JP5217130B2 - Rubber composition for tire inner liner and pneumatic tire using the same - Google Patents

Rubber composition for tire inner liner and pneumatic tire using the same Download PDF

Info

Publication number
JP5217130B2
JP5217130B2 JP2006214673A JP2006214673A JP5217130B2 JP 5217130 B2 JP5217130 B2 JP 5217130B2 JP 2006214673 A JP2006214673 A JP 2006214673A JP 2006214673 A JP2006214673 A JP 2006214673A JP 5217130 B2 JP5217130 B2 JP 5217130B2
Authority
JP
Japan
Prior art keywords
rubber
rubber composition
weight
tire
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006214673A
Other languages
Japanese (ja)
Other versions
JP2008038028A (en
Inventor
好彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2006214673A priority Critical patent/JP5217130B2/en
Publication of JP2008038028A publication Critical patent/JP2008038028A/en
Application granted granted Critical
Publication of JP5217130B2 publication Critical patent/JP5217130B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、タイヤインナーライナー用ゴム組成物に関する。より詳細には、本発明は、加硫後の空気などの気体に対する遮断性および耐老化性を損なわずに、未加硫状態でのまたは加硫前の加工性(以下、簡単に「加硫前の加工性」という)を改善したタイヤインナーライナー用ゴム組成物に関する。   The present invention relates to a rubber composition for a tire inner liner. More specifically, the present invention provides a processability in an unvulcanized state or before vulcanization (hereinafter simply referred to as “vulcanization”) without impairing the barrier property and anti-aging property to a gas such as air after vulcanization. The present invention relates to a rubber composition for a tire inner liner, which is improved in the “formability before processing”.

空気入りタイヤは、一般的に、タイヤ気室の気密性の観点から、気体透過性が低い(または気体遮断性が高い)ことが特に要求され、空気入りタイヤの内面に設けられるインナーライナーは高い気体遮断性を有することが求められ、気体遮断性に優れたブチルゴム、ハロゲン化ブチルゴムまたはそれらの組み合わせを主体としたゴム組成物がその製造に使用されることが多い。しかしながら、ブチルゴムおよびハロゲン化ブチルゴムは、圧延、押出、成形等による加硫前の加工性があまり良くないことは一般的に知られており、加硫前の加工性を改善するために、ゴム組成物の配合に通常使用されている種々の可塑剤および軟化剤を添加することが通常行われている。なお、可塑剤と軟化剤の名称は、一般的に、使用目的に応じて使い分けられているが、本質的には同じ機能を示し両者に明りょうな区別はないので、以下、可塑剤または軟化剤の機能を発揮するものを総称して可塑剤と呼ぶ。   In general, a pneumatic tire is particularly required to have low gas permeability (or high gas barrier property) from the viewpoint of airtightness of a tire air chamber, and an inner liner provided on the inner surface of the pneumatic tire is high. A rubber composition mainly containing butyl rubber, halogenated butyl rubber or a combination thereof, which is required to have gas barrier properties and excellent in gas barrier properties, is often used for the production thereof. However, it is generally known that butyl rubber and halogenated butyl rubber are not very good in processability before vulcanization by rolling, extrusion, molding, etc. In order to improve the processability before vulcanization, the rubber composition It is common practice to add various plasticizers and softeners commonly used in the formulation of products. The names of plasticizers and softeners are generally properly used according to the purpose of use. However, since the functions are essentially the same and there is no clear distinction between them, plasticizers or softeners are described below. Those that exhibit the function of the agent are collectively referred to as a plasticizer.

ゴム用可塑剤としては、例えば、多価アルコールと脂肪族多価カルボン酸および脂肪族一価カルボン酸との実質的に水酸基を有しないエステルからなるもの(特許文献1)や、芳香族系プロセスオイル、ナフテン系プロセスオイル、パラフィン系プロセスオイル、パインタール、パーム油等の天然由来の可塑剤、ジブチルフタレート等のフタル酸誘導体などが知られている(特許文献2)。さらに、天然ゴム、ブチルゴムなどのジエン系ゴムを主成分とするゴム組成物において、可塑剤として、様々な芳香族カルボン酸エステル、脂肪族カルボン酸エステルおよびリン酸エステルを配合することが提案されている(特許文献3〜5)。一方、硬化用ブラダー組成物にホスフェートのブレンドを抗酸化剤およびオゾン亀裂防止剤として配合することが提案されており(特許文献6)、また、トレッド用ゴム組成物に酸化防止剤または老化防止剤として亜リン酸エステル類を配合することが提案されている(特許文献7)。   Examples of the plasticizer for rubber include, for example, those composed of an ester of a polyhydric alcohol, an aliphatic polyvalent carboxylic acid and an aliphatic monovalent carboxylic acid having substantially no hydroxyl group (Patent Document 1), and an aromatic process. Oils, naphthenic process oils, paraffinic process oils, natural plasticizers such as pine tar and palm oil, and phthalic acid derivatives such as dibutyl phthalate are known (Patent Document 2). Furthermore, it has been proposed to blend various aromatic carboxylic acid esters, aliphatic carboxylic acid esters and phosphate esters as plasticizers in rubber compositions based on diene rubbers such as natural rubber and butyl rubber. (Patent Documents 3 to 5). On the other hand, it has been proposed that a blend of phosphate is blended in a curing bladder composition as an antioxidant and an ozone cracking inhibitor (Patent Document 6), and an antioxidant or an antioxidant is added to a rubber composition for a tread. It has been proposed that phosphites are blended as (Patent Document 7).

しかしながら、従来のゴム用可塑剤を使用する場合には、ゴム組成物の加硫前の加工性は改善されるけれども、加硫後の気体遮断性は低下してしまい、ゴム組成物の加硫後の気体遮断性を高いレベルに維持するために可塑剤の配合量を減らすと加硫前の加工性が悪化するという二律背反の関係にあった。   However, when the conventional plasticizer for rubber is used, the processability before vulcanization of the rubber composition is improved, but the gas barrier property after vulcanization is reduced, and the vulcanization of the rubber composition is reduced. When the amount of the plasticizer was decreased in order to maintain the gas barrier property at a high level later, the processability before vulcanization deteriorated.

特開平7−292154号公報JP 7-292154 A 特開平7−9807号公報Japanese Patent Laid-Open No. 7-9807 特開2002−36814号公報JP 2002-36814 A 特開2002−52904号公報JP 2002-52904 A 特開2002−114870号公報JP 2002-114870 A 特開平8−109285号公報JP-A-8-109285 特開2002−3647号公報JP 2002-3647 A

上記のとおり、種々のゴム用可塑剤が知られているが、ブチルゴム、ハロゲン化ブチルゴムまたはそれらの組み合わせを含んで成るゴム組成物において、プロセスオイル等の可塑剤を配合しない場合とほぼ同じレベルに加硫後の気体遮断性および耐老化性を維持したまま、加硫前の加工性を改善することはこれまで提案されていない。   As described above, various plasticizers for rubber are known, but in a rubber composition comprising butyl rubber, halogenated butyl rubber, or a combination thereof, the level is almost the same as when no plasticizer such as process oil is blended. To date, it has not been proposed to improve processability before vulcanization while maintaining gas barrier properties and aging resistance after vulcanization.

従って、本発明の目的は、加硫後の気体遮断性および耐老化性を損なわずに、加硫前の加工性を改善したタイヤインナーライナー用ゴム組成物を提供することにある。   Accordingly, an object of the present invention is to provide a rubber composition for a tire inner liner that has improved processability before vulcanization without impairing gas barrier properties and aging resistance after vulcanization.

本発明者は、上記の課題を解決すべく鋭意研究した結果、ブチルゴム、ハロゲン化ブチルゴムまたはそれらの組み合わせを50重量%以上含むゴム成分と、当該ゴム成分100重量部に対して3〜20重量部のリン酸エステルとを含んで成るゴム組成物は、これと同じ割合の従来のゴム用可塑剤を使用する場合とほぼ同じレベルの良好な加硫前の加工性を示すとともに、かかる可塑剤を配合しない場合とほぼ同じレベルの気体遮断性を加硫後に示すことを見出し、本発明を完成するに至った。さらに、本発明者は、意外にも、上記ゴム組成物が、加硫後に優れた耐老化性をも示すことを見出した。   As a result of earnest research to solve the above problems, the present inventor has found that a rubber component containing 50% by weight or more of butyl rubber, halogenated butyl rubber or a combination thereof, and 3 to 20 parts by weight with respect to 100 parts by weight of the rubber component The rubber composition comprising the phosphoric acid ester of the present invention exhibits a good pre-vulcanization processability at the same level as when a conventional rubber plasticizer in the same proportion is used, and the plasticizer contains It has been found that gas barrier properties of almost the same level as when not blended are shown after vulcanization, and the present invention has been completed. Furthermore, the present inventors have surprisingly found that the rubber composition also exhibits excellent aging resistance after vulcanization.

本発明に従えば、
(A)ブチルゴム、ハロゲン化ブチルゴムまたはそれらの組み合わせを50重量%以上含むゴム成分と、
(B)前記ゴム成分(A)100重量部に対して3〜20重量部のリン酸エステル、
を含んで成る、タイヤインナーライナー用ゴム組成物が提供される。
According to the present invention,
(A) a rubber component containing 50% by weight or more of butyl rubber, halogenated butyl rubber or a combination thereof;
(B) 3 to 20 parts by weight of a phosphoric ester based on 100 parts by weight of the rubber component (A),
A rubber composition for a tire inner liner is provided.

本発明のタイヤインナーライナー用ゴム組成物におけるゴム成分(A)は、その合計重量を基準にして50重量%以上のブチルゴム、ハロゲン化ブチルゴムまたはそれらの組み合わせを含む。ブチルゴムおよびハロゲン化ゴムとしては、市販されているものを使用できる。ハロゲン化ブチルゴムは、例えば、塩素化ブチルゴム、臭素化ブチルゴムである。   The rubber component (A) in the rubber composition for a tire inner liner of the present invention contains 50% by weight or more of butyl rubber, halogenated butyl rubber, or a combination thereof based on the total weight thereof. Commercially available butyl rubber and halogenated rubber can be used. Halogenated butyl rubber is, for example, chlorinated butyl rubber or brominated butyl rubber.

ブチルゴム、ハロゲン化ブチルゴムまたはそれらの組み合わせ以外に上記ゴム成分中に含めることのできるゴムとしては、天然ゴム、ブタジエンゴム、イソプレンゴム、スチレン−ブタジエンゴムなどのジエン系ゴム、及びエチレン−プロピレンゴムなどの非ジエン系ゴムから選ばれるゴムが挙げられる。本発明のゴム組成物は、これらの1種または2種以上を、ゴム成分(A)がブチルゴム、ハロゲン化ブチルゴムまたはそれらの組み合わせを上記の割合で含む限り、任意の割合で含んでいてもよい。   In addition to butyl rubber, halogenated butyl rubber, or combinations thereof, rubbers that can be included in the rubber component include natural rubber, butadiene rubber, isoprene rubber, diene rubber such as styrene-butadiene rubber, and ethylene-propylene rubber. Examples include rubbers selected from non-diene rubbers. The rubber composition of the present invention may contain one or more of these in any proportion as long as the rubber component (A) contains butyl rubber, halogenated butyl rubber or a combination thereof in the above proportion. .

本発明のゴム組成物において可塑剤として使用されるリン酸エステル(B)はリン酸トリエステルである。当該リン酸エステルは、好ましくは−60℃〜−20℃の凝固点を有し、より好ましくは−54℃〜−35℃の凝固点を有する。リン酸トリエステルの具体例としては、例えば、リン酸トリメチル(凝固点−70℃以下)、リン酸トリエチル(凝固点−56℃以下)、リン酸トリブチル(凝固点−80℃以下)、リン酸トリス(2−エチルヘキシル)(凝固点−70℃以下)、リン酸トリス(ブトキシエチル)(凝固点−70℃以下)、リン酸トリフェニル(凝固点48〜50℃)、リン酸トリクレジル(凝固点−35℃)、リン酸トリキシレニル(凝固点−15℃)、リン酸クレジルジフェニル(凝固点−30℃)、リン酸2−エチルヘキシルジフェニル(凝固点−54℃)などが挙げられる。   The phosphate ester (B) used as a plasticizer in the rubber composition of the present invention is a phosphate triester. The phosphate ester preferably has a freezing point of -60 ° C to -20 ° C, more preferably a freezing point of -54 ° C to -35 ° C. Specific examples of phosphoric acid triesters include, for example, trimethyl phosphate (freezing point −70 ° C. or lower), triethyl phosphate (freezing point −56 ° C. or lower), tributyl phosphate (freezing point −80 ° C. or lower), tris phosphate (2 -Ethylhexyl) (freezing point -70 ° C or lower), Tris phosphate (butoxyethyl) (freezing point -70 ° C or lower), triphenyl phosphate (freezing point 48-50 ° C), tricresyl phosphate (freezing point -35 ° C), phosphoric acid Examples include trixylenyl (freezing point—15 ° C.), cresyl diphenyl phosphate (freezing point—30 ° C.), and 2-ethylhexyl diphenyl phosphate (freezing point—54 ° C.).

リン酸エステル(B)の量は、ブチルゴム、ハロゲン化ブチルゴムまたはそれらの組み合わせを50重量%以上含む上記ゴム成分(A)100重量部当たり、3〜20重量部、好ましくは4〜18重量部である。リン酸エステル(B)の量が、ゴム成分(A)100重量部当たり3重量部未満である場合には、加硫前の加工性を十分に改善することはできず、また、ゴム成分(A)100重量部当たり20重量部を超える場合には、加硫前の加工性は向上するが、気体遮断性は低下してしまう。   The amount of the phosphoric ester (B) is 3 to 20 parts by weight, preferably 4 to 18 parts by weight per 100 parts by weight of the rubber component (A) containing 50% by weight or more of butyl rubber, halogenated butyl rubber or a combination thereof. is there. When the amount of the phosphate ester (B) is less than 3 parts by weight per 100 parts by weight of the rubber component (A), the processability before vulcanization cannot be sufficiently improved, and the rubber component ( A) When it exceeds 20 parts by weight per 100 parts by weight, the workability before vulcanization is improved, but the gas barrier property is lowered.

本発明のゴム組成物には、上記ゴム成分(A)およびリン酸エステル(B)に加えて、タイヤ用ゴム組成物に一般的に配合される、カーボンブラックなどの補強充填剤、気体遮断性を向上させることが一般的に知られているクレーおよびタルクなどの無機充填剤、ステアリン酸、加硫または架橋剤、加硫または架橋促進剤、老化防止剤などの各種配合剤を一般的な使用量で配合することができる。   In the rubber composition of the present invention, in addition to the rubber component (A) and the phosphoric ester (B), a reinforcing filler such as carbon black, gas barrier properties, which is generally blended in a rubber composition for tires. General use of various fillers such as clay and talc, which are generally known to improve the quality, stearic acid, vulcanization or crosslinking agent, vulcanization or crosslinking accelerator, anti-aging agent, etc. It can mix | blend in quantity.

本発明のゴム組成物は、ゴム組成物の製造に通常用いられているバンバリーミキサーやニーダーなどの混合または混練装置を使用して一般的な混合または混練方法および操作条件で製造することができる。本発明のゴム組成物は、所定量の上記成分とその他の一般的な配合剤と共に混練するか、あるいは予め特定成分のゴム混合物(マスターバッチ)を調製してから所定の成分と混合または混練することによって製造できる。本発明のゴム組成物を、混練後、圧延機あるいは押出機で所望の厚さにし、適当な大きさに切断することによって、タイヤのインナーライナーを形成できる。   The rubber composition of the present invention can be produced by a general mixing or kneading method and operating conditions using a mixing or kneading apparatus such as a Banbury mixer or a kneader that is usually used for the production of a rubber composition. The rubber composition of the present invention is kneaded with a predetermined amount of the above components and other general compounding agents, or a rubber mixture (master batch) of specific components is prepared in advance and then mixed or kneaded with the predetermined components. Can be manufactured. After kneading the rubber composition of the present invention, the inner liner of the tire can be formed by making a desired thickness with a rolling mill or an extruder and cutting the rubber composition into an appropriate size.

以下の例により本発明を更に説明するが、本発明の範囲をこれら実施例に限定するものでないことは言うまでもない。   The invention is further illustrated by the following examples, but it goes without saying that the scope of the invention is not limited to these examples.

標準例、実施例1〜6および比較例1〜4のゴム組成物の製造
下記表1に示す配合(重量部)において、硫黄と加硫促進剤と酸化亜鉛を除く成分を、60℃に調節されたBB−2型ミキサーにより回転数30rpmで3〜5分間混練し、110℃で混練物を放出した。オープンロールで硫黄および加硫促進剤を配合し、各ゴム組成物を調製した。得られた各ゴム組成物を、ムーニー粘度試験を除いて下記の各試験に必要な形状にし、150℃で30分間加硫した。
Production of rubber compositions of standard examples, examples 1 to 6 and comparative examples 1 to 4 In the composition (parts by weight) shown in Table 1 below, the components excluding sulfur, vulcanization accelerator and zinc oxide were adjusted to 60 ° C. The resulting BB-2 mixer was kneaded for 3 to 5 minutes at a rotation speed of 30 rpm, and the kneaded product was discharged at 110 ° C. Each rubber composition was prepared by blending sulfur and a vulcanization accelerator in an open roll. Each rubber composition obtained was formed into the shape required for the following tests except for the Mooney viscosity test, and vulcanized at 150 ° C. for 30 minutes.

Figure 0005217130
Figure 0005217130

註:
(1)ブロモブチル2255(日本ブチル(株)製)
(2)シーストV(東海カーボン(株)製)
(3)工業用ステアリン酸(日本油脂(株)製)
(4)酸化亜鉛3種(正同化学工業(株)製)
(5)ノクセラーDM(大内新興化学工業(株)製)
(6)粉末硫黄(細井化学(株)製)
(7)プロセスオイルP−100(富士興産(株)製のパラフィン系炭化水素オイル)
(8)リン酸トリクレジル(大八化学工業(株)製)、凝固点−35℃
(9)リン酸2−エチルヘキシルジフェニル(大八化学工業(株)製)、凝固点−54℃
(10)リン酸トリス(ブトキシエチル)(大八化学工業(株)製)、凝固点−70℃以下
(11)リン酸トリキシレニル(大八化学工業(株)製)、凝固点−15℃
(12)フタル酸ジブチル(大八化学工業(株)製)、凝固点−35℃
註:
(1) Bromobutyl 2255 (Nippon Butyl Co., Ltd.)
(2) Seast V (manufactured by Tokai Carbon Co., Ltd.)
(3) Industrial stearic acid (manufactured by NOF Corporation)
(4) Three types of zinc oxide (manufactured by Shodo Chemical Industry Co., Ltd.)
(5) Noxeller DM (Ouchi Shinsei Chemical Co., Ltd.)
(6) Powdered sulfur (manufactured by Hosoi Chemical Co., Ltd.)
(7) Process oil P-100 (paraffinic hydrocarbon oil manufactured by Fuji Kosan Co., Ltd.)
(8) tricresyl phosphate (manufactured by Daihachi Chemical Industry Co., Ltd.), freezing point -35 ° C
(9) 2-ethylhexyl diphenyl phosphate (manufactured by Daihachi Chemical Industry Co., Ltd.), freezing point -54 ° C
(10) Tris phosphate (butoxyethyl) (manufactured by Daihachi Chemical Industry Co., Ltd.), freezing point of −70 ° C. or less (11) Trixylenyl phosphate (manufactured by Daihachi Chemical Industry Co., Ltd.), freezing point of −15 ° C.
(12) Dibutyl phthalate (manufactured by Daihachi Chemical Industry Co., Ltd.), freezing point -35 ° C

試験方法
1)ムーニー粘度
JIS K6300に準拠して、L形ローター(試験機:島津製作所製のSMV300J)を使用し、予熱時間1分、ローター回転時間4分、温度100℃で、ムーニー粘度を測定した。ムーニー粘度は、ゴム組成物の加硫前の加工性の指標であり、ムーニー粘度の値が小さいことは、加硫前の粘度が低く、加工性に優れていることを意味する。
Test method 1) Mooney viscosity In accordance with JIS K6300, Mooney viscosity was measured using an L-shaped rotor (tester: SMV300J manufactured by Shimadzu Corporation) at a preheating time of 1 minute, a rotor rotation time of 4 minutes, and a temperature of 100 ° C. did. The Mooney viscosity is an index of processability before vulcanization of the rubber composition, and a small Mooney viscosity value means that the viscosity before vulcanization is low and the processability is excellent.

2)空気透過性
JIS K7126の「プラスチックフィルムおよびシートの気体透過度試験方法(A法)」に準拠して行った。試験に用いた気体は空気(窒素:酸素=約8:2)であり、試験温度は30℃であった。結果は、標準例の空気透過係数を100とする指数値で示した。この値が小さいほど、空気透過性が低いこと、すなわち空気遮断性により優れていることを示す。
2) Air permeability It was performed in accordance with JIS K7126 “Plastic film and sheet gas permeability test method (Method A)”. The gas used for the test was air (nitrogen: oxygen = about 8: 2), and the test temperature was 30 ° C. The results are shown as index values with the air permeability coefficient of the standard example as 100. The smaller this value, the lower the air permeability, that is, the better the air barrier property.

3)耐老化性
金型でプレス加硫することにより15cm×15cm×0.2cmの大きさの試験片を作製し、試験片を、JIS K6257に準拠して、空気で満たされ120℃に設定されたオーブン内で96時間加熱し、加速老化させた。老化の前および後に試験片の切断時伸び(引張速度:500mm/分)を測定し、下記式:
切断時伸びの残留率(%)=(老化後の切断時伸び)/(老化前の切断時伸び)×100
に従って、切断時伸びの残留率(%)を求めた。この切断時伸びの残留率の値が大きいほど耐老化性により優れていることを示す。
3) Aging resistance A test piece having a size of 15 cm × 15 cm × 0.2 cm is produced by press vulcanization with a mold, and the test piece is filled with air and set at 120 ° C. in accordance with JIS K6257. In a heated oven for 96 hours and accelerated aging. The elongation at break (tensile speed: 500 mm / min) of the test piece was measured before and after aging, and the following formula:
Residual ratio of elongation at cutting (%) = (Elongation at cutting after aging) / (Elongation at cutting before aging) × 100
Accordingly, the residual ratio (%) of elongation at break was determined. It shows that it is excellent by aging resistance, so that the value of the residual rate of elongation at the time of a cutting | disconnection is large.

4)空気圧保持性
標準例、実施例1〜6および比較例1〜4のゴム組成物をシート状に加工し、これらをインナーライナーに用いたタイヤサイズ11R22.5 14PRのトラックバススチールラジアルタイヤを作製した。これらのタイヤについてタイヤの空気圧を700kPaにした後、室温21℃、無負荷条件にて3ヶ月放置し、4日毎にタイヤの内圧を測定した、初期圧力をP0、測定された圧力をP、経過日数をtとして、式P/P0=exp(−αt)に回帰させることによりα値を求め、次に、得られたα値とt=30を式:β=[1−exp(−αt)]×100に代入して1ヶ月あたりの空気圧低下率を求め、この空気圧低下率を、空気圧保持性を表す指標とした。実施例1〜3および比較例3の空気圧保持性は、標準例を100としたときの指数値で表わした。この指数値が小さいほど、空気圧保持性に優れていることを示す。なお、比較例1および3のゴム組成物については、ムーニー粘度が高いことによりシートに圧延加工するのが困難なためタイヤの作製ができなかったことから、空気圧保持性の試験は行わなかった。
4) Air pressure retention property A truck bus steel radial tire having a tire size of 11R22.5 14PR in which the rubber compositions of the standard examples, Examples 1 to 6 and Comparative Examples 1 to 4 were processed into a sheet shape and used as an inner liner. Produced. For these tires, after setting the tire air pressure to 700 kPa, the tire was allowed to stand for 3 months at a room temperature of 21 ° C. under no load condition, and the tire internal pressure was measured every 4 days. The initial pressure was P 0 , and the measured pressure was P t The α value is obtained by regressing the equation P t / P 0 = exp (−αt), where t is the elapsed days, and then the obtained α value and t = 30 are expressed by the equation: β = [1-exp (−αt)] × 100 was substituted for the air pressure reduction rate per month, and this air pressure reduction rate was used as an index representing air pressure retention. The air pressure retention of Examples 1 to 3 and Comparative Example 3 was expressed as an index value when the standard example was 100. A smaller index value indicates better air pressure retention. The rubber compositions of Comparative Examples 1 and 3 were not tested for air pressure retention because the tires could not be produced because the Mooney viscosity was high, making it difficult to roll into sheets.

これらの試験方法に従って、上記標準例、実施例および比較例の各ゴム組成物について試験を行なった。試験結果を下記表2に示す。   According to these test methods, the rubber compositions of the above-mentioned standard examples, examples and comparative examples were tested. The test results are shown in Table 2 below.

Figure 0005217130
Figure 0005217130

表2中の結果から判るように、リン酸トリクレジル(凝固点−35℃)をゴム成分(臭素化ブチルゴム)100重量部に対してそれぞれ7重量部および18重量部配合した実施例1および3のゴム組成物並びにリン酸2−エチルヘキシルジフェニル(凝固点−54℃)をゴム成分100重量部に対して7重量部配合した実施例4のゴム組成物では、可塑剤としてプロセスオイルを使用した標準例と比較して、ほぼ同じレベルのムーニー粘度が達成され、空気透過性、耐老化性および空気圧保持性が改善された。また、リン酸トリクレジル(凝固点−35℃)をゴム成分100重量部に対してそれぞれ4重量部配合した実施例2のゴム組成物およびリン酸トリキシレニル(凝固点−15℃)をゴム成分100重量部に対して7重量部配合した実施例6のゴム組成物では、標準例と比較して、ムーニー粘度は増加するものの、このムーニー粘度の増加はシートに圧延加工できないほどの加工性の低下をもたらすものではなく許容可能な範囲内にあり、耐老化性および空気圧保持性の向上効果、特に空気圧保持性の向上効果が大きい。リン酸トリス(ブトキシエチル)(凝固点−70℃以下)をゴム成分100重量部に対して7重量部配合した実施例5のゴム組成物では、標準例と比較して、ほぼ同じレベルのムーニー粘度が達成され、空気透過性、耐老化性および空気圧保持性が改善されたが、空気透過性および空気圧保持性の向上の程度は実施例1〜4よりも小さい。これに対し、可塑剤を配合しなかった比較例1のゴム組成物では、標準例と比較して空気透過性および耐老化性は向上するが、ムーニー粘度は大幅に増加し、このムーニー粘度の大幅な増加はシートに圧延加工できないほどの加工性の低下をもたらした。また、芳香族カルボン酸エステル系化合物であるフタル酸ジブチル(凝固点−35℃)をゴム成分100重量部に対して7重量部配合した比較例2のゴム組成物では、標準例と比較して、ムーニー粘度、空気透過性、空気圧保持性はほぼ同じレベルではあるものの、耐老化性はかなり劣っていた。さらに、リン酸トリクレジルをゴム成分100重量部当たり2重量部配合した比較例3のゴム組成物では、標準例と比較して空気透過性および耐老化性は向上するものの、比較例1のゴム組成物と同様にムーニー粘度が大幅に増加し、このムーニー粘度の大幅な増加はシートに圧延加工できないほどの加工性の低下をもたらした。リン酸トリクレジルをゴム成分100重量部当たり21重量部配合した比較例4のゴム組成物では、標準例と比較して、ムーニー粘度は減少するものの、空気透過性、耐老化性および空気圧保持性はほとんど同じレベルであった。   As can be seen from the results in Table 2, the rubbers of Examples 1 and 3 containing 7 parts by weight and 18 parts by weight of tricresyl phosphate (freezing point -35 ° C.) per 100 parts by weight of the rubber component (brominated butyl rubber), respectively. The rubber composition of Example 4 in which 7 parts by weight of the composition and 2-ethylhexyldiphenyl phosphate (freezing point -54 ° C.) was blended with respect to 100 parts by weight of the rubber component was compared with a standard example using process oil as a plasticizer. Thus, approximately the same level of Mooney viscosity was achieved, improving air permeability, aging resistance and air pressure retention. Moreover, the rubber composition of Example 2 which mix | blended 4 weight part of tricresyl phosphate (freezing point -35 degreeC) with respect to 100 weight part of rubber components, respectively, and trixylenyl phosphate (freezing point -15 degreeC) were set to 100 weight part of rubber components. On the other hand, in the rubber composition of Example 6 blended with 7 parts by weight, the Mooney viscosity increases as compared with the standard example, but this increase in Mooney viscosity results in a decrease in workability that cannot be rolled into a sheet. Rather, it is within an acceptable range, and the effect of improving aging resistance and air pressure retention, particularly the effect of improving air pressure retention is great. In the rubber composition of Example 5 in which 7 parts by weight of tris (butoxyethyl) phosphate (freezing point of −70 ° C. or less) was blended with respect to 100 parts by weight of the rubber component, the Mooney viscosity was almost the same level as the standard example. The air permeability, aging resistance, and air pressure retention were improved, but the degree of improvement in air permeability and air pressure retention was smaller than in Examples 1-4. On the other hand, in the rubber composition of Comparative Example 1 in which no plasticizer was blended, the air permeability and aging resistance were improved as compared with the standard example, but the Mooney viscosity was greatly increased. The large increase resulted in a decrease in workability that could not be rolled into a sheet. Moreover, in the rubber composition of Comparative Example 2 in which 7 parts by weight of dibutyl phthalate (freezing point -35 ° C.), which is an aromatic carboxylate compound, is blended with respect to 100 parts by weight of the rubber component, compared with the standard example, Although Mooney viscosity, air permeability, and air pressure retention were almost the same level, the aging resistance was considerably inferior. Further, in the rubber composition of Comparative Example 3 containing 2 parts by weight of tricresyl phosphate per 100 parts by weight of the rubber component, the air permeability and aging resistance are improved as compared with the standard example, but the rubber composition of Comparative Example 1 is improved. Like the product, the Mooney viscosity increased significantly, and this significant increase in Mooney viscosity resulted in a decrease in workability that could not be rolled into a sheet. In the rubber composition of Comparative Example 4 containing 21 parts by weight of tricresyl phosphate per 100 parts by weight of the rubber component, the Mooney viscosity is reduced as compared with the standard example, but the air permeability, aging resistance and air pressure retention are It was almost the same level.

Claims (2)

(A)ハロゲン化ブチルゴムを50重量%以上含むゴム成分と、
(B)前記ゴム成分(A)100重量部に対して3〜20重量部の−60℃〜−20℃の凝固点を有するリン酸エステル、
を含んで成る、タイヤインナーライナー用ゴム組成物。
(A) a rubber component containing 50% by weight or more of halogenated butyl rubber;
(B) 3 to 20 parts by weight of a phosphate ester having a freezing point of −60 ° C. to −20 ° C. with respect to 100 parts by weight of the rubber component (A),
A rubber composition for a tire inner liner, comprising:
請求項1に記載のタイヤインナーライナー用ゴム組成物をタイヤインナーライナーに使用した空気入りタイヤ。A pneumatic tire using the rubber composition for a tire inner liner according to claim 1 as a tire inner liner.
JP2006214673A 2006-08-07 2006-08-07 Rubber composition for tire inner liner and pneumatic tire using the same Expired - Fee Related JP5217130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006214673A JP5217130B2 (en) 2006-08-07 2006-08-07 Rubber composition for tire inner liner and pneumatic tire using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006214673A JP5217130B2 (en) 2006-08-07 2006-08-07 Rubber composition for tire inner liner and pneumatic tire using the same

Publications (2)

Publication Number Publication Date
JP2008038028A JP2008038028A (en) 2008-02-21
JP5217130B2 true JP5217130B2 (en) 2013-06-19

Family

ID=39173426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006214673A Expired - Fee Related JP5217130B2 (en) 2006-08-07 2006-08-07 Rubber composition for tire inner liner and pneumatic tire using the same

Country Status (1)

Country Link
JP (1) JP5217130B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3008414B1 (en) * 2013-07-15 2016-06-10 Michelin & Cie TIRE TREAD TIRE
JP6018248B2 (en) 2014-06-17 2016-11-02 住友ゴム工業株式会社 tire
JP6698261B2 (en) * 2014-12-15 2020-05-27 コンパニー ゼネラール デ エタブリッスマン ミシュラン Snow tire having a tread containing a rubber composition

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3696066A (en) * 1971-01-08 1972-10-03 Us Navy Plasticized compositions
JPS6076403A (en) * 1983-09-30 1985-04-30 Bridgestone Corp Pneumatic tyre with tread rubber of high motive performance
JP4748862B2 (en) * 2001-01-30 2011-08-17 住友ゴム工業株式会社 Rubber composition and pneumatic tire
JP2005154586A (en) * 2003-11-26 2005-06-16 Sumitomo Rubber Ind Ltd Rubber composition
JP4444707B2 (en) * 2004-03-25 2010-03-31 住友ゴム工業株式会社 Rubber composition for inner liner and pneumatic tire
US20070221305A1 (en) * 2004-07-23 2007-09-27 Bridgestone Corporation Rubber Composition for Innerliner and Pneumatic Radial Tire Using the Same
JP4764014B2 (en) * 2004-08-27 2011-08-31 株式会社ブリヂストン Rubber composition and crosslinked rubber using the same

Also Published As

Publication number Publication date
JP2008038028A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
EP2957592B1 (en) Tire
JP2012062429A (en) Rubber composition for rim cushion
JP2005263999A (en) Manufacturing process of rubber composition
JP5309730B2 (en) Rubber composition for undertread
JP2014218614A (en) Coupling agent for rubber-carbon black, and rubber composition
JP5217130B2 (en) Rubber composition for tire inner liner and pneumatic tire using the same
JP2009024100A (en) Rubber composition for tire inner liner, and pneumatic tire
JP2010077233A (en) Rubber composition for tire and pneumatic tire using the same
JP5034248B2 (en) Rubber composition for tire inner liner
US20080085970A1 (en) Rubber composition for tire inner liner and pneumatic tire using the same
JP2011116815A (en) Rubber composition for tire and pneumatic tire obtained using the same
JP2016155980A (en) Construction vehicle tire rubber composition and pneumatic tire using the same
JP2010059361A (en) Rubber composition for rim cushion
JP4128210B2 (en) Rubber composition for tire inner liner and pneumatic tire using the same
JP5154035B2 (en) Rubber composition for tire inner liner and pneumatic tire
JP4984684B2 (en) Rubber composition for tire inner liner and pneumatic tire using the same
JP4985387B2 (en) Rubber composition for tire inner liner
JP2009292880A (en) Rubber composition for fender
WO2015145513A1 (en) Rubber composition and tyre
JP6428371B2 (en) Rubber composition for run flat liner and pneumatic tire using the same
WO2018143379A1 (en) Rubber composition for inner liner and pneumatic tire
JP6187074B2 (en) Rubber composition and pneumatic tire using the same
JP4059691B2 (en) Rubber composition and pneumatic tire using the same
JP7225811B2 (en) Rubber composition and pneumatic tire using the same
JP2018119079A (en) Rubber composition for tire outer layers and pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5217130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees