JP5215882B2 - Bulk feeder - Google Patents

Bulk feeder Download PDF

Info

Publication number
JP5215882B2
JP5215882B2 JP2009003519A JP2009003519A JP5215882B2 JP 5215882 B2 JP5215882 B2 JP 5215882B2 JP 2009003519 A JP2009003519 A JP 2009003519A JP 2009003519 A JP2009003519 A JP 2009003519A JP 5215882 B2 JP5215882 B2 JP 5215882B2
Authority
JP
Japan
Prior art keywords
guide groove
hole
electronic component
storage chamber
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009003519A
Other languages
Japanese (ja)
Other versions
JP2010161278A (en
Inventor
浩二 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2009003519A priority Critical patent/JP5215882B2/en
Publication of JP2010161278A publication Critical patent/JP2010161278A/en
Application granted granted Critical
Publication of JP5215882B2 publication Critical patent/JP5215882B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Feeding Of Articles To Conveyors (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Description

本発明は、バラ状態の電子部品を所定向きに整列して供給するバルクフィーダに関する。   The present invention relates to a bulk feeder that supplies loose electronic components aligned in a predetermined direction.

特許文献1及び2に開示されたバルクフィーダは、後側の壁面と外周の円弧状ガイド面とを有する収納室と、ガイド面の上端に設けられた取入口(以下、取込口と言う)と、取込口から下流に向かって設けられた通路と、収納室の壁面の後方に設けられた回転板と、回転板に設けられた磁石とを備えている。このバルクフィーダでは、回転板を所定方向に回転させることによって、磁石の磁力によって吸引された複数の部品を壁面及びガイド面に沿って上方に移動させ、壁面及びガイド面によって整列された部品のみを取込口へ流入させるようにしている。   The bulk feeder disclosed in Patent Documents 1 and 2 includes a storage chamber having a rear wall surface and an outer circumferential arc-shaped guide surface, and an intake port provided at the upper end of the guide surface (hereinafter referred to as an intake port). And a passage provided downstream from the intake port, a rotating plate provided behind the wall surface of the storage chamber, and a magnet provided on the rotating plate. In this bulk feeder, by rotating the rotating plate in a predetermined direction, a plurality of components attracted by the magnetic force of the magnet are moved upward along the wall surface and the guide surface, and only the components aligned by the wall surface and the guide surface are moved. It is made to flow into the intake port.

ところで、前記バルクフィーダは、磁石の磁力により部品を壁面及びガイド面の双方向へ同時に吸引することによって、該部品を両面に沿って整列させるようにしている。しかしながら、磁石の磁力によって吸引された複数の部品の向きはランダム(向きがバラバラであることを意味する)で、且つ、塊となっており、しかも、該複数の部品は同形態のまま壁面及びガイド面に沿って上方に移動するため、部品相互が整列の邪魔をすることも相俟って、磁石の磁力によって複数の部品が吸引されている状態で所期の整列を行うことは極めて難しい。   By the way, the bulk feeder is configured to align the parts along both surfaces by simultaneously attracting the parts in both directions of the wall surface and the guide surface by the magnetic force of the magnet. However, the direction of the plurality of parts attracted by the magnetic force of the magnet is random (meaning that the directions are scattered) and is a lump, and the plurality of parts remain in the same shape and have a wall surface and Since it moves upward along the guide surface, it is extremely difficult to perform the desired alignment while a plurality of components are attracted by the magnetic force of the magnet, together with the fact that the components interfere with each other. .

つまり、前記バルクフィーダにおいて部品を取込口へ流入させるには、磁石の磁力によって複数の部品が壁面及びガイド面の双方向に吸引されたときに該複数の部品のうちの最も前側の部品が両面に沿って整列されている必要がある。しかしながら、磁石の磁力によって複数の部品が壁面及びガイド面の双方向に吸引されたときに該複数の部品のうちの最も前側の部品が両面に沿って整列されている確率は極めて低いことから、磁石が取込口の後方を通過しても1つの部品も取込口へ流入されない可能性が高く、結局的に部品が取込口へ流入する確率が大きく低下してしまう。   That is, in order to allow the parts to flow into the inlet in the bulk feeder, when the plurality of parts are attracted in both directions of the wall surface and the guide surface by the magnetic force of the magnet, the foremost part of the plurality of parts is It must be aligned along both sides. However, when a plurality of parts are attracted in both directions of the wall surface and the guide surface by the magnetic force of the magnet, the probability that the foremost part of the plurality of parts is aligned along both sides is extremely low. Even if the magnet passes behind the intake port, there is a high possibility that one part will not flow into the intake port, and eventually the probability of the component flowing into the intake port will be greatly reduced.

この確率を高めるには、「磁石が取込口の後方を通過する回数/単位時間」を増すしかないが、磁石の数を増やしても、また、回転板を回転速度を上げても、前記の現象が弊害となるためにそれほどの確率向上には至らない。   In order to increase this probability, “the number of times the magnet passes behind the inlet / unit time” must be increased. However, even if the number of magnets is increased or the rotational speed of the rotating plate is increased, Since this phenomenon is harmful, the probability does not improve so much.

特許第3482324号Japanese Patent No. 3482324 特許第3796971号Japanese Patent No. 3796971

本発明の目的は、電子部品が取込口へ流入する確率を高めることができるバルクフィーダを提供することにある。   The objective of this invention is providing the bulk feeder which can raise the probability that an electronic component will flow in into an intake port.

前記目的を達成するため、本発明は、バラ状態の電子部品を所定向きに整列して供給するバルクフィーダであって、磁力による吸引を可能とした多数の電子部品をバラ状態で収納するための収納室と、収納室の一側面に下から上に向かって形成された円弧状の貫通孔と、収納室の一側面の外側に回転自在に配置され、且つ、収納室の一側面と向き合う面によって貫通孔の外側開口を覆うロータと、ロータ回転時に貫通孔に沿う所定の円軌道で移動するようにロータに設けられ、且つ、収納室内の電子部品を磁力により貫通孔方向に吸引するための少なくとも1つの永久磁石と、貫通孔の内側開口の上部を閉塞する部材とを備え、貫通孔の外側開口のみを覆うことによって収納室内の電子部品を所定向きで収容して同向きのまま移動させるための円弧状の案内溝が形成され、また、貫通孔の外側開口及び内側開口を覆うことによって案内溝内に収容された所定向きの電子部品をその取込口を通じて取り込んで同向きのまま移動させるための円弧状の供給通路が案内溝に続いて形成されている。   In order to achieve the above object, the present invention is a bulk feeder that supplies loose electronic components aligned in a predetermined direction for storing a large number of electronic components that can be attracted by magnetic force in a loose state. A storage chamber, an arc-shaped through hole formed on one side of the storage chamber from the bottom to the top, and a surface that is rotatably disposed on the outer side of one side of the storage chamber and faces one side of the storage chamber A rotor that covers the outer opening of the through-hole, and a rotor that moves in a predetermined circular orbit along the through-hole when the rotor rotates, and for attracting electronic components in the storage chamber toward the through-hole by magnetic force At least one permanent magnet and a member that closes the upper part of the inner opening of the through hole are provided, and only the outer opening of the through hole is covered so that the electronic components in the storage chamber are accommodated in a predetermined direction and moved in the same direction. For An arc-shaped guide groove is formed, and an electronic component in a predetermined direction accommodated in the guide groove is covered by covering the outer opening and the inner opening of the through hole, and is moved in the same direction. The arc-shaped supply passage is formed following the guide groove.

このバルクフィーダでは、永久磁石が収納室の下部外側を通過して上方に移動する過程では、該永久磁石の磁力によって複数の電子部品が案内溝方向(貫通孔方向)に吸引され、該複数の電子部品の幾つか案内溝内に収容され、該案内溝内に収容された電子部品はロータの収納室の一側面と向き合う面に吸着される。案内溝内に収容された電子部品を含む複数の電子部品は、永久磁石の上方移動に伴って案内溝に沿ってさらに上方に移動して取込口に達する。この過程では、案内溝内に収容された電子部品はロータの収納室の一側面と向き合う面に吸着されているため、該吸着状態を維持しつつ貫通孔に沿ってさらに上方に移動することになる。つまり、案内溝内に収容された電子部品を含む複数の電子部品のうち、案内溝内に収容されている電子部品をその収容形態を崩すことなく確実に上方に移動させることができ、これにより取込口への電子部品の流入確率を高めることができる。   In this bulk feeder, in the process in which the permanent magnet moves upward through the lower outside of the storage chamber, a plurality of electronic components are attracted in the guide groove direction (through-hole direction) by the magnetic force of the permanent magnet, Several electronic components are accommodated in the guide grooves, and the electronic components accommodated in the guide grooves are adsorbed by a surface facing one side surface of the storage chamber of the rotor. A plurality of electronic components including the electronic component housed in the guide groove move further upward along the guide groove along with the upward movement of the permanent magnet and reach the intake port. In this process, the electronic component accommodated in the guide groove is adsorbed on a surface facing one side surface of the rotor storage chamber, so that the electronic component moves further upward along the through hole while maintaining the adsorbed state. Become. In other words, among a plurality of electronic components including the electronic component accommodated in the guide groove, the electronic component accommodated in the guide groove can be reliably moved upward without destroying its accommodation form. The inflow probability of the electronic component to the intake port can be increased.

本発明によれば、電子部品が取込口へ流入する確率を高めることができるバルクフィーダを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the bulk feeder which can raise the probability that an electronic component will flow in into an intake port can be provided.

本発明の前記目的とそれ以外の目的と、構成特徴と、作用効果は、以下の説明と添付図面によって明らかとなる。   The above object and other objects, structural features, and operational effects of the present invention will become apparent from the following description and the accompanying drawings.

本発明の一実施形態を示す、バルクフィーダの左面図,右面図及び上面図である。It is the left view, right view, and top view of a bulk feeder which show one Embodiment of this invention. 図1に示したバルクフィーダで供給される電子部品の斜視図及び該バルクフィーダで供給可能な電子部品の斜視図である。FIG. 2 is a perspective view of an electronic component supplied by the bulk feeder shown in FIG. 1 and a perspective view of an electronic component that can be supplied by the bulk feeder. 図1に示したケースを構成する左板の左面図,中央板の左面図及び右板の左面図である。It is the left view of the left board which comprises the case shown in FIG. 1, the left view of a center board, and the left view of a right board. 図3(C)に示した右板の部分拡大断面図,同図に示した貫通孔の変形例を示す右板の部分拡大断面図及び図2(B)及び図2(C)に示した電子部品を供給対象とする場合の貫通孔を示す右板の部分拡大断面図である。3C is a partially enlarged cross-sectional view of the right plate shown in FIG. 3C, a partially enlarged cross-sectional view of the right plate showing a modification of the through-hole shown in FIG. 3B, and FIGS. 2B and 2C. It is a partial expanded sectional view of the right board which shows a through hole in case electronic parts are made into a supply object. 図1に示したケースの組み立て方法の説明図である。It is explanatory drawing of the assembly method of the case shown in FIG. 図1に示したケースの部分拡大断面図である。It is a partial expanded sectional view of the case shown in FIG. 図1に示したロータの左面図,上面図及び図7(A)のS3−S3線に沿う断面図である。FIG. 8 is a left side view, a top view, and a sectional view taken along line S3-S3 of FIG. 7A of the rotor shown in FIG. 図1(C)の部分拡大図である。It is the elements on larger scale of FIG.1 (C). 図1(C)のS1−S1線に沿う拡大断面図である。It is an expanded sectional view which follows the S1-S1 line of FIG.1 (C). 図1(C)のS2−S2線に沿う拡大断面図である。It is an expanded sectional view which follows the S2-S2 line of FIG.1 (C). 図1に示したケースの右板とロータとの位置関係を示す詳細図である。It is detail drawing which shows the positional relationship of the right board and rotor of the case shown in FIG. 図11に示した位置関係の変形例を示す詳細図である。FIG. 12 is a detailed diagram illustrating a modification of the positional relationship illustrated in FIG. 11. 図1に示したバルクフィーダによる電子部品の供給動作の説明図である。It is explanatory drawing of the supply operation | movement of the electronic component by the bulk feeder shown in FIG. 図1に示したバルクフィーダによる電子部品の供給動作の説明図である。It is explanatory drawing of the supply operation | movement of the electronic component by the bulk feeder shown in FIG. 図1に示したバルクフィーダによる電子部品の供給動作の説明図である。It is explanatory drawing of the supply operation | movement of the electronic component by the bulk feeder shown in FIG. 図1に示したバルクフィーダによる電子部品の供給動作の説明図である。It is explanatory drawing of the supply operation | movement of the electronic component by the bulk feeder shown in FIG. 図1に示したロータの変形例を示す断面図である。It is sectional drawing which shows the modification of the rotor shown in FIG.

本発明の実施形態を以下に説明するが、該説明中に用いた「一致」及び「同一」の用語は寸法上の公差を含むものであり、完全一致及び完全同一を意味するものではない。また、以下の説明では図1(A)の左,右,手前及び奥と他の図のこれらに相当する方向をそれぞれ前,後,左及び右と称する。   Embodiments of the present invention will be described below, but the terms “match” and “identical” used in the description include dimensional tolerances, and do not imply perfect match or complete identity. In the following description, the left, right, front, back and back directions in FIG. 1A and the directions corresponding to these in the other drawings are referred to as front, back, left and right, respectively.

図1〜図15は本発明の一実施形態を示す。図1(A)〜図1(C)はバルクフィーダの左面図,右面図及び上面図、図2(A)〜図2(C)は図1に示したバルクフィーダで供給される電子部品の斜視図及び該バルクフィーダで供給可能な電子部品の斜視図、図3(A)〜図3(C)は図1に示したケースを構成する左板の左面図,中央板の左面図及び右板の左面図、図4(A)〜図4(D)は図3(C)に示した右板の部分拡大断面図,同図に示した貫通孔の変形例を示す右板の部分拡大断面図及び図2(B)及び図2(C)に示した電子部品を供給対象とする場合の貫通孔を示す右板の部分拡大断面図、図5は図1に示したケースの組み立て方法の説明図、図6は図1に示したケースの部分拡大断面図、図7(A)〜図7(C)は図1に示したロータの左面図,上面図及び図7(A)のS3−S3線に沿う断面図、図8は図1(C)の部分拡大図、図9は図1(C)のS1−S1線に沿う拡大断面図、図10は図1(C)のS2−S2線に沿う拡大断面図、図11は図1に示したケースの右板とロータとの位置関係を示す詳細図、図12は図11に示した位置関係の変形例を示す詳細図、図13〜図16は図1に示したバルクフィーダによる電子部品の供給動作の説明図である。   1 to 15 show an embodiment of the present invention. 1A to 1C are a left side view, a right side view, and a top view of a bulk feeder, and FIGS. 2A to 2C are diagrams of electronic components supplied by the bulk feeder shown in FIG. FIG. 3A to FIG. 3C are a left side view of a left plate, a left side view of a central plate and a right side of the case shown in FIG. 4 (A) to FIG. 4 (D) are partial enlarged sectional views of the right plate shown in FIG. 3 (C), and a partial enlarged view of the right plate showing a modification of the through hole shown in FIG. FIG. 5 is a partially enlarged cross-sectional view of a right plate showing a through hole when the electronic component shown in FIG. 2 (B) and FIG. 2 (C) is a supply object, and FIG. 5 is an assembly method of the case shown in FIG. FIG. 6 is a partially enlarged sectional view of the case shown in FIG. 1, FIGS. 7A to 7C are a left side view, a top view, and FIG. 7 (FIG. 7) of the rotor shown in FIG. 8 is a partially enlarged view of FIG. 1C, FIG. 9 is an enlarged sectional view taken along the line S1-S1 of FIG. 1C, and FIG. 10 is FIG. 11) is an enlarged sectional view taken along line S2-S2, FIG. 11 is a detailed view showing the positional relationship between the right plate of the case shown in FIG. 1 and the rotor, and FIG. 12 shows a modification of the positional relationship shown in FIG. FIG. 13 to FIG. 16 are explanatory views of the electronic component supply operation by the bulk feeder shown in FIG.

まず、図2を引用して、図1に示したバルクフィーダで供給される電子部品及び該バルクフィーダで供給可能な電子部品について説明する。   First, with reference to FIG. 2, electronic components supplied by the bulk feeder shown in FIG. 1 and electronic components that can be supplied by the bulk feeder will be described.

図2(A)は図1に示したバルクフィーダで供給される電子部品EC1を示す。同図に示した電子部品EC1は、長さL1>幅W1=高さH1の寸法関係を有する直方体形状を成し、長さ方向両端部に外部電極EC1aを有している。この電子部品EC1の代表例は長さL1が1.0mm前後(具体的には1.6mm,1.0mm,0.6mm,0.4mm等)のチップコンデンサである。この電子部品EC1は強磁性体に属する材料を含む外部電極EC1aを有する他、種類によっては強磁性体に属する材料を含む内部導体を有していることから、永久磁石の磁力による吸引が可能である。   FIG. 2A shows the electronic component EC1 supplied by the bulk feeder shown in FIG. The electronic component EC1 shown in the figure has a rectangular parallelepiped shape having a dimensional relationship of length L1> width W1 = height H1, and has external electrodes EC1a at both ends in the length direction. A typical example of the electronic component EC1 is a chip capacitor having a length L1 of around 1.0 mm (specifically, 1.6 mm, 1.0 mm, 0.6 mm, 0.4 mm, etc.). The electronic component EC1 has an external electrode EC1a containing a material belonging to a ferromagnetic material and, depending on the type, an internal conductor containing a material belonging to a ferromagnetic material, so that it can be attracted by the magnetic force of a permanent magnet. is there.

図2(B)及び図2(C)は後述する貫通孔13bの断面形を変更することによって図1に示したバルクフィーダで供給可能な電子部品EC2,EC3を示す。図2(B)に示した電子部品EC2は、長さL2>幅W2>高さH2の寸法関係を有する直方体形状を成し、長さ方向両端部に外部電極EC2aを有していている。この電子部品EC2の代表例は長さL2が1.0mm前後(具体的には1.6mm,1.0mm,0.6mm,0.4mm等)のチップレジスタである。図2(C)に示した電子部品EC3は、長さL3>直径R3の寸法関係を有する円柱形状を成し、長さ方向両端部に外部電極EC3aを有していている。この電子部品EC3の代表例は長さL3が1.0mm前後(具体的には1.6mm,1.0mm,0.6mm,0.4mm等)のチップコンデンサやチップレジスタである。これら電子部品EC2,EC3も強磁性体に属する材料を含む外部電極EC2a,EC3aを有する他、種類によっては強磁性体に属する材料を含む内部導体を有していることから、永久磁石の磁力による吸引が可能である。   2B and 2C show electronic components EC2 and EC3 that can be supplied by the bulk feeder shown in FIG. 1 by changing the cross-sectional shape of a through-hole 13b described later. The electronic component EC2 shown in FIG. 2B has a rectangular parallelepiped shape having a dimensional relationship of length L2> width W2> height H2, and has external electrodes EC2a at both ends in the length direction. A typical example of the electronic component EC2 is a chip register having a length L2 of around 1.0 mm (specifically, 1.6 mm, 1.0 mm, 0.6 mm, 0.4 mm, etc.). The electronic component EC3 shown in FIG. 2C has a cylindrical shape having a dimensional relationship of length L3> diameter R3, and has external electrodes EC3a at both ends in the length direction. A typical example of the electronic component EC3 is a chip capacitor or chip register having a length L3 of around 1.0 mm (specifically, 1.6 mm, 1.0 mm, 0.6 mm, 0.4 mm, etc.). These electronic components EC2 and EC3 also have external electrodes EC2a and EC3a containing a material belonging to a ferromagnetic material, and depending on the type, an internal conductor containing a material belonging to a ferromagnetic material. Suction is possible.

次に、図1,図3〜図10を引用して、電子部品EC1を供給対象とする図1に示したバルクフィーダの構造について説明する。   Next, the structure of the bulk feeder shown in FIG. 1 to which the electronic component EC1 is supplied will be described with reference to FIGS.

バルクフィーダは、図1(A)〜図1(C)に示すように、ケース10と、支軸20と、軸受30と、ロータ40と、図示省略のロータ駆動機構とを備えている。   As shown in FIGS. 1A to 1C, the bulk feeder includes a case 10, a support shaft 20, a bearing 30, a rotor 40, and a rotor drive mechanism (not shown).

ケース10は、図3(A)に示す左板11と、図3(B)に示す中央板12と、図3(C)に示す右板13とから構成されている。   The case 10 includes a left plate 11 shown in FIG. 3 (A), a center plate 12 shown in FIG. 3 (B), and a right plate 13 shown in FIG. 3 (C).

左板11は、図3(A)に示すように、左面視輪郭が略矩形を成し、金属またはプラスチックから形成されている。この左板11は、その4隅にネジ挿通孔11aを有している。   As shown in FIG. 3A, the left plate 11 has a substantially rectangular shape in left view and is made of metal or plastic. The left plate 11 has screw insertion holes 11a at its four corners.

中央板12は、図3(B)に示すように、左面視輪郭が左板11と同一で、金属またはプラスチックから形成されている。この中央板12は、その4隅にネジ挿通孔12aを有し、左右方向の貫通孔12bを有している。   As shown in FIG. 3 (B), the center plate 12 has the same left side view outline as the left plate 11 and is made of metal or plastic. The central plate 12 has screw insertion holes 12a at the four corners thereof, and has through holes 12b in the left-right direction.

貫通孔12bは、所定の曲率半径を有する第1円弧面12b1と、第1円弧面12b1よりも曲率半径が小さく、且つ、第1円弧面12b1と曲率中心を一致する第2円弧面12b2と、第2円弧面12b2の上端から斜め上向きに延びる第1平面12b3と、第1円弧面12b1の下端と第2円弧面12b2の下端とを結ぶ斜め下向きの第2平面12b4と、第1円弧面12b1の上端と第1平面12b2の上端との間に形成された凹部12b5とを有している。また、第1円弧面12b1の曲率半径は後述する貫通孔13bの外側円弧の曲率半径よりも大きい。   The through-hole 12b includes a first arc surface 12b1 having a predetermined radius of curvature, a second arc surface 12b2 having a radius of curvature smaller than that of the first arc surface 12b1, and matching the center of curvature with the first arc surface 12b1, A first plane 12b3 extending obliquely upward from the upper end of the second arcuate surface 12b2, an obliquely downward second plane 12b4 connecting the lower end of the first arcuate surface 12b1 and the lower end of the second arcuate surface 12b2, and the first arcuate surface 12b1 And a recess 12b5 formed between the upper end of the first flat surface 12b2 and the upper end of the first plane 12b2. Further, the radius of curvature of the first arc surface 12b1 is larger than the radius of curvature of the outer arc of the through hole 13b described later.

さらに、中央板12の中央部分には、支軸20をネジ止めするための複数(図中は4個)のネジ穴12cが形成されている。   Furthermore, a plurality (four in the figure) of screw holes 12c for screwing the support shaft 20 are formed in the central portion of the central plate 12.

右板13は、図3(C)に示すように、左面視輪郭が左板11と同一で、永久磁石の磁力が透過可能なアルミニウム等の金属またはプラスチックから形成されている。この右板13は、その4隅にネジ挿通孔11aを有し、左右方向に貫通する円弧状の貫通孔13bを有し、上面に取出口形成凹部13cを有している。   As shown in FIG. 3C, the right plate 13 is made of a metal such as aluminum or plastic that has the same left-side outline as the left plate 11 and can transmit the magnetic force of the permanent magnet. The right plate 13 has screw insertion holes 11a at four corners thereof, an arc-shaped through hole 13b penetrating in the left-right direction, and an outlet forming recess 13c on the upper surface.

貫通孔13bは下から上に向かって約180度の角度範囲で形成されており、該貫通孔13bの外側円弧の曲率中心と内側円弧の曲率中心は一致し、且つ、外側円弧と内側円弧の曲率半径の差は後述する幅Wgを規定する。また、貫通孔13bの最上点から前側の部分は前方に延びる直線状となっている(以下、前側直線部分13b1と言う)。   The through-hole 13b is formed in an angle range of about 180 degrees from bottom to top, the center of curvature of the outer arc of the through-hole 13b coincides with the center of curvature of the inner arc, and the outer arc and the inner arc The difference in curvature radius defines the width Wg described later. In addition, a portion on the front side from the uppermost point of the through hole 13b has a linear shape extending forward (hereinafter referred to as a front straight portion 13b1).

この貫通孔13bは、図4(A)に示すように、図2(A)に示した電子部品EC1の幅W1または高さH1よりも僅かに大きく、且つ、端面対角寸法D1よりも小さな幅Wg及び深さDgを有している。貫通孔13bは右板13を左右方向に貫通するものであるため、右板13の厚さによって該貫通孔13bの深さDgが規定されている。つまり、図4(A)に示した貫通孔13bは、同図に破線で示すように、図2(A)に示した電子部品EC1を幅または高さの面が略揃った長さ向きで収容できる。   As shown in FIG. 4 (A), the through hole 13b is slightly larger than the width W1 or height H1 of the electronic component EC1 shown in FIG. 2 (A) and smaller than the end face diagonal dimension D1. It has a width Wg and a depth Dg. Since the through hole 13b penetrates the right plate 13 in the left-right direction, the depth Dg of the through hole 13b is defined by the thickness of the right plate 13. That is, the through-hole 13b shown in FIG. 4A has a length direction in which the surface of the electronic component EC1 shown in FIG. Can be accommodated.

取出口形成凹部13cは、右板13の上面一部を左右方向に切り欠くようにして形成されており、貫通孔13bに達する所定の深さを有している。つまり、貫通孔13bの最上点及びその前後部分は、取出口形成凹部13cを通じ、上方に向けて部分的に開放している。   The outlet forming recess 13c is formed by cutting out a part of the upper surface of the right plate 13 in the left-right direction, and has a predetermined depth reaching the through hole 13b. That is, the uppermost point of the through-hole 13b and its front and rear portions are partially opened upward through the outlet forming recess 13c.

また、貫通孔13bの前側直線部分13b1には、四角柱形または円柱形を成し、金属またはプラスチックから形成されたストッパ棒14が嵌め込まれている。このストッパ棒14は、その後部を取出口形成凹部13c側に突出しており、該突出部分を取出口形成凹部13cを通じて露出している。つまり、ストッパ棒14の後部は先に述べた貫通孔13bの開放部分に入り込んでいて、該開放部分のうちのストッパ棒14が存しない領域は後述する上面開口の取出口19となる。   In addition, a stopper rod 14 having a quadrangular prism shape or a cylindrical shape and made of metal or plastic is fitted into the front straight portion 13b1 of the through hole 13b. The stopper bar 14 has a rear portion protruding toward the outlet forming recess 13c, and the protruding portion is exposed through the outlet forming recess 13c. That is, the rear part of the stopper bar 14 enters the open part of the through-hole 13b described above, and the area of the open part where the stopper bar 14 does not exist becomes an outlet 19 for the upper surface opening described later.

さらに、右板13の後側上部には、後述する取込口形成部材15をネジ止めするのに用いられるネジ挿通孔13dが形成されている。また、右板13の中央部分には、支軸20をネジ止めするのに用いられる複数(図中は4個)のネジ挿通孔13eが中央板12のネジ穴12cに対応して形成されている。   Furthermore, a screw insertion hole 13d used for screwing a later-described intake port forming member 15 is formed on the upper rear side of the right plate 13. Further, a plurality (four in the figure) of screw insertion holes 13 e used for screwing the support shaft 20 are formed in the central portion of the right plate 13 corresponding to the screw holes 12 c of the central plate 12. Yes.

図4(B)に示した貫通孔13b-1は、図4(A)に示した貫通孔13bの変形例である。この貫通孔13b-1は、図2(A)に示した電子部品EC1の端面対角寸法D1よりも僅かに大きく、且つ、長さL1よりも小さな幅Wg及び深さDgを有している。この場合も、貫通孔13b-1は右板13-1を左右方向に貫通するものであるため、右板13-1の厚さによって該貫通孔13b-1の深さDgが規定されている。つまり、図4(B)に示した貫通孔13b-1は、同図に破線で示すように、図2(A)に示した電子部品EC1を幅及び高さの面の方向に拘わらずに長さ向きで収容できる。   A through hole 13b-1 shown in FIG. 4B is a modification of the through hole 13b shown in FIG. The through-hole 13b-1 has a width Wg and a depth Dg that are slightly larger than the end face diagonal dimension D1 of the electronic component EC1 shown in FIG. 2A and smaller than the length L1. . Also in this case, since the through hole 13b-1 penetrates the right plate 13-1 in the left-right direction, the depth Dg of the through hole 13b-1 is defined by the thickness of the right plate 13-1. . That is, the through-hole 13b-1 shown in FIG. 4B has the electronic component EC1 shown in FIG. 2A regardless of the direction of the width and height as shown by the broken line in FIG. Can be accommodated in the length direction.

図4(C)に示した貫通孔13b-2は、図2(B)に示した電子部品EC2を供給対象とする場合のものである。この貫通孔13b-2は、図2(B)に示した電子部品EC2の高さH2よりも僅かに大きく、且つ、幅W2よりも小さな幅Dgと、図2(B)に示した電子部品EC2の幅W2よりも僅かに大きな深さDgとを有している。この場合も、貫通孔13b-2は右板13-2を左右方向に貫通するものであるため、右板13-2の厚さによって該貫通孔13b-2の深さDgが規定されている。つまり、図4(C)に示した貫通孔13b-2は、図2(B)に示した電子部品EC2を幅及び高さの面が略揃った長さ向きで収容できる。   The through hole 13b-2 shown in FIG. 4C is for the case where the electronic component EC2 shown in FIG. The through hole 13b-2 is slightly larger than the height H2 of the electronic component EC2 shown in FIG. 2B and smaller than the width W2, and the electronic component shown in FIG. 2B. The depth Dg is slightly larger than the width W2 of EC2. Also in this case, since the through hole 13b-2 penetrates the right plate 13-2 in the left-right direction, the depth Dg of the through hole 13b-2 is defined by the thickness of the right plate 13-2. . That is, the through hole 13b-2 shown in FIG. 4C can accommodate the electronic component EC2 shown in FIG. 2B in a length direction in which the surfaces of the width and the height are substantially aligned.

図4(D)に示した貫通孔13b-3は、図2(C)に示した電子部品EC3を供給対象とする場合のものである。この貫通孔13bは、図2(C)に示した電子部品EC3の直径R3よりも僅かに大きく、且つ、長さL3よりも小さな幅Wg及び深さDgを有している。この場合も、貫通孔13b-3は右板13-3を左右方向に貫通するものであるため、右板13-3の厚さによって該貫通孔13b-3の深さDgが規定されている。つまり、図4(D)に示した貫通孔13b-3は、図2(C)に示した電子部品EC3を長さ向きで収容できる。   The through-hole 13b-3 shown in FIG. 4D is for the case where the electronic component EC3 shown in FIG. The through hole 13b has a width Wg and a depth Dg that are slightly larger than the diameter R3 of the electronic component EC3 shown in FIG. 2C and smaller than the length L3. Also in this case, since the through hole 13b-3 penetrates the right plate 13-3 in the left-right direction, the depth Dg of the through hole 13b-3 is defined by the thickness of the right plate 13-3. . That is, the through hole 13b-3 illustrated in FIG. 4D can accommodate the electronic component EC3 illustrated in FIG.

図1に示したケース10を組み立てる際には、まず、図5に示すように、図3(C)に示した右板13の左面に図3(B)に示した中央板12を重ね合わせ、右板13の各ネジ挿通孔13aに止めネジFSを差し込んで、該各止めネジを中央板12のネジ穴12aにねじ込んで両者を結合する。そして、中央板12の凹部12b5に取込口形成部材15を嵌め込み、右板13のネジ挿通孔13dに止めネジFSを差し込んで、該止めネジFSを取込口形成部材15のネジ穴15cにねじ込んで両者を結合する。因みに、取込口形成部材15は、金属またはプラスチックから成り、中央板12の凹部12b5の内形に合致した外形を有すると共に、円弧面15aの分だけ幅が狭くなった狭幅部分15bを有している。また、取込口形成部材15の厚さは中央板12の厚さと一致している。さらに、円弧面15aの曲率半径は貫通孔13bの外側円弧の曲率半径よりも大きく、該曲率半径は中央板12の第1円弧面12b1の曲率半径と同一か或いは僅かに大きい。そして、中央板12の左面に図3(A)に示した左板11を重ね合わせ、左板11の各ネジ挿通孔11aに止めネジFSを差し込んで、該各止めネジを中央板12のネジ穴12aにねじ込んで両者を結合する。説明を省略するが、前記以外の方法によってケース10を組み立てることも可能である。   When assembling the case 10 shown in FIG. 1, first, as shown in FIG. 5, the center plate 12 shown in FIG. 3B is superimposed on the left surface of the right plate 13 shown in FIG. The set screw FS is inserted into each screw insertion hole 13 a of the right plate 13, and the set screw is screwed into the screw hole 12 a of the center plate 12 to couple them together. Then, the intake port forming member 15 is fitted into the recess 12b5 of the central plate 12, the set screw FS is inserted into the screw insertion hole 13d of the right plate 13, and the set screw FS is inserted into the screw hole 15c of the intake port forming member 15. Screw them together to join them together. Incidentally, the intake port forming member 15 is made of metal or plastic, has an outer shape that matches the inner shape of the concave portion 12b5 of the central plate 12, and has a narrow width portion 15b that is narrowed by the arc surface 15a. doing. Further, the thickness of the intake port forming member 15 matches the thickness of the central plate 12. Furthermore, the radius of curvature of the arc surface 15a is larger than the radius of curvature of the outer arc of the through hole 13b, and the radius of curvature is the same as or slightly larger than the radius of curvature of the first arc surface 12b1 of the center plate 12. Then, the left plate 11 shown in FIG. 3A is overlaid on the left surface of the center plate 12, the set screws FS are inserted into the screw insertion holes 11 a of the left plate 11, and the set screws are screwed into the screws of the center plate 12. Screw them into the holes 12a to join them together. Although not described, the case 10 can be assembled by a method other than the above.

この組み立てによって、右板13の貫通孔13bの左側開口の上部が、中央板12の貫通孔非形成部分と取込口形成部材15の狭幅部分15bとによって閉塞される。また、右板13の取出口形成凹部13cの左側開口が、中央板12の貫通孔非形成部分によって閉塞される。さらに、中央板12の貫通孔12bの右側開口が右板13によって閉塞されると共に、該貫通孔12bの左側開口が左板11によって閉塞される。つまり、ケース10内には、貫通孔12bの第1円弧面12b1,第2円弧面12b2,第1平面12b3及び第2平面12b4と、取込口形成部材15の円弧面15a及び狭幅部分15bの後面並びに下面と、左板11の右面の一部と、右板13の左面の一部とによって囲まれた、左面視輪郭が略半円形の収納室16(図6,図9及び図10参照)が画成される。   By this assembly, the upper portion of the left opening of the through hole 13b of the right plate 13 is closed by the through hole non-forming portion of the central plate 12 and the narrow portion 15b of the intake port forming member 15. Further, the left opening of the outlet forming recess 13 c of the right plate 13 is blocked by the through hole non-forming portion of the central plate 12. Further, the right opening of the through hole 12 b of the central plate 12 is closed by the right plate 13, and the left opening of the through hole 12 b is closed by the left plate 11. That is, in the case 10, the first arc surface 12b1, the second arc surface 12b2, the first plane 12b3 and the second plane 12b4 of the through hole 12b, the arc surface 15a and the narrow portion 15b of the intake port forming member 15 are provided. A storage chamber 16 (see FIGS. 6, 9, and 10) that is surrounded by the rear and lower surfaces, a part of the right side of the left plate 11, and a part of the left side of the right plate 13 and has a substantially semicircular outline when viewed from the left Reference) is defined.

支軸20は、図10に示すように、軸本体20aと、該軸本体20aの左端に設けられた鍔部20bとを有しており、金属またはプラスチックから形成されている。この支軸20は、鍔部20bに設けられた複数(図中は4個)のネジ挿通孔(図示省略)と右板13のネジ挿通孔13eに止めネジ(図示省略)を差し込んで、該各止めネジを中央板12のネジ穴12cにねじ込んで三者を結合することによって、右板13の右面中央に取り付けられている。取り付け後の支軸20の軸本体20aの中心は右板13の貫通孔13bの外側円弧及び内側円弧の曲率中心と一致している。   As shown in FIG. 10, the support shaft 20 has a shaft body 20a and a flange 20b provided at the left end of the shaft body 20a, and is made of metal or plastic. The support shaft 20 includes a plurality of (four in the figure) screw insertion holes (not shown) provided in the flange portion 20b and a screw insertion hole 13e of the right plate 13 with set screws (not shown). Each set screw is screwed into the screw hole 12c of the center plate 12 to connect the three members, so that the right plate 13 is attached to the center of the right surface. The center of the shaft main body 20a of the support shaft 20 after attachment coincides with the center of curvature of the outer arc and the inner arc of the through hole 13b of the right plate 13.

軸受30は、ラジアルタイプのボールベアリングから成り、図10に示すように、支軸20の軸本体20aにその内輪を嵌め込んで取り付けられている。   The bearing 30 is composed of a radial type ball bearing, and is attached by fitting its inner ring into the shaft body 20a of the support shaft 20, as shown in FIG.

ロータ40は、図7(A)〜図7(C)に示すように、円筒部40aと、該円筒部40aの左端に設けられた鍔部40bと、該鍔部40bの左面外周に設けられた環状張出部40cとを有しており、永久磁石の磁力が透過可能なアルミニウム等の金属またはプラスチックから形成されている。また、環状張出部40cに対応する鍔部40bの右面には、円柱形を成す計8個の永久磁石40dが、ロータ40(円筒部40a)の中心と同心の仮想円VC上に各々の磁力中心が位置するように、且つ、N極面とS極面の一方が鍔部40bの右面で露出するように45度間隔で埋設されている。同図から分かるように、各永久磁石40dは環状張出部40cに対応する鍔部40bの右面に形成された所定深さの穴(符号無し)に埋め込んで取り付けられているため、各永久磁石40dは環状張出部40の左面において露出していない。また、環状張出部40cの左面40c1は、円筒部40aの中心線と直交する平坦な面となっている。因みに、各永久磁石40dは円柱形を成しその両端面に磁極を持つものであるため、その磁力中心(磁力線が最も密集する箇所)は円柱形の端面中心と一致している。   As shown in FIGS. 7A to 7C, the rotor 40 is provided on a cylindrical portion 40a, a flange portion 40b provided at the left end of the cylindrical portion 40a, and a left outer surface of the flange portion 40b. And is formed of a metal such as aluminum or plastic that can transmit the magnetic force of the permanent magnet. In addition, on the right surface of the flange portion 40b corresponding to the annular projecting portion 40c, a total of eight permanent magnets 40d having a columnar shape are placed on virtual circles VC concentric with the center of the rotor 40 (cylindrical portion 40a). It is embedded at intervals of 45 degrees so that the center of magnetic force is located and one of the N pole face and the S pole face is exposed on the right face of the flange 40b. As can be seen from the figure, each permanent magnet 40d is embedded in a hole (not indicated) having a predetermined depth formed in the right surface of the flange 40b corresponding to the annular projecting portion 40c. 40 d is not exposed on the left surface of the annular projecting portion 40. The left surface 40c1 of the annular projecting portion 40c is a flat surface that is orthogonal to the center line of the cylindrical portion 40a. Incidentally, since each permanent magnet 40d has a cylindrical shape and has magnetic poles at both end faces thereof, the magnetic force center (the place where the magnetic lines of force are most densely aligned) coincides with the cylindrical end face center.

このロータ40は、図10に示すように、円筒部40aの内孔40a1を軸受30の外輪に嵌め込んで取り付けられている。この取り付け状態では、各永久磁石40dの磁力中心が位置する仮想円VCの中心は右板13の貫通孔13bの曲率中心と一致しており、ロータ40は支軸30の軸本体20aを中心として回転することでき、該ロータ40の回転に伴って各永久磁石40dは仮想円VCに相当する円軌道で貫通孔13bに沿って移動することができる。また、環状張出部40cの左面40c1は右板13の右面と略平行に向き合っており、該左面40c1は貫通孔13bの右側開口を接触状態または非接触状態で覆っている。さらに、各永久磁石40dの左面(N極面とS極面の他方)も右板13の右面と略平行に向き合っており、各々の磁力は収納室16内に及ぶ。   As shown in FIG. 10, the rotor 40 is attached by fitting the inner hole 40 a 1 of the cylindrical portion 40 a into the outer ring of the bearing 30. In this attached state, the center of the virtual circle VC where the magnetic center of each permanent magnet 40d is located coincides with the center of curvature of the through hole 13b of the right plate 13, and the rotor 40 is centered on the shaft body 20a of the support shaft 30. Each permanent magnet 40d can move along the through hole 13b in a circular orbit corresponding to the virtual circle VC as the rotor 40 rotates. Further, the left surface 40c1 of the annular projecting portion 40c faces the right surface of the right plate 13 substantially in parallel, and the left surface 40c1 covers the right opening of the through hole 13b in a contact state or a non-contact state. Furthermore, the left surface (the other of the N-pole surface and the S-pole surface) of each permanent magnet 40 d faces the right surface of the right plate 13 substantially in parallel, and each magnetic force reaches the inside of the storage chamber 16.

また、この取り付け状態では、図8〜図10に示すように、右板13の貫通孔13bの右側開口の全てが環状張出部40cの左面40c1によって覆われることに加え、取出口形成凹部13cの右側開口が該環状張出部40cの左面40c1によって覆われる。つまり、ケース10内には、貫通孔13bの右側開口のみが覆われた円弧状の案内溝17が約150度の角度範囲で形成され、また、貫通孔13bの右側開口が覆われ、且つ、左側開口が閉塞された円弧状の供給通路18が案内溝17に続いて約30度の角度範囲で形成され、さらに、該供給通路18の後端にその入口となる取込口18aが形成され、さらに、取出口形成凹部13cの右側開口が覆われ、且つ、左側開口が閉塞された上面開口の取出口19が供給通路18の前端に形成される。このようにして形成された案内溝17は、収納室16内の電子部品EC1を長さ向きで収容して同向きのまま移動させることができる。また、供給通路18は、案内溝17と同一の断面形を有し、且つ、案内溝17内に収容された長さ向きの電子部品EC1をその取込口18aを通じて取り込んで同向きのまま移動させることができる。さらに、上面開口の取出口19は、ストッパ棒14の後面に当接した先頭の電子部品EC1を外部に取り出すことができる。   Further, in this attached state, as shown in FIGS. 8 to 10, in addition to the entire right opening of the through hole 13b of the right plate 13 being covered by the left surface 40c1 of the annular projecting portion 40c, the outlet forming recess 13c. Is opened by the left surface 40c1 of the annular projecting portion 40c. That is, an arcuate guide groove 17 in which only the right opening of the through hole 13b is covered is formed in the case 10 in an angle range of about 150 degrees, the right opening of the through hole 13b is covered, and An arc-shaped supply passage 18 whose left opening is closed is formed in an angle range of about 30 degrees following the guide groove 17, and an intake port 18 a is formed at the rear end of the supply passage 18. In addition, an upper surface opening outlet 19 is formed at the front end of the supply passage 18 so that the right opening of the outlet forming recess 13 c is covered and the left opening is closed. The guide groove 17 formed in this way can accommodate the electronic component EC1 in the storage chamber 16 in the length direction and move it in the same direction. Further, the supply passage 18 has the same cross-sectional shape as the guide groove 17, and takes the electronic component EC1 in the length accommodated in the guide groove 17 through the intake port 18a and moves in the same direction. Can be made. Further, the take-out port 19 in the upper surface opening can take out the leading electronic component EC1 in contact with the rear surface of the stopper bar 14 to the outside.

環状張出部40cの左面40c1による貫通孔13bの右側開口の覆い方には、環状張出部40cの左面40c1が貫通孔13bの右側開口を接触状態で覆う形態(図11参照)と、環状張出部40cの左面40c1が貫通孔13bの右側開口を該右側開口から電子部品EC1が抜け落ちない隙間SLを介して非接触状態で覆う形態(図12参照)の何れかを採用することができる。ロータ40は回転するものであるため、図11に示す接触状態の場合も、環状張出部40cの左面40c1と右板13の右面との間にはロータ40の回転を許容するのに必要な最小限の隙間CLは存在する。また、図12に示す非接触状態の場合における環状張出部40cの左面40c1と右板13の右面との隙間CLは電子部品EC1の幅W1及び高さH1よりも小さければ良いが、案内溝17内に長さ向きで収容された電子部品EC1を該案内溝17に沿って移動させることを考えれば、該隙間CLは電子部品EC1の幅W1及び高さH1の1/2以下とすることが好ましい。さらに、図12に示す非接触状態の場合には、隙間CLを案内溝17の深さの一部として利用できるので、貫通孔13bの深さDgを隙間CL分だけ小さくすること、即ち、右板13の厚さを隙間CL分だけ小さくすることも可能である。   For the method of covering the right opening of the through hole 13b with the left surface 40c1 of the annular overhanging portion 40c, the left surface 40c1 of the annular overhanging portion 40c covers the right opening of the through hole 13b in contact (see FIG. 11), Any form (see FIG. 12) in which the left surface 40c1 of the overhanging portion 40c covers the right opening of the through-hole 13b in a non-contact state through the gap SL where the electronic component EC1 does not fall out from the right opening can be employed. . Since the rotor 40 rotates, even in the contact state shown in FIG. 11, it is necessary to allow the rotation of the rotor 40 between the left surface 40c1 of the annular projecting portion 40c and the right surface of the right plate 13. There is a minimum gap CL. Further, the clearance CL between the left surface 40c1 of the annular projecting portion 40c and the right surface of the right plate 13 in the non-contact state shown in FIG. 12 may be smaller than the width W1 and the height H1 of the electronic component EC1, but the guide groove Considering that the electronic component EC1 accommodated in the length direction in 17 is moved along the guide groove 17, the gap CL is set to be 1/2 or less of the width W1 and the height H1 of the electronic component EC1. Is preferred. Further, in the non-contact state shown in FIG. 12, since the gap CL can be used as a part of the depth of the guide groove 17, the depth Dg of the through hole 13b is reduced by the gap CL, that is, the right It is also possible to reduce the thickness of the plate 13 by the gap CL.

また、図11及び図12から分かるように、ロータ40の回転時における永久磁石40dと案内溝17との位置関係は、案内溝17と向き合う永久磁石40dの磁力中心が該案内溝17内に向くように、好ましくは永久磁石40dの磁力中心が該案内溝17の幅Wgの中心と一致するように設定されている。勿論、永久磁石40dと案内溝17との位置関係は、永久磁石40dの磁力中心が該案内溝17内に向いていれば、該永久磁石40dの磁力中心が案内溝17の幅Wgの中心から内側または外側に多少ずれるように設定されていても良い。因みに、この位置設定は、各永久磁石40dの磁力中心が位置する仮想円VCの曲率半径を変更することによって行える他、右板13の案内溝17の外周縁及び内周縁の曲率半径を変更することによって行うことができる。   11 and 12, the positional relationship between the permanent magnet 40d and the guide groove 17 during rotation of the rotor 40 is such that the magnetic center of the permanent magnet 40d facing the guide groove 17 faces into the guide groove 17. As described above, the center of magnetic force of the permanent magnet 40d is preferably set to coincide with the center of the width Wg of the guide groove 17. Of course, the positional relationship between the permanent magnet 40d and the guide groove 17 is that if the magnetic center of the permanent magnet 40d is directed into the guide groove 17, the magnetic center of the permanent magnet 40d is from the center of the width Wg of the guide groove 17. You may set so that it may shift | deviate a little inside or outside. Incidentally, this position setting can be performed by changing the radius of curvature of the virtual circle VC where the magnetic center of each permanent magnet 40d is located, and also changing the radius of curvature of the outer peripheral edge and inner peripheral edge of the guide groove 17 of the right plate 13. Can be done.

さらに、図9から分かるように、ロータ40の回転時における永久磁石40dと収納室16との位置関係は、案内溝17と向き合う永久磁石40dの面が収納室16の右面における案内溝17及びその両側に対向するように、好ましくは案内溝17と向き合う永久磁石40dの面の全てが収納室16の右面における案内溝17及びその両側に対向するように設定されている。勿論、永久磁石40dと収納室16との位置関係は、案内溝17と向き合う永久磁石40dの面が収納室16の右面における案内溝17及びその両側に対向するようになっていれば、案内溝17と向き合う永久磁石40dの面の外縁部分を除く部分が収納室16の右面における案内溝17及びその両側に対向するように設定されていても良い。因みに、この位置設定は、中央板12の貫通孔12bの第1円弧面12b1の曲率半径を変更することによって行える他、各永久磁石40dの磁力中心が位置する仮想円VCの曲率半径を変更し、且つ、右板13の貫通孔13bの外側円弧及び内側円弧の曲率半径を変更することによって行うことができる。   Furthermore, as can be seen from FIG. 9, the positional relationship between the permanent magnet 40d and the storage chamber 16 when the rotor 40 rotates is such that the surface of the permanent magnet 40d facing the guide groove 17 is the guide groove 17 on the right side of the storage chamber 16 and Preferably, the entire surface of the permanent magnet 40d facing the guide groove 17 is set to face the guide groove 17 on the right side of the storage chamber 16 and both sides thereof so as to face both sides. Of course, the positional relationship between the permanent magnet 40d and the storage chamber 16 is such that the surface of the permanent magnet 40d facing the guide groove 17 faces the guide groove 17 on the right side of the storage chamber 16 and both sides thereof. A portion of the surface of the permanent magnet 40 d facing the surface 17 except for the outer edge portion may be set to face the guide groove 17 on the right surface of the storage chamber 16 and both sides thereof. Incidentally, this position setting can be performed by changing the curvature radius of the first circular arc surface 12b1 of the through hole 12b of the central plate 12, and also changing the curvature radius of the virtual circle VC where the magnetic center of each permanent magnet 40d is located. And it can carry out by changing the curvature radius of the outer side arc of the through-hole 13b of the right board 13, and an inner side arc.

図示を省略したが、右板13の貫通孔13b(図4(A)参照)を図4(B)〜図4(D)に示した貫通孔13b-1〜13b-3に置換した場合も、該各貫通孔13b-1〜13b-3に対応した案内溝17,供給通路18,取込口18a及び取出口19を前記同様に形成することができる。また、右板13の貫通孔13b(図4(A)参照)を図4(B)〜図4(D)に示した貫通孔13b-1〜13b-3に置換した場合も、前記と同様の位置関係が設定される。   Although not shown, the through hole 13b (see FIG. 4A) of the right plate 13 may be replaced with the through holes 13b-1 to 13b-3 shown in FIGS. 4B to 4D. The guide groove 17, the supply passage 18, the inlet 18a, and the outlet 19 corresponding to the through holes 13b-1 to 13b-3 can be formed in the same manner as described above. Further, when the through hole 13b (see FIG. 4A) of the right plate 13 is replaced with the through holes 13b-1 to 13b-3 shown in FIGS. 4B to 4D, the same as described above. Is set.

ロータ駆動機構は、ロータ40を所望の方向に回転させ、且つ、停止させるためのものであり、基本的には、モータと、モータ軸に取り付けられた駆動歯車と、モータ制御回路とを有している。ロータ40の外周面等に歯車の代用部分を形成するか、或いは、ロータ40に別部品の歯車を固着し、これら歯車に駆動歯車を噛合させればモータ動作によってロータ40を所望の方向に回転させることができ、且つ、モータ動作の停止によってロータ40の回転を停止させることができる。   The rotor drive mechanism is for rotating and stopping the rotor 40 in a desired direction, and basically includes a motor, a drive gear attached to the motor shaft, and a motor control circuit. ing. If a substitute part of a gear is formed on the outer peripheral surface of the rotor 40, or another gear is fixed to the rotor 40 and the drive gear is engaged with the gear, the rotor 40 is rotated in a desired direction by motor operation. The rotation of the rotor 40 can be stopped by stopping the motor operation.

次に、図13〜図16を引用して、図1に示したバルクフィーダによって電子部品EC1を供給する動作について説明する。   Next, an operation of supplying the electronic component EC1 by the bulk feeder shown in FIG. 1 will be described with reference to FIGS.

部品供給に際しては、図13に示すように、ケース10の収納室16内に多数の電子部品EC1をバラ状態で収納する。この収納は、ケース10に設けられた開閉蓋付きの補充口(図示省略)を通じて行う。電子部品EC1の収納量が多すぎると取込口18aへの電子部品EC1の流入確率が低下するため、電子部品EC1の最大収納レベルは収納室16の高さ寸法の約1/2とすることが好ましい。長さが1.0mm前後の電子部品EC1であれば、図1と同一サイズのケースを形成し、且つ、最大収納レベルを収納室16の高さ寸法の約1/2としても、数万個程度の電子部品EC1を収納することができる。   When supplying the components, as shown in FIG. 13, a large number of electronic components EC1 are stored in the storage chamber 16 of the case 10 in a loose state. This storage is performed through a replenishing port (not shown) with an open / close lid provided in the case 10. If the storage amount of the electronic component EC1 is too large, the probability of the electronic component EC1 flowing into the intake port 18a is lowered, so that the maximum storage level of the electronic component EC1 is about 1/2 of the height dimension of the storage chamber 16. Is preferred. If the electronic component EC1 has a length of around 1.0 mm, a case of the same size as that of FIG. 1 is formed, and even if the maximum storage level is about ½ of the height of the storage chamber 16, several tens of thousands About the electronic component EC1 can be accommodated.

収納室16内に電子部品EC1を収納した後は、図13に示すように、ロータ40を反時計回り方向に数回転させて供給通路18及び取出口19への電子部品EC1の初期供給(所謂、玉詰め)を行う。   After the electronic component EC1 is stored in the storage chamber 16, as shown in FIG. 13, the rotor 40 is rotated several times counterclockwise to initially supply the electronic component EC1 to the supply passage 18 and the outlet 19 (so-called so-called). , Stuffing).

ロータ40の回転に伴って円軌道で移動する各永久磁石40dのうち、取込口18aの右側を通過して下方に移動する永久磁石40dの左側には、図13に示すように、収納室16が存しないため、該永久磁石40dの磁力が収納室16内の電子部品EC1に及ぶことが防止される。つまり、永久磁石40dが取込口18aの右側を通過して下方に移動する過程では、該永久磁石40dの磁力によって収納室16内の電子部品EC1に不要な変動(取込口18aへの部品流入に関与しない変動)が生じることは無い。   Of each permanent magnet 40d that moves in a circular orbit along with the rotation of the rotor 40, on the left side of the permanent magnet 40d that passes through the right side of the intake port 18a and moves downward, as shown in FIG. Since 16 does not exist, the magnetic force of the permanent magnet 40d is prevented from reaching the electronic component EC1 in the storage chamber 16. That is, in the process in which the permanent magnet 40d moves downward through the right side of the intake port 18a, unnecessary fluctuations in the electronic component EC1 in the storage chamber 16 due to the magnetic force of the permanent magnet 40d (components to the intake port 18a). Fluctuations not related to inflow) do not occur.

また、ロータ40の回転に伴って円軌道で移動する各永久磁石40dのうち、収納室16の下部右側を通過して上方に移動する永久磁石40dの左側には該永久磁石40dの磁力透過を阻害するものが無いため、該永久磁石40dの磁力は収納室16内の電子部品EC1に及ぶ。つまり、永久磁石40dが収納室16の下部右側を通過して上方に移動する過程では、図13に示すように、該永久磁石40dの磁力によって複数の電子部品EC1が案内溝17方向(貫通孔13b方向)に吸引され、吸引された複数の電子部品EC1は永久磁石40dの上方移動に伴って案内溝17に沿って上方に移動する。   Of the permanent magnets 40d that move in a circular orbit along with the rotation of the rotor 40, the permanent magnet 40d passes through the lower right side of the storage chamber 16 and moves upward on the left side of the permanent magnet 40d. Since there is nothing to block, the magnetic force of the permanent magnet 40d reaches the electronic component EC1 in the storage chamber 16. That is, in the process in which the permanent magnet 40d moves upward through the lower right side of the storage chamber 16, as shown in FIG. 13, the plurality of electronic components EC1 are moved in the direction of the guide groove 17 (through hole) by the magnetic force of the permanent magnet 40d. The electronic components EC1 sucked in the direction 13b) move upward along the guide groove 17 as the permanent magnet 40d moves upward.

先に述べたように、ロータ40の回転時における永久磁石40dと案内溝17との位置関係は案内溝17と向き合う永久磁石40dの磁力中心が該案内溝17内に向くように設定され、且つ、ロータ40の回転時における永久磁石40dと収納室16との位置関係は案内溝17と向き合う永久磁石40dの面が収納室16の右面における案内溝17及びその両側に対向するように設定されている。そのため、図13に示すように、永久磁石40dの磁力によって案内溝17方向に吸引された複数の電子部品EC1は、案内溝17と向き合う永久磁石40dの面のうちの対向面を覆うような輪郭で吸引されると共に、該複数の電子部品EC1には案内溝17内に引き込む力が強く作用して幾つかの電子部品EC1が案内溝17内に収容される。また、案内溝17は貫通孔13bの右側開口をロータ40の環状張出部40cの左面40c1で覆うことによって形成されたものであるので、案内溝17内に収容された電子部品EC1は環状張出部40cの左面40c1に吸着される。   As described above, the positional relationship between the permanent magnet 40d and the guide groove 17 during rotation of the rotor 40 is set so that the magnetic center of the permanent magnet 40d facing the guide groove 17 faces the guide groove 17, and The positional relationship between the permanent magnet 40d and the storage chamber 16 during rotation of the rotor 40 is set so that the surface of the permanent magnet 40d facing the guide groove 17 faces the guide groove 17 on the right side of the storage chamber 16 and both sides thereof. Yes. Therefore, as shown in FIG. 13, the plurality of electronic components EC <b> 1 attracted in the direction of the guide groove 17 by the magnetic force of the permanent magnet 40 d covers an opposing surface among the surfaces of the permanent magnet 40 d facing the guide groove 17. At the same time, the plurality of electronic components EC1 are strongly attracted by the pulling force into the guide groove 17, and several electronic components EC1 are accommodated in the guide groove 17. Since the guide groove 17 is formed by covering the right opening of the through hole 13b with the left surface 40c1 of the annular projecting portion 40c of the rotor 40, the electronic component EC1 accommodated in the guide groove 17 is annularly stretched. It is attracted to the left surface 40c1 of the protruding portion 40c.

つまり、永久磁石40dの磁力によってより多くの電子部品EC1を案内溝17方向に吸引することができると共に、吸引された複数の電子部品EC1を高確率で案内溝17内に収容することができ、これにより後述する取込口18aへの電子部品EC1の流入確率を高めることができる。因みに、案内溝17内に収容される電子部品EC1の向きは、長さ向き(図14参照)と長さ向きと90度異なる向き(図15参照)との2パターンとなり、案内溝17内に収容されない電子部品EC1の向きはランダム(向きがバラバラであることを意味する)となる。   That is, more electronic components EC1 can be attracted toward the guide groove 17 by the magnetic force of the permanent magnet 40d, and a plurality of attracted electronic components EC1 can be accommodated in the guide groove 17 with high probability. Thereby, the inflow probability of the electronic component EC1 to the intake port 18a described later can be increased. Incidentally, the direction of the electronic component EC1 accommodated in the guide groove 17 has two patterns, ie, a length direction (see FIG. 14) and a direction different from the length direction by 90 degrees (see FIG. 15). The direction of the electronic component EC1 that is not accommodated is random (meaning that the directions are different).

案内溝17内に収容された電子部品EC1を含む複数の電子部品EC1は、永久磁石40dの上方移動に伴って案内溝17に沿ってさらに上方に移動して取込口18aに達する。この過程では、案内溝17内に収容された電子部品EC1は環状張出部40cの左面40c1に吸着されているため、該電子部品EC1は環状張出部40cの左面40c1に吸着されたままの状態を維持しつつ貫通孔13bに沿ってさらに上方に移動することになる。   The plurality of electronic components EC1 including the electronic component EC1 accommodated in the guide groove 17 moves further upward along the guide groove 17 along with the upward movement of the permanent magnet 40d and reaches the intake port 18a. In this process, since the electronic component EC1 accommodated in the guide groove 17 is adsorbed on the left surface 40c1 of the annular projecting portion 40c, the electronic component EC1 remains adsorbed on the left surface 40c1 of the annular projecting portion 40c. It will move further along the through hole 13b while maintaining the state.

つまり、案内溝17内に収容された電子部品EC1を含む複数の電子部品EC1のうち、案内溝17内に収容されている電子部品EC1をその収容形態を崩すことなく確実に上方に移動させることができ、これにより後述する取込口18aへの電子部品EC1の流入確率を高めることができる。   That is, among the plurality of electronic components EC1 including the electronic component EC1 accommodated in the guide groove 17, the electronic component EC1 accommodated in the guide groove 17 is reliably moved upward without breaking the accommodation form. As a result, the probability of inflow of the electronic component EC1 into the intake port 18a described later can be increased.

案内溝17内に収容された電子部品EC1を含む複数の電子部品EC1が上方に移動して取込口18aに達したとき、案内溝17内に収容された幾つかの電子部品EC1のうちの最も前側が「案内溝17内に長さ向きで収容された電子部品EC1」であるときには、図14に示すように、該電子部品EC1は同向きのまま取込口18aに流入する。また、「案内溝17内に長さ向きで収容された電子部品EC1」の後側に存する「案内溝17内に長さ向きと90度異なる向きで収容された電子部品EC1」と「案内溝17内に収容されない電子部品EC1」は、図15に示すように、取込口18aの左側に存する取込口形成部材15の狭幅部分15bの後面に当接し、取込口18aの右側を永久磁石40dが通り過ぎて磁力が及ばなくなったところで下方に落下する。つまり、「案内溝17内に長さ向きと90度異なる向きで収容された電子部品EC1」と「案内溝17内に収容されない電子部品EC1」は、「案内溝17内に長さ向きで収容された電子部品EC1」が取込口18aに流入することを妨げない。   When a plurality of electronic components EC1 including the electronic component EC1 accommodated in the guide groove 17 move upward and reach the intake port 18a, among the several electronic components EC1 accommodated in the guide groove 17 When the foremost side is “electronic component EC1 housed in the guide groove 17 in the length direction”, as shown in FIG. 14, the electronic component EC1 flows into the intake port 18a in the same direction. Further, “the electronic component EC1 accommodated in the guide groove 17 in a direction different from the length direction by 90 degrees” and “the guide groove” located behind the “electronic component EC1 accommodated in the length direction in the guide groove 17”. As shown in FIG. 15, the electronic component EC1 not accommodated in 17 is in contact with the rear surface of the narrow portion 15b of the intake port forming member 15 on the left side of the intake port 18a, and the right side of the intake port 18a is When the permanent magnet 40d passes and the magnetic force does not reach, it falls downward. That is, the “electronic component EC1 accommodated in the guide groove 17 in a direction different from the length direction by 90 degrees” and the “electronic component EC1 not accommodated in the guide groove 17” are accommodated in the guide groove 17 in the length direction. It does not prevent the electronic component EC1 "from flowing into the intake port 18a.

一方、案内溝17内に収容された幾つかの電子部品EC1のうちの最も前側が「案内溝17内に長さ向きと90度異なる向きで収容された電子部品EC1」であるときには、その後側に「案内溝17内に長さ向きで収容された電子部品EC1」が存在しても該電子部品EC1の取込口18aへの流入は「案内溝17内に長さ向きと90度異なる向きで収容された電子部品EC1」によって基本的に阻止される。また、「案内溝17内に長さ向きと90度異なる向きで収容された電子部品EC1」と「案内溝17内に収容されない電子部品EC1」は、図15に示すように、取込口18aの左側に存する取込口形成部材15の狭幅部分15bの後面に当接し、取込口18aの右側を永久磁石40dが通り過ぎて磁力が及ばなくなったところで下方に落下する。但し、「案内溝17内に長さ向きと90度異なる向きで収容された電子部品EC1」の後側に「案内溝17内に長さ向きで収容された電子部品EC1」が存在し、且つ、「案内溝17内に長さ向きと90度異なる向きで収容された電子部品EC1」が落下する際に「案内溝17内に長さ向きで収容された電子部品EC1」の向きに変化が生じないときには、図14に示すように、該電子部品EC1は取込口18aに流入する。   On the other hand, when the foremost side of several electronic components EC1 accommodated in the guide groove 17 is “the electronic component EC1 accommodated in the guide groove 17 in a direction different from the length direction by 90 degrees”, the rear side Even if the “electronic component EC1 accommodated in the length direction in the guide groove 17” exists, the flow of the electronic component EC1 into the intake port 18a is “a direction different from the length direction in the guide groove 17 by 90 degrees”. Is basically blocked by the electronic component EC1 ". Further, as shown in FIG. 15, the “electronic component EC1 accommodated in the guide groove 17 in a direction different from the length direction by 90 degrees” and the “electronic component EC1 not accommodated in the guide groove 17” include the intake port 18a. It comes into contact with the rear surface of the narrow portion 15b of the intake port forming member 15 on the left side, and falls downward when the permanent magnet 40d passes through the right side of the intake port 18a and the magnetic force does not reach. However, “the electronic component EC1 accommodated in the guide groove 17 in the length direction” exists behind the “electronic component EC1 accommodated in the guide groove 17 in a direction different from the length direction by 90 degrees”, and When the “electronic component EC1 accommodated in the guide groove 17 in a direction different from the length direction by 90 degrees” falls, the direction of the “electronic component EC1 accommodated in the length direction in the guide groove 17” changes. When it does not occur, as shown in FIG. 14, the electronic component EC1 flows into the intake port 18a.

この流入過程でも、案内溝17内に収容された電子部品EC1は環状張出部40cの左面40c1に吸着されているので、「案内溝17内に長さ向きで収容された電子部品EC1」は環状張出部40cの左面40c1に吸着されたままの状態を維持しつつ取込口18aに流入することになる。つまり、案内溝17内に収容された電子部品EC1を含む複数の電子部品EC1のうち、「案内溝17内に長さ向きで収容された電子部品EC1」を確実に取込口18aに流入させることができる。   Even in this inflow process, since the electronic component EC1 accommodated in the guide groove 17 is adsorbed to the left surface 40c1 of the annular projecting portion 40c, the “electronic component EC1 accommodated in the length direction in the guide groove 17” is It will flow into the intake port 18a while maintaining the state of being adsorbed to the left surface 40c1 of the annular projecting portion 40c. That is, among the plurality of electronic components EC1 including the electronic component EC1 accommodated in the guide groove 17, “the electronic component EC1 accommodated in the length direction in the guide groove 17” is surely caused to flow into the intake port 18a. be able to.

取込口18aに流入した電子部品EC1は、図16に示すように、永久磁石40dの上方移動に伴って供給通路18に沿って長さ向きのままさらに上方に移動し、その先端がストッパ棒14の後面に当接したところで停止して取出口19に供給される。この移動過程でも、供給通路18内に取り込まれた長さ向きの電子部品EC1は環状張出部40cの左面40c1に吸着されているので、該電子部品EC1は環状張出部40cの左面40c1に吸着されたままの状態を維持しつつ貫通孔13bに沿ってさらに上方に移動することになる。つまり、供給通路18内に取り込まれた長さ向きの電子部品EC1を確実に上方に移動させることができ、且つ、取出口19に供給することができる。   As shown in FIG. 16, the electronic component EC1 that has flowed into the intake port 18a moves further upward along the supply passage 18 along the supply passage 18 as the permanent magnet 40d moves upward, and the tip of the electronic component EC1 stops at the stopper bar. 14 stops at the position where it abuts against the rear surface, and is supplied to the outlet 19. Even in this moving process, the length-oriented electronic component EC1 taken into the supply passage 18 is adsorbed to the left surface 40c1 of the annular projecting portion 40c, and therefore the electronic component EC1 is attached to the left surface 40c1 of the annular projecting portion 40c. It will move further along the through-hole 13b while maintaining the adsorbed state. That is, the length-oriented electronic component EC1 taken into the supply passage 18 can be reliably moved upward and can be supplied to the take-out port 19.

前述の一連の作用はロータ40を数回転させる際に繰り返されるため、図16に示すように、ストッパ棒14の後面に当接した先頭の電子部品EC1の後側には複数の電子部品EC1が連なる。   Since the series of operations described above is repeated when the rotor 40 is rotated several times, as shown in FIG. 16, a plurality of electronic components EC1 are arranged on the rear side of the leading electronic component EC1 in contact with the rear surface of the stopper bar 14. It is a series.

ロータ40を反時計回り方向に数回転させて供給通路18及び取出口19への電子部品EC1の初期供給が終わった後は、図16に示すように、ロータ40の永久磁石40dが取出口19の右側を通り過ぎた位置(待機位置)で該ロータ40を停止させる。   After the initial supply of the electronic component EC1 to the supply passage 18 and the outlet 19 is completed by rotating the rotor 40 several times counterclockwise, the permanent magnet 40d of the rotor 40 is moved to the outlet 19 as shown in FIG. The rotor 40 is stopped at a position (standby position) that has passed through the right side.

図1に示したバルクフィーダからの電子部品EC1の取り出しは図16に示した待機位置で行われる。具体的には、マウンタ(電子部品搭載装置)の吸着ノズル(図示省略)を取出口19に向かって下降させて該取出口19に位置する先頭の電子部品EC1を吸着した後に、該吸着ノズルを上昇させることによって行われる。取出口19が円弧状の供給通路18の最上点に位置していることから、該取出口19に位置する先頭の電子部品EC1の後側に複数の電子部品EC1が連なっていても、該後続の電子部品EC1から先頭の電子部品EC1に対してその取り出しに支障を生じるような負荷(例えば押圧力)が加わることは無い。   The electronic component EC1 is taken out from the bulk feeder shown in FIG. 1 at the standby position shown in FIG. Specifically, the suction nozzle (not shown) of the mounter (electronic component mounting apparatus) is lowered toward the outlet 19 to suck the leading electronic component EC1 located at the outlet 19, and then the suction nozzle is moved. Done by raising. Since the take-out port 19 is located at the uppermost point of the arc-shaped supply passage 18, even if a plurality of electronic components EC 1 are connected to the rear side of the leading electronic component EC 1 located at the take-out port 19, There is no load (for example, pressing force) that causes a trouble in taking out the electronic component EC1 from the first electronic component EC1.

取出口19に位置する先頭の電子部品EC1が取り出された後は、待機位置にあるロータ40を反時計回り方向に所定角度、例えば45度や90度や135度や180度回転させて該ロータ40を再び前記待機位置で停止させる。因みに、電子部品EC1の取り出しは図示省略のセンサによって簡単に検出できるので、該検出信号に基づいてロータ40の回転を開始することができる。待機位置にあるロータ40を反時計回り方向に所定角度回転する過程では、「案内溝17内への電子部品EC1の収容」と「案内溝17から取込口18aへの電子部品EC1の流入」と「供給通路18内における電子部品EC1の移動」が前記と同様に行われ、電子部品EC1が再び取出口19に供給される。これ以後も、取出口19に位置する先頭の電子部品EC1が取り出される度に待機位置にあるロータ40は反時計回り方向に所定角度回転する。   After the leading electronic component EC1 located at the take-out port 19 is taken out, the rotor 40 in the standby position is rotated counterclockwise by a predetermined angle, for example, 45 degrees, 90 degrees, 135 degrees, or 180 degrees, and the rotor 40 is again stopped at the standby position. Incidentally, since the removal of the electronic component EC1 can be easily detected by a sensor (not shown), the rotation of the rotor 40 can be started based on the detection signal. In the process of rotating the rotor 40 at the standby position by a predetermined angle in the counterclockwise direction, “accommodation of the electronic component EC1 into the guide groove 17” and “inflow of the electronic component EC1 from the guide groove 17 to the intake port 18a”. The “movement of the electronic component EC1 in the supply passage 18” is performed in the same manner as described above, and the electronic component EC1 is again supplied to the outlet 19. Thereafter, each time the leading electronic component EC1 located at the outlet 19 is taken out, the rotor 40 at the standby position rotates by a predetermined angle in the counterclockwise direction.

図示を省略したが、右板13の貫通孔13b(図4(A)参照)を図4(B)〜図4(D)に示した貫通孔13b-1〜13b-3に置換してこれらに対応した案内溝17,供給通路18,取込口18a及び取出口19を形成した場合でも、「案内溝17内への電子部品EC1〜EC3の収容」と「案内溝17から取込口18aへの電子部品EC1〜EC3の流入」と「供給通路18内における電子部品EC1〜EC3の移動」を前記同様に行うことができる。因みに、右板13の貫通孔13b(図4(A)参照)を図4(B)に示した貫通孔13b-1に置換した場合には、電子部品EC1が幅または高さの面が揃わない長さ向き(図4(B)の破線参照)で案内溝に収容され得るが、案内溝17内を移動する過程や供給通路18内を移動する過程では該電子部品EC1それ自体に姿勢を安定化させる変位が生じるため、該電子部品EC1は幅または高さの面が揃った姿勢で取出口19に供給されることになる。   Although not shown, the through holes 13b (see FIG. 4A) of the right plate 13 are replaced with the through holes 13b-1 to 13b-3 shown in FIGS. 4B to 4D. Even when the guide groove 17, the supply passage 18, the inlet 18a, and the outlet 19 corresponding to the above are formed, “accommodation of the electronic components EC1 to EC3 in the guide groove 17” and “the inlet 18a from the guide groove 17”. Inflow of electronic components EC1 to EC3 into "and" movement of electronic components EC1 to EC3 in supply passage 18 "can be performed in the same manner as described above. Incidentally, when the through hole 13b (see FIG. 4 (A)) of the right plate 13 is replaced with the through hole 13b-1 shown in FIG. 4 (B), the electronic component EC1 has the same width or height. However, in the process of moving in the guide groove 17 or the process of moving in the supply passage 18, the electronic component EC 1 itself has a posture. Since the displacement to be stabilized occurs, the electronic component EC1 is supplied to the take-out port 19 in a posture where the surfaces of the width or height are aligned.

前記実施形態のバルクフィーダは、収納室16の右面に下から上に向かって形成された円弧状の貫通孔13bと、収納室16の右面外側に回転自在に配置され、且つ、収納室16の右面と向き合う環状張出部40cの左面40c1によって貫通孔13bの右側開口を覆うロータ40と、ロータ回転時に貫通孔13bに沿う所定の円軌道で移動するようにロータ40に設けられ、且つ、収納室16内の電子部品EC1を磁力により貫通孔13b方向に吸引するための複数の永久磁石40dと、貫通孔13bの左側開口の上部を閉塞する部材(中央板12の貫通孔非形成部分と取込口形成部材15の狭幅部分15b)とを備え、貫通孔13bの右側開口のみを覆うことによって収納室16内の電子部品EC1を長さ向きで収容して同向きのまま移動させるための円弧状の案内溝17が形成され、また、貫通孔13bの右側開口及び左側開口を覆うことによって案内溝17内に収容された長さ向きの電子部品EC1をその取込口18aを通じて取り込んで同向きのまま移動させるための円弧状の供給通路18が案内溝17に続いて形成されている。そのため、永久磁石40dの磁力による吸引によって案内溝17内に収容された電子部品EC1を含む複数の電子部品EC1が該永久磁石40dの上方移動に伴って案内溝17に沿って上方に移動して取込口18aに達する過程では、案内溝17内に収容された電子部品EC1は環状張出部40cの左面40c1に吸着したままの状態を維持しつつ貫通孔13bに沿って上方に移動することになる。つまり、案内溝17内に収容された電子部品EC1を含む複数の電子部品EC1のうち、案内溝17内に収容されている電子部品EC1をその収容形態を崩すことなく確実に上方に移動させることができ、これにより取込口18aへの電子部品EC1の流入確率を高めることができる。   The bulk feeder according to the above embodiment is arranged on the right surface of the storage chamber 16 in an arc-shaped through-hole 13b formed from the bottom to the top, and is rotatably disposed outside the right surface of the storage chamber 16. The rotor 40 that covers the right opening of the through hole 13b by the left surface 40c1 of the annular projecting portion 40c that faces the right surface, and the rotor 40 that is provided in the rotor 40 so as to move in a predetermined circular path along the through hole 13b when the rotor rotates. A plurality of permanent magnets 40d for attracting the electronic component EC1 in the chamber 16 in the direction of the through hole 13b by a magnetic force, and a member that closes the upper part of the left opening of the through hole 13b (a part that does not have a through hole formed in the central plate 12) A narrow portion 15b) of the insertion hole forming member 15, and by covering only the right opening of the through hole 13b, the electronic component EC1 in the storage chamber 16 is accommodated in the length direction and moved in the same direction. An arcuate guide groove 17 is formed to cover the right and left openings of the through-hole 13b, and the length-oriented electronic component EC1 accommodated in the guide groove 17 is passed through the intake port 18a. An arcuate supply passage 18 for taking in and moving in the same direction is formed following the guide groove 17. Therefore, the plurality of electronic components EC1 including the electronic component EC1 accommodated in the guide groove 17 are moved upward along the guide groove 17 along with the upward movement of the permanent magnet 40d by the attraction by the magnetic force of the permanent magnet 40d. In the process of reaching the intake port 18a, the electronic component EC1 accommodated in the guide groove 17 moves upward along the through hole 13b while maintaining the state of being adsorbed to the left surface 40c1 of the annular projecting portion 40c. become. That is, among the plurality of electronic components EC1 including the electronic component EC1 accommodated in the guide groove 17, the electronic component EC1 accommodated in the guide groove 17 is reliably moved upward without breaking the accommodation form. As a result, the inflow probability of the electronic component EC1 to the intake port 18a can be increased.

また、前記実施形態のバルクフィーダでは、ロータ40の回転時における永久磁石40dと案内溝17との位置関係は案内溝17と向き合う永久磁石40dの磁力中心が該案内溝17内に向くように設定され、且つ、ロータ40の回転時における永久磁石40dと収納室16との位置関係は案内溝17と向き合う永久磁石40dの面が収納室16の右面における案内溝17及びその両側に対向するように設定されている。そのため、永久磁石40dの磁力によって案内溝17方向に吸引された複数の電子部品EC1は、案内溝17と向き合う永久磁石40dの面のうちの対向面を覆うような輪郭で吸引されると共に、該複数の電子部品EC1には案内溝17内に引き込む力が強く作用して幾つかの電子部品EC1が案内溝17内に収容される。つまり、永久磁石40dの磁力によってより多くの電子部品EC1を案内溝17方向に吸引することができると共に、吸引された複数の電子部品EC1を高確率で案内溝17内に収容することができ、これにより取込口18aへの電子部品EC1の流入確率をより高めることができる。   In the bulk feeder of the above embodiment, the positional relationship between the permanent magnet 40 d and the guide groove 17 when the rotor 40 rotates is set so that the magnetic center of the permanent magnet 40 d facing the guide groove 17 faces the guide groove 17. The positional relationship between the permanent magnet 40d and the storage chamber 16 when the rotor 40 rotates is such that the surface of the permanent magnet 40d facing the guide groove 17 faces the guide groove 17 on the right side of the storage chamber 16 and both sides thereof. Is set. Therefore, the plurality of electronic components EC1 attracted in the direction of the guide groove 17 by the magnetic force of the permanent magnet 40d are attracted with an outline that covers the opposing surface of the surface of the permanent magnet 40d that faces the guide groove 17, and A plurality of electronic components EC1 are housed in the guide grooves 17 due to the strong force of drawing them into the guide grooves 17. That is, more electronic components EC1 can be attracted toward the guide groove 17 by the magnetic force of the permanent magnet 40d, and a plurality of attracted electronic components EC1 can be accommodated in the guide groove 17 with high probability. Thereby, the inflow probability of the electronic component EC1 to the intake port 18a can be further increased.

要するに、電子部品EC1が取込口18aに流入する確率を高めることによって該電子部品EC1の取出口19への供給を連続して行えるので、マウンタ(電子部品搭載装置)の吸着ノズルによって取出口19から電子部品ECを取り出す時間間隔が高速化しても、該高速化に十分に追従できる。   In short, since the electronic component EC1 can be continuously supplied to the outlet 19 by increasing the probability that the electronic component EC1 flows into the inlet 18a, the outlet 19 is provided by the suction nozzle of the mounter (electronic component mounting device). Even if the time interval for taking out the electronic component EC from the speed increases, the speed can be sufficiently followed.

また、前記実施形態のバルクフィーダでは、供給通路18は収納室16の上方まで延設されていて、且つ、その先端には電子部品EC1を外部に取り出すための上面開口の取出口19が設けられている。つまり、ケース10の上面に上面開口の取出口19を設けることによってバルクフィーダ自体をコンパクトに形成することができると共、取込口18aから取出口19に至る供給通路18の長さを短くすることによって該供給通路18内における電子部品ECの移動並びに取出口19への電子部品ECの供給をスムースに行うことができる。   Further, in the bulk feeder of the above embodiment, the supply passage 18 extends to the upper side of the storage chamber 16, and the top opening opening 19 for taking out the electronic component EC1 to the outside is provided at the tip. ing. That is, the bulk feeder itself can be compactly formed by providing the upper surface opening outlet 19 on the upper surface of the case 10, and the length of the supply passage 18 from the inlet 18a to the outlet 19 is shortened. Thus, the electronic component EC can be moved in the supply passage 18 and the electronic component EC can be smoothly supplied to the take-out port 19.

さらに、前記実施形態のバルクフィーダは、「案内溝17内に長さ向きと90度異なる向きで収容された電子部品EC1」及び「案内溝17内に収容されない電子部品EC1」を当接させて落下させるための取込口形成部材15がケース10内に着脱自在に取り付けられている。つまり、取込口形成部材15の狭幅部分15bの後面に電子部品EC1が当接することによって該当接箇所に摩耗を生じた場合でも、取込口形成部材15を新しいものに交換することによって、取込口18aへの電子部品ECの流入を支障なく行えると共に電子部品ECの落下を的確に行うことができる。   Furthermore, the bulk feeder according to the above-described embodiment is configured to contact the “electronic component EC1 accommodated in the guide groove 17 in a direction different from the length direction by 90 degrees” and the “electronic component EC1 not accommodated in the guide groove 17”. An intake port forming member 15 for dropping is detachably attached in the case 10. That is, even when the electronic part EC1 abuts on the rear surface of the narrow portion 15b of the intake port forming member 15 and wear occurs in the corresponding contact portion, by replacing the intake port forming member 15 with a new one, Inflow of the electronic component EC to the intake port 18a can be performed without hindrance, and the electronic component EC can be accurately dropped.

これら作用,効果は、右板13の貫通孔13b(図4(A)参照)を図4(B)〜図4(D)に示した貫通孔13b-1〜13b-3に置換してこれらに対応した案内溝17,供給通路18,取込口18a及び取出口19を形成した場合でも同様に得られることは言うまでもない。   These functions and effects are obtained by replacing the through hole 13b (see FIG. 4A) of the right plate 13 with the through holes 13b-1 to 13b-3 shown in FIGS. 4B to 4D. Needless to say, even when the guide groove 17, the supply passage 18, the intake port 18 a, and the intake port 19 corresponding to the above are formed, the same can be obtained.

尚、前記実施形態では、ロータ40に設けた環状張出部40cの左面40c1によって右板13の貫通孔13bの右側開口を接触状態で覆う形態(図11参照)と非接触状態で覆う形態(図12参照)を示したが、貫通孔13bの右側開口を接触状態で覆う場合には、ロータ40の回転時抵抗を軽減する意味からして接触面積は極力小さくしたほうが好ましく、また、回転時抵抗をより軽減するためにフッ素樹脂等から成る滑り促進層を環状張出部40cの左面40c1または該左面40c1と接触する右板13の右面領域に設けるようにしても良い。   In the embodiment, the left surface 40c1 of the annular projecting portion 40c provided in the rotor 40 is configured to cover the right opening of the through hole 13b of the right plate 13 in a contact state (see FIG. 11) and in a non-contact state (see FIG. 11). 12), when the right opening of the through-hole 13b is covered in a contact state, it is preferable to reduce the contact area as much as possible in order to reduce the resistance during rotation of the rotor 40. In order to further reduce the resistance, a slip promotion layer made of a fluororesin or the like may be provided on the left surface 40c1 of the annular projecting portion 40c or the right surface region of the right plate 13 in contact with the left surface 40c1.

一方、貫通孔13bの右側開口を非接触状態で覆う場合には接触状態で覆う場合のようなロータ40の回転時抵抗を無視できるので、この場合には貫通孔13bの右側開口を覆う面の形状は任意である。図17(A)はその一例を示すもので、該ロータ41は、円筒部41aと、該円筒部41aの左端に設けられた鍔部41bとを有しており、該鍔部41bの右面外周には、円柱形を成す計8個の永久磁石41cが、ロータ40と同様の仮想円VC上に各々の磁力中心が位置するように、且つ、N極面とS極面の一方が鍔部41bの右面で露出するように45度間隔で埋設されている。このロータ41にあっては、鍔部41bの左面41b1が貫通孔13bの右側開口を覆う面となる。   On the other hand, when the right opening of the through hole 13b is covered in a non-contact state, the resistance during rotation of the rotor 40 as in the case of covering in the contact state can be ignored. In this case, the surface of the surface covering the right opening of the through hole 13b The shape is arbitrary. FIG. 17 (A) shows an example thereof, and the rotor 41 has a cylindrical portion 41a and a flange portion 41b provided at the left end of the cylindrical portion 41a, and the right outer periphery of the flange portion 41b. Includes a total of eight permanent magnets 41c having a columnar shape, each of which has a center of magnetic force on a virtual circle VC similar to that of the rotor 40, and one of the N-pole surface and the S-pole surface is a buttocks. It is embedded at intervals of 45 degrees so as to be exposed on the right surface of 41b. In the rotor 41, the left surface 41b1 of the flange portion 41b is a surface that covers the right opening of the through hole 13b.

また、前記実施形態では、各永久磁石40dをそのN極面とS極面の一方が鍔部40bの右面で露出するように埋設したロータ40を示したが、貫通孔13bの右側開口を覆う面にN極面とS極面の一方が露出するように各永久磁石を埋設することも可能である。図17(B)はその一例を示すもので、該ロータ42は、円筒部42aと、該円筒部42aの左端に設けられた鍔部42bと、該鍔部42bの左面外周に設けられた環状張出部42cとを有しており、環状張出部42cに対応する鍔部42bの左面には、円柱形を成す計8個の永久磁石42dが、ロータ40と同様の仮想円VC上に各々の磁力中心が位置するように、且つ、N極面とS極面の一方が環状張出部42cの左面42c1で露出するように45度間隔で埋設されている。図17(C)はその他の例を示すもので、該ロータ43は、円筒部43aと、該円筒部43aの左端に設けられた鍔部43bとを有しており、該鍔部43bの左面外周には、円柱形を成す計8個の永久磁石43cが、ロータ40と同様の仮想円VC上に各々の磁力中心が位置するように、且つ、N極面とS極面の一方が鍔部43bの左面43b1で露出するように45度間隔で埋設されている。これらロータ42,43にあっては、各永久磁石42d,43cのN極面とS極面の一方が環状張出部42cの左面42c1または鍔部43bの左面43b1で露出するようになっているため、各永久磁石42d,43cの露出面が環状張出部42cの左面42c1または鍔部43bの左面43b1と段差を生じないようにして埋設して、該段差による電子部品EC1の引っかかりを避けることが肝要である。   In the above embodiment, the rotor 40 in which each of the permanent magnets 40d is embedded so that one of the N-pole surface and the S-pole surface is exposed on the right surface of the flange portion 40b is shown, but the right opening of the through hole 13b is covered. It is also possible to embed each permanent magnet so that one of the N pole face and the S pole face is exposed on the face. FIG. 17B shows an example thereof. The rotor 42 includes a cylindrical portion 42a, a flange portion 42b provided at the left end of the cylindrical portion 42a, and an annular shape provided on the outer periphery of the left surface of the flange portion 42b. A total of eight permanent magnets 42d having a columnar shape are formed on a virtual circle VC similar to that of the rotor 40 on the left surface of the flange portion 42b corresponding to the annular overhanging portion 42c. It is embedded at 45 degree intervals so that each magnetic center is located and one of the N pole face and the S pole face is exposed on the left face 42c1 of the annular projecting portion 42c. FIG. 17C shows another example, and the rotor 43 has a cylindrical portion 43a and a flange portion 43b provided at the left end of the cylindrical portion 43a, and the left surface of the flange portion 43b. On the outer periphery, a total of eight permanent magnets 43c having a cylindrical shape are positioned so that their magnetic centers are located on a virtual circle VC similar to that of the rotor 40, and one of the N-pole surface and the S-pole surface is It is embedded at an interval of 45 degrees so as to be exposed at the left surface 43b1 of the portion 43b. In the rotors 42 and 43, one of the N pole surface and the S pole surface of each permanent magnet 42d and 43c is exposed on the left surface 42c1 of the annular projecting portion 42c or the left surface 43b1 of the flange portion 43b. Therefore, the exposed surfaces of the permanent magnets 42d and 43c are buried so as not to cause a step with the left surface 42c1 of the annular projecting portion 42c or the left surface 43b1 of the flange portion 43b, and the electronic component EC1 is prevented from being caught by the step. Is essential.

また、前述の実施形態では、収納室16として左面視輪郭が略半円形のものを示したが、該収納室16の形状を変更しても、例えば中央板12の貫通孔12bの第1円弧面12b1及び第2円弧面12b2の下端を前方に延設することによって収納室16よりも大きな左面視輪郭を有する略扇形の収納室を形成しても、前記同様の作用,効果を得ることができる。   In the above-described embodiment, the left side outline of the storage chamber 16 is substantially semicircular. However, even if the shape of the storage chamber 16 is changed, for example, the first arc of the through hole 12b of the center plate 12 is used. Even if a substantially fan-shaped storage chamber having a larger left-side outline than the storage chamber 16 is formed by extending the lower ends of the surface 12b1 and the second arcuate surface 12b2 forward, the same operation and effect as described above can be obtained. it can.

また、前記実施形態では、ケース10の右板13に下から上に向かって約180度の角度範囲で貫通孔13bを形成したものを示したが、該貫通孔13bの角度範囲は多少増減しても構わず、増減した場合でも前記同様の作用,効果を得ることができる。同様に、約30度の角度範囲で供給通路18を形成したものを示したが、該供給通路18の角度範囲は取出口19の位置を変えずに多少増減しても構わず、増減した場合でも前記同様の作用,効果を得ることができる。   In the above embodiment, the right plate 13 of the case 10 is formed with the through hole 13b in the angle range of about 180 degrees from the bottom to the top. However, the angle range of the through hole 13b is slightly increased or decreased. Even when the number is increased or decreased, the same operations and effects as described above can be obtained. Similarly, although the supply passage 18 is formed in an angle range of about 30 degrees, the angle range of the supply passage 18 may be slightly increased or decreased without changing the position of the outlet 19, and is increased or decreased. However, the same operation and effect as described above can be obtained.

さらに、前記実施形態では、ロータ40に計8個の永久磁石40dを45度間隔で設けたものを示したが、該永久磁石40dの数はロータ40の回転速度に応じて増減しても構わず、増減した場合でも前記同様の作用効果を得ることができる。例えば、ロータ40の回転速度が1/2の場合には永久磁石40dの数を16個としてこれらを22.5度間隔で配置すれば良く、また、ロータ40の回転速度が8/1の場合には永久磁石40dの数を1個とすれば良い。   Further, in the above embodiment, the rotor 40 is provided with a total of eight permanent magnets 40d at intervals of 45 degrees. However, the number of permanent magnets 40d may be increased or decreased according to the rotational speed of the rotor 40. Even when the number is increased or decreased, the same effect as described above can be obtained. For example, when the rotational speed of the rotor 40 is ½, the number of permanent magnets 40d may be 16 and these may be arranged at intervals of 22.5 degrees, and the rotational speed of the rotor 40 is 8/1. In this case, the number of permanent magnets 40d may be one.

10…ケース、11…左板、12…中央板、13,13-1,13-2,13-3…右板、13b,13b-1,13b-2,13b-3…貫通孔、13c…取出口形成凹部、14…ストッパ棒、15…取込口形成部材、16…収納室、17…案内溝、18…供給通路、18a…取込口、19…取出口、20…支軸、30…軸受、40…ロータ、40c…環状張出部、40c1…環状張出部の左面、40d…永久磁石、41…ロータ、41b…鍔部、41b1…鍔部の左面、41c…永久磁石、42…ロータ、42c…環状張出部、42c1…環状張出部の左面、42d…永久磁石、43…ロータ、43b…鍔部、43b1…鍔部の左面、43c…永久磁石、EC1,EC2,EC3…電子部品。   DESCRIPTION OF SYMBOLS 10 ... Case, 11 ... Left board, 12 ... Center board, 13, 13-1, 13-2, 13-3 ... Right board, 13b, 13b-1, 13b-2, 13b-3 ... Through-hole, 13c ... Inlet outlet forming recess, 14 ... stopper rod, 15 ... inlet opening forming member, 16 ... storage chamber, 17 ... guide groove, 18 ... supply passage, 18a ... inlet, 19 ... outlet, 20 ... spindle, 30 DESCRIPTION OF SYMBOLS ... Bearing, 40 ... Rotor, 40c ... Annular overhang | projection part, 40c1 ... Left surface of an annular overhang | projection part, 40d ... Permanent magnet, 41 ... Rotor, 41b ... A collar part, 41b1 ... A left surface of a collar part, 41c ... Permanent magnet, 42 ... rotor, 42c ... annular projection, 42c1 ... left surface of annular projection, 42d ... permanent magnet, 43 ... rotor, 43b ... collar, 43b1 ... left surface of collar, 43c ... permanent magnet, EC1, EC2, EC3 ... electronic components.

Claims (5)

バラ状態の電子部品を所定向きに整列して供給するバルクフィーダであって、
磁力による吸引を可能とした多数の電子部品をバラ状態で収納するための収納室と、
収納室の一側面に下から上に向かって形成された円弧状の貫通孔と、
収納室の一側面の外側に回転自在に配置され、且つ、収納室の一側面と向き合う面によって貫通孔の外側開口を覆うロータと、
ロータ回転時に貫通孔に沿う所定の円軌道で移動するようにロータに設けられ、且つ、収納室内の電子部品を磁力により貫通孔方向に吸引するための少なくとも1つの永久磁石と、
貫通孔の内側開口の上部を閉塞する部材とを備え、
貫通孔の外側開口のみを覆うことによって収納室内の電子部品を所定向きで収容して同向きのまま移動させるための円弧状の案内溝が形成され、また、貫通孔の外側開口及び内側開口を覆うことによって案内溝内に収容された所定向きの電子部品をその取込口を通じて取り込んで同向きのまま移動させるための円弧状の供給通路が案内溝に続いて形成されている、バルクフィーダ
A bulk feeder that supplies electronic components in a state of being aligned in a predetermined direction,
A storage chamber for storing a large number of electronic components that can be attracted by magnetic force in a loose state;
An arc-shaped through hole formed on one side of the storage chamber from the bottom to the top;
A rotor that is rotatably arranged on the outside of one side surface of the storage chamber, and covers the outer opening of the through hole by a surface facing the one side surface of the storage chamber;
At least one permanent magnet provided on the rotor so as to move in a predetermined circular orbit along the through hole when the rotor rotates, and for attracting electronic components in the storage chamber toward the through hole by magnetic force;
A member for closing the upper part of the inner opening of the through hole,
By covering only the outer opening of the through hole, an arc-shaped guide groove is formed for accommodating the electronic components in the storage chamber in a predetermined direction and moving them in the same direction, and the outer opening and the inner opening of the through hole are formed. A bulk feeder in which an arcuate supply passage is formed subsequent to the guide groove for covering and moving the electronic component in a predetermined direction accommodated in the guide groove through the take-in port by covering.
請求項1に記載のバルクフィーダにおいて、
ロータの収納室の一側面と向き合う面は、貫通孔の外側開口を接触状態で覆っている、バルクフィーダ
The bulk feeder according to claim 1,
A bulk feeder in which a surface facing one side of the storage chamber of the rotor covers the outer opening of the through hole in a contact state.
請求項1に記載のバルクフィーダにおいて、
ロータの収納室の一側面と向き合う面は、貫通孔の外側開口を該外側開口から電子部品が抜け落ちない隙間を介して非接触状態で覆っている、バルクフィーダ
The bulk feeder according to claim 1,
The bulk feeder is a bulk feeder in which a surface facing one side surface of the storage chamber of the rotor covers the outer opening of the through hole in a non-contact state through a gap where the electronic component does not fall out from the outer opening.
請求項1〜3の何れか1項に記載のバルクフィーダにおいて、
ロータ回転時における永久磁石と案内溝との位置関係は案内溝と向き合う永久磁石の磁力中心が該案内溝内に向くように設定され、且つ、ロータ回転時における永久磁石と収納室との位置関係は案内溝と向き合う永久磁石の面が収納室の一側面における案内溝及びその両側に対向するように設定されている、バルクフィーダ
In the bulk feeder of any one of Claims 1-3,
The positional relationship between the permanent magnet and the guide groove during rotation of the rotor is set so that the magnetic center of the permanent magnet facing the guide groove faces in the guide groove, and the positional relationship between the permanent magnet and the storage chamber during rotation of the rotor Is a bulk feeder in which the surface of the permanent magnet facing the guide groove is set to face the guide groove on one side of the storage chamber and both sides thereof.
請求項1〜4の何れか1項に記載のバルクフィーダにおいて、
供給通路は収納室の上方まで延設されていて、且つ、その先端には電子部品を外部に取り出すための上面開口の取出口が設けられている、バルクフィーダ
In the bulk feeder of any one of Claims 1-4,
A bulk feeder, wherein the supply passage extends to the upper side of the storage chamber, and a top opening opening for taking out electronic components to the outside is provided at the tip.
JP2009003519A 2009-01-09 2009-01-09 Bulk feeder Active JP5215882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009003519A JP5215882B2 (en) 2009-01-09 2009-01-09 Bulk feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009003519A JP5215882B2 (en) 2009-01-09 2009-01-09 Bulk feeder

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011206983A Division JP5199431B2 (en) 2011-09-22 2011-09-22 Parts storage case for bulk feeder

Publications (2)

Publication Number Publication Date
JP2010161278A JP2010161278A (en) 2010-07-22
JP5215882B2 true JP5215882B2 (en) 2013-06-19

Family

ID=42578236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009003519A Active JP5215882B2 (en) 2009-01-09 2009-01-09 Bulk feeder

Country Status (1)

Country Link
JP (1) JP5215882B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6621841B2 (en) * 2015-12-07 2019-12-18 株式会社Fuji Bulk parts feeder

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3482324B2 (en) * 1997-08-07 2003-12-22 松下電器産業株式会社 Parts alignment device
JP4126761B2 (en) * 1998-07-15 2008-07-30 松下電器産業株式会社 Component feeder and component mounter using it
JP2001287826A (en) * 2000-01-31 2001-10-16 Taiyo Yuden Co Ltd Parts supply device

Also Published As

Publication number Publication date
JP2010161278A (en) 2010-07-22

Similar Documents

Publication Publication Date Title
JP3482324B2 (en) Parts alignment device
JP5215882B2 (en) Bulk feeder
WO2011135738A1 (en) Bulk feeder parts holding case
JP4781251B2 (en) Camera blade drive
JP5199431B2 (en) Parts storage case for bulk feeder
JP6467619B2 (en) Screw mounting device
JP5162432B2 (en) Bulk feeder
JP4126761B2 (en) Component feeder and component mounter using it
WO2010101083A1 (en) Bulk feeder
JP4533967B2 (en) Bulk feeder
JP5296517B2 (en) Bulk feeder
WO2010067889A9 (en) Bulk feeder
JP3796971B2 (en) Parts alignment device
JP2010182736A (en) Bulk feeder
JP6232585B2 (en) Screw supply device
JP4499182B1 (en) Bulk feeder
JP2005316895A (en) Coin dispensing device
JP2010232489A (en) Bulk feeder
JP6981152B2 (en) Electric oil pump
JP5450235B2 (en) Parts supply method
JP2008044758A (en) Component aligning device
JP4359453B2 (en) Game machine winning device and game machine using the same
JP5671219B2 (en) Bulk feeder
JP5671218B2 (en) Parts storage case for bulk feeder
JP5590474B2 (en) Game machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130301

R150 Certificate of patent or registration of utility model

Ref document number: 5215882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250