JP5214562B2 - Meteorological radar system and its precipitation intensity calculation method and program - Google Patents

Meteorological radar system and its precipitation intensity calculation method and program Download PDF

Info

Publication number
JP5214562B2
JP5214562B2 JP2009195372A JP2009195372A JP5214562B2 JP 5214562 B2 JP5214562 B2 JP 5214562B2 JP 2009195372 A JP2009195372 A JP 2009195372A JP 2009195372 A JP2009195372 A JP 2009195372A JP 5214562 B2 JP5214562 B2 JP 5214562B2
Authority
JP
Japan
Prior art keywords
radar
reflection factor
polarization
precipitation intensity
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009195372A
Other languages
Japanese (ja)
Other versions
JP2011047744A (en
Inventor
文彦 水谷
将一 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009195372A priority Critical patent/JP5214562B2/en
Priority to EP10167001.6A priority patent/EP2278353B1/en
Priority to US12/825,819 priority patent/US8188906B2/en
Publication of JP2011047744A publication Critical patent/JP2011047744A/en
Application granted granted Critical
Publication of JP5214562B2 publication Critical patent/JP5214562B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Description

本発明は、マルチパラメータレーダ(別名、二重偏波ドップラーレーダ)を用いて、ダム・河川・道路・下水道管理等における雨量算出などの気象防災に資する気象レーダシステムに係り、特に降水強度算出の分解能及び精度を向上させるための技術に関する。   The present invention relates to a weather radar system that contributes to weather disaster prevention, such as rainfall calculation in dams, rivers, roads, sewer management, etc., using multi-parameter radar (also known as dual polarization Doppler radar), and in particular, for calculating precipitation intensity. The present invention relates to a technique for improving resolution and accuracy.

従来の気象レーダシステムでは、比偏波間位相差(KDP)、レーダ反射因子(Z)、差分レーダ反射因子(ZDR)のうちいずれかの1つ観測パラメータに基づく方式によって降水強度算出が行われていた。また、予想される降水強度の強弱、あるいはクラッターレベルなどにより、3つの方式を切り替えることにより降水強度算出が行われていた(非特許文献1参照)。 In a conventional weather radar system, precipitation intensity is calculated using a method based on one of the observation parameters of phase difference between specific polarizations (K DP ), radar reflection factor (Z), and differential radar reflection factor (Z DR ). It was broken. Moreover, precipitation intensity calculation was performed by switching three methods according to the strength of the expected precipitation intensity or the clutter level (see Non-Patent Document 1).

しかしながら、比偏波間位相差(KDP)は得られる距離分解能が粗いこと、レーダ反射因子(Z)は降水強度の強弱の相対関係は維持するものの絶対的な精度が低いこと、レーダ反射因子(Z)と差分レーダ反射因子(ZDR)は降雨等による電波減衰時の精度が悪いことなどの問題があった。 However, the phase resolution between specific polarizations (K DP ) has a large distance resolution, and the radar reflection factor (Z) maintains the relative relationship between the strength of precipitation, but the absolute accuracy is low, the radar reflection factor ( Z) and differential radar reflectivity factor (Z DR ) have problems such as poor accuracy when the radio wave is attenuated due to rainfall.

V.N.Bringi and V.Chandrasekar, POLARIMETRIC DOPPLER WEATHER RADAR, CAMBRIDGE UNIVERSITY PRESS, p.517, 2001.V.N.Bringi and V.Chandrasekar, POLARIMETRIC DOPPLER WEATHER RADAR, CAMBRIDGE UNIVERSITY PRESS, p.517, 2001. 「気象と大気のレーダーリモートセンシング」深尾、浜津著、京都大学学術出版会、2005年3月発行“Radar Remote Sensing of Weather and Atmosphere” by Fukao and Hamazu, Kyoto University Academic Press, published in March 2005

上述の如く、従来の気象レーダシステムでは、比偏波間位相差(KDP)、レーダ反射因子(Z)、差分レーダ反射因子(ZDR)のうちいずれか1つの観測パラメータに基づく方式によって降水強度算出が行われ、また、予想される降水強度の強弱、あるいはクラッターレベルなどにより、3つの方式を切り替えることにより降水強度算出が行われていたが、各観測パラメータには一長一短があり、精度のよい結果が安定して得られるものではないという問題があった。 As described above, in the conventional weather radar system, precipitation intensity is measured by a method based on one of the observation parameters among the phase difference between specific polarizations (K DP ), the radar reflection factor (Z), and the differential radar reflection factor (Z DR ). Calculations were made, and precipitation intensity was calculated by switching between the three methods depending on the strength of the expected precipitation intensity or the clutter level. However, each observation parameter has its advantages and disadvantages and is accurate. There was a problem that results could not be obtained stably.

本発明は、上記事情を考慮してなされたもので、高分解能かつ高精度な降水強度の算出を可能とする気象レーダシステムとその降水強度算出方法及びプログラムを提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a weather radar system, a precipitation intensity calculation method, and a program for calculating the precipitation intensity with high resolution and high accuracy.

本発明に係る気象レーダシステムとその降水強度算出方法及びプログラムは、上記目的を達成するために、以下のような手段を講じている。   The meteorological radar system and its precipitation intensity calculating method and program according to the present invention employ the following means in order to achieve the above object.

第1の態様は、水平偏波と垂直偏波のレーダ波を同時に送信し、その反射波を受信する送受信装置と、前記送受信装置の受信信号から二重偏波観測を行って偏波毎の受信電力を算出する信号処理装置と、前記偏波毎の受信電力をもとに前記レーダ波のビーム幅及びパルス幅に基づく第1空間分解能で、水平偏波のレーダ反射因子(ZH)及び垂直偏波のレーダ反射因子(ZV)を算出する手段と、前記水平偏波のレーダ反射因子(ZH)及び前記垂直偏波のレーダ反射因子(ZV)をもとに差分レーダ装置反射因子(ZDR)を算出する手段と、前記受信電力の偏波間位相差(φDP)をもとに前記第1空間分解能より低い第2空間分解能で比偏波間位相差(KDP)を算出する手段と、前記比偏波間位相差(KDP)をもとに前記第2空間分解能領域毎の平均降水強度(Rave[mm/h])を算出する手段と、前記水平偏波のレーダ反射因子(ZH)と降水強度(R[mm/h])との関係が次の関係式で表されるとき、
ZH=B×Rβ(B,βは定数)
前記差分レーダ装置反射因子(ZDR)をもとに第1定数(B)を算出する手段と、前記第1定数(B)、前記平均降水強度(Rave[mm/h])及び前記水平偏波のレーダ反射因子(ZH)をもとに、前記関係式に含まれる第2定数(β)を推定する手段と、前記第1定数(B)、前記第2定数(β)及び前記水平偏波のレーダ反射因子(ZH)をもとに前記関係式に基づいて、前記第1空間分解能の降水強度(R[mm/h])を算出する手段とを具備するものである。
In the first aspect, a horizontally-polarized wave and a vertically-polarized radar wave are transmitted simultaneously, and a reflected wave is received. A signal processing device for calculating received power, and a radar reflection factor (Z H ) for horizontally polarized waves with a first spatial resolution based on the beam width and pulse width of the radar wave based on the received power for each polarization, and means and said horizontal radar reflectivity factor of polarization (Z H) and differential radar reflection based on radar reflectivity factor (Z V) of the vertically polarized wave to calculate the radar reflectivity factor of vertical polarization (Z V) Based on the means for calculating the factor (Z DR ) and the phase difference between the polarizations of the received power (φ DP ), the phase difference between the polarizations (K DP ) is calculated with a second spatial resolution lower than the first spatial resolution. And means for each second spatial resolution region based on the phase difference between the specific polarizations (K DP ). The relationship between the means for calculating the average precipitation intensity (R ave [mm / h]) and the radar reflection factor (Z H ) of the horizontally polarized wave and the precipitation intensity (R [mm / h]) is as follows: When represented
Z H = B × R β (B and β are constants)
Means for calculating a first constant (B) based on the differential radar device reflection factor (Z DR ), the first constant (B), the average precipitation intensity (R ave [mm / h]), and the horizontal Means for estimating the second constant (β) included in the relational expression based on the radar reflection factor (Z H ) of the polarization; the first constant (B); the second constant (β); Means for calculating the precipitation intensity (R [mm / h]) of the first spatial resolution based on the relational expression based on the radar reflection factor (Z H ) of the horizontally polarized wave.

第2の態様は、上記第1の態様において、前記偏波間位相差(φDP)の高周波成分を除去する手段をさらに具備するものである。 A second aspect further includes means for removing a high frequency component of the inter-polarization phase difference (φ DP ) in the first aspect.

第3の態様は、上記第1又は2の態様において、前記水平偏波のレーダ反射因子(ZH)及び前記垂直偏波のレーダ反射因子(ZV)の距離に対する減衰量を、前記偏波間位相差(φDP)を用いて補正する手段をさらに具備するものである。 In a third aspect, in the first or second aspect, the attenuation with respect to the distance between the radar reflection factor (Z H ) of the horizontally polarized wave and the radar reflection factor (Z V ) of the vertically polarized wave is calculated between the polarizations. A means for correcting using the phase difference (φ DP ) is further provided.

第4の態様は、上記第1乃至3のいずれかの態様において、前記降水強度(R(KDP)[mm/h])を方位方向及び距離方向に平滑化する手段をさらに具備するものである。 A fourth aspect further comprises means for smoothing the precipitation intensity (R (K DP ) [mm / h]) in the azimuth direction and the distance direction in any one of the first to third aspects. is there.

本発明によれば、高分解能かつ高精度な降水強度の算出を可能とする気象レーダシステムとその降水強度算出方法及びプログラムを提供することができる。   According to the present invention, it is possible to provide a weather radar system capable of calculating precipitation intensity with high resolution and high accuracy, and a precipitation intensity calculation method and program thereof.

本発明に係る気象レーダシステムの一実施形態を示すブロック構成図。1 is a block configuration diagram showing an embodiment of a weather radar system according to the present invention. 本発明に係る気象レーダシステムの他の構成例を示すブロック構成図。The block block diagram which shows the other structural example of the weather radar system which concerns on this invention. 図1に示した気象レーダシステムのデータ変換装置の処理の流れを示す処理系統図。The processing system figure which shows the flow of a process of the data converter of the weather radar system shown in FIG. 図3に示したローパスフィルタ処理を説明するための波形図。FIG. 4 is a waveform diagram for explaining the low-pass filter processing shown in FIG. 3. 図3に示した第2定数推定処理の詳細を示す図。The figure which shows the detail of the 2nd constant estimation process shown in FIG. 図3に示したスムージング処理の詳細を示す図。The figure which shows the detail of the smoothing process shown in FIG.

以下、図面を参照して本発明の実施の形態を詳細に説明する。なお、以下の図において、同符号は同一部分または対応部分を示す。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following drawings, the same symbols indicate the same or corresponding parts.

図1は本発明の一実施形態として、マルチパラメータレーダを用いた気象レーダシステムの構成を示すブロック図である。このシステムは、空中線装置(アンテナ)11、送信装置(水平偏波)12、受信装置(水平偏波)13、送信装置(垂直偏波)14、受信装置(垂直偏波)15、周波数変換装置(垂直偏波)16、信号処理装置17、監視制御装置18、データ変換装置19、データ表示装置20、データ蓄積装置21、データ通信装置22、遠隔監視制御装置23、及び遠隔表示装置24を備える。   FIG. 1 is a block diagram showing a configuration of a weather radar system using a multi-parameter radar as an embodiment of the present invention. This system includes an antenna device (antenna) 11, a transmission device (horizontal polarization) 12, a reception device (horizontal polarization) 13, a transmission device (vertical polarization) 14, a reception device (vertical polarization) 15, and a frequency conversion device. (Vertically polarized wave) 16, a signal processing device 17, a monitoring control device 18, a data conversion device 19, a data display device 20, a data storage device 21, a data communication device 22, a remote monitoring control device 23, and a remote display device 24. .

ここで、図2に示すように、送信装置12を水平偏波、垂直偏波共通とする構成にしてもよい。図1、図2ともに、例えば周波数変換装置16を分離できるなどの構成もさらに考えられる。   Here, as shown in FIG. 2, the transmission device 12 may be configured to share the horizontal polarization and the vertical polarization. A configuration in which the frequency converter 16 can be separated, for example, is further conceivable in both FIG. 1 and FIG.

上記構成において、遠隔監視制御装置23からの監視制御信号が監視制御装置18を通して信号処理装置17に送られると、信号処理装置17内では、内部に格納されている種信号のデジタルデータが発生され、D/A変換された後、水平偏波、垂直偏波の送信IF信号として周波数変換装置16に送られ、それぞれRF信号にアップコンバートされる。   In the above configuration, when a monitoring control signal from the remote monitoring control device 23 is sent to the signal processing device 17 through the monitoring control device 18, digital data of a seed signal stored therein is generated in the signal processing device 17. After the D / A conversion, the signals are transmitted to the frequency conversion device 16 as horizontal polarization and vertical polarization transmission IF signals, and are up-converted to RF signals, respectively.

周波数変換装置16で得られた水平偏波、垂直偏波の送信RF信号は、送信装置12、14により遠距離の観測可能な送信電力に増幅される。増幅された水平偏波、垂直偏波の2波は、空中線装置11より空間に同時に送出される。   The horizontally-polarized and vertically-polarized transmission RF signals obtained by the frequency converter 16 are amplified by the transmitters 12 and 14 to transmission power that can be observed over a long distance. The amplified two waves of horizontal polarization and vertical polarization are simultaneously sent from the antenna device 11 to the space.

空間上の降水からの水平偏波、垂直偏波による反射波はいずれも上記空中線装置11にて水平偏波/垂直偏波別に捕捉され、それぞれ受信装置13,15にて受信され、周波数変換装置16でIF信号に変換された後、共に信号処理装置17に送られる。   Both the horizontally polarized waves and the reflected waves caused by the vertically polarized waves from the precipitation in the space are captured by the antenna device 11 for each of the horizontally polarized waves and the vertically polarized waves, respectively, and received by the receiving devices 13 and 15, respectively. After being converted into an IF signal at 16, both are sent to the signal processing device 17.

信号処理装置17は、水平偏波/垂直偏波に送られた水平偏波/垂直偏波の受信IF信号をそれぞれA/D変換し、I/Q検波した後、受信電力(水平偏波、垂直偏波)、水平偏波と垂直偏波との間の偏波間位相差、偏波間相互相関、及びドップラ速度を算出する機能を持つ。   The signal processing device 17 performs A / D conversion on the received IF signal of horizontal polarization / vertical polarization sent to the horizontal polarization / vertical polarization, performs I / Q detection, and then receives received power (horizontal polarization, Vertical polarization), a function of calculating a phase difference between polarizations between a horizontal polarization and a vertical polarization, a cross-correlation between polarizations, and a Doppler velocity.

データ変換装置19は、信号処理装置17で得られる受信電力から比偏波間位相差(KDP)やレーダ反射因子(Z)や差分レーダ反射因子(ZDR)などの複数の観測パラメータを算出し、これら複数の観測パラメータを用いて降水強度(R)を算出する。具体的な処理の内容は後述する。 The data converter 19 calculates a plurality of observation parameters such as a relative polarization phase difference (K DP ), a radar reflection factor (Z), and a differential radar reflection factor (Z DR ) from the received power obtained by the signal processing device 17. The precipitation intensity (R) is calculated using these observation parameters. Specific processing contents will be described later.

データ表示装置20はデータ変換装置19で解析されたデータを表示する。データ蓄積装置21はデータ変換装置19で解析されたデータを蓄積する。データ通信装置22はレーダサイト外に通信手段を講じてデータ変換装置19で解析されたデータを転送する。遠隔表示装置24はレーダサイトから転送されてきたデータを表示、または解析等を実施する。また、遠隔監視制御装置23は監視制御装置18と同様にレーダシステムの監視が可能である。   The data display device 20 displays the data analyzed by the data conversion device 19. The data storage device 21 stores the data analyzed by the data conversion device 19. The data communication device 22 takes communication means outside the radar site and transfers the data analyzed by the data conversion device 19. The remote display device 24 displays or analyzes the data transferred from the radar site. The remote monitoring control device 23 can monitor the radar system in the same manner as the monitoring control device 18.

上記構成による気象レーダシステムにおいて、図3を参照して本発明に係る降水強度算出方法を説明する。
図3は上記気象レーダシステムのデータ変換装置19に用いられる降水強度算出方法の処理の流れを示す処理系統図である。なお、図3において、通常の算出方式は、非特許文献2の「気象と大気のレーダーリモートセンシング(深尾ほか)」に準ずる。
In the weather radar system having the above configuration, the precipitation intensity calculating method according to the present invention will be described with reference to FIG.
FIG. 3 is a processing system diagram showing the flow of processing of the precipitation intensity calculation method used in the data converter 19 of the weather radar system. In FIG. 3, the normal calculation method is based on “Radar Remote Sensing of Weather and Atmosphere (Fukao et al.)” Of Non-Patent Document 2.

レーダ反射因子算出処理101では、レーダ方程式に基づいて、水平偏波の受信電力(PrH)から水平偏波のレーダ反射因子(ZH)を算出し、垂直偏波の受信電力(PrV)から垂直偏波のレーダ反射因子(ZV)を算出する。レーダ反射因子(ZH,ZV)の分解能は、方位方向は水平ビーム幅、距離方向はパルス幅に相当する。このレーダ反射因子(ZH,ZV)の分解能を高分解能(第1空間分解能)と呼ぶものとする。 In the radar reflection factor calculation processing 101, based on the radar equation, a horizontal polarization radar reflection factor (Z H ) is calculated from the horizontal polarization reception power (Pr H ), and the vertical polarization reception power (Pr V ). The radar reflection factor (Z V ) of vertical polarization is calculated from The resolution of the radar reflection factors (Z H , Z V ) corresponds to the horizontal beam width in the azimuth direction and the pulse width in the distance direction. The resolution of this radar reflection factor (Z H , Z V ) is called high resolution (first spatial resolution).

ローパスフィルタ処理102では、偏波間位相差(φDP)を距離方向にIIRやFIR等のローパスフィルタを用いてフィルタリングする。偏波間位相差(φDP)は、可能な限り高周波成分を取り除くため、方位方向のヒット平均数を多く取ることとなる。この影響で、方位方向にもレーダの一定のヒット数を取ることで、水平ビーム幅以上のビーム幅にてデータが生成される。さらに、距離方向に高周波成分が存在するため、このまま偏波間位相差(φDP)の距離微分である比偏波間位相差(KDP)を算出すると、ノイズ成分の多く含むデータとなる。このため、ローパスフィルタ処理111にて、偏波間位相差(φDP)の距離方向の高周波成分を取り除く。この様子を図4に示す。図4において、(a)がフィルタ処理前、(b)がフィルタ処理後を示したもので、横軸に距離(r)をとり、縦軸に偏波間位相差(φDP)を示している。 In the low-pass filter process 102, the phase difference (φ DP ) between the polarizations is filtered in the distance direction using a low-pass filter such as IIR or FIR. For the phase difference between polarizations (φ DP ), in order to remove as high frequency components as possible, a large average number of hits in the azimuth direction is taken. As a result, by taking a certain number of radar hits in the azimuth direction, data is generated with a beam width greater than or equal to the horizontal beam width. Further, since a high-frequency component exists in the distance direction, if the specific polarization phase difference (K DP ), which is the distance derivative of the polarization phase difference (φ DP ), is calculated as it is, the data includes a lot of noise components. For this reason, the low-pass filter processing 111 removes the high-frequency component in the distance direction of the inter-polarization phase difference (φ DP ). This is shown in FIG. In FIG. 4, (a) shows the pre-filter processing, (b) shows the post-filter processing, the horizontal axis indicates the distance (r), and the vertical axis indicates the inter-polarization phase difference (φ DP ). .

減衰補正処理103では、レーダ反射因子(ZH)について、当該領域までの水平偏波、垂直偏波それぞれの電波減衰量を偏波間位相差(φDP)から推定し、これを補正する。具体的には、下記式により補正後のレーダ反射因子(ZH)を求める。なお、αは定数とする。補正前の地点rにおけるレーダ反射因子をZH(r)´とすると、
10log10ZH(r)=10log10ZH(r)´−α(φDP(r)−φDP(0))
と算出できる。また、偏波間位相差(φDP)には、上記ローパスフィルタ処理102でのフィルタ処理後の値を用いるとよい。
In the attenuation correction process 103, the radar attenuation factor (Z H ) is estimated from the phase difference (φ DP ) between the polarizations of the horizontally polarized waves and the vertically polarized waves up to the region, and is corrected. Specifically, the radar reflectivity factor (Z H ) after correction is obtained by the following equation. Α is a constant. If the radar reflection factor at the point r before correction is Z H (r) ′,
10log 10 Z H (r) = 10 log 10 Z H (r) ´−α (φ DP (r) −φ DP (0))
And can be calculated. Further, the value after the filter processing in the low-pass filter processing 102 may be used for the inter-polarization phase difference (φ DP ).

比偏波間位相差算出処理104では、偏波間位相差(φDP)を距離微分することにより比偏波間位相差(KDP)を求める。2点間の総雨量に相当する比偏波間位相差(KDP)は、距離方向の2地点r1,r2のフィルタ通過後の偏波間位相差をφDP(r1),φDP(r2)とすると、次式により算出できる。
KDP={φDP(r2)-φDP(r1)}/{2(r2−r1)}
ここでは、低分解能(第2空間分解能)として方位角Θ[deg]、距離L[m]における比偏波間位相差(KDP)により算出する。上記図4(b)に示したように、偏波間位相差(φDP)の高周波成分を取り除く際には距離方向の分解能が低下するので、2地点r1,r2間の距離(L=r2−r1)をローパスフィルタ通過後の距離方向の分解能に設定する。Lの大きさはローパスフィルタの分解能による。また、方位角Θの分解能は、φDP算出の際に必要なヒット数による。
In the specific polarization phase difference calculation process 104 calculates the ratio polarizations retardation (K DP) by a distance differential polarization phase difference (phi DP). The relative polarization phase difference (K DP ) corresponding to the total rainfall between the two points is expressed as φ DP (r 1 ), φ DP (r 2 ) after passing through the filters at two points r1 and r2 in the distance direction. ), It can be calculated by the following equation.
K DP = {φ DP (r 2 ) −φ DP (r 1 )} / {2 (r 2 −r 1 )}
Here, the low-resolution (second spatial resolution) is calculated from the phase difference between the polarizations (K DP ) at the azimuth angle Θ [deg] and the distance L [m]. As shown in FIG. 4B, when removing the high-frequency component of the inter-polarization phase difference (φ DP ), the resolution in the distance direction decreases, so the distance between the two points r1 and r2 (L = r2− Set r1) to the resolution in the distance direction after passing through the low-pass filter. The magnitude of L depends on the resolution of the low-pass filter. Further, the resolution of the azimuth angle Θ depends on the number of hits necessary for calculating φ DP .

平均降水強度算出処理105では、低分解能の比偏波間位相差(KDP)により低分解能領域毎の平均降水強度(Rave)を算出する。具体的には次式で計算される。なお、fは送信周波数[GHz]、b2は定数(たとえば0.85)とする。
Rave=129×(KDP/f)b2
レーダ反射因子算出処理106では、水平偏波のレーダ反射因子(ZH)と垂直偏波のレーダ反射因子(ZV)との比で定義される差分レーダ装置反射因子(ZDR)を低分解能で算出する。なお、低分解能の差分レーダ装置反射因子(ZDR)は、例えば、高分解能で算出された減衰補正後のレーダ反射因子(ZH,ZV)を、低分解能領域で平均した値、又は低分解能領域での中央付近の値を採用して求める。
In the average precipitation intensity calculation process 105, the average precipitation intensity (R ave ) for each low resolution area is calculated from the low-resolution phase difference between specific polarizations (K DP ). Specifically, it is calculated by the following formula. Note that f is a transmission frequency [GHz] and b2 is a constant (for example, 0.85).
R ave = 129 × (K DP / f) b2
In the radar reflection factor calculation processing 106, the differential radar apparatus reflection factor (Z DR ) defined by the ratio of the horizontally polarized radar reflection factor (Z H ) and the vertically polarized radar reflection factor (Z V ) is reduced to a low resolution. Calculate with The low-resolution differential radar apparatus reflection factor (Z DR ) is, for example, a value obtained by averaging the attenuation-corrected radar reflection factors (Z H , Z V ) calculated in the high resolution in the low resolution region, or low The value near the center in the resolution region is adopted and obtained.

第1定数算出部107では、水平偏波のレーダ反射因子(ZH)と降水強度(R)との関係式を構成する定数B(第1定数)を算出する。水平偏波のレーダ反射因子(ZH)を用いた降水強度(R)の算出においては下記の式1が知られている。B,βは、定数であり、雨の種類等によって決定される。 The first constant calculator 107 calculates a constant B (first constant) that constitutes a relational expression between the radar reflection factor (Z H ) of the horizontally polarized wave and the precipitation intensity (R). The following formula 1 is known for calculating precipitation intensity (R) using the radar reflection factor (Z H ) of horizontal polarization. B and β are constants and are determined according to the type of rain.

ZH=B×Rβ ・・・(式1)
ここでは、定数Bを、差分レーダ反射因子算出処理106で算出された差分レーダ装置反射因子(ZDR)を用いて、以下の手法により決定する。
Z H = B × R β (Formula 1)
Here, the constant B is determined by the following method using the differential radar apparatus reflection factor (Z DR ) calculated by the differential radar reflection factor calculation processing 106.

定数Bは、経験的に得られた定数a,bにより例えば下記の式2、式3などにより表すこととする。この式2又は式3に基づいて、低分解能の差分レーダ装置反射因子(ZDR)から定数Bを求めることができる。
B=a×ZDR ・・・(式2)
B=a×ZDR+b ・・・(式3)
さらに、上記手法において、隣り合う低分解能メッシュのBと比べて±10%以内とする、といった拘束条件をもうけてもよい。
The constant B is represented by, for example, the following formulas 2 and 3 by empirically obtained constants a and b. Based on Equation 2 or Equation 3, the constant B can be obtained from the low-resolution differential radar apparatus reflection factor (Z DR ).
B = a x Z DR (Formula 2)
B = a × Z DR + b (Formula 3)
Further, in the above method, a constraint condition may be set such that it is within ± 10% compared to B of adjacent low resolution meshes.

第2定数推定部108では、水平偏波のレーダ反射因子(ZH)と降水強度(R)との関係式を構成する定数βを推定する。
ここで、レーダ反射因子(Z)は、方位角θ[deg]、距離l[m]で高分解能として算出されている。高分解能と低分解能との関係は次のように考える。
Θ=m×θ
L=n×l
そこで、図5に示すように、高分解能の方位方向のメッシュ番号i=1〜m、距離方向のメッシュ番号j=1〜nとすると、上記式1は次のように変換される。
ZH(i,j)=B×R(i,j)β・・・(式4)
上記式2より、
R(i,j)=(ZH(i,j)/B)・・・(式5)
ここで、低分解能でも高分解能でも方位角Θ[deg]、距離L[m]の領域における総降水量は同じであると仮定すると、

Figure 0005214562
The second constant estimation unit 108 estimates a constant β constituting a relational expression between the horizontally polarized radar reflection factor (Z H ) and the precipitation intensity (R).
Here, the radar reflection factor (Z) is calculated as high resolution at an azimuth angle θ [deg] and a distance l [m]. The relationship between high resolution and low resolution is considered as follows.
Θ = m × θ
L = n × l
Therefore, as shown in FIG. 5, when mesh numbers i = 1 to m in the azimuth direction with high resolution and mesh numbers j = 1 to n in the distance direction are used, the above equation 1 is converted as follows.
Z H (i, j) = B × R (i, j) β (Formula 4)
From Equation 2 above,
R (i, j) = (Z H (i, j) / B) (Formula 5)
Here, assuming that the total precipitation in the region of azimuth angle Θ [deg] and distance L [m] is the same for both low and high resolution,
Figure 0005214562

が成り立つ。 Holds.

ここで、上記の式4と式6からβを解析的に推定する。なお、βの算出にあたっては、隣接する低分解領域のβの値±10%以内で決定する、などの拘束条件をいれてスムージング処理を施してもよい。   Here, β is analytically estimated from the above equations 4 and 6. In calculating β, smoothing processing may be performed under a constraint condition such as determining within a value of ± 10% of β in the adjacent low resolution region.

降水強度算出処理109では、上記第1定数算出処理107で算出された低分解能のBと、上記第2定数推定処理108で推定された低分解能のβと、上記減衰補正処理103で補正された水平偏波のレーダ反射因子(ZH(i,j))とを用いて、上記式3に基づいて、高分解能のR(i,j)を算出する。 In the precipitation intensity calculation process 109, the low resolution B calculated in the first constant calculation process 107, the low resolution β estimated in the second constant estimation process 108, and the attenuation correction process 103 are corrected. Based on Equation 3 above, high-resolution R (i, j) is calculated using the horizontally polarized radar reflection factor (Z H (i, j)).

スムージング処理110では、方位方向及び距離方向でデータのスムージング処理を行ってつなぎ目の段差のないデータとする。スムージング手法は、例えば、下記の2つの手法を用いる。   In the smoothing processing 110, data smoothing processing is performed in the azimuth direction and the distance direction to obtain data having no joint step. As the smoothing method, for example, the following two methods are used.

(第1のスムージング手法)
第1のスムージング手法は、図6に示すように、高分解能メッシュに対して、距離方向及び方位方向にずらした互い異なる4パターンの低分解能メッシュを配置するものである。比偏波間位相差算出処理104では、この4パターンの低分解能メッシュについて、それぞれ比偏波間位相差(KDP)を求めることにより、4パターンの比偏波間位相差(KDP)についての高分解能の降水強度(R(KDP))を算出することができる。そして、スムージング処理110において、4パターンの高分解能の降水強度(R(i,j))から図6に示すように、各低分解能メッシュの中央付近の値を採用することにより、平滑化された降水強度((R(i,j))を求めることができる。または、4パターンで重複するメッシュについて加重平均をとるようにしてもよい。
(First smoothing method)
As shown in FIG. 6, the first smoothing method arranges four different low resolution meshes shifted in the distance direction and the azimuth direction with respect to the high resolution mesh. In the specific polarization phase difference calculation process 104, the low resolution meshes of the four patterns, by calculating each ratio polarization phase difference (K DP), a high resolution for the specific polarization phase difference of four patterns (K DP) Precipitation intensity (R (K DP )) can be calculated. Then, in the smoothing processing 110, smoothing is performed by adopting values near the center of each low-resolution mesh, as shown in FIG. 6, from four patterns of high-resolution precipitation intensity (R (i, j)). Precipitation intensity ((R (i, j)) can be obtained, or a weighted average may be taken for meshes that overlap in four patterns.

(第2のスムージング手法)
第2のスムージング手法は、比偏波間位相差算出処理104において、低分解能の比偏波間位相差(KDP)を算出する際に、隣接する低分解能メッシュの比偏波間位相差(KDP)と比して一定以上の差を持たないように拘束条件を設ける方法である。例えば、他の周辺メッシュ領域の比偏波間位相差(KDP)の値±10%以内で決定する。
(Second smoothing method)
The second smoothing technique, the ratio polarizations phase difference calculation process 104, when calculating the ratio polarization phase difference of a low resolution (K DP), relative polarization phase difference of adjacent low resolution mesh (K DP) This is a method of providing constraint conditions so as not to have a difference greater than a certain level. For example, it is determined within ± 10% of the value of phase difference between specific polarizations (K DP ) of other surrounding mesh regions.

以上述べたように、本実施形態では、低空間分解能であるが降水強度との相関が高い性質を持つ比偏波間位相差(KDP)から求めた平均降水強度(Rave)と、空間分解能が高いが降水強度の絶対値との相関は低く、その地点付近の相対的な値となるレーダ反射因子(ZH,ZV)と差分レーダ反射因子(ZDR)とを求め、レーダ反射因子(ZH)と降水強度(R)との間の関係式を構成する定数Bを上記差分レーダ反射因子(ZDR)から算出し、上記関係式の定数βを平均降水強度(Rave)から推定し、この関係式を用いて高分解能の降水強度((R(i,j)))を算出するようにしている。したがって、上記の降水強度算出方法によれば、高空間分解能でかつ高精度な降水強度を算出することができる。 As described above, in this embodiment, the average precipitation intensity (R ave ) obtained from the phase difference between specific polarizations (K DP ) having a low spatial resolution but high correlation with precipitation intensity, and the spatial resolution Although the correlation with the absolute value of precipitation intensity is low, the radar reflection factor (Z H , Z V ) and the differential radar reflection factor (Z DR ), which are relative values near the point, are obtained. The constant B constituting the relational expression between (Z H ) and precipitation intensity (R) is calculated from the differential radar reflection factor (Z DR ), and the constant β of the relational expression is calculated from the average precipitation intensity (R ave ). It is estimated and the high-resolution precipitation intensity ((R (i, j))) is calculated using this relational expression. Therefore, according to the above precipitation intensity calculation method, it is possible to calculate precipitation intensity with high spatial resolution and high accuracy.

尚、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、本発明によれば、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, according to the present invention, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

11…空中線装置(アンテナ)、12…送信装置(水平偏波)、13…受信装置(水平偏波)、14…送信装置(垂直偏波)、15…受信装置(垂直偏波)、16…周波数変換装置(水平偏波)、17…信号処理装置、18…監視制御装置、19…データ変換装置、20…データ表示装置、21…データ蓄積装置、22…データ通信装置、23…遠隔監視制御装置、24…遠隔表示装置、101…レーダ反射因子算出処理、102…ローパスフィルタ、103…減衰補正処理、104…比偏波間位相差算出処理、105…平均降水強度算出処理、106…差分レーダ反射因子算出処理、107…第1定数算出処理、108…第2定数推定処理、109…降水強度算出処理、110…スムージング処理。   DESCRIPTION OF SYMBOLS 11 ... Antenna apparatus (antenna), 12 ... Transmission apparatus (horizontal polarization), 13 ... Reception apparatus (horizontal polarization), 14 ... Transmission apparatus (vertical polarization), 15 ... Reception apparatus (vertical polarization), 16 ... Frequency conversion device (horizontal polarization), 17 ... signal processing device, 18 ... monitoring control device, 19 ... data conversion device, 20 ... data display device, 21 ... data storage device, 22 ... data communication device, 23 ... remote monitoring control Device ... 24 Remote display device 101 ... Radar reflection factor calculation processing 102 ... Low pass filter 103 ... Attenuation correction processing 104 ... Relative polarization phase difference calculation processing 105 ... Average precipitation intensity calculation processing 106 ... Differential radar reflection Factor calculation processing, 107: first constant calculation processing, 108: second constant estimation processing, 109: precipitation intensity calculation processing, 110: smoothing processing.

Claims (12)

水平偏波と垂直偏波のレーダ波を同時に送信し、その反射波を受信する送受信装置と、
前記送受信装置の受信信号から二重偏波観測を行って偏波毎の受信電力を算出する信号処理装置と、
前記偏波毎の受信電力をもとに前記レーダ波のビーム幅及びパルス幅に基づく第1空間分解能で、水平偏波のレーダ反射因子(ZH)及び垂直偏波のレーダ反射因子(ZV)を算出する手段と、
前記水平偏波のレーダ反射因子(ZH)及び前記垂直偏波のレーダ反射因子(ZV)をもとに差分レーダ装置反射因子(ZDR)を算出する手段と、
前記受信電力の偏波間位相差(φDP)をもとに前記第1空間分解能より低い第2空間分解能で比偏波間位相差(KDP)を算出する手段と、
前記比偏波間位相差(KDP)をもとに前記第2空間分解能領域毎の平均降水強度(Rave[mm/h])を算出する手段と、
前記水平偏波のレーダ反射因子(ZH)と降水強度(R[mm/h])との関係が、次の関係式で表されるとき、
ZH=B×Rβ(B,βは定数)
前記差分レーダ装置反射因子(ZDR)をもとに第1定数(B)を算出する手段と、
前記第1定数(B)、前記平均降水強度(Rave[mm/h])及び前記水平偏波のレーダ反射因子(ZH)をもとに、前記関係式に含まれる第2定数(β)を推定する手段と、
前記第1定数(B)、前記第2定数(β)及び前記水平偏波のレーダ反射因子(ZH)をもとに前記関係式に基づいて、前記第1空間分解能の降水強度(R[mm/h])を算出する手段と
を具備することを特徴とする気象レーダシステム。
A transmission / reception device that simultaneously transmits horizontally polarized waves and vertically polarized radar waves, and receives the reflected waves;
A signal processing device that performs dual polarization observation from the received signal of the transmitting / receiving device and calculates received power for each polarization; and
Based on the received power for each polarization, with a first spatial resolution based on the beam width and pulse width of the radar wave, the radar reflection factor for horizontal polarization (Z H ) and the radar reflection factor for vertical polarization (Z V )
Means for calculating a differential radar device reflection factor (Z DR ) based on the horizontal polarization radar reflection factor (Z H ) and the vertical polarization radar reflection factor (Z V );
Means for calculating a phase difference (K DP ) between specific polarizations with a second spatial resolution lower than the first spatial resolution based on the phase difference between polarizations (φ DP ) of the received power;
Means for calculating an average precipitation intensity (R ave [mm / h]) for each second spatial resolution region based on the phase difference between specific polarizations (K DP );
When the relationship between the radar reflection factor (Z H ) of the horizontally polarized wave and the precipitation intensity (R [mm / h]) is expressed by the following relational expression:
Z H = B × R β (B and β are constants)
Means for calculating a first constant (B) based on the differential radar device reflection factor (Z DR );
Based on the first constant (B), the average precipitation intensity (R ave [mm / h]), and the radar reflection factor (Z H ) of the horizontally polarized wave, the second constant (β )
Based on the relational expression based on the first constant (B), the second constant (β), and the radar reflection factor (Z H ) of the horizontally polarized wave, the precipitation intensity (R [ means for calculating mm / h]).
前記偏波間位相差(φDP)の高周波成分を除去する手段をさらに具備することを特徴とする請求項1記載の気象レーダシステム。 The weather radar system according to claim 1, further comprising means for removing a high-frequency component of the inter-polarization phase difference (φ DP ). 前記水平偏波のレーダ反射因子(ZH)及び前記垂直偏波のレーダ反射因子(ZV)の距離に対する減衰量を、前記偏波間位相差(φDP)を用いて補正する手段をさらに具備することを特徴とする請求項1又は2に記載の気象レーダシステム。 And means for correcting the attenuation with respect to the distance between the horizontally polarized radar reflection factor (Z H ) and the vertically polarized radar reflection factor (Z V ) using the phase difference between the polarizations (φ DP ). The weather radar system according to claim 1 or 2, wherein 前記降水強度(R(KDP)[mm/h])を方位方向及び距離方向に平滑化する手段をさらに具備することを特徴とする請求項1乃至3のいずれかに記載の気象レーダシステム。 The weather radar system according to any one of claims 1 to 3, further comprising means for smoothing the precipitation intensity (R (K DP ) [mm / h]) in the azimuth direction and the distance direction. 水平偏波と垂直偏波のレーダ波を同時に送信し、その反射波を受信する送受信装置と、前記送受信装置の受信信号から二重偏波観測を行って偏波毎の受信電力を算出する信号処理装置とを備える気象レーダシステムに用いられる方法であって、
前記偏波毎の受信電力をもとに前記レーダ波のビーム幅及びパルス幅に基づく第1空間分解能で、水平偏波のレーダ反射因子(ZH)及び垂直偏波のレーダ反射因子(ZV)を算出する過程と、
前記水平偏波のレーダ反射因子(ZH)及び前記垂直偏波のレーダ反射因子(ZV)をもとに差分レーダ装置反射因子(ZDR)を算出する過程と、
前記受信電力の偏波間位相差(φDP)をもとに前記第1空間分解能より低い第2空間分解能で比偏波間位相差(KDP)を算出する過程と、
前記比偏波間位相差(KDP)をもとに前記第2空間分解能領域毎の平均降水強度(Rave[mm/h])を算出する過程と、
前記水平偏波のレーダ反射因子(ZH)と降水強度(R[mm/h])との関係が、次の関係式で表されるとき、
ZH=B×Rβ(B,βは定数)
前記差分レーダ装置反射因子(ZDR)をもとに第1定数(B)を算出する過程と、
前記第1定数(B)、前記平均降水強度(Rave[mm/h])及び前記水平偏波のレーダ反射因子(ZH)をもとに、前記関係式に含まれる第2定数(β)を推定する過程と、
前記第1定数(B)、前記第2定数(β)及び前記水平偏波のレーダ反射因子(ZH)をもとに前記関係式に基づいて、前記第1空間分解能の降水強度(R[mm/h])を算出する過程と
を具備することを特徴とする降水強度算出方法。
A transmitter / receiver that transmits horizontal and vertically polarized radar waves simultaneously and receives the reflected waves, and a signal that calculates the received power for each polarization by performing dual polarization observation from the received signal of the transmitter / receiver A method used in a weather radar system comprising a processing device,
Based on the received power for each polarization, with a first spatial resolution based on the beam width and pulse width of the radar wave, the radar reflection factor for horizontal polarization (Z H ) and the radar reflection factor for vertical polarization (Z V )
Calculating a differential radar apparatus reflection factor (Z DR ) based on the horizontal polarization radar reflection factor (Z H ) and the vertical polarization radar reflection factor (Z V );
Calculating the phase difference between specific polarizations (K DP ) with a second spatial resolution lower than the first spatial resolution based on the phase difference between polarizations of the received power (φ DP );
A process of calculating an average precipitation intensity (R ave [mm / h]) for each second spatial resolution region based on the phase difference between specific polarizations (K DP );
When the relationship between the radar reflection factor (Z H ) of the horizontally polarized wave and the precipitation intensity (R [mm / h]) is expressed by the following relational expression:
Z H = B × R β (B and β are constants)
Calculating a first constant (B) based on the differential radar device reflection factor (Z DR );
Based on the first constant (B), the average precipitation intensity (R ave [mm / h]), and the radar reflection factor (Z H ) of the horizontally polarized wave, the second constant (β )
Based on the relational expression based on the first constant (B), the second constant (β), and the radar reflection factor (Z H ) of the horizontally polarized wave, the precipitation intensity (R [ mm / h]), and a method for calculating precipitation intensity.
前記偏波間位相差(φDP)の高周波成分を除去する過程をさらに具備することを特徴とする請求項5記載の降水強度算出方法。 6. The precipitation intensity calculating method according to claim 5, further comprising a step of removing a high-frequency component of the inter-polarization phase difference (φ DP ). 前記水平偏波のレーダ反射因子(ZH)及び前記垂直偏波のレーダ反射因子(ZV)の距離に対する減衰量を、前記偏波間位相差(φDP)を用いて補正する過程をさらに具備することを特徴とする請求項5又は6に記載の降水強度算出方法。 A step of correcting the attenuation with respect to the distance between the radar reflection factor (Z H ) of the horizontal polarization and the radar reflection factor (Z V ) of the vertical polarization using the phase difference (φ DP ) between the polarizations; The precipitation intensity calculation method according to claim 5, wherein the precipitation intensity is calculated. 前記降水強度(R[mm/h])を方位方向及び距離方向に平滑化する過程をさらに具備することを特徴とする請求項5乃至7のいずれかに記載の降水強度算出方法。   The precipitation intensity calculation method according to claim 5, further comprising a step of smoothing the precipitation intensity (R [mm / h]) in an azimuth direction and a distance direction. 水平偏波と垂直偏波のレーダ波を同時に送信し、その反射波を受信する送受信装置と、前記送受信装置の受信信号から二重偏波観測を行って偏波毎の受信電力を算出する信号処理装置とを備える気象レーダシステムを制御するコンピュータに、
前記偏波毎の受信電力をもとに前記レーダ波のビーム幅及びパルス幅に基づく第1空間分解能で、水平偏波のレーダ反射因子(ZH)及び垂直偏波のレーダ反射因子(ZV)を算出する処理と、
前記水平偏波のレーダ反射因子(ZH)及び前記垂直偏波のレーダ反射因子(ZV)をもとに差分レーダ装置反射因子(ZDR)を算出する処理と、
前記受信電力の偏波間位相差(φDP)をもとに前記第1空間分解能より低い第2空間分解能で比偏波間位相差(KDP)を算出する処理と、
前記比偏波間位相差(KDP)をもとに前記第2空間分解能領域毎の平均降水強度(Rave[mm/h])を算出する処理と、
前記水平偏波のレーダ反射因子(ZH)と降水強度(R[mm/h])との関係が、次の関係式で表されるとき、
ZH=B×Rβ(B,βは定数)
前記差分レーダ装置反射因子(ZDR)をもとに第1定数(B)を算出する処理と、
前記第1定数(B)、前記平均降水強度(Rave[mm/h])及び前記水平偏波のレーダ反射因子(ZH)をもとに、前記関係式に含まれる第2定数(β)を推定する処理と、
前記第1定数(B)、前記第2定数(β)及び前記水平偏波のレーダ反射因子(ZH)をもとに前記関係式に基づいて、前記第1空間分解能の降水強度(R[mm/h])を算出する処理と
を実行させることを特徴とする降水強度算出プログラム。
A transmitter / receiver that transmits horizontal and vertically polarized radar waves simultaneously and receives the reflected waves, and a signal that calculates the received power for each polarization by performing dual polarization observation from the received signal of the transmitter / receiver A computer for controlling a weather radar system including a processing device;
Based on the received power for each polarization, with a first spatial resolution based on the beam width and pulse width of the radar wave, the radar reflection factor for horizontal polarization (Z H ) and the radar reflection factor for vertical polarization (Z V )
A process of calculating a differential radar apparatus reflection factor (Z DR ) based on the horizontal polarization radar reflection factor (Z H ) and the vertical polarization radar reflection factor (Z V );
A process of calculating a specific inter-polarization phase difference (K DP ) with a second spatial resolution lower than the first spatial resolution based on the inter-polarization phase difference (φ DP ) of the received power;
A process for calculating an average precipitation intensity (R ave [mm / h]) for each of the second spatial resolution regions based on the phase difference between specific polarizations (K DP );
When the relationship between the radar reflection factor (Z H ) of the horizontally polarized wave and the precipitation intensity (R [mm / h]) is expressed by the following relational expression:
Z H = B × R β (B and β are constants)
A process of calculating a first constant (B) based on the differential radar device reflection factor (Z DR );
Based on the first constant (B), the average precipitation intensity (R ave [mm / h]), and the radar reflection factor (Z H ) of the horizontally polarized wave, the second constant (β )
Based on the relational expression based on the first constant (B), the second constant (β), and the radar reflection factor (Z H ) of the horizontally polarized wave, the precipitation intensity (R [ mm / h]) is calculated, and a precipitation intensity calculation program is executed.
前記偏波間位相差(φDP)の高周波成分を除去する処理をさらに具備することを特徴とする請求項9記載の降水強度算出プログラム。 The precipitation intensity calculation program according to claim 9, further comprising a process of removing a high-frequency component of the inter-polarization phase difference (φ DP ). 前記水平偏波のレーダ反射因子(ZH)及び前記垂直偏波のレーダ反射因子(ZV)の距離に対する減衰量を、前記偏波間位相差(φDP)を用いて補正する処理をさらに具備することを特徴とする請求項9又は10に記載の降水強度算出プログラム。 And further comprising a process of correcting the attenuation with respect to the distance between the horizontally polarized radar reflection factor (Z H ) and the vertically polarized radar reflection factor (Z V ) using the phase difference between the polarizations (φ DP ). The precipitation intensity calculation program according to claim 9 or 10, wherein: 前記降水強度(R(KDP)[mm/h])を方位方向及び距離方向に平滑化する処理をさらに具備することを特徴とする請求項9乃至11のいずれかに記載の降水強度算出プログラム。 The precipitation intensity calculation program according to any one of claims 9 to 11, further comprising a process of smoothing the precipitation intensity (R (K DP ) [mm / h]) in an azimuth direction and a distance direction. .
JP2009195372A 2009-07-24 2009-08-26 Meteorological radar system and its precipitation intensity calculation method and program Expired - Fee Related JP5214562B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009195372A JP5214562B2 (en) 2009-08-26 2009-08-26 Meteorological radar system and its precipitation intensity calculation method and program
EP10167001.6A EP2278353B1 (en) 2009-07-24 2010-06-23 Weather radar apparatus and rainfall rate calculation method
US12/825,819 US8188906B2 (en) 2009-07-24 2010-06-29 Weather radar apparatus and rainfall rate calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009195372A JP5214562B2 (en) 2009-08-26 2009-08-26 Meteorological radar system and its precipitation intensity calculation method and program

Publications (2)

Publication Number Publication Date
JP2011047744A JP2011047744A (en) 2011-03-10
JP5214562B2 true JP5214562B2 (en) 2013-06-19

Family

ID=43834229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009195372A Expired - Fee Related JP5214562B2 (en) 2009-07-24 2009-08-26 Meteorological radar system and its precipitation intensity calculation method and program

Country Status (1)

Country Link
JP (1) JP5214562B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5807961B2 (en) * 2012-03-28 2015-11-10 国立研究開発法人防災科学技術研究所 Specific polarization phase difference calculation device, rain observation system using the same, and specific polarization phase difference calculation method
KR101912773B1 (en) * 2017-01-16 2018-10-29 한국건설기술연구원 Rainfall intensity estimation method using observation data of K-band dual polarization radar at short distance
CN108919151A (en) * 2018-04-03 2018-11-30 西安空间无线电技术研究所 A kind of microwave radiometer cross polarization error correcting method
KR102101436B1 (en) * 2019-09-25 2020-04-16 대한민국 Apparatus and Method for estimating rainfall of hail and rain using Dual-Polarization Weather Radar
JP6974422B2 (en) * 2019-12-09 2021-12-01 コリア インスティテュート オフ コンストラクション テクノロジー Rainfall intensity estimation method and estimation device using multiple altitude observation data of ultra-short-range dual polarization radar
CN111044983B (en) * 2019-12-26 2022-02-18 清华大学 Method and device for verifying external calibration of dual-band meteorological radar and computer equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09138279A (en) * 1995-11-16 1997-05-27 Toshiba Corp Radar rainfall measuring apparatus
FR2742876B1 (en) * 1995-12-26 1998-02-06 Thomson Csf METHOD FOR DETERMINING THE PRECIPITATION RATE BY DUAL POLARIZATION RADAR AND METEOROLOGICAL RADAR USING THE SAME
JP4097143B2 (en) * 2003-06-25 2008-06-11 三菱電機株式会社 Radar signal processing apparatus and method
JP4595078B2 (en) * 2005-01-28 2010-12-08 独立行政法人防災科学技術研究所 Apparatus and method for estimating three-dimensional distribution of rainfall intensity and amount of rainwater
JP4667426B2 (en) * 2007-06-26 2011-04-13 三菱電機株式会社 Weather radar equipment
JP4739306B2 (en) * 2007-10-17 2011-08-03 独立行政法人防災科学技術研究所 Rain attenuation determination apparatus, rain observation system using the same, and rain attenuation determination method
JP5557082B2 (en) * 2009-02-25 2014-07-23 独立行政法人防災科学技術研究所 Precipitation distribution estimation system and precipitation distribution estimation method

Also Published As

Publication number Publication date
JP2011047744A (en) 2011-03-10

Similar Documents

Publication Publication Date Title
EP2278353B1 (en) Weather radar apparatus and rainfall rate calculation method
JP5214562B2 (en) Meteorological radar system and its precipitation intensity calculation method and program
US9097805B2 (en) Systems and methods for calibrating dual polarization radar systems
US8207889B2 (en) Dual polarization radar apparatus and interference judgment method
JP2011027546A (en) Weather radar system and rainfall rate calculation method for the same
EP2290396A2 (en) Doppler radar apparatus and method of calculating Doppler velocity
JP5398424B2 (en) Meteorological radar system and its precipitation intensity calculation method and program
CN105180852B (en) GB SAR deformation monitoring methods based on triple steppings
JP4762566B2 (en) Weather radar equipment
JP5355321B2 (en) Interference wave detection apparatus and interference wave detection method
JP5491788B2 (en) Weather radar system and its precipitation intensity calculation method
JP2011047743A (en) Weather radar apparatus and rainfall rate method, and program
JP6586462B2 (en) Water vapor observation device
JP5574907B2 (en) Radar equipment
JP2011047742A (en) Weather radar apparatus and rainfall rate calculation method, and program
KR101441982B1 (en) A method for correction of Aliased Radial Velocity through Specified Scan Strategy
KR101100527B1 (en) Ultrasound system and method for performing signal correction processing
JP2009109457A (en) Radar device
JP6132576B2 (en) Signal processing apparatus, radar apparatus, and signal processing method
JP2016121970A (en) Echo signal processing device, radar device, echo signal processing method, and program
JP3249412B2 (en) Rainfall observation value correction processor
WO2016181694A1 (en) Shielded-region detection device, radar device, meteorological radar device, and shielded-region detection method
JP2015099034A (en) Observation information processing apparatus, observation information processing method, and observation information processing program
JP5730080B2 (en) Radar signal processing device, radar device, radar signal processing program, and radar signal processing method
JP2013205268A (en) Radar signal processor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130227

R151 Written notification of patent or utility model registration

Ref document number: 5214562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees