive force whose magnitude depends on the facing area of the cores. Therefore, it is possible to improve the valve opening response.

請求項11に記載の発明によると、可動コアは、弁突部と当接可能に固定コア側の端面を形成するコア本体部、コア本体部から固定コアとは反対側へ突出してストッパ突部を内周側に収容するコア収容部、並びにコア収容部から内周側へ突出するコア突部を有し、第二弾性部材は、コア収容部の内周側に収容されてストッパ突部及びコア突部の間に介装されるコイルスプリングからなる。このような構成によれば、可動ストッパのストッパ突部と可動コアのコア突部との間に介装されるコイルスプリングは、それらストッパ突部及びコア突部をそれぞれ固定コア側及びその反対側へと付勢する第二弾性部材として、確実に機能し得る。故に、開弁作動によって噴孔を開くときには、第二弾性部材の第二復原力を利用して可動コアをストッパ突部に当接させた状態から、即ち可動コアと弁突部との間に安定サイズの隙間を確保した状態から、弁部材を伴わない当該可動コアの移動を開始可能となる。したがって、弁部材の移動時間を短く且つばらつき難くして、燃料噴射量の制御精度を高めることができるのである。   According to an eleventh aspect of the invention, the movable core has a core main body portion that forms an end surface on the fixed core side so as to be able to contact the valve protrusion, and protrudes from the core main body portion to the opposite side of the fixed core to stop the stopper protrusion. And a core projection that projects from the core receptacle to the inner circumference side, and the second elastic member is accommodated on the inner circumference side of the core receptacle and includes a stopper projection and The coil spring is interposed between the core protrusions. According to such a configuration, the coil spring interposed between the stopper protrusion of the movable stopper and the core protrusion of the movable core has the stopper protrusion and the core protrusion on the fixed core side and the opposite side, respectively. It can function reliably as the second elastic member that urges toward. Therefore, when the nozzle hole is opened by the valve opening operation, the second restoring force of the second elastic member is used to bring the movable core into contact with the stopper projection, that is, between the movable core and the valve projection. The movement of the movable core without the valve member can be started from a state in which a gap of a stable size is secured. Therefore, the movement time of the valve member can be made short and difficult to vary, and the control accuracy of the fuel injection amount can be improved.

請求項12に記載の発明によると、可動コアは、弁突部と当接可能に固定コア側の端面を形成するコア本体部、コア本体部から固定コアとは反対側へ突出してストッパ突部を内周側に収容するコア収容部を有し、第二弾性部材は、コア収容部に外周部が固定されると共にストッパ突部に内周部が係合する皿ばねからなる。このような構成によれば、可動ストッパのストッパ突部に内周部が係合且つ可動コアのコア収容部に外周部が固定される簡素構造の皿ばねは、それらストッパ突部及びコア収容部をそれぞれ固定コア側及びその反対側へと付勢する第二弾性部材として、確実に機能し得る。故に、開弁作動によって噴孔を開くときには、第二弾性部材の第二復原力を利用して可動コアをストッパ突部に当接させた状態から、即ち可動コアと弁突部との間に安定サイズの隙間を確保した状態から、弁部材を伴わない当該可動コアの移動を開始可能となる。したがって、弁部材の移動時間を短く且つばらつき難くして、燃料噴射量の制御精度を高めることができるのである。   According to a twelfth aspect of the present invention, the movable core has a core main body portion that forms an end face on the fixed core side so as to be able to contact the valve protrusion, and protrudes from the core main body portion to the opposite side of the fixed core to stop the stopper protrusion. The second elastic member includes a disc spring having an outer peripheral portion fixed to the core containing portion and an inner peripheral portion engaging with the stopper protrusion. According to such a configuration, the disc spring having a simple structure in which the inner peripheral portion is engaged with the stopper protrusion of the movable stopper and the outer peripheral portion is fixed to the core receiving portion of the movable core is the stopper protrusion and the core receiving portion. Can function reliably as the second elastic member for urging the fixed core side and the opposite side. Therefore, when the nozzle hole is opened by the valve opening operation, the second restoring force of the second elastic member is used to bring the movable core into contact with the stopper projection, that is, between the movable core and the valve projection. The movement of the movable core without the valve member can be started from a state in which a gap of a stable size is secured. Therefore, the movement time of the valve member can be made short and difficult to vary, and the control accuracy of the fuel injection amount can be improved.

本発明の第一実施形態による燃料噴射弁の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the fuel injection valve by 1st embodiment of this invention. 図1の変形例を示す断面図である。It is sectional drawing which shows the modification of FIG. 本発明の第一実施形態による燃料噴射弁の図1とは異なる作動状態を示す断面図である。It is sectional drawing which shows the operation state different from FIG. 1 of the fuel injection valve by 1st embodiment of this invention. 本発明の第一実施形態による燃料噴射弁の図1,3とは異なる作動状態を示す断面図である。It is sectional drawing which shows the operation state different from FIG.1, 3 of the fuel injection valve by 1st embodiment of this invention. 本発明の第一実施形態による燃料噴射弁における復原力調整について説明するための模式図である。It is a schematic diagram for demonstrating the restoring force adjustment in the fuel injection valve by 1st embodiment of this invention. 本発明の第一実施形態による燃料噴射弁の製造方法について説明するための模式図である。It is a schematic diagram for demonstrating the manufacturing method of the fuel injection valve by 1st embodiment of this invention. 本発明の第一実施形態による燃料噴射弁の開弁作動について説明するための模式図である。It is a mimetic diagram for explaining valve opening operation of a fuel injection valve by a first embodiment of the present invention. 本発明の第一実施形態による燃料噴射弁の閉弁作動について説明するための模式図である。It is a mimetic diagram for explaining valve closing operation of a fuel injection valve by a first embodiment of the present invention. 本発明の第二実施形態による燃料噴射弁の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the fuel injection valve by 2nd embodiment of this invention. 本発明の第二実施形態による燃料噴射弁における復原力調整について説明するための模式図である。It is a schematic diagram for demonstrating the restoring force adjustment in the fuel injection valve by 2nd embodiment of this invention. 図9の変形例を示す断面図である。It is sectional drawing which shows the modification of FIG. 本発明の第二実施形態による燃料噴射弁の開弁作動について説明するための模式図である。It is a schematic diagram for demonstrating the valve opening operation | movement of the fuel injection valve by 2nd embodiment of this invention. 本発明の第二実施形態による燃料噴射弁の閉弁作動について説明するための模式図である。It is a mimetic diagram for explaining valve closing operation of a fuel injection valve by a second embodiment of the present invention. 本発明の第三実施形態による燃料噴射弁の概略構成を示し、特に当該燃料噴射弁の開弁作動について説明するための断面図である。It is sectional drawing for demonstrating schematic structure of the fuel injection valve by 3rd embodiment of this invention, and explaining the valve opening operation | movement of the said fuel injection valve especially. 本発明の第三実施形態による燃料噴射弁における復原力調整について説明するための模式図である。It is a schematic diagram for demonstrating the restoring force adjustment in the fuel injection valve by 3rd embodiment of this invention. 本発明の第三実施形態による燃料噴射弁の閉弁作動について説明するための断面図である。It is sectional drawing for demonstrating the valve closing action | operation of the fuel injection valve by 3rd embodiment of this invention. 本発明の第四実施形態による燃料噴射弁の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the fuel injection valve by 4th embodiment of this invention. 本発明の第四実施形態による燃料噴射弁の製造方法について説明するための模式図である。It is a schematic diagram for demonstrating the manufacturing method of the fuel injection valve by 4th embodiment of this invention. 本発明の第四実施形態による燃料噴射弁における復原力調整について説明するための模式図である。It is a schematic diagram for demonstrating the restoring force adjustment in the fuel injection valve by 4th embodiment of this invention. 本発明の第四実施形態による燃料噴射弁の開弁作動について説明するための模式図である。It is a schematic diagram for demonstrating the valve opening operation | movement of the fuel injection valve by 4th embodiment of this invention. 本発明の第四実施形態による燃料噴射弁の閉弁作動について説明するための模式図である。It is a schematic diagram for demonstrating the valve closing action | operation of the fuel injection valve by 4th embodiment of this invention.

以下、本発明の複数の実施形態を図面に基づいて説明する。尚、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する場合がある。各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施形態の構成を適用することができる。また、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合せることができる。   Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings. In addition, the overlapping description may be abbreviate | omitted by attaching | subjecting the same code | symbol to the corresponding component in each embodiment. When only a part of the configuration is described in each embodiment, the configuration of the other embodiment described above can be applied to the other part of the configuration. In addition, not only combinations of configurations explicitly described in the description of each embodiment, but also the configurations of a plurality of embodiments can be partially combined even if they are not explicitly specified unless there is a problem with the combination. .

(第一実施形態)
図1は、本発明の第一実施形態による燃料噴射弁10を示している。燃料噴射弁10は、内燃機関としてのガソリンエンジンに設置され、当該ガソリンエンジンの燃焼室(図示しない)へ燃料を噴射する。尚、かかる適用形態以外にも、例えば燃料噴射弁10は、ガソリンエンジンの燃焼室に連通する吸気通路へ燃料を噴射するものであってもよいし、内燃機関としてのディーゼルエンジンの燃焼室へ燃料を噴射するものであってもよい。
(First embodiment)
FIG. 1 shows a fuel injection valve 10 according to a first embodiment of the present invention. The fuel injection valve 10 is installed in a gasoline engine as an internal combustion engine, and injects fuel into a combustion chamber (not shown) of the gasoline engine. In addition to this application form, for example, the fuel injection valve 10 may inject fuel into an intake passage communicating with a combustion chamber of a gasoline engine, or fuel into a combustion chamber of a diesel engine as an internal combustion engine. May be used.

(構成)
以下、燃料噴射弁10の構成について詳細に説明する。燃料噴射弁10は、弁ハウジング12、固定コア20、可動コア30、弁部材40、可動ストッパ50、コイル60、並びに弾性部材70,72,74を備えている。
(Constitution)
Hereinafter, the configuration of the fuel injection valve 10 will be described in detail. The fuel injection valve 10 includes a valve housing 12, a fixed core 20, a movable core 30, a valve member 40, a movable stopper 50, a coil 60, and elastic members 70, 72, and 74.

弁ハウジング12は、全体として円筒状に形成されており、軸方向の一端部側から他端部側へ向かって順に第一磁性部13、非磁性部14及び第二磁性部15を有している。磁性からなる各磁性部13,15と、非磁性材からなる非磁性部14とは、レーザ溶接等によって結合されている。かかる結合形態によって非磁性部14は、第一磁性部13及び第二磁性部15の間で磁束が短絡することを防止する。   The valve housing 12 is formed in a cylindrical shape as a whole, and has a first magnetic part 13, a nonmagnetic part 14, and a second magnetic part 15 in order from one end side in the axial direction toward the other end side. Yes. The magnetic parts 13 and 15 made of magnetism and the nonmagnetic part 14 made of a nonmagnetic material are coupled by laser welding or the like. The non-magnetic portion 14 prevents the magnetic flux from being short-circuited between the first magnetic portion 13 and the second magnetic portion 15 by such a coupling form.

第一磁性部13は、非磁性部14とは反対側となる燃焼室側へ向かって一段階縮径しており、その縮径側の小径部13aによって有底円筒状のノズル部16を形成している。ノズル部16は、径方向中央部を軸方向に貫通するようにして噴孔17が設けられた底壁部に、当該噴孔17の外周側を囲む弁座18を有している。第二磁性部15は、非磁性部14とは反対側の軸方向端部に燃料入口19を形成している。燃料入口19には、燃料ポンプ(図示しない)から燃料が供給されるようになっている。   The first magnetic part 13 is reduced in diameter by one step toward the combustion chamber side opposite to the nonmagnetic part 14, and a bottomed cylindrical nozzle part 16 is formed by the small diameter part 13a on the reduced diameter side. doing. The nozzle portion 16 has a valve seat 18 that surrounds the outer peripheral side of the nozzle hole 17 on the bottom wall portion where the nozzle hole 17 is provided so as to penetrate the central portion in the radial direction in the axial direction. The second magnetic portion 15 forms a fuel inlet 19 at the axial end opposite to the nonmagnetic portion 14. Fuel is supplied to the fuel inlet 19 from a fuel pump (not shown).

固定コア20は、磁性材によって円筒状に形成されており、弁ハウジング12のうち非磁性部14及び第二磁性部15の内周壁に同軸上に固定されている。固定コア20には、その径方向中央部を軸方向に貫通する収容孔21が設けられている。収容孔21の内周側には、第一弾性部材70が弾性変形可能に収容されていると共に、当該第一弾性部材70のセット荷重を調整するためのアジャスティングパイプ22が圧入によって固定されている。   The fixed core 20 is formed in a cylindrical shape by a magnetic material, and is fixed coaxially to the inner peripheral walls of the nonmagnetic portion 14 and the second magnetic portion 15 in the valve housing 12. The fixed core 20 is provided with a receiving hole 21 that penetrates the central portion in the radial direction in the axial direction. A first elastic member 70 is accommodated in the inner peripheral side of the accommodation hole 21 so as to be elastically deformable, and an adjusting pipe 22 for adjusting a set load of the first elastic member 70 is fixed by press-fitting. Yes.

可動コア30は、全体として円筒状に形成されており、弁ハウジング12の内周側に同軸上に収容されて固定コア20よりもノズル部16側(噴孔17側)に位置している。可動コア30は、弁ハウジング12のうち第一磁性部13の大径部13b及び非磁性部14の各内周壁によって案内されることで、軸方向両側への正確な往復移動が可能となっている。このような可動コア30は、固定コア20側への軸方向移動によってノズル部16側から、当該固定コア20に当接する。   The movable core 30 is formed in a cylindrical shape as a whole, is coaxially accommodated on the inner peripheral side of the valve housing 12, and is positioned closer to the nozzle portion 16 side (the nozzle hole 17 side) than the fixed core 20. The movable core 30 is guided by the large-diameter portion 13b of the first magnetic portion 13 and the inner peripheral walls of the nonmagnetic portion 14 of the valve housing 12, thereby enabling accurate reciprocation in both axial directions. Yes. Such a movable core 30 comes into contact with the fixed core 20 from the nozzle portion 16 side by axial movement toward the fixed core 20 side.

具体的に可動コア30は、その軸方向において固定コア20と対向する円筒状(厚肉円盤状)のコア本体部31を、磁性材によって形成している。コア本体部31には、その径方向中央部を軸方向に貫通するコア貫通孔32が設けられている。ここで、コア本体部31においてコア貫通孔32の内径は、可動コア30と軸方向に対向する固定コア20に設けられた収容孔21の内径よりも、小さく設定されている。また、コア本体部31の外径は、弁ハウジング12のうち第一磁性部13の大径部13b及び非磁性部14の各内径よりも、僅かに小さく設定されている。かかる設定によってコア本体部31は、弁ハウジング12による摺動案内が可能になっていると共に、固定コア20に対する軸方向端面31aの対向並びに当接が可能となっている。   Specifically, the movable core 30 is formed of a magnetic material in a cylindrical (thick disc shape) core body portion 31 that faces the fixed core 20 in the axial direction. The core body portion 31 is provided with a core through hole 32 that penetrates the central portion in the radial direction in the axial direction. Here, in the core main body 31, the inner diameter of the core through hole 32 is set smaller than the inner diameter of the accommodation hole 21 provided in the fixed core 20 facing the movable core 30 in the axial direction. Further, the outer diameter of the core body 31 is set to be slightly smaller than the inner diameters of the large-diameter portion 13 b of the first magnetic portion 13 and the non-magnetic portion 14 of the valve housing 12. With this setting, the core body 31 can be guided by the valve housing 12 and can be opposed to and contact the axial end surface 31 a with respect to the fixed core 20.

さらに可動コア30は、コア本体部31から固定コア20とは反対側へ同軸上に突出するコア収容部33を、円筒状に形成している。コア収容部33の内周側には、第二弾性部材72が弾性変形可能に収容されていると共に、後に詳述する可動ストッパ50のストッパ突部54が相対移動可能に収容されている。ここで、コア収容部33の内径が貫通孔32の内径よりも大きく設定されることで、コア本体部31のうち固定コア20とは反対側の軸方向端面31bが当該収容部33の内周側にてストッパ突部54と当接可能となっている。また、コア収容部33の外径がコア本体部31の外径よりも小さく設定されることで、径方向において第一磁性部13の大径部13b及びコア収容部33の間には、第三弾性部材74が弾性変形可能に収容されている。尚、本実施形態においてコア収容部33は、磁性材によってコア本体部31と一体に形成されているが、例えばコア本体部31と別体に形成したコア収容部33が当該本体部31に溶接等によって接合されていてもよい。   Furthermore, the movable core 30 has a cylindrical core housing portion 33 that is coaxially projected from the core body portion 31 to the opposite side of the fixed core 20 in a cylindrical shape. A second elastic member 72 is accommodated on the inner peripheral side of the core accommodating portion 33 so as to be elastically deformable, and a stopper protrusion 54 of a movable stopper 50 described later in detail is accommodated so as to be relatively movable. Here, by setting the inner diameter of the core accommodating portion 33 to be larger than the inner diameter of the through hole 32, the axial end surface 31 b on the opposite side of the fixed core 20 in the core body portion 31 is the inner circumference of the accommodating portion 33. The stopper protrusion 54 can be contacted on the side. Further, the outer diameter of the core housing portion 33 is set to be smaller than the outer diameter of the core main body portion 31, so that the first magnetic portion 13 has a large diameter portion 13 b and the core housing portion 33 in the radial direction. Three elastic members 74 are accommodated so as to be elastically deformable. In the present embodiment, the core housing portion 33 is formed integrally with the core main body portion 31 with a magnetic material. For example, the core housing portion 33 formed separately from the core main body portion 31 is welded to the main body portion 31. It may be joined by, for example.

またさらに可動コア30は、コア収容部33においてコア本体部31とは反対側の軸方向端部から内周側へ突出するコア突部34を、他部31,33と同軸の円形鍔状に形成している。ここでコア突部34の内径は、コア貫通孔32の内径よりも大きく設定されている。尚、本実施形態において非磁性材からなるコア突部34は、それと別体に形成されたコア収容部33に溶接等によって接合されているが、例えば磁性材からなるコア収容部33の軸方向端部を図2の如く内周側へ折り曲げることによって、形成されていてもよい。   Furthermore, the movable core 30 has a core protrusion 34 that protrudes inward from the axial end opposite to the core body 31 in the core housing portion 33 in a circular bowl shape coaxial with the other portions 31 and 33. Forming. Here, the inner diameter of the core protrusion 34 is set larger than the inner diameter of the core through hole 32. In this embodiment, the core protrusion 34 made of a non-magnetic material is joined to a core housing portion 33 formed separately from the core housing portion 33 by welding or the like. For example, the axial direction of the core housing portion 33 made of a magnetic material It may be formed by bending the end portion toward the inner periphery as shown in FIG.

図1に示すように弁部材40は、全体として円形横断面のニードル状に非磁性材によって形成されており、弁ハウジング12の内周側に同軸上に収容されている。弁部材40は、軸方向両側への往復移動によって噴孔17を開閉することで、当該噴孔17から燃焼室への燃料噴射を断続する。   As shown in FIG. 1, the valve member 40 is formed of a non-magnetic material in the shape of a needle having a circular cross section as a whole, and is accommodated coaxially on the inner peripheral side of the valve housing 12. The valve member 40 opens and closes the injection hole 17 by reciprocating movement in both axial directions, thereby intermittently injecting fuel from the injection hole 17 to the combustion chamber.

具体的に弁部材40は、ノズル部16側へ向かって漸次縮径する円錐状のシート部41を、当該ノズル部16側の軸方向端部に有している。シート部41は、図1の如く円錐状の尖端を噴孔17へ挿入させて円錐状の周面を弁座18に着座させる閉弁作動により、噴孔17を閉じて燃料噴射を遮断する。また一方、シート部41は、図3の如く円錐状の尖端を噴孔17から抜出させて円錐状の周面を弁座18から離座させる開弁作動により、噴孔17を開いて燃料噴射を許容する。   Specifically, the valve member 40 has a conical sheet portion 41 that gradually decreases in diameter toward the nozzle portion 16 side at an end portion in the axial direction on the nozzle portion 16 side. As shown in FIG. 1, the seat portion 41 closes the nozzle hole 17 and shuts off fuel injection by a valve closing operation in which a conical tip is inserted into the nozzle hole 17 and a conical circumferential surface is seated on the valve seat 18. On the other hand, as shown in FIG. 3, the seat portion 41 opens the nozzle hole 17 by the valve opening operation of extracting the conical tip from the nozzle hole 17 and separating the conical circumferential surface from the valve seat 18 to thereby generate fuel. Allow injection.

さらに、図1に示すように弁部材40は、シート部41から固定コア20側へ向かって軸方向にストレートに延伸する円柱状の弁貫通部42を、当該弁部材40の本体部として有している。ここで、可動コア30の内径のうち最小となるコア貫通孔32の内径よりも、弁貫通部42の外径が小さく設定されることで、当該弁貫通部42は、可動コア30の各部31,33,34の径方向中央部を相対移動可能な状態で軸方向に貫通している。また、第一磁性部13において小径部13aからなるノズル部16の内径よりも、弁貫通部42の外径が小さく設定されることで、それら要素16,42間に燃料通路48が形成されている。このように形成された燃料通路48は、図3の如くシート部41が弁座18から離座する開弁作動によって噴孔17と連通する一方、図1の如くシート部41が弁座18に着座する閉弁作動によって噴孔17との連通を遮断されることとなる。   Further, as shown in FIG. 1, the valve member 40 has a cylindrical valve penetration portion 42 that extends straight in the axial direction from the seat portion 41 toward the fixed core 20 side as a main body portion of the valve member 40. ing. Here, by setting the outer diameter of the valve penetrating portion 42 to be smaller than the inner diameter of the core through-hole 32 that is the smallest among the inner diameters of the movable core 30, the valve penetrating portion 42 corresponds to each portion 31 of the movable core 30. , 33 and 34 are penetrated in the axial direction so as to be relatively movable. Further, by setting the outer diameter of the valve penetrating portion 42 to be smaller than the inner diameter of the nozzle portion 16 composed of the small diameter portion 13 a in the first magnetic portion 13, a fuel passage 48 is formed between the elements 16 and 42. Yes. The fuel passage 48 thus formed communicates with the injection hole 17 by the valve opening operation in which the seat portion 41 is separated from the valve seat 18 as shown in FIG. 3, while the seat portion 41 communicates with the valve seat 18 as shown in FIG. 1. The communication with the nozzle hole 17 is interrupted by the valve closing operation to be seated.

またさらに弁部材40は、弁貫通部42から外周側へ突出する円形鍔状の弁突部44を、固定コア20側の軸方向端部に有している。ここで、弁突部44の外径が貫通孔32の内径よりも大きく設定されることで、弁貫通部42と境界をなす弁突部44の軸方向端面44aは、コア本体部31が形成する軸方向端面31aに固定コア20側から当接可能となっている。また、弁突部44の外径が収容孔21の内径よりも僅かに小さくされることで、弁突部44が収容孔21に摺動自在に挿入されている。かかる挿入構造によって本実施形態では、固定コア20のうち収容孔21の内周壁によって弁突部44が案内されることで、弁部材40の軸方向両側への正確な往復移動が可能となっている。   Furthermore, the valve member 40 has a circular hook-shaped valve protrusion 44 protruding from the valve penetrating part 42 to the outer peripheral side at the axial end on the fixed core 20 side. Here, by setting the outer diameter of the valve projection 44 to be larger than the inner diameter of the through-hole 32, the core main body 31 forms the axial end surface 44 a of the valve projection 44 that makes a boundary with the valve penetration 42. It can contact | abut from the fixed core 20 side to the axial direction end surface 31a to do. Further, since the outer diameter of the valve protrusion 44 is slightly smaller than the inner diameter of the accommodation hole 21, the valve protrusion 44 is slidably inserted into the accommodation hole 21. With this insertion structure, in this embodiment, the valve protrusion 44 is guided by the inner peripheral wall of the accommodation hole 21 in the fixed core 20, so that the valve member 40 can be accurately reciprocated in both axial directions. Yes.

加えて弁部材40には、弁突部44及び弁貫通部42に跨って燃料孔46が設けられている。燃料孔46は、弁突部44においてコア本体部31とは反対側の軸方向端面44bに開口することで、当該突部44の挿入された収容孔21及びアジャスティングパイプ22の内周側を通じて、燃料入口19に常時連通している。それと共に燃料孔46は、弁貫通部42の周面に開口することで、コア収容部33及びコア突部34の内周側を通じて、ノズル部16及び弁貫通部42間の燃料通路48に常時連通している。したがって、本実施形態において燃料入口19への供給燃料は、収容孔21、燃料孔46、コア収容部33及びコア突部34の内周側を順次経由して、噴孔17と連通可能な燃料通路48まで届くようになっている。   In addition, a fuel hole 46 is provided in the valve member 40 across the valve protrusion 44 and the valve penetration part 42. The fuel hole 46 opens to the axial end surface 44b on the opposite side of the core main body 31 in the valve protrusion 44, so that the fuel hole 46 passes through the accommodation hole 21 into which the protrusion 44 is inserted and the inner peripheral side of the adjusting pipe 22. The fuel inlet 19 is always in communication. At the same time, the fuel hole 46 opens to the peripheral surface of the valve penetrating portion 42, so that the fuel hole 46 is always in the fuel passage 48 between the nozzle portion 16 and the valve penetrating portion 42 through the inner peripheral side of the core accommodating portion 33 and the core protruding portion 34. Communicate. Therefore, in the present embodiment, the fuel supplied to the fuel inlet 19 is a fuel that can communicate with the nozzle hole 17 via the accommodation hole 21, the fuel hole 46, the core accommodation part 33, and the inner peripheral side of the core protrusion 34 in order. It reaches the passage 48.

可動ストッパ50は、全体として円筒状に非磁性材によって形成されており、弁ハウジング12の内周側に同軸上に収容されている。径方向の可動コア30及び弁部材40間において可動ストッパ50は、軸方向両側への往復移動可能に介装されている。   The movable stopper 50 is formed of a nonmagnetic material in a cylindrical shape as a whole, and is accommodated coaxially on the inner peripheral side of the valve housing 12. Between the movable core 30 and the valve member 40 in the radial direction, the movable stopper 50 is interposed so as to be able to reciprocate in both axial directions.

具体的に可動ストッパ50は、その軸方向にストレートに延伸する円筒状に、ストッパ貫通部52を形成している。ここで、ストッパ貫通部52の外径がコア貫通孔32の内径よりも僅かに小さく設定されることで、ストッパ貫通部52は、コア貫通孔32に相対摺動自在に挿入されてコア本体部31の径方向中央部を軸方向に貫通している。また、ストッパ貫通部52の内径が弁貫通部42の外径よりも僅かに大きく設定されることで、ストッパ貫通部52には、コア本体部31の内周側において弁貫通部42が相対摺動自在に挿入されている。これらの挿入構造によって本実施形態では、コア貫通孔32の内周壁及び弁貫通部42の外周壁に沿ってストッパ貫通部52が案内されることで、可動ストッパ50の軸方向両側への正確な往復移動が可能となっている。そして、このようなストッパ貫通部52は、コア貫通孔32よりも大径に形成された弁突部44側への軸方向移動によって、固定コア20とは反対側から当該突部44の軸方向端面44aに当接する。   Specifically, the movable stopper 50 has a stopper penetrating portion 52 formed in a cylindrical shape extending straight in the axial direction. Here, since the outer diameter of the stopper through-hole 52 is set slightly smaller than the inner diameter of the core through-hole 32, the stopper through-hole 52 is inserted into the core through-hole 32 so as to be slidable relative to the core main body portion. The radial center part of 31 is penetrated in the axial direction. Further, since the inner diameter of the stopper penetrating portion 52 is set slightly larger than the outer diameter of the valve penetrating portion 42, the valve penetrating portion 42 is relatively slipped on the stopper penetrating portion 52 on the inner peripheral side of the core body portion 31. It is inserted freely. In this embodiment, the stopper penetrating portion 52 is guided along the inner peripheral wall of the core through hole 32 and the outer peripheral wall of the valve penetrating portion 42 by these insertion structures, so that the movable stopper 50 can be accurately positioned on both sides in the axial direction. Reciprocal movement is possible. Such a stopper penetrating portion 52 is axially moved from the side opposite to the fixed core 20 to the axial direction of the projecting portion 44 by the axial movement toward the valve projecting portion 44 formed to have a larger diameter than the core through hole 32. It contacts the end surface 44a.

さらに可動ストッパ50は、ストッパ貫通部52において弁突部44とは反対側の軸方向端部から外周側へ突出するストッパ突部54を、当該貫通部52と同軸の円形鍔状に形成している。ここでストッパ突部54の外径は、コア貫通孔32の内径よりも大きく且つコア収容部33の内径よりも小さく設定されている。かかる設定によってストッパ突部54は、ストッパ貫通部52と境界をなすストッパ突部54の軸方向端面54aを、コア本体部31の軸方向端面31bに固定コア20とは反対側から当接可能となっている。尚、本実施形態においてストッパ突部54は、非磁性材によってストッパ貫通部52と一体に形成されているが、例えばストッパ貫通部52と別体に形成したストッパ突部54が当該貫通部52に溶接等によって接合されていてもよい。   Further, the movable stopper 50 has a stopper protrusion 54 that protrudes from the axial end opposite to the valve protrusion 44 in the stopper penetrating part 52 to the outer peripheral side in a circular bowl shape coaxial with the penetrating part 52. Yes. Here, the outer diameter of the stopper projection 54 is set to be larger than the inner diameter of the core through-hole 32 and smaller than the inner diameter of the core housing portion 33. With this setting, the stopper projection 54 can abut the axial end surface 54a of the stopper projection 54 that forms a boundary with the stopper penetration 52, and the axial end surface 31b of the core body 31 from the opposite side to the fixed core 20. It has become. In this embodiment, the stopper protrusion 54 is formed integrally with the stopper penetration 52 by a nonmagnetic material. For example, the stopper protrusion 54 formed separately from the stopper penetration 52 is formed in the penetration 52. It may be joined by welding or the like.

加えて可動ストッパ50は、図1,3の如くストッパ貫通部52を弁突部44に離間可能に当接させた状態下、コア本体部31及び弁突部44間とコア本体部31及びストッパ突部54間とのうち燃料噴射弁10の作動に応じた少なくとも一方に、隙間56を形成する。故に、図4の如くストッパ突部54が可動コア30に当接しつつストッパ貫通部52が弁突部44から離間して隙間58を形成するときは、コア本体部31及びストッパ突部54間の隙間56は消失する一方、コア本体部31及び弁突部44間の隙間56は拡大する。尚、以下においては、図1,4の如くコア本体部31及び弁突部44間に形成される隙間56を特に、弁突部側隙間56aというものとし、図3の如くコア本体部31及びストッパ突部54の間に形成される隙間56を特に、ストッパ突部側隙間56bというものとする。   In addition, the movable stopper 50 is formed between the core body 31 and the valve protrusion 44 and between the core body 31 and the stopper, with the stopper penetrating portion 52 in contact with the valve protrusion 44 so as to be separable as shown in FIGS. A gap 56 is formed in at least one of the protrusions 54 according to the operation of the fuel injection valve 10. Therefore, when the stopper projection 54 is in contact with the movable core 30 and the stopper penetration 52 is separated from the valve projection 44 to form a gap 58 as shown in FIG. 4, the gap between the core body 31 and the stopper projection 54 is formed. While the gap 56 disappears, the gap 56 between the core body 31 and the valve protrusion 44 is enlarged. In the following, the gap 56 formed between the core main body 31 and the valve protrusion 44 as shown in FIGS. 1 and 4 will be referred to as a valve protrusion side gap 56a. The gap 56 formed between the stopper protrusions 54 is particularly referred to as a stopper protrusion-side gap 56b.

図1に示すコイル60は、ボビン(図示しない)に巻回されて磁性ヨーク62に覆われてなる。コイル60は、弁ハウジング12のうち固定コア20の外周側となる非磁性部14及び第二磁性部15の外周壁に、同軸上に固定されている。コイル60は外部の制御回路(図示しない)と電気接続されて、当該制御回路によって通電制御されるようになっている。ここで、通電によってコイル60が励磁するときには、磁性ヨーク62、第一磁性部13、可動コア30のコア本体部31、固定コア20及び第二磁性部15が共同して形成する磁気回路に、磁束が流れる。その結果、互いに対向するコア本体部31及び固定コア20の間には、可動コア30を固定コア20側へ吸引して移動させる磁気吸引力が発生する。また一方、通電の停止によってコイル60が消磁するときには、上記磁気回路に磁束が流れなくなるため、コア本体部31及び固定コア20の間において磁気吸引力が消失する。   A coil 60 shown in FIG. 1 is wound around a bobbin (not shown) and covered with a magnetic yoke 62. The coil 60 is coaxially fixed to the outer peripheral walls of the nonmagnetic part 14 and the second magnetic part 15 on the outer peripheral side of the fixed core 20 in the valve housing 12. The coil 60 is electrically connected to an external control circuit (not shown) and is energized and controlled by the control circuit. Here, when the coil 60 is excited by energization, the magnetic yoke 62, the first magnetic portion 13, the core body portion 31 of the movable core 30, the fixed core 20 and the second magnetic portion 15 are jointly formed. Magnetic flux flows. As a result, a magnetic attractive force that attracts and moves the movable core 30 toward the fixed core 20 is generated between the core main body 31 and the fixed core 20 facing each other. On the other hand, when the coil 60 is demagnetized by stopping energization, magnetic flux does not flow in the magnetic circuit, so that the magnetic attractive force disappears between the core body 31 and the fixed core 20.

第一弾性部材70は金属製の圧縮コイルスプリングからなり、収容孔21の内周側に同軸上に収容されている。第一弾性部材70の一端部はアジャスティングパイプ22に係止され、当該弾性部材70の他端部は弁突部44に係止されている。かかる係止構造によって第一弾性部材70は、アジャスティングパイプ22が固定される固定コア20と、弁突部44を有する弁部材40との間に介装されているので、それら要素20,40間にて圧縮されて弾性変形する。したがって、第一弾性部材70が弾性変形によって発生する第一復原力F1(図5参照)は、弁ハウジング12に対して弁部材40を固定コア20とは反対側へ付勢する付勢力となる。   The first elastic member 70 is made of a metal compression coil spring and is accommodated coaxially on the inner peripheral side of the accommodation hole 21. One end of the first elastic member 70 is locked to the adjusting pipe 22, and the other end of the elastic member 70 is locked to the valve protrusion 44. With this locking structure, the first elastic member 70 is interposed between the fixed core 20 to which the adjusting pipe 22 is fixed and the valve member 40 having the valve protrusion 44. It is compressed in between and elastically deforms. Therefore, the first restoring force F <b> 1 (see FIG. 5) generated by the elastic deformation of the first elastic member 70 becomes a biasing force that biases the valve member 40 toward the opposite side of the fixed core 20 with respect to the valve housing 12. .

第二弾性部材72は金属製の圧縮コイルスプリングからなり、コア収容部33の内周側に同軸上に収容されている。第二弾性部材72の一端部はコア突部34に係止され、第二弾性部材72の他端部は、コア突部34よりも固定コア20側のストッパ突部54に係止されている。かかる係止構造によって第二弾性部材72は、コア突部34を有する可動コア30と、ストッパ突部54を有する可動ストッパ50との間に介装されているので、それら要素30,50間にて圧縮されて弾性変形する。したがって、第二弾性部材72が弾性変形によって発生する第二復原力F2(図5参照)は、可動コア30を固定コア20とは反対側へ付勢すると同時に、可動ストッパ50を固定コア20側へ付勢する付勢力となる。   The second elastic member 72 is made of a metal compression coil spring and is accommodated coaxially on the inner peripheral side of the core accommodating portion 33. One end of the second elastic member 72 is locked to the core protrusion 34, and the other end of the second elastic member 72 is locked to the stopper protrusion 54 closer to the fixed core 20 than the core protrusion 34. . With this locking structure, the second elastic member 72 is interposed between the movable core 30 having the core protrusion 34 and the movable stopper 50 having the stopper protrusion 54. Compressed and elastically deformed. Accordingly, the second restoring force F2 (see FIG. 5) generated by the elastic deformation of the second elastic member 72 urges the movable core 30 to the side opposite to the fixed core 20 and simultaneously moves the movable stopper 50 to the fixed core 20 side. It becomes the urging force that urges to.

第三弾性部材74は金属製の圧縮コイルスプリングからなり、第一磁性部13の大径部13bの内周側且つ及びコア収容部33の外周側に同軸上に収容されている。第三弾性部材74の一端部は、第一磁性部13において小径部13a及び大径部13b間を接続する段差部13cに係止され、第三弾性部材74の他端部は、段差部13cよりも固定コア20側のコア本体部31に係止されている。かかる係止構造によって第三弾性部材74は、段差部13cを有する弁ハウジング12と、コア本体部31を有する可動コア30との間に介装されているので、それら要素12,30間にて圧縮されて弾性変形する。したがって、第三弾性部材74が弾性変形によって発生する第三復原力F3(図5参照)は、弁ハウジング12に対して可動コア30を固定コア20側へ付勢する付勢力となる。   The third elastic member 74 is made of a metal compression coil spring and is coaxially accommodated on the inner peripheral side of the large diameter portion 13 b of the first magnetic portion 13 and on the outer peripheral side of the core accommodating portion 33. One end portion of the third elastic member 74 is locked to the step portion 13c that connects the small diameter portion 13a and the large diameter portion 13b in the first magnetic portion 13, and the other end portion of the third elastic member 74 is the step portion 13c. It is locked to the core body 31 on the fixed core 20 side. With this locking structure, the third elastic member 74 is interposed between the valve housing 12 having the step portion 13 c and the movable core 30 having the core body portion 31. It is compressed and elastically deformed. Therefore, the third restoring force F3 (see FIG. 5) generated by the elastic deformation of the third elastic member 74 serves as a biasing force that biases the movable core 30 toward the fixed core 20 with respect to the valve housing 12.

(復原力調整)
以上の構成の燃料噴射弁10について図1は、閉弁作動により可動要素30,40,50がいずれも移動停止して噴孔17が閉じている状態(以下、単に「閉弁状態」という)を、示している。この閉弁状態では、シート部41が弁座18に着座すると共に、ストッパ貫通部52及びストッパ突部54がそれぞれ弁突部44及びコア本体部31に当接して隙間56のうち弁突部側隙間56aのみが形成されるように、各弾性部材70,72,74の復原力F1,F2,F3の関係が調整されている。
(Restoration adjustment)
FIG. 1 shows a state in which the movable elements 30, 40, and 50 all stop moving and the injection hole 17 is closed (hereinafter simply referred to as “valve-closed state”). Is shown. In this valve-closed state, the seat portion 41 is seated on the valve seat 18, and the stopper penetrating portion 52 and the stopper protruding portion 54 abut against the valve protruding portion 44 and the core main body portion 31, respectively. The relationship between the restoring forces F1, F2, and F3 of the elastic members 70, 72, and 74 is adjusted so that only the gap 56a is formed.

そこで以下では、閉弁状態における各弾性部材70,72,74の復原力F1,F2,F3の調整について、図5に基づき説明する。尚、図5において、符号Fvsは、弁部材40及び可動ストッパ50の間にて作用する力を示し、符号Fcsは、可動コア30及び可動ストッパ50の間にて作用する力を示し、符号Fvhは、弁部材40及び弁ハウジング12の間にて作用する力を示している。   Therefore, hereinafter, adjustment of the restoring forces F1, F2, and F3 of the elastic members 70, 72, and 74 in the valve-closed state will be described with reference to FIG. In FIG. 5, symbol Fvs indicates the force acting between the valve member 40 and the movable stopper 50, symbol Fcs indicates the force acting between the movable core 30 and the movable stopper 50, and symbol Fvh. Indicates the force acting between the valve member 40 and the valve housing 12.

図5から明らかなように、弁部材40における力の釣り合い関係は下記(式1)で表され、可動ストッパ50における力の釣り合い関係は下記(式2)で表され、可動コア30における力の釣り合い関係は下記(式3)で表される。
+F1−Fvs−Fvh=0 ・・・(式1)
−F2+Fvs+Fcs=0 ・・・(式2)
−F3+F2−Fcs=0 ・・・(式3)
As apparent from FIG. 5, the force balance relation in the valve member 40 is expressed by the following (formula 1), the force balance relation in the movable stopper 50 is expressed by the following (formula 2), and the force balance in the movable core 30 is The balance relationship is expressed by the following (formula 3).
+ F1-Fvs-Fvh = 0 (Formula 1)
−F2 + Fvs + Fcs = 0 (Expression 2)
-F3 + F2-Fcs = 0 (Formula 3)

これらの(式1),(式2),(式3)を整理して、各力Fvs,Fcs,Fvhについて解くと、それぞれ下記の(式4),(式5),(式6)が得られる。
Fvs=F3 ・・・(式4)
Fcs=F2−F3 ・・・(式5)
Fvh=F1−F3 ・・・(式6)
When these (Equation 1), (Equation 2), and (Equation 3) are arranged and solved for each force Fvs, Fcs, and Fvh, the following (Equation 4), (Equation 5), and (Equation 6) are respectively obtained. can get.
Fvs = F3 (Formula 4)
Fcs = F2-F3 (Formula 5)
Fvh = F1-F3 (Formula 6)

そして、燃料噴射弁10の閉弁状態においては、各力Fvs,Fcs,Fvhの大きさが0よりも大きくなる必要があるので、(式4)の右辺>0、(式5)の右辺>0、並びに(式6)の右辺>0という関係が、それぞれ成立する。したがって、下記の(式7),(式8),(式9)が得られることとなる。
F3>0 ・・・(式7)
F2>F3 ・・・(式8)
F1>F3 ・・・(式9)
In the closed state of the fuel injection valve 10, the magnitudes of the forces Fvs, Fcs, and Fvh need to be larger than 0. Therefore, the right side of (Expression 4)> 0, the right side of (Expression 5)> 0, and the relationship of the right side of (Expression 6)> 0 holds. Therefore, the following (Expression 7), (Expression 8), and (Expression 9) are obtained.
F3> 0 (Expression 7)
F2> F3 (Formula 8)
F1> F3 (Formula 9)

ここで(式7),(式8),(式9)について、特に本実施形態では、可動要素30,40,50が完全停止した閉弁状態を含む閉弁作動にて常に成立するよう、復原力F1,F2,F3の調整が行なわれる。さらに本実施形態では、第二復原力F2が第三復原力F3よりも大きいことを示す(式8)に関連して、下記の(式10)が成立するように、即ち復原力F2,F3の差分が設定値δF以下に抑えられるように、調整が行なわれるのである。尚、設定値δFについては、後に詳述する原理によって所望の開弁応答性が得られるように、予め設定される値である。
F2−F3≦δF ・・・(式10)
Here, with regard to (Equation 7), (Equation 8), and (Equation 9), particularly in this embodiment, the movable elements 30, 40, and 50 are always established in the valve closing operation including the closed state in which the movable elements 30, 40, and 50 are completely stopped. The restoring forces F1, F2, and F3 are adjusted. Further, in the present embodiment, in relation to (Equation 8) indicating that the second restoring force F2 is larger than the third restoring force F3, the following (Equation 10) is established, that is, the restoring forces F2, F3. The adjustment is performed so that the difference between the two is suppressed to be equal to or less than the set value δF. The set value δF is a value set in advance so that a desired valve opening response can be obtained according to the principle described in detail later.
F2-F3 ≦ δF (Formula 10)

(製造方法)
以下、燃料噴射弁10の製造方法について詳細に説明する。
(Production method)
Hereinafter, the manufacturing method of the fuel injection valve 10 will be described in detail.

まず、図6(a)に示すように、コア突部34をコア収容部33に接合していない可動コア30に対して、可動ストッパ50及び第二弾性部材72を組み付ける。これにより、ストッパ貫通部52をコア本体部31の貫通孔32内に挿入すると共に、ストッパ突部54及び第二弾性部材72をコア収容部33内に収容させた後、図6(b)に示すように、コア突部34をコア収容部33に接合して第二弾性部材72のセット荷重を調整する。   First, as shown in FIG. 6A, the movable stopper 50 and the second elastic member 72 are assembled to the movable core 30 in which the core protrusion 34 is not joined to the core housing portion 33. Thereby, the stopper penetrating portion 52 is inserted into the through hole 32 of the core body portion 31, and the stopper protrusion 54 and the second elastic member 72 are accommodated in the core accommodating portion 33, and then, as shown in FIG. As shown, the core protrusion 34 is joined to the core housing portion 33 to adjust the set load of the second elastic member 72.

コア突部34の接合によってストッパ突部54をコア本体部31に当接させてなる要素30,50,72の一体化物を、図6(c)に示すように弁ハウジング12(本実施形態では、小口の燃料入口19を離脱させてあるもの)内へ、第三弾性部材74と共に挿入する。これにより、第三弾性部材74を要素30,50,72の一体物及び弁ハウジング12の間に介装させた後、図6(d)に示すように、弁部材40の弁貫通部42をストッパ貫通部52内と、コア収容部33及びコア突部34内とへ順次挿入する。このとき、特に本実施形態では、弁突部44にストッパ貫通部52が当接する状態とする。   As shown in FIG. 6C, an integrated body of the elements 30, 50, 72 formed by bringing the stopper protrusion 54 into contact with the core body 31 by joining the core protrusion 34 is the valve housing 12 (in this embodiment). The small fuel inlet 19 is removed, and the third elastic member 74 is inserted. As a result, after the third elastic member 74 is interposed between the integrated body of the elements 30, 50, 72 and the valve housing 12, the valve penetrating portion 42 of the valve member 40 is moved as shown in FIG. It inserts in the stopper penetration part 52, the core accommodating part 33, and the core protrusion 34 sequentially. At this time, particularly in this embodiment, the stopper penetrating portion 52 is brought into contact with the valve protrusion 44.

そして、図6(e)に示すように、固定コア20を弁ハウジング12内へ圧入して固定し、さらに当該固定コア20の収容孔21内へ第一弾性部材70及びアジャスティングパイプ22を挿入して、第一及び第三弾性部材70,74のセット荷重を決める。このとき、特に本実施形態では、弁突部44及びコア本体部31の間に弁突部側隙間56aが適切に確保された状態とする。以上の後、弁ハウジング12の外周壁にコイル60を固定すること等によって、燃料噴射弁10が完成するのである。   Then, as shown in FIG. 6 (e), the fixed core 20 is press-fitted into the valve housing 12 and fixed, and the first elastic member 70 and the adjusting pipe 22 are inserted into the accommodation hole 21 of the fixed core 20. Then, the set load of the first and third elastic members 70 and 74 is determined. At this time, particularly in the present embodiment, the valve protrusion side gap 56 a is appropriately secured between the valve protrusion 44 and the core body 31. After the above, the fuel injection valve 10 is completed by fixing the coil 60 to the outer peripheral wall of the valve housing 12 or the like.

(作動)
以下、燃料噴射弁10の作動について詳細に説明する。
(Operation)
Hereinafter, the operation of the fuel injection valve 10 will be described in detail.

(開弁作動)
最初に、燃料噴射弁10の開弁作動を説明する。図7(a)に示す閉弁状態においてコイル60への通電を開始すると、磁気吸引力がコア本体部31に作用することで、可動コア30が第二弾性部材72の第二復原力F2に抗した固定コア20側への移動を開始する。ここで直前の通電停止状態(即ち、図7(a)の閉弁状態)においては、ストッパ貫通部52がコア本体部31の固定コア20側の端面31aから突出して当接している弁突部44と、ストッパ突部54に係止されているコア本体部31との間に、弁突部側隙間56aが確保される。故に、通電開始時点において可動コア30は、まず、弁突部側隙間56a分、弁部材40を伴うことなく固定コア20側へ移動することとなる。
(Valve opening operation)
First, the opening operation of the fuel injection valve 10 will be described. When energization of the coil 60 is started in the valve-closed state shown in FIG. 7A, the magnetic attractive force acts on the core body 31, so that the movable core 30 becomes the second restoring force F <b> 2 of the second elastic member 72. The movement toward the fixed core 20 resisted is started. Here, in the energization stop state immediately before (that is, the valve-closed state in FIG. 7A), the valve penetrating portion 52 protrudes from and comes into contact with the end surface 31a of the core body portion 31 on the fixed core 20 side. A valve protrusion side clearance 56 a is secured between the main body portion 31 and the core main body portion 31 locked to the stopper protrusion 54. Therefore, at the start of energization, the movable core 30 first moves to the fixed core 20 side without the valve member 40 by the valve protrusion side gap 56a.

この後、コイル60への通電によって固定コア20側への移動を継続する可動コア30は、図7(b)に示すように、第一弾性部材70から固定コア20とは反対側へ向かって第一復原力F1を受ける弁突部44に対し、当該反対側からコア本体部31を当接させる。すると、可動コア30は、第一復原力F1に抗して弁突部44をコア本体部31によって押圧しながら、弁部材40と共に固定コア20側へと移動する。その結果、シート部41が弁座18から離座して(図7(c)のノズル部16付近を参照)、開いた噴孔17から燃料通路48内の燃料が噴射されることとなる。尚、このときには、第二弾性部材72の第二復原力F2によって可動ストッパ50がストッパ貫通部52を弁突部44に当接させつつ、弁部材40と共に移動することで、ストッパ突部側隙間56bがストッパ突部54及びコア本体部31間に最大サイズに形成される。   Thereafter, the movable core 30 that continues to move toward the fixed core 20 by energization of the coil 60 is directed from the first elastic member 70 to the side opposite to the fixed core 20 as shown in FIG. The core body 31 is brought into contact with the valve protrusion 44 that receives the first restoring force F1 from the opposite side. Then, the movable core 30 moves to the fixed core 20 side together with the valve member 40 while pressing the valve protrusion 44 by the core main body 31 against the first restoring force F1. As a result, the seat portion 41 moves away from the valve seat 18 (see the vicinity of the nozzle portion 16 in FIG. 7C), and the fuel in the fuel passage 48 is injected from the opened nozzle hole 17. At this time, the movable stopper 50 moves with the valve member 40 while the stopper stopper 52 is brought into contact with the valve protrusion 44 by the second restoring force F2 of the second elastic member 72, so that the gap on the stopper protrusion side 56 b is formed between the stopper projection 54 and the core main body 31 in the maximum size.

こうして、コイル60への通電に応じた可動コア30の移動が継続されると、図7(c)に示すように、コア本体部31が固定コア20と衝突することになる。すると、図7(d)に示すように弁部材40は、慣性力によって移動を継続することで、第二復原力F2によってストッパ貫通部52が追従する弁貫通部42をコア本体部31に対して相対移動させつつ、弁突部44をコア本体部31から離間させる。故に、衝突反力によって可動コア30が固定コア20とは反対側へ跳ね返ったとしても、その跳ね返り力が弁突部44には伝播され難い弁部材40については、噴孔17を誤って閉じることで燃料噴射量のばらつきを招く事態を、回避され得る。したがって、高精度な噴射量制御に貢献することができるのである。   Thus, when the movement of the movable core 30 according to the energization of the coil 60 is continued, the core body 31 collides with the fixed core 20 as shown in FIG. Then, as shown in FIG. 7 (d), the valve member 40 continues to move due to the inertial force, so that the valve penetrating portion 42 followed by the stopper penetrating portion 52 by the second restoring force F <b> 2 is moved relative to the core body portion 31. The valve protrusion 44 is separated from the core body 31 while being relatively moved. Therefore, even if the movable core 30 bounces away from the fixed core 20 due to the collision reaction force, the bounce force of the valve member 40 that is difficult to propagate to the valve projection 44 is closed by mistake. Thus, it is possible to avoid a situation that causes variations in the fuel injection amount. Therefore, it is possible to contribute to highly accurate injection amount control.

また、このように第一実施形態では、弁部材40を伴わずに可動コア30を移動させた後、それら可動要素40,30を一体的に移動させるので、先の可動コア30の移動で生じた運動量を後の弁部材40の移動に利用して、弁部材40の移動時間を短縮し得る。さらに第一実施形態では、図7(a)の閉弁状態において上記(式8)が成立していることにより、可動コア30については、第二弾性部材72の第二復原力F2及び第三弾性部材74の第三復原力F3のうち、前者の作用方向へ付勢されることとなる。即ち、固定コア20とは反対側へ向かって付勢される可動コア30は、第二復原力F2により固定コア20側へ向かって付勢されるストッパ突部54に当該固定コア20側から当接して、確実に係止され得る。その結果、コア本体部31及び弁突部44間の弁突部側隙間56aは、製造状態に起因するばらつきの抑えられた安定サイズに確保されるので、弁部材40の移動時間については、上述の如き短い時間の中でのばらつき率を低減されて、安定することとなる。また、コア本体部31がストッパ突部54に確実に係止されることで、コア30,20間の対向距離を一定に保つコア本体部31は、開弁作動の開始から固定コア20に衝突するまでの移動時間が安定する。これらのことから、例えば噴射燃料の微粒化を図るべく所定量の燃料を短時間で噴射するような場合にあっても、その噴射量のばらつきを抑えて高精度な噴射量制御に貢献することができるのである。   In this way, in the first embodiment, after the movable core 30 is moved without the valve member 40, the movable elements 40, 30 are moved integrally, and this is caused by the movement of the previous movable core 30. The movement amount of the valve member 40 can be shortened by using the obtained momentum for the subsequent movement of the valve member 40. Furthermore, in the first embodiment, since the above (Equation 8) is established in the valve-closed state of FIG. 7A, the second restoring force F2 of the second elastic member 72 and the third Of the third restoring force F3 of the elastic member 74, the former is biased in the direction of action. That is, the movable core 30 that is biased toward the side opposite to the fixed core 20 contacts the stopper protrusion 54 that is biased toward the fixed core 20 by the second restoring force F2 from the fixed core 20 side. In contact, it can be securely locked. As a result, the valve protrusion side gap 56a between the core main body 31 and the valve protrusion 44 is secured to a stable size in which variation caused by the manufacturing state is suppressed. Thus, the variation rate in such a short time is reduced and stabilized. Further, since the core body 31 is securely locked to the stopper projection 54, the core body 31 that keeps the facing distance between the cores 30 and 20 constant from the start of the valve opening operation collides with the fixed core 20. The travel time until it stabilizes. For these reasons, for example, even when a predetermined amount of fuel is injected in a short time in order to atomize the injected fuel, the variation in the injection amount is suppressed, contributing to highly accurate injection amount control. Can do it.

加えて第一実施形態では、図7(a)に示す閉弁状態において上記(式10)も成立していることから、コイル60によって比較的小さな磁気吸引力を発生させただけでも、第二復原力F2に抗した可動コア30の固定コア20側への移動を開始することができる。これによれば、開弁作動の開始から弁部材40の移動開始までの所要時間をも短縮し得るので、開弁応答性を高めることが可能である。   In addition, in the first embodiment, since the above (Equation 10) is also established in the valve-closed state shown in FIG. 7A, even if a relatively small magnetic attractive force is generated by the coil 60, The movement of the movable core 30 against the restoring force F2 to the fixed core 20 side can be started. According to this, since the time required from the start of the valve opening operation to the start of movement of the valve member 40 can be shortened, the valve opening response can be improved.

しかも、第一実施形態においてストッパ貫通部52は、円筒状のコア本体部31を貫通し且つ当該本体部31の内周側において弁貫通部42が挿入される円筒状であるので、径方向の可及的に狭い範囲にて弁突部44と当接可能となっている。故に、図7(b)の如くストッパ貫通部52の外周側にてコア本体部31が当接する弁突部44につき、外径サイズを縮小して、その外周側におけるコア20,30の対向面積、ひいては当該対向面積に応じた磁気吸引力を増大させることができる。これによっても、開弁作動の開始から弁部材40の移動開始までの所要時間を短縮して、開弁応答性を高めることが可能となる。   Moreover, in the first embodiment, the stopper penetrating portion 52 is a cylindrical shape that penetrates the cylindrical core main body portion 31 and into which the valve penetrating portion 42 is inserted on the inner peripheral side of the main body portion 31. The valve protrusion 44 can be brought into contact with the narrowest possible range. Therefore, as shown in FIG. 7B, the outer diameter of the valve protrusion 44 with which the core main body 31 abuts on the outer peripheral side of the stopper penetrating portion 52 is reduced, and the opposing areas of the cores 20 and 30 on the outer peripheral side are reduced. As a result, the magnetic attractive force according to the facing area can be increased. This also shortens the time required from the start of the valve opening operation to the start of movement of the valve member 40, thereby improving the valve opening response.

(閉弁作動)
続いて、燃料噴射弁10の閉弁作動を説明する。図8(a)に示すように、先の開弁作動によって各可動要素30,40,50が噴孔17からの燃料噴射状態で移動停止した後に、コイル60への通電を停止させると、コア本体部31に作用する磁気吸引力が消失する。このとき弁部材40は、コア本体部31及びストッパ貫通部52に弁突部44を固定コア20側から当接させている。故に可動コア30は、第一弾性部材70から固定コア20とは反対側へ第一復原力F1を受ける弁突部44によりコア本体部31を押圧されつつ、固定コア20と反対側への移動を第三弾性部材74の第三復原力F3に抗して他の可動要素40,50と共に開始する。
(Valve closing operation)
Next, the valve closing operation of the fuel injection valve 10 will be described. As shown in FIG. 8A, when the energization to the coil 60 is stopped after each movable element 30, 40, 50 stops moving in the fuel injection state from the injection hole 17 by the previous valve opening operation, The magnetic attractive force acting on the main body 31 disappears. At this time, the valve member 40 makes the valve protrusion 44 contact the core body 31 and the stopper penetration 52 from the fixed core 20 side. Therefore, the movable core 30 moves from the first elastic member 70 to the opposite side to the fixed core 20 while the core body 31 is pressed by the valve protrusion 44 that receives the first restoring force F1 from the first elastic member 70 to the opposite side to the fixed core 20. Is started together with the other movable elements 40 and 50 against the third restoring force F3 of the third elastic member 74.

その結果、シート部41が弁座18に着座すると(図8(b)のノズル部16付近を参照)、弁部材40の移動が停止すると共に、噴孔17が閉じて燃料噴射も停止する。このとき、コア本体部31及びストッパ突部54の間にストッパ突部側隙間56bをあけている可動コア30には、固定コア20側向きの第三復原力F3よりも大きく且つその反対側向きとなる第二弾性部材72の第二復原力F2が、慣性力と共に作用する。故に可動コア30は、図8(b)に示すように各貫通部42,52に対しては相対移動しつつ、固定コア20とは反対側への移動を継続する。すると、図8(b),(c)に示すように可動コア30は、コア本体部31を弁突部44からは離間させ、さらにはストッパ突部54に当接させることで、コア本体部31及び弁突部44間に弁突部側隙間56aを形成する。   As a result, when the seat portion 41 is seated on the valve seat 18 (see the vicinity of the nozzle portion 16 in FIG. 8B), the movement of the valve member 40 is stopped, the injection hole 17 is closed, and fuel injection is also stopped. At this time, the movable core 30 having a stopper protrusion side gap 56b between the core body 31 and the stopper protrusion 54 is larger than the third restoring force F3 facing the fixed core 20 and facing the opposite side. The second restoring force F <b> 2 of the second elastic member 72 acting as described above acts together with the inertial force. Therefore, the movable core 30 continues to move to the opposite side to the fixed core 20 while relatively moving with respect to the through portions 42 and 52 as shown in FIG. Then, as shown in FIGS. 8B and 8C, the movable core 30 causes the core main body 31 to move away from the valve protrusion 44 and to contact with the stopper protrusion 54. A valve protrusion side gap 56 a is formed between the valve protrusion 31 and the valve protrusion 44.

この後、第二弾性部材72が突部34,54間に介装される可動コア30及び可動ストッパ50は、当該弾性部材72の第二復原力F2によってそれぞれ相反側へと付勢されることでコア本体部31とストッパ突部54とを当接させたまま、慣性によって移動を継続する。ここで、図8(c)の時点でコア本体部31の端面31aから突出して弁突部44に当接していたストッパ貫通部52は、図8(d)の如くストッパ突部54が固定コア20側のコア本体部31に押圧されることで、弁貫通部42に対し相対移動して弁突部44から離間する。それと共に、可動コア30に対して固定コア20とは反対側への移動を継続させるように働く慣性力(荷重)は、第三弾性部材74から固定コア20側へと向かって当該可動コア30に働く第三復原力F3によって、減衰され得る。これらによれば、コア本体部31とストッパ突部54とが当接することによって発生する振動は、弁突部44には伝播され難くなるので、そうした振動によって弁部材40が噴孔17を誤って開いて想定外の二次噴射を招く事態は、回避され得る。したがって、高精度な噴射量制御に貢献することができるのである。   Thereafter, the movable core 30 and the movable stopper 50 in which the second elastic member 72 is interposed between the protrusions 34 and 54 are urged to the opposite sides by the second restoring force F2 of the elastic member 72, respectively. Thus, the movement is continued by inertia while the core body 31 and the stopper projection 54 are kept in contact with each other. Here, as shown in FIG. 8C, the stopper penetrating portion 52 that protrudes from the end surface 31a of the core main body 31 and contacts the valve protruding portion 44 has the stopper protruding portion 54 as shown in FIG. By being pressed by the core body 31 on the 20th side, it moves relative to the valve penetration part 42 and is separated from the valve protrusion 44. At the same time, the inertial force (load) acting so as to continue the movement of the movable core 30 to the side opposite to the fixed core 20 is directed from the third elastic member 74 toward the fixed core 20. It can be attenuated by the third restoring force F3 acting on According to these, the vibration generated by the contact between the core main body 31 and the stopper protrusion 54 is difficult to propagate to the valve protrusion 44. Therefore, the valve member 40 mistakenly causes the nozzle hole 17 due to such vibration. The situation of opening and incurring an unexpected secondary injection can be avoided. Therefore, it is possible to contribute to highly accurate injection amount control.

また、こうして可動コア30及び可動ストッパ50が慣性移動することによれば、図8(d)に示すように、コア本体部31及び弁突部44間の弁突部側隙間56aだけでなく、互いに離間したストッパ貫通部52及び弁突部44間の隙間58も、形成される。そして、この後において可動コア30は、第三弾性部材74から固定コア20側へ向かって作用する第三復原力F3によって慣性力を減衰させられると、当該コア20側へと跳ね返る。その結果、第二弾性部材72の第二復原力F2により固定コア20側へ付勢されている可動ストッパ50は、当該固定コア20側へと移動した後、図8(e)に示すようにストッパ貫通部52を弁突部44に当接させる。このとき、固定コア20側の弁突部44との間に弁突部側隙間56aが形成されるコア本体部31は、図8(e)の如くストッパ突部54から離間するように移動を継続したとしても、弁部材40に振動を与えるような弁突部44への当接を当該隙間56aの存在によって抑制され得る。故に、固定コア20側へ跳ね返った可動コア30と弁部材40との当接に起因する想定外の二次噴射を回避して、高精度な噴射量制御に貢献することもできるのである。   Further, according to the movable movement of the movable core 30 and the movable stopper 50 in this way, as shown in FIG. 8D, not only the valve protrusion side gap 56a between the core main body 31 and the valve protrusion 44, A gap 58 between the stopper penetrating portion 52 and the valve protrusion 44 that are spaced apart from each other is also formed. After that, when the inertial force is attenuated by the third restoring force F3 acting from the third elastic member 74 toward the fixed core 20 side, the movable core 30 rebounds toward the core 20 side. As a result, the movable stopper 50 urged toward the fixed core 20 by the second restoring force F2 of the second elastic member 72 moves to the fixed core 20 side, and as shown in FIG. The stopper penetration 52 is brought into contact with the valve protrusion 44. At this time, the core main body 31 in which the valve protrusion side gap 56a is formed between the fixed core 20 and the valve protrusion 44 is moved away from the stopper protrusion 54 as shown in FIG. Even if it continues, contact | abutting to the valve protrusion 44 which gives a vibration to the valve member 40 can be suppressed by presence of the said clearance gap 56a. Therefore, the unexpected secondary injection resulting from the contact between the movable core 30 bounced back to the fixed core 20 and the valve member 40 can be avoided, thereby contributing to highly accurate injection amount control.

以上の後、第一実施形態では、図8(f)に示すように可動要素30,40,50のいずれもが移動停止して噴孔17を閉じた閉弁状態(即ち、図7(a)と同一状態)にて、コイル60への通電に応じた次の開弁作動が待たれることになるのである。   After the above, in the first embodiment, as shown in FIG. 8 (f), all of the movable elements 30, 40, 50 stop moving and close the nozzle hole 17 (that is, FIG. In the same state as), the next valve opening operation corresponding to energization of the coil 60 is awaited.

(第二実施形態)
図9に示すように、本発明の第二実施形態は第一実施形態の変形例である。第二実施形態の燃料噴射弁210では、第一実施形態にて説明のコア突部34は設けられていない可動コア230が採用され、それに応じた変形が第一実施形態に対して加えられている。
(Second embodiment)
As shown in FIG. 9, the second embodiment of the present invention is a modification of the first embodiment. In the fuel injection valve 210 of the second embodiment, the movable core 230 that is not provided with the core protrusion 34 described in the first embodiment is adopted, and modifications corresponding thereto are added to the first embodiment. Yes.

具体的には、全体として円筒状を呈する可動コア230において、固定コア20とは反対側へコア本体部31から突出しているコア収容部233の外径は、コア本体部31の外径と実質同一径に設定されている。また、かかるコア収容部233において固定コア20とは反対側の軸方向端面233aには、第二弾性部材272が固定されている。   Specifically, in the movable core 230 having a cylindrical shape as a whole, the outer diameter of the core housing portion 233 protruding from the core main body portion 31 to the side opposite to the fixed core 20 is substantially equal to the outer diameter of the core main body portion 31. The same diameter is set. In addition, the second elastic member 272 is fixed to the axial end surface 233 a on the opposite side of the fixed core 20 in the core housing portion 233.

ここで、金属製の皿ばねからなる第二実施形態の第二弾性部材272については、その一端部を形成する外周部272aが、磁性材からなるコア収容部233の端面233aに溶接等によって同軸上に固定されている。それと共に、第二弾性部材272において他端部を形成する内周部272bは、端面233aよりも固定コア20側へと凹んだコア収容部233の内周側にストッパ突部54と共に収容され、当該突部54のうち固定コアとは反対側の軸方向端面254bに係合している。こうした構成によって第二弾性部材272は、コア収容部233の端面233aとストッパ突部54の端面254bとの軸方向距離が縮小することで、圧縮されて弾性変形する。したがって、第二弾性部材272が弾性変形によって発生する第二復原力F2(図10参照)は、可動コア230を固定コア20とは反対側へ付勢すると同時に、可動ストッパ50を固定コア20側へ付勢する付勢力となる。   Here, with respect to the second elastic member 272 of the second embodiment made of a metal disc spring, the outer peripheral portion 272a forming one end portion thereof is coaxial with the end surface 233a of the core housing portion 233 made of a magnetic material by welding or the like. It is fixed on the top. At the same time, the inner peripheral portion 272b forming the other end portion of the second elastic member 272 is accommodated together with the stopper protrusion 54 on the inner peripheral side of the core accommodating portion 233 that is recessed toward the fixed core 20 from the end surface 233a. The protrusion 54 is engaged with an axial end surface 254b opposite to the fixed core. With such a configuration, the second elastic member 272 is compressed and elastically deformed by reducing the axial distance between the end surface 233a of the core housing portion 233 and the end surface 254b of the stopper projection 54. Accordingly, the second restoring force F2 (see FIG. 10) generated by the elastic deformation of the second elastic member 272 urges the movable core 230 to the side opposite to the fixed core 20 and simultaneously moves the movable stopper 50 to the fixed core 20 side. It becomes the urging force that urges to.

さらに、第二実施形態の第三弾性部材274としては、第一実施形態と同様な金属製の圧縮コイルスプリングが採用されているが、コア収容部233の端面233aと弁ハウジング12のうち第一磁性部13の段差部13cとの間に、同軸上に収容されている。かかる第三弾性部材274については、段差部13cによる係止側とは反対側の端部が、第二弾性部材272の外周部272aを介してコア収容部233の端面233aに係止されている。かかる係止構造によって第三弾性部材274は、段差部13cを有する弁ハウジング12と、コア収容部233を有する可動コア230との間に介装されているので、それら要素12,230間にて圧縮されて弾性変形する。したがって、第三弾性部材274が弾性変形によって発生する第三復原力F3(図10参照)は、弁ハウジング12に対して可動コア230を固定コア20側へ付勢する付勢力となる。   Further, as the third elastic member 274 of the second embodiment, a metal compression coil spring similar to that of the first embodiment is employed, but the first of the end surface 233a of the core housing portion 233 and the valve housing 12 is used. Between the step part 13c of the magnetic part 13, it is accommodated coaxially. With respect to the third elastic member 274, the end opposite to the locking side by the step portion 13 c is locked to the end surface 233 a of the core housing portion 233 via the outer peripheral portion 272 a of the second elastic member 272. . With this locking structure, the third elastic member 274 is interposed between the valve housing 12 having the stepped portion 13 c and the movable core 230 having the core housing portion 233. It is compressed and elastically deformed. Therefore, the third restoring force F3 (see FIG. 10) generated by the elastic deformation of the third elastic member 274 is an urging force that urges the movable core 230 toward the fixed core 20 with respect to the valve housing 12.

このような燃料噴射弁210においても、第一実施形態に準じて図10の如き力Fvs,Fcs,Fvh(但し、力Fcsは、可動要素230,50間にて作用する力)を想定することで、閉弁状態における各弾性部材70,272,274の復原力F1,F2,F3が、第一実施形態で説明の(式7)〜(式10)に従って調整される。尚、図11に変形例を示すように、第三弾性部材274のうち段差部13cによる係止側とは反対側の端部をコア収容部233の端面233aに直接に係止させてもよく、その場合にも各復原力F1,F2,F3は、(式7)〜(式10)に従って調整可能である。   Also in such a fuel injection valve 210, the forces Fvs, Fcs, and Fvh as shown in FIG. 10 (where the force Fcs is a force acting between the movable elements 230 and 50) are assumed in accordance with the first embodiment. Thus, the restoring forces F1, F2, and F3 of the respective elastic members 70, 272, and 274 in the valve-closed state are adjusted according to (Expression 7) to (Expression 10) described in the first embodiment. As shown in FIG. 11, the end of the third elastic member 274 opposite to the locking side by the stepped portion 13 c may be directly locked to the end surface 233 a of the core housing portion 233. In this case, the restoring forces F1, F2, and F3 can be adjusted according to (Expression 7) to (Expression 10).

(開弁作動)
以下、燃料噴射弁210の作動のうち開弁作動について、詳細に説明する。図12(a)に示す閉弁状態においてコイル60への通電を開始すると、磁気吸引力がコア本体部31に作用することで、可動コア230が第二弾性部材272の第二復原力F2に抗した固定コア20側への移動を開始する。ここで直前の通電停止状態(即ち、図12(a)の閉弁状態)においては、第一実施形態と同様にストッパ貫通部52が、ストッパ突部54に係止されたコア本体部31の固定コア20側の端面31aから突出して、弁突部44と当接している。かかる当接によって弁突部44とコア本体部31との間には、弁突部側隙間56aが確保されているので、通電開始時点において可動コア230は、まず、当該隙間56a分、弁部材40を伴うことなく固定コア20側へと移動する。
(Valve opening operation)
Hereinafter, the valve opening operation among the operations of the fuel injection valve 210 will be described in detail. When energization of the coil 60 is started in the valve-closed state shown in FIG. 12A, the magnetic attractive force acts on the core main body 31, so that the movable core 230 becomes the second restoring force F <b> 2 of the second elastic member 272. The movement toward the fixed core 20 resisted is started. Here, in the energization stop state immediately before (that is, the valve closed state in FIG. 12A), the stopper penetrating portion 52 of the core main body portion 31 locked to the stopper protrusion 54 is the same as in the first embodiment. It protrudes from the end surface 31 a on the fixed core 20 side and is in contact with the valve protrusion 44. Since the valve protrusion side clearance 56a is ensured between the valve protrusion 44 and the core body 31 by such contact, the movable core 230 firstly has a valve member corresponding to the clearance 56a at the start of energization. It moves to the fixed core 20 side without accompanying 40.

この後、コイル60への通電によって固定コア20側への移動を継続する可動コア230は、図12(b)に示すように、第一弾性部材70の第一復原力F1を受ける弁突部44に対し、固定コア20とは反対側からコア本体部31を当接させる。すると、可動コア230は、コア本体部31によって弁突部44を第一復原力F1に抗して押圧しながら、弁部材40と共に固定コア20側へ移動するので、シート部41が弁座18から離座して噴孔17から燃料が噴射される。尚、このときには、第二弾性部材272の第二復原力F2によって可動ストッパ50がストッパ貫通部52を弁突部44に当接させつつ、弁部材40と共に移動する。その結果、第二弾性部材272をなす皿ばねが弾性変形した状態で、ストッパ突部側隙間56bがストッパ突部54及びコア本体部31間に最大サイズに形成されることとなる。   Thereafter, the movable core 230 that continues to move toward the fixed core 20 by energizing the coil 60 receives the first restoring force F1 of the first elastic member 70 as shown in FIG. 44, the core body 31 is brought into contact with the fixed core 20 from the opposite side. Then, the movable core 230 moves to the fixed core 20 side together with the valve member 40 while pressing the valve protrusion 44 against the first restoring force F1 by the core main body portion 31, so that the seat portion 41 is moved to the valve seat 18. The fuel is injected from the nozzle hole 17 while being separated from the nozzle hole 17. At this time, the movable stopper 50 moves together with the valve member 40 while bringing the stopper penetrating portion 52 into contact with the valve protrusion 44 by the second restoring force F2 of the second elastic member 272. As a result, the stopper protrusion side gap 56b is formed between the stopper protrusion 54 and the core body 31 in the maximum size in a state where the disc spring forming the second elastic member 272 is elastically deformed.

こうして可動コア230の移動が継続されると、図12(c)の如くコア本体部31が固定コア20と衝突し、さらに図12(d)の如く弁部材40が慣性移動を継続する。その結果、ストッパ貫通部52の追従する弁貫通部42がコア本体部31に対して相対移動し、弁突部44がコア本体部31から離間する。故に、可動コア230が固定コア20から衝突反力を受けて跳ね返ったとしても、その跳ね返り力が弁突部44には伝播され難くなっている弁部材40につき、噴孔17を誤って閉じることで燃料噴射量のばらつきを招く事態は回避され得る。   When the movement of the movable core 230 is continued in this way, the core body 31 collides with the fixed core 20 as shown in FIG. 12C, and the valve member 40 continues the inertial movement as shown in FIG. As a result, the valve penetrating part 42 that the stopper penetrating part 52 follows moves relative to the core body part 31, and the valve protrusion 44 is separated from the core body part 31. Therefore, even if the movable core 230 is bounced back by receiving a collision reaction force from the fixed core 20, the bounce force 17 is erroneously closed with respect to the valve member 40 that is difficult to propagate to the valve protrusion 44. Thus, a situation in which the fuel injection amount varies can be avoided.

また、このように第二実施形態では、第一実施形態と同様に可動コア230が弁部材40を伴わない移動により加速されて弁突部44と衝突するので、当該衝突時点での運動量に応じた衝撃力を弁突部44へ与えて、弁部材40を素早く移動させることができる。故に、噴孔17を開くのに必要な距離分の弁部材40の移動時間を、短縮し得る。さらに第二実施形態においても、図12(a)の閉弁状態にて(式8)が成立するので、可動コア230に対する復原力F2,F3のうち前者の作用が支配的となって、コア本体部31がストッパ突部54に確実に係止され得る。その結果、安定したサイズの隙間56aが確保されて弁部材40の移動時間が安定すると共に、コア230,20間の隙間が一定距離に保たれて可動コア230の移動時間が安定することとなる。これらのことから、例えば燃料を短時間で噴射して、その最小噴射量を低減することにより噴射燃料の微粒化を図るような場合にあっても、当該最小噴射量のばらつきを抑えて高精度な噴射量制御に貢献することができる。   As described above, in the second embodiment, the movable core 230 is accelerated by the movement not accompanied by the valve member 40 and collides with the valve protrusion 44 in the same manner as in the first embodiment. Therefore, according to the momentum at the time of the collision. The applied impact force can be applied to the valve projection 44 to move the valve member 40 quickly. Therefore, the movement time of the valve member 40 for the distance necessary to open the nozzle hole 17 can be shortened. Further, in the second embodiment, since (Equation 8) is established in the valve-closed state of FIG. 12A, the former action of the restoring forces F2 and F3 with respect to the movable core 230 becomes dominant, and the core The main body 31 can be securely locked to the stopper projection 54. As a result, a gap 56a having a stable size is secured to stabilize the movement time of the valve member 40, and the gap between the cores 230 and 20 is maintained at a constant distance, so that the movement time of the movable core 230 is stabilized. . Therefore, for example, even when fuel is injected in a short time and the minimum injection amount is reduced to atomize the injected fuel, variation in the minimum injection amount is suppressed and high accuracy is achieved. It is possible to contribute to proper injection amount control.

加えて第二実施形態では、図12(a)の閉弁状態にて(式10)が成立するので、第一実施形態と同様の原理により、開弁作動の開始から弁部材40の移動開始までの所要時間を短縮して開弁応答性を高め得る。それと共に第二実施形態では、第一実施形態と同様に、ストッパ貫通部52が径方向の可及的に狭い範囲で弁突部44に当接可能となっているので、それによっても、開弁作動の開始から弁部材40の移動開始までの所要時間を短縮して開弁応答性を高め得るのである。   In addition, in the second embodiment, since (Equation 10) is established in the valve-closed state of FIG. 12A, the movement of the valve member 40 starts from the start of the valve opening operation according to the same principle as in the first embodiment. It is possible to shorten the time required to increase the valve opening response. At the same time, in the second embodiment, similarly to the first embodiment, the stopper penetrating portion 52 can be brought into contact with the valve protrusion 44 in the narrowest possible range in the radial direction. The time required from the start of the valve operation to the start of the movement of the valve member 40 can be shortened to improve the valve opening response.

(閉弁作動)
次に、燃料噴射弁210の作動のうち閉弁作動について、詳細に説明する。図13(a)に示すように、先の開弁作動によって各可動要素230,40,50が移動停止した後、コイル60への通電が停止すると、固定コア20側から弁突部44が要素31,52に当接する状態で、コア本体部31に作用の磁気吸引力が消失する。すると、可動コア230は、第一弾性部材70の第一復原力F1を受ける弁突部44によって固定コア20とは反対側へ押圧されつつ、第三弾性部材274の第三復原力F3に抗した当該反対側への移動を他の可動要素40,50と共に開始する。
(Valve closing operation)
Next, the valve closing operation among the operations of the fuel injection valve 210 will be described in detail. As shown in FIG. 13 (a), after the movable elements 230, 40, 50 stop moving due to the previous valve opening operation, when the energization to the coil 60 is stopped, the valve protrusion 44 is moved from the fixed core 20 side to the element. The magnetic attractive force acting on the core main body 31 disappears in the state where it abuts against the cores 31 and 52. Then, the movable core 230 resists the third restoring force F3 of the third elastic member 274 while being pressed to the opposite side of the fixed core 20 by the valve protrusion 44 that receives the first restoring force F1 of the first elastic member 70. The movement to the opposite side is started together with the other movable elements 40 and 50.

その結果、シート部41が弁座18に着座して弁部材40の移動及び燃料噴射が停止するが、このとき、ストッパ突部54との間に隙間56bをあけている可動コア230には、反対向きの第三復原力F3よりも大きい第二弾性部材272の第二復原力F2が慣性力と共に作用する。これにより可動コア230は、図13(b)に示すように、各貫通部42,52に対しては相対移動しつつ、固定コア20とは反対側への移動を継続する。すると、図13(b),(c)に示すように可動コア230は、コア本体部31を弁突部44からは離間させ、さらにはコア本体部31をストッパ突部54に当接させることで、弁突部44との間に弁突部側隙間56aを形成することとなる。   As a result, the seat portion 41 is seated on the valve seat 18 and the movement of the valve member 40 and the fuel injection are stopped.At this time, the movable core 230 having a gap 56b between the stopper projection 54 and The second restoring force F2 of the second elastic member 272 that is greater than the opposite third restoring force F3 acts together with the inertial force. As a result, the movable core 230 continues to move to the opposite side of the fixed core 20 while moving relative to the through portions 42 and 52 as shown in FIG. Then, as shown in FIGS. 13B and 13C, the movable core 230 causes the core main body 31 to be separated from the valve protrusion 44, and further causes the core main body 31 to contact the stopper protrusion 54. Thus, the valve protrusion side gap 56 a is formed between the valve protrusion 44 and the valve protrusion 44.

この後、可動コア230及び可動ストッパ50は、第二弾性部材272の第二復原力F2によってそれぞれ相反側へ付勢されることでコア本体部31及びストッパ突部54を当接させたまま、慣性移動を継続してアンダーシュートする。このとき、ストッパ突部54が図13(d)の如くコア本体部31によって押圧されるため、コア本体部31の端面31aからの突出によって弁突部44との当接状態(図13(c)を参照)にあったストッパ貫通部52は、弁貫通部42に対する相対移動によって弁突部44から離間することになる。それと共に、固定コア20とは反対側への移動を可動コア230に継続させる慣性力(荷重)は、第三弾性部材274から当該可動コア230に働く第三復原力F3によって減衰され得る。これらによれば、コア本体部31とストッパ突部54との当接による振動が弁突部44へ伝播するのに起因して、弁部材40が噴孔17を誤って開くことによる想定外の二次噴射を回避し得るので、噴射量の高精度制御が可能となる。   Thereafter, the movable core 230 and the movable stopper 50 are urged to the opposite sides by the second restoring force F2 of the second elastic member 272, respectively, so that the core body 31 and the stopper projection 54 are kept in contact with each other. Undershoot by continuing inertial movement. At this time, since the stopper protrusion 54 is pressed by the core body 31 as shown in FIG. 13D, the protrusion from the end surface 31a of the core body 31 is in contact with the valve protrusion 44 (FIG. 13C). The stopper penetrating part 52 that was in ()) is separated from the valve protrusion 44 by the relative movement with respect to the valve penetrating part 42. At the same time, the inertial force (load) that causes the movable core 230 to continue to move to the opposite side of the fixed core 20 can be attenuated by the third restoring force F3 that acts on the movable core 230 from the third elastic member 274. According to these, the vibration due to the contact between the core main body 31 and the stopper projection 54 propagates to the valve projection 44, which is unexpected due to the valve member 40 opening the nozzle hole 17 by mistake. Since secondary injection can be avoided, it is possible to control the injection amount with high accuracy.

また、こうした可動要素230,50の慣性移動によれば、図13(d)の如く要素31,44間の隙間56a及び要素52,44間の隙間58が形成された後、第三復原力F3の作用によって、慣性力の減衰した可動コア230が固定コア20側へと跳ね返る。その結果、第三復原力F3よりも大きな第二復原力F2を受ける可動ストッパ50は、固定コア20側へと移動し、図13(e)の如くストッパ貫通部52を弁突部44に当接させる。しかし、跳ね返った可動コア230においてコア本体部31は、第一実施形態と同様、弁部材40に振動を与えるような弁突部44との当接を隙間56aの存在によって抑制され得るので、当該当接に起因する想定外の二次噴射を回避して噴射量の高精度制御に貢献することができるのである。   Further, according to the inertial movement of the movable elements 230 and 50, the third restoring force F3 is formed after the gap 56a between the elements 31 and 44 and the gap 58 between the elements 52 and 44 are formed as shown in FIG. As a result, the movable core 230, whose inertial force is attenuated, rebounds toward the fixed core 20. As a result, the movable stopper 50 that receives the second restoring force F2 that is larger than the third restoring force F3 moves to the fixed core 20 side, and the stopper penetrating portion 52 contacts the valve projection 44 as shown in FIG. Make contact. However, in the movable core 230 that has bounced back, the core main body 31 can be prevented from contacting the valve protrusion 44 that vibrates the valve member 40 by the presence of the gap 56a, as in the first embodiment. It is possible to avoid unexpected secondary injection due to contact and contribute to high-precision control of the injection amount.

以上の後、第二実施形態においても、図13(f)に示すように可動要素230,40,50のいずれもが移動停止して噴孔17を閉じた閉弁状態(即ち、図12(a)と同一状態)にて、コイル60への通電に応じた次の開弁作動が待たれることとなる。   After the above, also in the second embodiment, as shown in FIG. 13 (f), all of the movable elements 230, 40, 50 stop moving and close the nozzle hole 17 (that is, FIG. 12 (f). In the same state as a), the next valve opening operation corresponding to energization of the coil 60 is awaited.

(第三実施形態)
図14に示すように、本発明の第三実施形態は第二実施形態の変形例である。第三実施形態の燃料噴射弁310において金属製の圧縮コイルスプリングからなる第三弾性部材374は、段差部13cによる係止側とは反対側の端部を、ストッパ突部54のうち固定コア20とは反対側の軸方向端面254bによって係止されている。かかる係止構造の第三弾性部材374は、段差部13cを有する弁ハウジング12と、ストッパ突部54を有する可動ストッパ50との間に介装されているので、それら要素12,50間にて圧縮されて弾性変形する。したがって、第三弾性部材374が弾性変形によって発生する第三復原力F3(図15参照)は、弁ハウジング12に対して可動ストッパ50を固定コア20側へ付勢する付勢力となる。
(Third embodiment)
As shown in FIG. 14, the third embodiment of the present invention is a modification of the second embodiment. In the fuel injection valve 310 of the third embodiment, the third elastic member 374 made of a metal compression coil spring has an end on the opposite side to the locking side by the stepped portion 13c as the fixed core 20 of the stopper projection 54. It is latched by the axial direction end surface 254b on the opposite side. Since the third elastic member 374 having such a locking structure is interposed between the valve housing 12 having the step portion 13c and the movable stopper 50 having the stopper projection 54, the third elastic member 374 is interposed between the elements 12 and 50. It is compressed and elastically deformed. Therefore, the third restoring force F3 (see FIG. 15) generated by the elastic deformation of the third elastic member 374 is a biasing force that biases the movable stopper 50 toward the fixed core 20 with respect to the valve housing 12.

このような燃料噴射弁310において、第二実施形態に準じて図15の如き力Fvs,Fcs,Fvhを想定すると、閉弁状態における各弾性部材70,272,374の復原力F1,F2,F3は、次のように調整される。   In such a fuel injection valve 310, assuming the forces Fvs, Fcs, and Fvh as shown in FIG. 15 according to the second embodiment, the restoring forces F1, F2, and F3 of the elastic members 70, 272, and 374 in the closed state are shown. Is adjusted as follows.

図15から明らかなように、弁部材40における力の釣り合い関係は下記(式11)で表され、可動ストッパ50における力の釣り合い関係は下記(式12)で表され、可動コア230における力の釣り合い関係は下記(式13)で表される。
+F1−Fvs−Fvh=0 ・・・(式11)
−F2−F3+Fvs+Fcs=0 ・・・(式12)
F2−Fcs=0 ・・・(式13)
As is clear from FIG. 15, the force balance relationship in the valve member 40 is expressed by the following (formula 11), the force balance relationship in the movable stopper 50 is expressed by the following (formula 12), and the force balance in the movable core 230 is The balance relationship is expressed by the following (formula 13).
+ F1-Fvs-Fvh = 0 (Formula 11)
-F2-F3 + Fvs + Fcs = 0 (Formula 12)
F2-Fcs = 0 (Formula 13)

これらの(式11),(式12),(式13)を整理して、各力Fvs,Fcs,Fvhについて解くと、それぞれ下記の(式14),(式15),(式16)が得られる。
Fvs=F3 ・・・(式14)
Fcs=F2 ・・・(式15)
Fvh=F1−F3 ・・・(式16)
When these (Formula 11), (Formula 12), and (Formula 13) are arranged and solved for each force Fvs, Fcs, and Fvh, the following (Formula 14), (Formula 15), and (Formula 16) are respectively obtained. can get.
Fvs = F3 (Formula 14)
Fcs = F2 (Formula 15)
Fvh = F1-F3 (Expression 16)

そして、燃料噴射弁310の閉弁状態においては、各力Fvs,Fcs,Fvhの大きさが0よりも大きくなる必要があるので、(式14)の右辺>0、(式15)の右辺>0、並びに(式16)の右辺>0という関係が、それぞれ成立する。したがって、下記の(式17),(式18),(式19)が得られることとなるが、特に第三実施形態では、それら各式について、可動要素230,40,50が完全停止した閉弁状態を含む閉弁作動にて常に成立するよう、復原力F1,F2,F3の調整が行われる。このような第三実施形態によれば、(式8)に従って復原力F2,F3の関係を規定する第二実施形態に比べて、復原力F2,F3の調整自由度が高くなっている。
F3>0 ・・・(式17)
F2>0 ・・・(式18)
F1>F3 ・・・(式19)
In the closed state of the fuel injection valve 310, the magnitudes of the forces Fvs, Fcs, and Fvh need to be larger than 0. Therefore, the right side of (Expression 14)> 0 and the right side of (Expression 15)> 0, and the relationship of the right side of (Equation 16)> 0 holds. Accordingly, the following (Expression 17), (Expression 18), and (Expression 19) are obtained. In particular, in the third embodiment, for each of these expressions, the movable elements 230, 40, and 50 are closed completely. The restoring forces F1, F2, and F3 are adjusted so that the valve closing operation including the valve state is always established. According to the third embodiment, the degree of freedom of adjustment of the restoring forces F2 and F3 is higher than that of the second embodiment that defines the relationship between the restoring forces F2 and F3 according to (Equation 8).
F3> 0 (Expression 17)
F2> 0 (Equation 18)
F1> F3 (Formula 19)

こうした燃料噴射弁310の作動については、一部を除き、第二実施形態に準じて実現されるので、以下では、第二実施形態と異なる作動を中心に説明する。   Since the operation of the fuel injection valve 310 is realized according to the second embodiment except for a part, the operation different from that of the second embodiment will be mainly described below.

図14に示す如き通電開始直前の閉弁状態においては、第二及び第三弾性部材272,374の復原力F2,F3により、ストッパ突部54が固定コア20側へ向かって付勢される。したがって、第二弾性部材272の第二復原力F2によって固定コア20とは反対側へ向かって付勢される可動コア230は、閉弁状態において固定コア20側へ向かって付勢されるストッパ突部54に当該固定コア20側から当接して、確実に係止され得る。その結果、通電開始後の開弁作動では、安定したサイズの隙間56aが確保されて弁部材40の移動時間が安定すると共に、コア230,20間の隙間が一定距離に保たれて可動コア230の移動時間も安定する。しかも、第三実施形態の開弁作動では、第二実施形態と同様の原理によって可動コア230が弁部材40を伴うことなく移動した後、弁部材40と共に移動して固定コア20と衝突するので、弁部材40の移動時間が短縮され得る。これらのことから、第三実施形態においても例えば最小噴射量のばらつきを抑えて、高精度な噴射量制御に貢献することができるのである。   In the closed state immediately before the start of energization as shown in FIG. 14, the stopper projection 54 is urged toward the fixed core 20 by the restoring forces F2 and F3 of the second and third elastic members 272 and 374. Therefore, the movable core 230 that is biased toward the opposite side of the fixed core 20 by the second restoring force F2 of the second elastic member 272 is a stopper protrusion that is biased toward the fixed core 20 in the valve-closed state. It can contact | abut to the part 54 from the said fixed core 20 side, and can be latched reliably. As a result, in the valve opening operation after the start of energization, the gap 56a having a stable size is secured, the moving time of the valve member 40 is stabilized, and the gap between the cores 230 and 20 is kept at a constant distance, so that the movable core 230 is maintained. The travel time is stable. Moreover, in the valve opening operation of the third embodiment, the movable core 230 moves without the valve member 40 according to the same principle as the second embodiment, and then moves with the valve member 40 to collide with the fixed core 20. The moving time of the valve member 40 can be shortened. For these reasons, in the third embodiment, for example, it is possible to suppress variations in the minimum injection amount and contribute to highly accurate injection amount control.

また、閉弁作動では、第二実施形態と同様な原理でストッパ貫通部52が図16の如く弁突部44から離間する際、第二弾性部材272の第二復原力F2によってコア本体部31と当接しているストッパ突部54に、第三弾性部材374の第三復原力F3が作用する。その結果、可動コア230は、ストッパ突部54を介して第三復原力F3を固定コア20側へ向かって受けることになるので、固定コア20とは反対側への移動を継続させる慣性力(荷重)につき、減衰され得る。したがって、第三実施形態においても、弁部材40が噴孔17を誤って開くことによる想定外の二次噴射を回避し得るので、噴射量の高精度制御が可能となるのである。   Further, in the valve closing operation, when the stopper penetrating portion 52 is separated from the valve protrusion 44 as shown in FIG. 16 by the same principle as in the second embodiment, the core main body portion 31 is driven by the second restoring force F2 of the second elastic member 272. The third restoring force F3 of the third elastic member 374 acts on the stopper projection 54 that is in contact with the first elastic member 374. As a result, since the movable core 230 receives the third restoring force F3 toward the fixed core 20 via the stopper protrusion 54, the inertial force (continuous movement to the opposite side of the fixed core 20 ( Per load). Accordingly, also in the third embodiment, unexpected secondary injection due to the valve member 40 opening the injection hole 17 by mistake can be avoided, so that the injection amount can be controlled with high accuracy.

(第四実施形態)
図17に示すように、本発明の第四実施形態は第二実施形態の変形例である。第四実施形態の燃料噴射弁410では、第二実施形態にて説明の第三弾性部材274が設けられず、可動ストッパ450のストッパ貫通部452が弁部材40の弁貫通部42に固定されている。ここで特に、非磁性材製の可動ストッパ450については、ストッパ貫通部452のうち軸方向中間部452aから外周側へストッパ突部54が突出し、同貫通部452のうち弁突部44とは反対側の軸方向端部452bが溶接等によって非磁性材製の弁貫通部42に固定されている。尚、燃料噴射弁410の製造時には、図18の如く弁貫通部42の挿入されたストッパ貫通部452を弁突部44に押し当てた状態で、それら貫通部42,452を溶接等により接合することで、弁突部44及びコア本体部31間に隙間56aが適切に確保され得る。
(Fourth embodiment)
As shown in FIG. 17, the fourth embodiment of the present invention is a modification of the second embodiment. In the fuel injection valve 410 of the fourth embodiment, the third elastic member 274 described in the second embodiment is not provided, and the stopper penetrating portion 452 of the movable stopper 450 is fixed to the valve penetrating portion 42 of the valve member 40. Yes. Here, in particular, with respect to the movable stopper 450 made of a non-magnetic material, the stopper protrusion 54 protrudes from the axial intermediate portion 452a of the stopper penetrating portion 452 to the outer peripheral side, and is opposite to the valve protruding portion 44 of the penetrating portion 452. The axial end portion 452b on the side is fixed to the valve penetration portion 42 made of a nonmagnetic material by welding or the like. When the fuel injection valve 410 is manufactured, the through portions 42 and 452 are joined by welding or the like in a state where the stopper through portion 452 into which the valve through portion 42 is inserted is pressed against the valve projection 44 as shown in FIG. Thus, the gap 56 a can be appropriately secured between the valve protrusion 44 and the core main body 31.

ここで、図19からも明らかなように燃料噴射弁310では、第二実施形態で想定した力Fvs,Fcs,Fvhのうち力Fvsは、弁部材40への可動ストッパ450の固定によって0となり、また第二実施形態では発生した第三復原力F3も、第三弾性部材274がないので0となる。これらのことから第四実施形態では、単に次の(式20),(式21)が成立していればよく、各弾性部材70,272の復原力F1,F2の調整自由度が高くなっている。
Fcs=F2>0 ・・・(式20)
Fvh=F1>0 ・・・(式21)
Here, as is clear from FIG. 19, in the fuel injection valve 310, the force Fvs among the forces Fvs, Fcs, and Fvh assumed in the second embodiment becomes 0 by fixing the movable stopper 450 to the valve member 40. In the second embodiment, the third restoring force F3 generated is also zero because there is no third elastic member 274. For these reasons, in the fourth embodiment, the following (Expression 20) and (Expression 21) are simply satisfied, and the degree of freedom of adjustment of the restoring forces F1 and F2 of the elastic members 70 and 272 is increased. Yes.
Fcs = F2> 0 (Equation 20)
Fvh = F1> 0 (Expression 21)

(開弁作動)
以下、燃料噴射弁410の作動のうち開弁作動について、詳細に説明する。図20(a)に示す閉弁状態においてコイル60への通電を開始すると、磁気吸引力をコア本体部31に受ける可動コア230は、第二弾性部材272の第二復原力F2に抗した固定コア20側への移動を開始する。ここで直前の通電停止状態(即ち、図20(a)の閉弁状態)においては、第二実施形態と同様にストッパ貫通部52が、ストッパ突部54に係止されたコア本体部31の端面31aから突出して弁突部44に当接している。故に、通電開始時点において可動コア230は、まず、弁突部側隙間56a分、弁部材40を伴わずに移動することになる。
(Valve opening operation)
Hereinafter, the valve opening operation among the operations of the fuel injection valve 410 will be described in detail. When energization of the coil 60 is started in the valve-closed state shown in FIG. 20A, the movable core 230 that receives the magnetic attraction force on the core body 31 is fixed against the second restoring force F2 of the second elastic member 272. The movement to the core 20 side is started. Here, in the energization stop state immediately before (that is, the valve closed state in FIG. 20A), the stopper penetration 52 is held by the stopper projection 54 in the same manner as in the second embodiment. It protrudes from the end surface 31 a and abuts on the valve protrusion 44. Therefore, at the time of starting energization, the movable core 230 first moves without the valve member 40 by the valve protrusion side gap 56a.

この後、コイル60への通電によって移動を継続する可動コア230は、図20(b)に示すように、コア本体部31を固定コア20とは反対側から弁突部44に当接させて、当該弁突部44を第一弾性部材70の第一復原力F1に抗して押圧する。これにより、弁部材40及び可動ストッパ450の一体品が可動コア230と共に固定コア20側へ移動するので、シート部41が弁座18から離座して噴孔17から燃料が噴射される。尚、このときには、上記一体品においてストッパ貫通部452が当接する弁突部44にコア本体部31も当接することで、第二弾性部材272をなす皿ばねの弾性変形状態にて、ストッパ突部側隙間56bがストッパ突部54及びコア本体部31間に最大サイズで形成される。   Thereafter, the movable core 230 that continues to move by energizing the coil 60 causes the core main body 31 to contact the valve protrusion 44 from the opposite side to the fixed core 20 as shown in FIG. The valve projection 44 is pressed against the first restoring force F1 of the first elastic member 70. As a result, the integrated member of the valve member 40 and the movable stopper 450 moves together with the movable core 230 toward the fixed core 20, so that the seat portion 41 moves away from the valve seat 18 and fuel is injected from the injection hole 17. At this time, the core protrusion 31 is brought into contact with the valve protrusion 44 with which the stopper penetrating portion 452 is contacted in the integrated product, so that the stopper protrusion in the elastically deformed state of the disc spring forming the second elastic member 272. A side gap 56b is formed between the stopper projection 54 and the core body 31 in the maximum size.

こうして可動コア230の移動が継続されると、図20(c)の如くコア本体部31が固定コア20と衝突し、さらに図20(d)の如く弁部材40が慣性移動を継続する。その結果、ストッパ貫通部452の固定された弁貫通部42がコア本体部31に対しては相対移動することで、弁突部44が当該コア本体部31から離間する。故に、第二実施形態と同様に、固定コア20から衝突反力を受けた可動コア230の跳ね返り力が弁突部44には伝播され難い弁部材40につき、噴孔17を誤って閉じることによる燃料噴射量のばらつきを回避し得る。   When the movement of the movable core 230 is continued in this way, the core body 31 collides with the fixed core 20 as shown in FIG. 20C, and the valve member 40 continues the inertial movement as shown in FIG. As a result, the valve penetrating portion 42 to which the stopper penetrating portion 452 is fixed moves relative to the core main body portion 31, so that the valve protrusion 44 is separated from the core main body portion 31. Therefore, as in the second embodiment, the rebound force of the movable core 230 that receives the collision reaction force from the fixed core 20 is caused by accidentally closing the nozzle hole 17 for the valve member 40 that is difficult to propagate to the valve protrusion 44. Variations in the fuel injection amount can be avoided.

また、このように第四実施形態では、第二実施形態と同様に可動コア230が弁部材40を伴わない移動により加速されて弁突部44と衝突するので、当該衝突時点での運動量に応じた衝撃力を弁突部44へ与えて、弁部材40を素早く移動させることができる。故に、噴孔17を開くのに必要な距離分の弁部材40の移動時間を、短縮し得る。さらに第四実施形態では、図20(a)の閉弁状態において第二復原力F2により固定コア20とは反対側へ付勢される可動コア230は、同復原力F2により固定コア20側へと付勢されるストッパ突部54に当該固定コア20側から当接して、確実に係止され得る。その結果、安定したサイズの隙間56aが確保されて弁部材40の移動時間が安定すると共に、コア230,20間の隙間が一定距離に保たれて可動コア230の移動時間が安定することとなる。これらのことから、例えば燃料を短時間で噴射して、その最小噴射量を低減することにより噴射燃料の微粒化を図るような場合にあっても、当該最小噴射量のばらつきを抑えて高精度な噴射量制御に貢献することができるのである。   As described above, in the fourth embodiment, the movable core 230 is accelerated by the movement not accompanied by the valve member 40 and collides with the valve protrusion 44 in the same manner as in the second embodiment. Therefore, according to the momentum at the time of the collision. The applied impact force can be applied to the valve projection 44 to move the valve member 40 quickly. Therefore, the movement time of the valve member 40 for the distance necessary to open the nozzle hole 17 can be shortened. Furthermore, in the fourth embodiment, the movable core 230 urged to the opposite side of the fixed core 20 by the second restoring force F2 in the valve-closed state of FIG. 20A is moved to the fixed core 20 side by the same restoring force F2. It can contact | abut to the stopper protrusion 54 urged | biased from the said fixed core 20 side, and can be latched reliably. As a result, a gap 56a having a stable size is secured to stabilize the movement time of the valve member 40, and the gap between the cores 230 and 20 is maintained at a constant distance, so that the movement time of the movable core 230 is stabilized. . Therefore, for example, even when fuel is injected in a short time and the minimum injection amount is reduced to atomize the injected fuel, variation in the minimum injection amount is suppressed and high accuracy is achieved. It is possible to contribute to proper injection amount control.

尚、第二実施形態と同様に第四実施形態では、第一実施形態で説明の原理により、可動ストッパ450のストッパ貫通部452が径方向の可及的に狭い範囲にて、弁部材40の弁突部44と当接可能になっている。したがって、開弁作動の開始から弁部材40の移動開始までの所要時間を短縮して、開弁応答性を高めることもできる。   As in the second embodiment, in the fourth embodiment, the valve penetrating portion 452 of the movable stopper 450 is within the narrowest possible range in the radial direction according to the principle described in the first embodiment. It can come into contact with the valve protrusion 44. Therefore, the time required from the start of the valve opening operation to the start of movement of the valve member 40 can be shortened, and the valve opening response can be improved.

(閉弁作動)
次に、燃料噴射弁410の作動のうち閉弁作動について、詳細に説明する。図21(a)に示すように、先の開弁作動によって各可動要素230,40,450が移動停止した後、コイル60への通電が停止すると、固定コア20側から弁突部44が要素31,452に当接する状態で、コア本体部31に作用の磁気吸引力が消失する。すると、可動コア230は、第一弾性部材70の第一復原力F1を受ける弁突部44により固定コア20とは反対側へ押圧されることで、当該反対側への移動を弁部材40と可動ストッパ450との一体品と共に開始する。
(Valve closing operation)
Next, the valve closing operation among the operations of the fuel injection valve 410 will be described in detail. As shown in FIG. 21A, when the energization of the coil 60 is stopped after each movable element 230, 40, 450 stops moving by the previous valve opening operation, the valve protrusion 44 is moved from the fixed core 20 side to the element. The magnetic attraction force acting on the core main body 31 disappears in a state where it abuts on the cores 45 and 452. Then, the movable core 230 is pressed to the opposite side to the fixed core 20 by the valve protrusion 44 that receives the first restoring force F1 of the first elastic member 70, and thus the movement to the opposite side with the valve member 40 is performed. Start with an integrated product with the movable stopper 450.

その結果、シート部41が弁座18に着座して弁部材40の移動及び燃料噴射が停止するが、このとき、ストッパ突部54との間に隙間56bをあけている可動コア230には、慣性力と共に第二弾性部材272の第二復原力F2が作用する。これにより可動コア230は、図21(b)に示すように、各貫通部452,42に対しては相対移動しつつ、固定コア20とは反対側への移動を継続する。すると、図21(b),(c)に示すように可動コア230は、コア本体部31を弁突部44から離間させ、さらにはコア本体部31をストッパ突部54に当接させることにより、弁突部44との間に弁突部側隙間56aを形成した状態で停止する。故に、ストッパ突部54との当接によりコア本体部31が固定コア20側へ跳ね返ったとしても、当該コア本体部31が弁突部44に当接して振動を与えるようなことは、それら要素31,44間に隙間56aが存在することによって、抑制され得る。したがって、固定コア20側へ跳ね返った可動コア230と弁部材40との当接に起因する想定外の二次噴射を回避して、高精度な噴射量制御に貢献することができるのである。   As a result, the seat portion 41 is seated on the valve seat 18 and the movement of the valve member 40 and the fuel injection are stopped.At this time, the movable core 230 having a gap 56b between the stopper projection 54 and The second restoring force F2 of the second elastic member 272 acts together with the inertial force. As a result, the movable core 230 continues to move to the opposite side of the fixed core 20 while moving relative to the through portions 452 and 42 as shown in FIG. Then, as shown in FIGS. 21B and 21C, the movable core 230 causes the core body 31 to be separated from the valve protrusion 44, and further, the core body 31 is brought into contact with the stopper protrusion 54. The valve projection 44 is stopped in a state where the valve projection side gap 56a is formed between the valve projection 44 and the valve projection 44. Therefore, even if the core main body 31 bounces back to the fixed core 20 due to contact with the stopper protrusion 54, the core main body 31 contacts the valve protrusion 44 and gives vibration. The presence of the gap 56 a between 31 and 44 can be suppressed. Therefore, the unexpected secondary injection resulting from the contact between the movable core 230 bounced back to the fixed core 20 and the valve member 40 can be avoided, thereby contributing to highly accurate injection amount control.

以上により第四実施形態でも、図21(c)の如く可動要素230,40,450のいずれもが移動停止して噴孔17を閉じた閉弁状態(即ち、図20(a)と同一状態)にて、コイル60への通電に応じた次の開弁作動が待たれることとなる。   As described above, also in the fourth embodiment, as shown in FIG. 21C, all of the movable elements 230, 40, and 450 stop moving and close the nozzle hole 17 (that is, the same state as FIG. 20A). ), The next valve opening operation corresponding to the energization of the coil 60 is awaited.

(他の実施形態)
ここまで本発明の複数の実施形態について説明してきたが、本発明は、それらの実施形態に限定して解釈されるものではなく、その要旨を逸脱しない範囲内において種々の実施形態及び組み合わせに適用することができる。
(Other embodiments)
Although a plurality of embodiments of the present invention have been described so far, the present invention is not construed as being limited to these embodiments, and can be applied to various embodiments and combinations without departing from the scope of the present invention. can do.

具体的には、第一〜第四実施形態の可動ストッパ50,450については、各部52,54の機能を発揮可能な形状であれば、全体として円筒状の部材である必要はなく、例えばL字状の部材を可動ストッパ50,450として、可動コア30,230及び弁部材40の周方向に一つ又は複数配置してもよい。また、第一〜第三実施形態においてL字状の可動ストッパ50を採用する場合には、可動コア30,230と弁部材40との間に介装される必要はなく、可動コア30,230において弁貫通部42が直接的に嵌合するコア貫通孔32から径方向外側に離間した箇所にて、当該ストッパ50のストッパ貫通部52を貫通させてもよい。   Specifically, the movable stoppers 50 and 450 of the first to fourth embodiments need not be cylindrical members as a whole as long as the functions of the portions 52 and 54 can be exhibited. One or a plurality of letter-shaped members may be arranged in the circumferential direction of the movable cores 30 and 230 and the valve member 40 as the movable stoppers 50 and 450. Further, in the case where the L-shaped movable stopper 50 is employed in the first to third embodiments, it is not necessary to be interposed between the movable cores 30 and 230 and the valve member 40, and the movable cores 30 and 230. In this case, the stopper penetrating portion 52 of the stopper 50 may be penetrated at a location spaced radially outward from the core through hole 32 into which the valve penetrating portion 42 is directly fitted.

さらに、第一実施形態では、可動コア30を付勢する第三弾性部材274に代えて、第三実施形態に準じて可動ストッパ50を付勢する第三弾性部材374を、採用してもよい。またさらに、第一実施形態では、弁部材40に対して相対移動可能に設けられる可動ストッパ50を採用する代わりに、第四実施形態に準じ、弁部材40に対して一体移動可能に固定される可動ストッパ450を採用且つ第三弾性部材74を省くようにしてもよい。加えて、第一〜第三実施形態では、コア本体部31がストッパ突部54に当接した状態において、コア本体部31及び弁突部44間の隙間56(56a)が形成されないようにしてもよい。この場合、第一復原力F1の調整等によって、ストッパ貫通部52及び弁突部44間の隙間58のみで、固定コア20側へ跳ね返った可動コア30,230と弁部材40との当接を抑制することが望ましい。   Furthermore, in the first embodiment, a third elastic member 374 that biases the movable stopper 50 according to the third embodiment may be employed instead of the third elastic member 274 that biases the movable core 30. . Furthermore, in 1st embodiment, instead of employ | adopting the movable stopper 50 provided with relative movement with respect to the valve member 40, according to 4th embodiment, it is fixed with respect to the valve member 40 so that integral movement is possible. The movable stopper 450 may be employed and the third elastic member 74 may be omitted. In addition, in the first to third embodiments, the gap 56 (56a) between the core body 31 and the valve protrusion 44 is not formed when the core body 31 is in contact with the stopper protrusion 54. Also good. In this case, the adjustment of the first restoring force F1 or the like causes the movable cores 30 and 230 that have bounced back to the fixed core 20 side and the valve member 40 to contact with each other only in the gap 58 between the stopper penetration 52 and the valve protrusion 44. It is desirable to suppress.

10,210,310,410 燃料噴射弁、12 弁ハウジング、13 第一磁性部、13a 小径部、13b 大径部、13c 段差部、14 非磁性部、15 第二磁性部、16 ノズル部、17 噴孔、18 弁座、19 燃料入口、20 固定コア、21 収容孔、22 アジャスティングパイプ、30,230 可動コア、31 コア本体部、31a,31b 軸方向端面、32 コア貫通孔、33,233 コア収容部、34 コア突部、40 弁部材、41 シート部、42 弁貫通部、44 弁突部、44a,44b 軸方向端面、46 燃料孔、48 燃料通路、50,450 可動ストッパ、52,452 ストッパ貫通部、54 ストッパ突部、54a 軸方向端面、56,58 隙間、56a 弁突部側隙間、56b ストッパ突部側隙間、60 コイル、62 磁性ヨーク、70 第一弾性部材、72,272 第二弾性部材、74,274,374 第三弾性部材、233a,254b 軸方向端面、272a 外周部、272b 内周部、452a 軸方向中間部、452b 軸方向端部、F1 第一復原力、F2 第二復原力、F3 第三復原力、δF 設定値 10, 210, 310, 410 Fuel injection valve, 12 Valve housing, 13 First magnetic part, 13a Small diameter part, 13b Large diameter part, 13c Step part, 14 Nonmagnetic part, 15 Second magnetic part, 16 Nozzle part, 17 Injection hole, 18 Valve seat, 19 Fuel inlet, 20 Fixed core, 21 Housing hole, 22 Adjusting pipe, 30, 230 Movable core, 31 Core body, 31a, 31b Axial end face, 32 Core through hole, 33, 233 Core accommodating part, 34 Core protrusion, 40 Valve member, 41 Seat part, 42 Valve penetration part, 44 Valve protrusion, 44a, 44b Axial end face, 46 Fuel hole, 48 Fuel passage, 50, 450 Movable stopper, 52, 452 Stopper penetration part, 54 Stopper protrusion, 54a Axial end face, 56, 58 clearance, 56a Valve protrusion side clearance, 56b Stopper protrusion side clearance , 60 coils, 62 magnetic yoke, 70 first elastic member, 72,272 second elastic member, 74,274,374 third elastic member, 233a, 254b axial end surface, 272a outer peripheral portion, 272b inner peripheral portion, 452a shaft Direction intermediate portion, 452b Axial end portion, F1 first restoring force, F2 second restoring force, F3 third restoring force, δF set value

Claims (12)

内燃機関へ燃料を噴射する噴孔を有する弁ハウジングと、
前記弁ハウジングに固定される固定コアと、
磁気吸引力の作用により前記固定コア側へ移動する可動コアと、
前記噴孔を開く開弁作動において通電により前記磁気吸引力を発生させる一方、前記噴孔を閉じる閉弁作動において通電の停止により前記磁気吸引力を消失させるコイルと、
前記可動コアを貫通する弁貫通部、並びに前記弁貫通部から突出して前記可動コアに前記固定コア側から当接可能な弁突部を有し、往復移動により前記噴孔を開閉して燃料の噴射を断続する弁部材と、
前記可動コアを貫通して前記可動コアの前記固定コア側の端面から突出するストッパ貫通部を有し、前記コイルへの通電の停止状態において、前記弁突部に対して前記ストッパ貫通部を前記固定コアとは反対側から当接させることにより、当該弁突部と、係止した前記可動コアとの間に隙間を形成する可動ストッパと、
を備えることを特徴とする燃料噴射弁。
A valve housing having nozzle holes for injecting fuel into the internal combustion engine;
A fixed core fixed to the valve housing;
A movable core that moves to the fixed core side by the action of a magnetic attractive force;
A coil for generating the magnetic attraction force by energization in the valve opening operation for opening the nozzle hole, while eliminating the magnetic attraction force by stopping energization in the valve closing operation for closing the nozzle hole;
A valve penetrating portion penetrating the movable core, and a valve projecting portion protruding from the valve penetrating portion and capable of coming into contact with the movable core from the fixed core side. A valve member for intermittent injection;
A stopper penetrating portion that penetrates through the movable core and protrudes from an end surface of the movable core on the fixed core side, and in a state of stopping energization of the coil, A movable stopper that forms a gap between the valve projection and the locked movable core by abutting from the opposite side of the fixed core;
A fuel injection valve comprising:
前記可動ストッパは、前記ストッパ貫通部から突出して前記可動コアに前記固定コアとは反対側から当接可能なストッパ突部、を有することを特徴とする請求項1に記載の燃料噴射弁。 2. The fuel injection valve according to claim 1, wherein the movable stopper has a stopper protrusion that protrudes from the stopper penetrating portion and can come into contact with the movable core from a side opposite to the fixed core. 前記弁ハウジングに対して前記弁部材を前記固定コアとは反対側へ付勢する第一復原力を発生する第一弾性部材と、
前記可動コアを前記固定コアとは反対側へ付勢し且つ前記可動ストッパを前記固定コア側へ付勢する第二復原力を発生する第二弾性部材と、
前記弁ハウジングに対して前記可動コアを前記固定コア側へ付勢する第三復原力を発生する第三弾性部材と、
を備え、
前記可動ストッパは、前記弁部材に対して前記固定コア及びその反対側へ相対移動可能に設けられることを特徴とする請求項2に記載の燃料噴射弁。
A first elastic member for generating a first restoring force for urging the valve member to the opposite side of the fixed core with respect to the valve housing;
A second elastic member for generating a second restoring force for urging the movable core toward the opposite side of the fixed core and urging the movable stopper toward the fixed core;
A third elastic member for generating a third restoring force for urging the movable core toward the fixed core with respect to the valve housing;
With
The fuel injection valve according to claim 2, wherein the movable stopper is provided so as to be movable relative to the valve member toward the fixed core and the opposite side thereof.
前記第二復原力は、前記閉弁作動において前記第三復原力よりも大きいことを特徴とする請求項3に記載の燃料噴射弁。   The fuel injection valve according to claim 3, wherein the second restoring force is greater than the third restoring force in the valve closing operation. 前記第二復原力と前記第三復原力との差分は、前記閉弁作動において設定値以下に抑えられることを特徴とする請求項4に記載の燃料噴射弁。   The fuel injection valve according to claim 4, wherein a difference between the second restoring force and the third restoring force is suppressed to a set value or less in the valve closing operation. 前記弁ハウジングに対して前記弁部材を前記固定コアとは反対側へ付勢する第一復原力を発生する第一弾性部材と、
前記可動コアを前記固定コアとは反対側へ付勢し且つ前記可動ストッパを前記固定コア側へ付勢する第二復原力を発生する第二弾性部材と、
前記弁ハウジングに対して前記可動ストッパを前記固定コア側へ付勢する第三復原力を発生する第三弾性部材と、
を備え、
前記可動ストッパは、前記弁部材に対して前記固定コア及びその反対側へ相対移動可能に設けられることを特徴とする請求項2に記載の燃料噴射弁。
A first elastic member for generating a first restoring force for urging the valve member to the opposite side of the fixed core with respect to the valve housing;
A second elastic member for generating a second restoring force for urging the movable core toward the opposite side of the fixed core and urging the movable stopper toward the fixed core;
A third elastic member for generating a third restoring force for urging the movable stopper toward the fixed core with respect to the valve housing;
With
The fuel injection valve according to claim 2, wherein the movable stopper is provided so as to be movable relative to the valve member toward the fixed core and the opposite side thereof.
前記可動ストッパは、前記ストッパ貫通部を前記弁突部に離間可能に当接させた状態下、前記可動コア及び前記弁突部の間と前記可動コア及び前記ストッパ突部の間とのうち、前記燃料噴射弁の作動に応じた少なくとも一方に、隙間を形成することを特徴とする請求項3〜6のいずれか一項に記載の燃料噴射弁。   The movable stopper is between the movable core and the valve protrusion and between the movable core and the stopper protrusion, with the stopper penetrating portion being in contact with the valve protrusion so as to be separable. The fuel injection valve according to any one of claims 3 to 6, wherein a gap is formed in at least one of the operations according to the operation of the fuel injection valve. 前記弁部材を前記固定コアとは反対側へ付勢する第一復原力を発生する第一弾性部材と、
前記可動コアを前記固定コアとは反対側へ付勢し且つ前記可動ストッパを前記固定コア側へ付勢する第二復原力を発生する第二弾性部材と、
を備え、
前記可動ストッパは、前記弁部材に対して前記固定コア及びその反対側へ一体移動可能に固定されることを特徴とする請求項2に記載の燃料噴射弁。
A first elastic member for generating a first restoring force for urging the valve member to the opposite side of the fixed core;
A second elastic member for generating a second restoring force for urging the movable core toward the opposite side of the fixed core and urging the movable stopper toward the fixed core;
With
The fuel injection valve according to claim 2, wherein the movable stopper is fixed to the valve member so as to be movable integrally with the fixed core and the opposite side thereof.
前記可動ストッパは、前記ストッパ貫通部を前記弁突部に当接させた状態下、前記可動コア及び前記弁突部の間と前記可動コア及び前記ストッパ突部の間とのうち、前記燃料噴射弁の作動に応じた少なくとも一方に、隙間を形成することを特徴とする請求項8に記載の燃料噴射弁。   The movable stopper includes the fuel injection unit between the movable core and the valve projection and between the movable core and the stopper projection, with the stopper penetrating portion in contact with the valve projection. The fuel injection valve according to claim 8, wherein a gap is formed in at least one of the valves in accordance with the operation of the valve. 前記ストッパ貫通部は、筒状の前記可動コアの内周側において前記弁貫通部が挿入される筒状に、形成されることを特徴とする請求項1〜9のいずれか一項に記載の燃料噴射弁。   The said stopper penetration part is formed in the cylinder shape in which the said valve penetration part is inserted in the inner peripheral side of the cylindrical said movable core, The Claim 1 characterized by the above-mentioned. Fuel injection valve. 前記可動コアは、前記弁突部と当接可能に前記固定コア側の端面を形成するコア本体部、前記コア本体部から前記固定コアとは反対側へ突出して前記ストッパ突部を内周側に収容するコア収容部、並びに前記コア収容部から内周側へ突出するコア突部を有し、
前記第二弾性部材は、前記コア収容部の内周側に収容されて前記ストッパ突部及び前記コア突部の間に介装されるコイルスプリングからなることを特徴とする請求項1〜10のいずれか一項に記載の燃料噴射弁。
The movable core has a core main body portion that forms an end face on the fixed core side so as to be able to contact the valve protrusion, and protrudes from the core main body portion to the opposite side of the fixed core so that the stopper protrusion is on the inner peripheral side. A core housing portion to be housed, and a core protrusion projecting from the core housing portion to the inner peripheral side,
The said 2nd elastic member consists of a coil spring accommodated in the inner peripheral side of the said core accommodating part, and interposed between the said stopper protrusion and the said core protrusion. The fuel injection valve according to any one of the above.
前記可動コアは、前記弁突部と当接可能に前記固定コア側の端面を形成するコア本体部、前記コア本体部から前記固定コアとは反対側へ突出して前記ストッパ突部を内周側に収容するコア収容部を有し、
前記第二弾性部材は、前記コア収容部に外周部が固定されると共に前記ストッパ突部に内周部が係合する皿ばねからなることを特徴とする請求項1〜10のいずれか一項に記載の燃料噴射弁。
The movable core has a core main body portion that forms an end face on the fixed core side so as to be able to contact the valve protrusion, and protrudes from the core main body portion to the opposite side of the fixed core so that the stopper protrusion is on the inner peripheral side. Having a core accommodating portion for accommodating
The said 2nd elastic member consists of a disk spring with which an outer peripheral part is fixed to the said core accommodating part, and an inner peripheral part engages with the said stopper protrusion. The fuel injection valve described in 1.
JP2010161818A 2009-12-04 2010-07-16 Fuel injection valve Active JP5218487B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010161818A JP5218487B2 (en) 2009-12-04 2010-07-16 Fuel injection valve
DE102010062420.9A DE102010062420B4 (en) 2009-12-04 2010-12-03 Fuel injector

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009276842 2009-12-04
JP2009276842 2009-12-04
JP2010161818A JP5218487B2 (en) 2009-12-04 2010-07-16 Fuel injection valve

Publications (2)

Publication Number Publication Date
JP2011137442A JP2011137442A (en) 2011-07-14
JP5218487B2 true JP5218487B2 (en) 2013-06-26

Family

ID=43972698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010161818A Active JP5218487B2 (en) 2009-12-04 2010-07-16 Fuel injection valve

Country Status (2)

Country Link
JP (1) JP5218487B2 (en)
DE (1) DE102010062420B4 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5288019B2 (en) * 2010-02-17 2013-09-11 株式会社デンソー Fuel injection valve
DE102012202253A1 (en) 2012-02-15 2013-08-22 Robert Bosch Gmbh Fuel injector
JP6015870B2 (en) * 2012-02-20 2016-10-26 株式会社デンソー Fuel injection valve
JP5965253B2 (en) * 2012-02-20 2016-08-03 株式会社デンソー Fuel injection valve
EP2703634A1 (en) * 2012-09-04 2014-03-05 Continental Automotive GmbH Valve assembly for an injection valve and injection valve
EP2743491B1 (en) * 2012-12-13 2015-08-12 Continental Automotive GmbH Valve body, fluid injection valve and method for producing a valve body
DE102013206600B4 (en) 2013-04-12 2015-08-06 Continental Automotive Gmbh Injection system for injecting fuel into an internal combustion engine and control method for such an injection system
DE102013207555B3 (en) 2013-04-25 2014-10-09 Continental Automotive Gmbh Method for injection quantity adaptation
EP2796703B1 (en) 2013-04-26 2016-07-20 Continental Automotive GmbH Valve assembly for an injection valve and injection valve
EP2860386A1 (en) * 2013-10-10 2015-04-15 Continental Automotive GmbH Injector for a combustion engine
DE102013220877A1 (en) * 2013-10-15 2015-04-16 Continental Automotive Gmbh Valve
DE102013222596A1 (en) * 2013-11-07 2015-05-07 Robert Bosch Gmbh Valve for metering fluid
DE102013223458A1 (en) * 2013-11-18 2015-05-21 Robert Bosch Gmbh Valve for metering fluid
JP2015121188A (en) * 2013-12-25 2015-07-02 日立オートモティブシステムズ株式会社 Fuel injection valve
JP6256188B2 (en) * 2014-05-19 2018-01-10 株式会社デンソー Fuel injection valve
EP2985445A1 (en) * 2014-08-14 2016-02-17 Continental Automotive GmbH Solenoid actuated fluid injection valve
JP2016044651A (en) * 2014-08-26 2016-04-04 株式会社デンソー Fuel injection valve
JP6187422B2 (en) 2014-09-17 2017-08-30 株式会社デンソー Fuel injection valve
WO2016042753A1 (en) * 2014-09-17 2016-03-24 株式会社デンソー Fuel injection valve
CN107076076B (en) * 2014-09-18 2019-07-09 日立汽车系统株式会社 Fuel injection valve
US10030621B2 (en) 2014-09-18 2018-07-24 Hitachi Automotive Systems, Ltd. Fuel injection valve
JP6345557B2 (en) 2014-09-18 2018-06-20 日立オートモティブシステムズ株式会社 Fuel injection device
JP6571410B2 (en) * 2015-06-29 2019-09-04 日立オートモティブシステムズ株式会社 solenoid valve
JP6304156B2 (en) * 2015-07-15 2018-04-04 株式会社デンソー Fuel injection control device for internal combustion engine
WO2017033645A1 (en) * 2015-08-25 2017-03-02 日立オートモティブシステムズ株式会社 Solenoid valve
JP6800238B2 (en) * 2016-10-31 2020-12-16 日立オートモティブシステムズ株式会社 Fuel injection device
JP6460134B2 (en) * 2017-02-13 2019-01-30 株式会社デンソー Fuel injection valve

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19927900A1 (en) * 1999-06-18 2000-12-21 Bosch Gmbh Robert Fuel injection valve for direct injection IC engine has movement of armature limited by opposing stops attached to valve needle one of which is provided by spring element
JP3631413B2 (en) * 2000-04-27 2005-03-23 株式会社デンソー Solenoid valve and fuel injection device using the same
JP2003139262A (en) * 2001-11-06 2003-05-14 Denso Corp Solenoid valve device
JP2006017101A (en) 2004-06-02 2006-01-19 Denso Corp Fuel injection valve
JP4134956B2 (en) * 2004-07-05 2008-08-20 株式会社デンソー Fuel injection valve
DE102006046833A1 (en) 2006-10-02 2008-04-03 Robert Bosch Gmbh Fuel injection valve for combustion engine, has armature provided with annular slot on outer wall surface
JP2009108842A (en) 2007-11-01 2009-05-21 Denso Corp Fuel injection valve
JP4591593B2 (en) * 2008-02-13 2010-12-01 株式会社デンソー Fuel injection valve

Also Published As

Publication number Publication date
DE102010062420A1 (en) 2011-06-09
DE102010062420B4 (en) 2024-03-28
JP2011137442A (en) 2011-07-14

Similar Documents

Publication Publication Date Title
JP5218487B2 (en) Fuel injection valve
US8684285B2 (en) Fuel injection valve
JP5488120B2 (en) Fuel injection valve
JP6635212B2 (en) Fuel injection valve
JP6345557B2 (en) Fuel injection device
JP2007278218A (en) Fuel injection valve
JP6219533B2 (en) Fuel injection valve
JP6232144B2 (en) Fuel injection valve
JP6571410B2 (en) solenoid valve
JP5482267B2 (en) Fuel injection valve
JP2010138886A (en) Fuel injection valve
WO2017154815A1 (en) Fuel injection device
JP5857952B2 (en) Fuel injection valve
WO2015136862A1 (en) Fuel injection device
JP2009127446A (en) Fuel injection valve
JP6020194B2 (en) Fuel injection valve
JP6167993B2 (en) Fuel injection valve
JP2004346856A (en) Fluid injection valve
JP6292272B2 (en) Fuel injection valve
JP6451883B2 (en) Fuel injection valve
JP2013064414A (en) Fuel injection valve
JP2009133209A (en) Electromagnetic fuel-injection valve
EP3263885B1 (en) Fuel injection valve
JP2020060154A (en) Fuel injection device
JPH09170675A (en) Solenoid valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5218487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250