JP5214088B2 - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery Download PDF

Info

Publication number
JP5214088B2
JP5214088B2 JP2004308349A JP2004308349A JP5214088B2 JP 5214088 B2 JP5214088 B2 JP 5214088B2 JP 2004308349 A JP2004308349 A JP 2004308349A JP 2004308349 A JP2004308349 A JP 2004308349A JP 5214088 B2 JP5214088 B2 JP 5214088B2
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
battery
aqueous electrolyte
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004308349A
Other languages
Japanese (ja)
Other versions
JP2006120517A (en
Inventor
卓 小園
裕江 中川
徳雄 稲益
敏之 温田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2004308349A priority Critical patent/JP5214088B2/en
Publication of JP2006120517A publication Critical patent/JP2006120517A/en
Application granted granted Critical
Publication of JP5214088B2 publication Critical patent/JP5214088B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、非水電解質電池に関し、エネルギー密度が高く、電池性能に優れた非水電解質電池を提供しようとするものである。   The present invention relates to a non-aqueous electrolyte battery and intends to provide a non-aqueous electrolyte battery having high energy density and excellent battery performance.

本明細書において非水電解質とは、溶媒が電解質塩を含んでなるものをいう。ここで非水電解質は液状であってもよく固体状であってもよい。   In this specification, the non-aqueous electrolyte means that the solvent contains an electrolyte salt. Here, the non-aqueous electrolyte may be liquid or solid.

リチウムイオン二次電池に代表される非水電解質電池は、高い電圧を取り出せることから、原理的にエネルギー密度の高い電池とすることができるといった特徴がある。現在市販されているリチウムイオン二次電池の正極には、正極活物質としてリチウム遷移金属複合酸化物であるLiCoO2が主に用いられている。また、負極には、リチウイオンを吸蔵・放出可能な炭素材からなる負極活物質が主に用いられている。 A non-aqueous electrolyte battery represented by a lithium ion secondary battery is characterized in that a high voltage can be obtained in principle because it can take out a high voltage. LiCoO 2 which is a lithium transition metal composite oxide is mainly used as a positive electrode active material for a positive electrode of a lithium ion secondary battery currently on the market. Moreover, a negative electrode active material made of a carbon material capable of occluding and releasing lithium ions is mainly used for the negative electrode.

近年、電極活物質材料の改良、電池に使用する各種部材の薄型化、電極製造技術の進歩等により、非水電解質電池のエネルギー密度が改良され向上している。現在、さらなる高エネルギー密度化が求められている。   In recent years, the energy density of nonaqueous electrolyte batteries has been improved and improved due to improvements in electrode active material materials, thinning of various members used in batteries, progress in electrode manufacturing techniques, and the like. Currently, there is a demand for higher energy density.

しかしながら、非水電解質電池のエネルギー密度をさらに高めることについてはほぼ限界に達している。その理由としては、正極活物質材料や、負極活物質材料については基本的に大きく変わっていないこと、集電体、セパレータ、外装体等の厚さは、製造上の問題や品質保証の観点から、薄膜化の限界に近づいていること等が挙げられる。   However, it has almost reached the limit for further increasing the energy density of the nonaqueous electrolyte battery. The reason for this is that the positive electrode active material and the negative electrode active material are basically not changed greatly, and the thickness of the current collector, separator, exterior body, etc. is from the viewpoint of manufacturing problems and quality assurance. In other words, it is approaching the limit of thinning.

一般的な非水電解質電池の作製方法を次に例示する。電極(正極、負極)は、例えば、粒子状の活物質(正極活物質、負極活物質)に必要に応じてバインダーや導電剤を添加し、揮発性溶剤を用いて混練してペースト状とし、集電体(正極集電体、負極集電体)上に塗布後、前記揮発溶剤を除去することにより集電体上に電極合剤(正極合剤、負極合剤)が形成される。ここで、電極合剤は活物質粒子間に空隙が設けられている。電極合剤中における活物質の充填密度及び空隙率は、揮発溶剤を除去した後に電極合剤をプレスすること等により制御できる。電極(正極、負極)とセパレータを組み合わせ発電要素を構成した後、外装体内に発電要素を設置し、非水電解質を注液する。これにより、前記空隙部分に非水電解質が配置される。ここで、合剤中に空隙率を一定以上確保することで、注液により非水電解質を空隙内に充分に導入することができ、これにより活物質粒子と非水電解質との接触が充分となり、充電や放電に伴う電極反応を充分に進行させることができる。   A typical method for manufacturing a nonaqueous electrolyte battery will be described below. The electrode (positive electrode, negative electrode) is, for example, a binder and a conductive agent added to the particulate active material (positive electrode active material, negative electrode active material) as necessary, and kneaded using a volatile solvent to form a paste, After coating on the current collector (positive electrode current collector, negative electrode current collector), an electrode mixture (positive electrode mixture, negative electrode mixture) is formed on the current collector by removing the volatile solvent. Here, in the electrode mixture, voids are provided between the active material particles. The packing density and porosity of the active material in the electrode mixture can be controlled by pressing the electrode mixture after removing the volatile solvent. After the electrode (positive electrode, negative electrode) and separator are combined to form a power generation element, the power generation element is installed in the exterior body and a nonaqueous electrolyte is injected. Thereby, a nonaqueous electrolyte is arrange | positioned in the said space | gap part. Here, by ensuring a certain degree of porosity in the mixture, the nonaqueous electrolyte can be sufficiently introduced into the voids by injection, and this enables sufficient contact between the active material particles and the nonaqueous electrolyte. The electrode reaction accompanying charging and discharging can be sufficiently advanced.

電極合剤における活物質の充填密度を高めると、計算上は非水電解質電池のエネルギー密度を高めることができる。合剤の充填密度を高めた電極を作製すること自体は、塗布・乾燥後のプレス圧力等を調整することにより当業者の技術常識を用いれば容易である。しかしながら、充填密度を高めると必然的に空隙率が低下し、注液によって非水電解質を空隙内に充分に導入することができず、このため活物質粒子と非水電解質との接触を充分に確保できなくなるため、電極反応を充分に進行させることができない。従って、充分な電池性能を伴った非水電解質電池とする観点から、現行の非水電解質電池においては、正極合剤における正極充填密度は3.1g/cm3程度に、負極合剤における負極充填密度は1.4g/cm3程度に設計されている。 When the packing density of the active material in the electrode mixture is increased, the energy density of the nonaqueous electrolyte battery can be increased in calculation. It is easy to produce an electrode with an increased packing density of the mixture by using the common technical knowledge of those skilled in the art by adjusting the press pressure after coating and drying. However, when the packing density is increased, the porosity is inevitably lowered, and the nonaqueous electrolyte cannot be sufficiently introduced into the voids by injection, and therefore sufficient contact between the active material particles and the nonaqueous electrolyte is achieved. Since it cannot be ensured, the electrode reaction cannot proceed sufficiently. Therefore, from the viewpoint of a non-aqueous electrolyte battery with sufficient battery performance, in the current non-aqueous electrolyte battery, the positive electrode filling density in the positive electrode mixture is about 3.1 g / cm 3 and the negative electrode filling in the negative electrode mixture The density is designed to be about 1.4 g / cm 3 .

より高いエネルギー密度を有する非水電解質電池とするには、充填密度の高い電極を用いても、非水電解質を電極の空隙内に充分に配置できる技術が望まれていた。   In order to obtain a non-aqueous electrolyte battery having a higher energy density, there has been a demand for a technique capable of sufficiently disposing the non-aqueous electrolyte in the gap of the electrode even when an electrode having a high packing density is used.

非水電解質電池に用いられる代表的な非水電解質としては、高誘電率溶媒であるエチレンカーボネートと低粘度溶媒であるジエチルカーボネートを2:3の体積比で混合した混合溶媒に電解質塩であるLiPF6を1mol/lの濃度で溶解したものを例示できる。このように、低粘度溶媒を体積比率で多く混合することにより、非水電解質の粘度を低いものとすることができるので、合剤に設けられた空隙内に非水電解質を注液によって充分に配置することができる。ところが、近年、金属樹脂複合フィルム等の柔軟な外装体を備えた電池が開発され実用化される傾向にあるが、金属樹脂複合フィルム等の柔軟な外装体は電池内圧の変化によって変形しうるものであり、低粘度溶媒は概して蒸気圧が高いことから、非水電解質が低粘度溶媒を多く含んでいると、電池の膨れを引き起こしやすいといった問題点があった。従って、低粘度溶媒を含有しないかまたは少ない割合で含有する非水電解質を用いながらも、充分な電池性能を有する非水電解質電池とすることのできる技術が求められていた。 As a typical nonaqueous electrolyte used for a nonaqueous electrolyte battery, LiPF which is an electrolyte salt is mixed with a mixed solvent in which ethylene carbonate which is a high dielectric constant solvent and diethyl carbonate which is a low viscosity solvent are mixed at a volume ratio of 2: 3. An example is one in which 6 is dissolved at a concentration of 1 mol / l. Thus, by mixing a large amount of the low-viscosity solvent at a volume ratio, the viscosity of the non-aqueous electrolyte can be lowered, so that the non-aqueous electrolyte is sufficiently injected into the gap provided in the mixture. Can be arranged. However, in recent years, batteries having a flexible exterior body such as a metal resin composite film have been developed and put into practical use. However, a flexible exterior body such as a metal resin composite film can be deformed by changes in battery internal pressure. Since the low-viscosity solvent generally has a high vapor pressure, if the non-aqueous electrolyte contains a large amount of the low-viscosity solvent, there is a problem that the battery tends to swell. Therefore, there has been a demand for a technique that can provide a nonaqueous electrolyte battery having sufficient battery performance while using a nonaqueous electrolyte that does not contain a low-viscosity solvent or contains a small amount thereof.

ところが、高誘電率溶媒は概して粘度が高いことから、低粘度溶媒を含有しないかまたは少ない割合で含有する非水電解質を用いると、充填密度を高めた電極合剤の空隙内に非水電解質を充分に配置しようとする上記課題は解決されないどころか逆に非水電解質の充分な配置が困難となる方向にあり、ましてや、正極合剤の充填密度を3.3g/cm3を超えて設計した場合、あるいは負極合剤の充填密度を1.4g/cm3を超えて設計した場合には、非水電解質を空隙内にほとんど配置できず、電池性能が大きく低下してしまうといった問題点があった。 However, since the high dielectric constant solvent generally has a high viscosity, if a non-aqueous electrolyte containing no or a small proportion of a low-viscosity solvent is used, the non-aqueous electrolyte is placed in the gap of the electrode mixture having a high packing density. If the above-mentioned problem to be sufficiently arranged is not solved, on the contrary, it is in the direction that sufficient arrangement of the non-aqueous electrolyte becomes difficult. Furthermore, when the packing density of the positive electrode mixture is designed to exceed 3.3 g / cm 3 Or, when the packing density of the negative electrode mixture is designed to exceed 1.4 g / cm 3 , there is a problem that the non-aqueous electrolyte can hardly be arranged in the gap and the battery performance is greatly deteriorated. .

一般に、電極合剤の空隙に非水電解質を充分に配置させる方法としては、注液後に長時間のスタンディング工程を設けることや、注液後に高温で放置することが挙げられる。しかしながら、注液後の放置時間を充分に設けることは、製造コストを大幅に引き上げてしまうことになり採用が困難であり、高い温度でスタンディング工程に供することは、電池性能を低下させるといった問題があった。電解質塩としてのLiPF6は優れた電極性能を引き出すことができることから一般的な非水電解質電池に標準的に用いられているが、LiPF6は熱的安定性が良好ではないため、注液後に高温で放置することは好ましい方法ではなかった。また、上記したように正極合剤の充填密度を3.3g/cm3を超えて設計した場合、あるいは負極合剤の充填密度を1.4g/cm3を超えて設計した場合には、注液後に長時間の放置工程を設ける方法や、高い温度でスタンディング工程に供する方法を用いてもなお、非水電解質を充分に行き渡らせることが実質的に不可能であるといった問題点があった。 In general, as a method for sufficiently disposing a non-aqueous electrolyte in the gap of the electrode mixture, a long standing process is provided after the injection, or a high temperature is left after the injection. However, it is difficult to adopt a sufficient standing time after injecting the liquid because the manufacturing cost is greatly increased, and it is difficult to adopt the standing process at a high temperature. there were. LiPF 6 as an electrolyte salt is typically used in a general non-aqueous electrolyte battery because it can bring out excellent electrode performance. However, LiPF 6 is not good in thermal stability, so after injection. Leaving it at a high temperature was not the preferred method. Also, when the packing density of the positive electrode mixture is designed to exceed 3.3 g / cm 3 as described above, or when the packing density of the negative electrode mixture is designed to exceed 1.4 g / cm 3 , There is a problem that it is substantially impossible to spread the non-aqueous electrolyte sufficiently even if a method of providing a standing process for a long time after the liquid or a method of using the standing process at a high temperature is used.

また、非水電解質として、液状の非水電解質(電解液)に代えてゲル電解質を用いた電池(以下「ゲル電解質電池」ともいう)があり、特に金属樹脂複合フィルム等の柔軟な外装体を備えた電池に多く用いられようとしている。ここで、電極合剤の空隙内に非水電解質を配置する方法としては、電極合剤(正極合剤、負極合剤)に設けた空隙部分に、ゲルを構成するポリマーの前駆体である重合性官能基を有するモノマーを含んだ非水電解質(以下「モノマー液」ともいう)を配置した後、固化する方法が一般的である。ここで、電極合剤に設けた空隙部分にモノマー液を配置する方法として、必要に応じて導電剤を加えた活物質粒子にモノマー液を添加してペースト状として集電体上に塗布後固化する方法を用いても良いが、この方法では合剤の活物質密度を充分に高いものとすることが困難であるため、あまり採用されていない。   In addition, as a non-aqueous electrolyte, there is a battery using a gel electrolyte instead of a liquid non-aqueous electrolyte (electrolytic solution) (hereinafter also referred to as “gel electrolyte battery”), and in particular, a flexible exterior body such as a metal resin composite film is used. It is going to be used for many batteries. Here, as a method of disposing the non-aqueous electrolyte in the gap of the electrode mixture, polymerization that is a polymer precursor constituting the gel in the gap portion provided in the electrode mixture (positive electrode mixture, negative electrode mixture). A method of solidifying after disposing a non-aqueous electrolyte containing a monomer having a functional functional group (hereinafter also referred to as “monomer solution”) is common. Here, as a method of arranging the monomer liquid in the void portion provided in the electrode mixture, the monomer liquid is added to the active material particles to which a conductive agent is added as necessary, and is applied as a paste on the current collector and then solidified. However, since it is difficult to make the active material density of the mixture sufficiently high with this method, it is not widely used.

このように、ゲル電解質電池においては、固化後のゲルは流動性を有さないことから、固化の前までに、モノマー液を合剤の空隙内に充分に配置できなければ、充分な電池性能を有する非水電解質電池とすることができないため、活物質を高密度に配した電極の空隙内に非水電解質を充分に配置させようとする課題は、より確実に達成されなければならない。さらに、ゲル電解質電池は外装体を軽量化できるとの特長を生かすため、柔軟な外装体材料を用いる場合が多く、非水電解質が蒸気圧の高い低粘度溶媒を多く含まないものとしたいという要求はより一層高い。加えて、モノマーを含有しない非水電解質に比べてモノマーを含有しているモノマー液は粘度が高くなる場合が多いことから、上記課題はなおさら切実であった。   Thus, in the gel electrolyte battery, since the gel after solidification does not have fluidity, if the monomer liquid cannot be sufficiently disposed in the gap of the mixture before solidification, sufficient battery performance is achieved. Therefore, the problem of sufficiently disposing the non-aqueous electrolyte in the gaps of the electrode in which the active material is arranged at a high density must be achieved more reliably. Furthermore, in order to take advantage of the fact that the gel electrolyte battery can reduce the weight of the exterior body, a flexible exterior body material is often used, and the non-aqueous electrolyte does not need to contain many low-viscosity solvents having a high vapor pressure. Is even higher. In addition, since the viscosity of a monomer solution containing a monomer is often higher than that of a non-aqueous electrolyte that does not contain a monomer, the above-described problem is even more serious.

特許文献1には、溶質としてLiBF4 、LiPF6等のリチウム塩とLiN(CF3SO22 、LiC(CF3 SO23 等のリチウム塩とを混合して使用することにより、「自己放電を抑制し保存特性を向上させ、電解液の伝導度を向上させ、より高エネルギー密度の非水電解液電池を提供することができる」ことが記載されている。しかし、この特許文献1には、電極合剤の空隙内に非水電解質を充分に配置させようとする課題は存在しない。 In Patent Document 1, a lithium salt such as LiBF 4 or LiPF 6 as a solute and a lithium salt such as LiN (CF 3 SO 2 ) 2 or LiC (CF 3 SO 2 ) 3 are used as a solute. It is described that self-discharge can be suppressed, storage characteristics can be improved, the conductivity of the electrolyte can be improved, and a higher energy density non-aqueous electrolyte battery can be provided. However, this Patent Document 1 does not have a problem of sufficiently arranging the nonaqueous electrolyte in the gap of the electrode mixture.

特許文献2には、LiN(CF3SO22 、LiC(CF3SO23等のパーフルオロアルキル基を有するリチウム塩を使用した高分子固体電解質を正極上に塗布し、含侵させた後に熱重合すること(請求項1)により、「正極合剤と高分子固体電解質との接触の改善された、より高エネルギー密度の高分子固体電解質電池を提供することができる」(段落[0058])事が記載されている。しかし、この特許文献2には電解質塩として無機アニオンLiPF6あるいはLiBF4と有機アニオンLiN(Cn2n+1SO22(n:1〜4の整数)、あるいはLiC(Cn2n+1SO23(n:1〜4の整数)で表されるイミド塩あるいはメチド塩を混合して用いることについては記載がない。
特許第3016447号公報 特許第3499916号公報
In Patent Document 2, a polymer solid electrolyte using a lithium salt having a perfluoroalkyl group such as LiN (CF 3 SO 2 ) 2 or LiC (CF 3 SO 2 ) 3 is applied on a positive electrode and impregnated. Then, by performing thermal polymerization (claim 1), it is possible to provide a polymer solid electrolyte battery having a higher energy density and improved contact between the positive electrode mixture and the polymer solid electrolyte (paragraph [ 0058]) is described. However, in this patent document 2, as an electrolyte salt, an inorganic anion LiPF 6 or LiBF 4 and an organic anion LiN (C n F 2n + 1 SO 2 ) 2 (n: an integer of 1 to 4) or LiC (C n F 2n There is no description about using an imide salt or a methide salt represented by +1 SO 2 ) 3 (n: an integer of 1 to 4).
Japanese Patent No. 3016447 Japanese Patent No. 3499916

本発明は、上記問題点に鑑みてなされたものであり、充填率の高い電極を用いながらも電池性能を充分に発揮させることができ、もって高いエネルギー密度を有する非水電解質電池を提供しようとするものである。また、誘電率40以上の溶媒を60体積%以上含む非水電解質を用いながらも、高いエネルギー密度を有する非水電解質電池を提供しようとするものである。   The present invention has been made in view of the above problems, and is intended to provide a non-aqueous electrolyte battery having a high energy density that can sufficiently exhibit battery performance while using an electrode having a high filling rate. To do. Another object of the present invention is to provide a nonaqueous electrolyte battery having a high energy density while using a nonaqueous electrolyte containing 60% by volume or more of a solvent having a dielectric constant of 40 or more.

本発明の構成及び作用効果は次の通りである。但し、作用機構については推定を含んでおり、その作用機構の成否は、本発明を制限するものではない。   The configuration and operational effects of the present invention are as follows. However, the action mechanism includes estimation, and the success or failure of the action mechanism does not limit the present invention.

本発明は、正極、負極及び非水電解質を備える非水電解質電池において、前記正極は、リチウム遷移金属複合酸化物からなる正極活物質を含有し、前記正極の正極充填密度が3.5g/cm以上であり、前記非水電解質は、無機アニオン及び有機アニオンを含み、前記無機アニオンはPF 及びBF のうちいずれか一方又は両方を含み、前記有機アニオンは(Cn2n+1SO2)(Cm2m+1SO2)N-(n、mは共に1〜4の整数であり、nとmは同じであっても異なっていてもよい)で表される1種又は2種以上を含むとともに、前記無機アニオンに対する前記有機アニオンのモル比が1/4以上1/1以下であり、さらに、前記非水電解質は誘電率40以上の溶媒を60体積%以上含むことを特徴とする非水電解質電池である。 The present invention provides a nonaqueous electrolyte battery comprising a positive electrode, a negative electrode and a nonaqueous electrolyte, wherein the positive electrode contains a positive electrode active material made of a lithium transition metal composite oxide, and the positive electrode packing density of the positive electrode is 3.5 g / cm. 3 or more, the non-aqueous electrolyte includes an inorganic anion and an organic anion, the inorganic anion includes one or both of PF 6 and BF 4 , and the organic anion is (C n F 2n + 1 SO 2 ) (C m F 2m + 1 SO 2 ) N (n and m are both integers of 1 to 4, and n and m may be the same or different). The molar ratio of the organic anion to the inorganic anion is not less than 1/4 and not more than 1/1, and the nonaqueous electrolyte further includes 60% by volume or more of a solvent having a dielectric constant of 40 or more. Non-aqueous electrolyte battery characterized in that A.

このような構成によれば、正極充填率が3.5g/cm3以上である正極に対しても、非水電解質を充分に配置できるので、高いエネルギー密度を有する非水電解質電池を提供することができる。正極充填密度は3.6g/cm3以上とすれば、より高密度に充填された正極において本発明の効果が奏されるため、よりエネルギー密度の高い非水電解質電池を提供することでき、好ましい。 According to such a configuration, a non-aqueous electrolyte can be sufficiently disposed even for a positive electrode having a positive electrode filling rate of 3.5 g / cm 3 or more, and thus a non-aqueous electrolyte battery having a high energy density is provided. Can do. If the positive electrode filling density is 3.6 g / cm 3 or more, the effect of the present invention can be achieved in a positive electrode filled with higher density, and thus a non-aqueous electrolyte battery with higher energy density can be provided, which is preferable. .

また、本発明は、前記正極の正極充填密度が3.7g/cm3以下であることを特徴としている。このような構成によれば、正極合剤の空隙率を充分に確保し、空隙率が低くなりすぎ空隙への非水電解質の配置が不充分となるおそれを低減することができる。 In addition, the present invention is characterized in that the positive electrode packing density of the positive electrode is 3.7 g / cm 3 or less. According to such a configuration, the porosity of the positive electrode mixture can be sufficiently secured, and the possibility that the porosity becomes too low and the arrangement of the nonaqueous electrolyte in the voids becomes insufficient can be reduced.

また、本発明は、前記負極は、炭素材からなる負極活物質を含有し、前記負極の負極充填密度が1.5g/cm以上であことを特徴とする非水電解質である。 Further, the present invention is pre SL negative electrode contains a negative electrode active material composed of carbon material, a negative electrode packing density of the negative electrode is a non-aqueous electrolyte, wherein the Ru der 1.5 g / cm 3 or more.

このような構成によれば、負極充填率が1.5g/cm3以上である負極に対しても、非水電解質を充分に配置できるので、高いエネルギー密度を有する非水電解質電池を提供することができる。負極充填密度は1.6g/cm3以上とすれば、より高密度に充填された負極において本発明の効果が奏されるため、よりエネルギー密度の高い非水電解質電池を提供することでき、より好ましい。 According to such a configuration, since the nonaqueous electrolyte can be sufficiently disposed even for the negative electrode having a negative electrode filling rate of 1.5 g / cm 3 or more, a nonaqueous electrolyte battery having a high energy density is provided. Can do. If the negative electrode filling density is 1.6 g / cm 3 or more, the effect of the present invention is exerted in the negative electrode filled with higher density, and thus a non-aqueous electrolyte battery with higher energy density can be provided. preferable.

また、本発明は、前記負極の負極充填密度が1.8g/cm3以下であることを特徴としている。このような構成によれば、負極合剤の空隙率を充分に確保し、空隙率が低くなりすぎ空隙への非水電解質の配置が不充分となるおそれを低減することができる。 In addition, the present invention is characterized in that the negative electrode filling density of the negative electrode is 1.8 g / cm 3 or less. According to such a configuration, the porosity of the negative electrode mixture can be sufficiently secured, and the possibility that the porosity becomes too low and the arrangement of the nonaqueous electrolyte in the voids becomes insufficient can be reduced.

また、本発明の非水電解質電池は、前記非水電解質は、誘電率40以上の高誘電率溶媒を60体積%以上含むものであることを特徴としている。   The nonaqueous electrolyte battery of the present invention is characterized in that the nonaqueous electrolyte contains 60% by volume or more of a high dielectric constant solvent having a dielectric constant of 40 or more.

このような構成によれば、誘電率40以上の高誘電率溶媒を60体積%以上含み、低粘度溶媒の含有率が低い非水電解質を用いながらも、活物質が高密度に配された正極や負極に対して、非水電解質を充分に行き渡らすことができる。従って、非水電解質の蒸気圧を低いものとすることができるので、金属樹脂複合フィルム等の電池内圧の変化によって変形しうる外装体を用いた電池の膨れを抑制できる。この観点から、誘電率40以上の高誘電率溶媒の比率は、より好ましくは70体積%以上、さらに好ましくは85体積%以上、最も好ましくは90体積%以上である。   According to such a configuration, a positive electrode in which an active material is arranged at a high density while using a non-aqueous electrolyte that contains 60% by volume or more of a high dielectric constant solvent having a dielectric constant of 40 or more and a low content of a low viscosity solvent. In addition, the nonaqueous electrolyte can be sufficiently distributed to the negative electrode. Therefore, since the vapor pressure of the non-aqueous electrolyte can be lowered, it is possible to suppress the swelling of the battery using the exterior body that can be deformed by the change in the battery internal pressure such as the metal resin composite film. From this viewpoint, the ratio of the high dielectric constant solvent having a dielectric constant of 40 or more is more preferably 70% by volume or more, further preferably 85% by volume or more, and most preferably 90% by volume or more.

また、本発明の非水電解質電池は、前記非水電解質がゲル電解質であることを特徴としている。   In the nonaqueous electrolyte battery of the present invention, the nonaqueous electrolyte is a gel electrolyte.

このような構成によれば、固化の前までにモノマー液を正極や負極に配置されることが求められるゲル電解質電池において、活物質の充填密度が高い電極を用いながらも、高いエネルギー密度を有する非水電解質電池(ゲル電解質電池)を提供することができる。   According to such a configuration, in a gel electrolyte battery in which the monomer liquid is required to be disposed on the positive electrode and the negative electrode before solidification, the electrode has a high energy density while using an electrode having a high active material filling density. A nonaqueous electrolyte battery (gel electrolyte battery) can be provided.

また、本発明の非水電解質電池は、外装体が電池内圧の変化によって変形しうるものであることを特徴としている。   The nonaqueous electrolyte battery of the present invention is characterized in that the outer package can be deformed by a change in the battery internal pressure.

このような構成によれば、金属樹脂複合フィルム等の電池内圧の変化によって変形しうる外装材を用いた電池であっても、本発明により内圧の上昇が抑えられるので、電池の膨れが抑制された非水電解質電池を提供できる。   According to such a configuration, even in a battery using an exterior material that can be deformed by a change in the internal pressure of the battery such as a metal resin composite film, the increase in the internal pressure is suppressed according to the present invention, so that the expansion of the battery is suppressed. A non-aqueous electrolyte battery can be provided.

なお、正極充填密度が3.5g/cm3以上である前記正極と、負極充填密度が1.5g/cm3以上である前記負極とを組み合わせると、電池のエネルギー密度を高いものとすることができるので、好ましい。 When the positive electrode having a positive electrode filling density of 3.5 g / cm 3 or more and the negative electrode having a negative electrode filling density of 1.5 g / cm 3 or more are combined, the energy density of the battery may be increased. This is preferable because it is possible.

本願明細書において、「正極充填密度」、「負極充填密度」とは、正極、負極のうち集電体を含まない部分、即ち、活物質材料に必要に応じて導電剤や結着剤等を混合してなる電極合剤部分に対して算出されるものとする。正極合剤または負極合剤は、板状または箔上の集電体上に層をなして形成しているものであってもよく、メッシュ状、網状または繊維状の集電体の中に埋め込まれるように形成されているものでもよく、いずれの場合においても充填密度は集電体部分を差し引いて算出されるものとする。即ち、正極充填密度、負極充填密度は、算出の対象となる前記電極合剤部分の体積と重量から求められる。電極合剤が集電体と一体のなっている場合には、集電体を含む正極又は負極の体積及び重量から集電体に係る体積及び重量を差し引き換算することで、正極、負極の充填密度を求めることができる。「正極充填密度」、「負極充填密度」の算出にあたって、電極中に非水電解質は配置されていないものとして扱う。非水電解質を含んだ電極に対して充填密度を測定する必要がある場合には、電極を低沸点溶媒(例えばジメチルカーボネート)に1分程度浸漬し、次に再度別の低沸点溶媒(例えばジメチルカーボネート)に1分程度浸漬し、最後にロータリーポンプ等で真空乾燥することにより、非水電解質を実質的に取り除くことができる。   In the specification of the present application, “positive electrode packing density” and “negative electrode packing density” are parts of a positive electrode and a negative electrode that do not include a current collector, that is, an active material, if necessary, a conductive agent, a binder, and the like. It shall be calculated with respect to the electrode mixture part formed by mixing. The positive electrode mixture or the negative electrode mixture may be formed by forming a layer on a plate-like or foil-like current collector, and is embedded in a mesh-like, mesh-like, or fiber-like current collector. In any case, the packing density is calculated by subtracting the current collector portion. That is, the positive electrode packing density and the negative electrode packing density are obtained from the volume and weight of the electrode mixture part to be calculated. When the electrode mixture is integrated with the current collector, the volume and weight of the current collector are subtracted from the volume and weight of the positive electrode or negative electrode including the current collector, thereby filling the positive electrode and the negative electrode. The density can be determined. In calculating the “positive electrode packing density” and the “negative electrode packing density”, it is assumed that a non-aqueous electrolyte is not disposed in the electrode. When it is necessary to measure the packing density for an electrode containing a non-aqueous electrolyte, the electrode is immersed in a low boiling point solvent (for example, dimethyl carbonate) for about 1 minute, and then another low boiling point solvent (for example, dimethyl carbonate). The nonaqueous electrolyte can be substantially removed by immersing in carbonate) for about 1 minute and finally vacuum drying with a rotary pump or the like.

本発明に適用することのできるリチウム遷移金属複合酸化物からなる正極活物質としては、特に限定されるものではないが、一般式LixNiaMnbCocz(0<x≦1.3、0≦a<1.0、0≦b<0.6、0≦c≦1、a+b+c=1、1.7≦z≦2.3)で表されるリチウム遷移金属複合酸化物が好ましく、また上記組成範囲内のものにおいて確実に本発明の効果が発揮されることを確認している。なかでも、LiCoO2、LiNi0.165Mn0.165Co0.672、LiNi0.2Mn0.2Co0.42のように、上記一般式の係数aとbの値が実質的に等しいものが好ましい。正極には、周知の材料からなる導電剤やバインダー等を技術常識の範囲内で適用することができる。正極合剤がリチウム遷移金属複合酸化物からなる正極活物質を85%以上含む正極であれば、導電剤やバインダー等その余の材料の種類や比率によらず本発明の効果が奏される。 The positive electrode active material composed of a lithium transition metal composite oxide which can be applied to the present invention, but are not particularly limited, the general formula Li x Ni a Mn b Co c O z (0 <x ≦ 1. 3, 0 ≦ a <1.0, 0 ≦ b <0.6, 0 ≦ c ≦ 1, a + b + c = 1, 1.7 ≦ z ≦ 2.3) are preferable. In addition, it has been confirmed that the effects of the present invention are surely exhibited in the above composition range. Among them, those in which the values of the coefficients a and b in the above general formula are substantially equal, such as LiCoO 2 , LiNi 0.165 Mn 0.165 Co 0.67 O 2 , and LiNi 0.2 Mn 0.2 Co 0.4 O 2 are preferable. A conductive agent, a binder, or the like made of a known material can be applied to the positive electrode within the scope of common technical knowledge. If the positive electrode mixture is a positive electrode containing 85% or more of a positive electrode active material made of a lithium transition metal composite oxide, the effects of the present invention are exhibited regardless of the type and ratio of other materials such as a conductive agent and a binder.

本発明に適用することのできる炭素材からなる負極活物質としては、特に限定されるものではなく、一般にリチウム電池の負極に用いることのできるリチウムを吸蔵放出可能な炭素材料として周知のものが適用可能である。例えば、格子面間隔(d002)が0.333〜0.350nm、a軸方向の結晶子の大きさ(La)が20nm以上、c軸方向の結晶子の大きさ(Lc)が20nm以上、真密度が2.00〜2.25g/cm3であるものが好適な材料として挙げられる。負極には、周知の材料からなるバインダー等を技術常識の範囲内で適用することができる。負極合剤が炭素材料を90%以上含む負極であれば、バインダー等その余の材料の種類や比率によらず本発明の効果が奏される。 The negative electrode active material made of a carbon material that can be applied to the present invention is not particularly limited, and those commonly known as carbon materials capable of occluding and releasing lithium that can be used for the negative electrode of a lithium battery are generally applied. Is possible. For example, the lattice spacing (d 002 ) is 0.333 to 0.350 nm, the crystallite size (La) in the a-axis direction is 20 nm or more, and the crystallite size (Lc) in the c-axis direction is 20 nm or more. A material having a true density of 2.00 to 2.25 g / cm 3 is a suitable material. A binder made of a known material can be applied to the negative electrode within the scope of common technical knowledge. If the negative electrode mixture is a negative electrode containing 90% or more of a carbon material, the effects of the present invention can be achieved regardless of the type and ratio of other materials such as a binder.

非水電解質が無機アニオンとしてPF6 -及びBF4 -のうちいずれか一方又は両方を含むものとするためには、LiPF6及びLiBF4のうちいずれか一方又は両方を非水溶媒に溶解させることで達成できる。また、非水電解質が有機アニオンとして(Cn2n+1SO2)(Cm2m+1SO2)N-(n、mは共に1〜4の整数であり、nとmは同じであっても異なっていてもよい)で表される1種又は2種以上を含むものとするためには、該有機アニオンのリチウム塩、具体的には、LiN(CF3SO22、LiN(C25SO22、LiN(CF3SO2)(C49SO2)等の中から1種又は2種以上を選択して溶解させることで達成できる。 Aqueous PF electrolyte inorganic anions 6 - and BF 4 - to intended to include either or both Of, accomplished by dissolving either or both of LiPF 6 and LiBF 4 in a non-aqueous solvent it can. Further, the nonaqueous electrolyte is an organic anion (C n F 2n + 1 SO 2) (C m F 2m + 1 SO 2) N - (n, m are both an integer of 1 to 4, n and m are as Or may be different from each other), a lithium salt of the organic anion, specifically, LiN (CF 3 SO 2 ) 2 , LiN ( This can be achieved by selecting one or more of C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), etc. and dissolving them.

非水電解質中の前記有機アニオンの量については特に限定されるものではないが、電極合剤における空隙への非水電解質の配置を充分とするため、無機アニオンに対する前記有機アニオンのモル比は1/99以上が好ましく、1/4以上がより好ましい。また、電池の内部抵抗が大きくなる虞を低減するため、無機アニオンに対する前記有機アニオンのモル比は2/3以下が好ましく、1/1以下がより好ましい。   The amount of the organic anion in the non-aqueous electrolyte is not particularly limited, but the molar ratio of the organic anion to the inorganic anion is 1 in order to sufficiently arrange the non-aqueous electrolyte in the gap in the electrode mixture. / 99 or more is preferable, and 1/4 or more is more preferable. Moreover, in order to reduce the possibility that the internal resistance of the battery increases, the molar ratio of the organic anion to the inorganic anion is preferably 2/3 or less, and more preferably 1/1 or less.

本発明の非水電解質を構成する誘電率40以上の溶媒としては、リチウム塩を好適に溶解しうるものであれば特に限定されるものではないが、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ−ブロラクトン、ジメチルスルフォキシド、γ−バレロラクトン、スルフォランが例示される。なかでも、プロピレンカーボネートを溶媒全体の40体積%以上用いることが好ましく、プロピレンカーボネートを溶媒全体の50体積%以上用いることがより好ましい。 The solvent having a dielectric constant of 40 or more constituting the nonaqueous electrolyte of the present invention is not particularly limited as long as it can dissolve a lithium salt suitably, but propylene carbonate, ethylene carbonate, butylene carbonate, γ- Bed Ji Rorakuton, dimethyl sulfoxide, .gamma.-valerolactone, sulfolane and the like. Especially, it is preferable to use propylene carbonate 40 volume% or more of the whole solvent, and it is more preferable to use propylene carbonate 50 volume% or more of the whole solvent.

また、注液後のスタンディング工程を30℃以上とすることにより、非水電解質を電極合剤の空隙内に速やかに行き渡らせることができるようになり、短時間で化成(初期充電)を開始することが可能となるので、製造コストを低く抑えながら、高エネルギー密度の非水電解質電池を提供することが可能となる。また、電解質塩としてLiPF6を用いると電池性能を優れたものとすることができる一方、LiPF6を単独で用いた非水電解質は熱的安定性が良好ではないので、有機アニオンを含む塩と混合して用いることにより、非水電解質の熱的安定性が向上する。従って、本発明に用いる非水電解質は、無機アニオンとしてPF6 -を少なくとも含むものとすることにより、本発明の効果を有効に発揮させることができ、好ましい。 In addition, by setting the standing step after the injection to 30 ° C. or higher, the nonaqueous electrolyte can be quickly spread into the gaps of the electrode mixture, and chemical conversion (initial charging) is started in a short time. Therefore, it is possible to provide a non-aqueous electrolyte battery having a high energy density while keeping the manufacturing cost low. In addition, when LiPF 6 is used as an electrolyte salt, battery performance can be improved. On the other hand, a non-aqueous electrolyte using LiPF 6 alone does not have good thermal stability. By using a mixture, the thermal stability of the non-aqueous electrolyte is improved. Therefore, the nonaqueous electrolyte used in the present invention preferably contains at least PF 6 as an inorganic anion, so that the effects of the present invention can be effectively exhibited.

請求項1,2により、正極合剤の正極充填密度が3.5g/cm3以上であっても、非水電解質が空隙内部に充分に行き渡るものとなり、これにより、高いエネルギー密度を有する非水電解質電池を提供できる。 According to Claims 1 and 2, even when the positive electrode packing density of the positive electrode mixture is 3.5 g / cm 3 or more, the non-aqueous electrolyte is sufficiently distributed inside the voids, whereby a non-aqueous electrolyte having a high energy density is obtained. An electrolyte battery can be provided.

請求項3,4により、負極合剤の負極充填密度が1.5g/cm3以上であっても、非水電解質が空隙内部に充分に行き渡るものとなり、これにより、高いエネルギー密度を有する非水電解質電池を提供できる。 According to Claims 3 and 4, even when the negative electrode filling density of the negative electrode mixture is 1.5 g / cm 3 or more, the non-aqueous electrolyte is sufficiently distributed inside the voids, whereby a non-aqueous electrolyte having a high energy density is obtained. An electrolyte battery can be provided.

請求項5により、誘電率40以上の高誘電率溶媒を60体積%以上含む非水電解質を用いながらも、高いエネルギー密度を有する非水電解質電池を提供することができ、電池内圧の変化によって変形しうる外装体を用いた場合の電池の膨れを抑制できる。   According to claim 5, it is possible to provide a non-aqueous electrolyte battery having a high energy density while using a non-aqueous electrolyte containing 60% by volume or more of a high dielectric constant solvent having a dielectric constant of 40 or more, which is deformed by a change in battery internal pressure. In this case, it is possible to suppress the swelling of the battery.

請求項6により、エネルギー密度の高いゲル電解質電池を提供できる。   According to the sixth aspect, a gel electrolyte battery having a high energy density can be provided.

請求項7により、電池内圧の変化によって変形しうる外装体を用いた電池の膨れが抑制された、高エネルギー密度の非水電解質電池を提供できる。   According to the seventh aspect of the present invention, it is possible to provide a non-aqueous electrolyte battery having a high energy density in which swelling of the battery using the outer package that can be deformed by a change in battery internal pressure is suppressed.

以下、実施例に基づき本発明をさらに詳細に説明するが、これらは本発明を何ら限定するものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, these do not limit this invention at all.

(非水電解質A)
エチレンカーボネート(EC)、プロピレンカーボネート(PC)及びジエチルカーボネート(DEC)を体積比5:4:1の割合で混合した混合溶媒に、0.5モル/リットルの濃度のLiPF6及び0.5モル/リットルの濃度のLiN(C25SO22を溶解させた。
(Nonaqueous electrolyte A)
In a mixed solvent in which ethylene carbonate (EC), propylene carbonate (PC) and diethyl carbonate (DEC) were mixed at a volume ratio of 5: 4: 1, LiPF 6 having a concentration of 0.5 mol / liter and 0.5 mol were mixed. LiN (C 2 F 5 SO 2 ) 2 having a concentration of 1 / liter was dissolved.

(非水電解質B)
エチレンカーボネート(EC)、プロピレンカーボネート(PC)及びジエチルカーボネート(DEC)を体積比5:4:1の割合で混合した混合溶媒に、1.0モル/リットルの濃度のLiPF6を溶解させた。
(Nonaqueous electrolyte B)
LiPF 6 having a concentration of 1.0 mol / liter was dissolved in a mixed solvent in which ethylene carbonate (EC), propylene carbonate (PC) and diethyl carbonate (DEC) were mixed at a volume ratio of 5: 4: 1.

(非水電解質C)
85重量部の前記非水電解質Aに、メチルメタクリレート(MMA)12重量部、及びエチレングリコールジメタクリレート(EGDMA)3重量部を加えて均一に混合し、適量のアゾビスイソブチロニトリル(AIBN)を添加し、これを非水電解質Cとした。
(Nonaqueous electrolyte C)
To 85 parts by weight of the non-aqueous electrolyte A, 12 parts by weight of methyl methacrylate (MMA) and 3 parts by weight of ethylene glycol dimethacrylate (EGDMA) were added and mixed uniformly to obtain an appropriate amount of azobisisobutyronitrile (AIBN). Was added to make non-aqueous electrolyte C.

(正極の作製)
LiCoO2(正極活物質)、アセチレンブラック及びポリフッ化ビニリデン(PVdF)を重量比90:5:5の割合で混合し、分散媒としてN−メチルピロリドンを加えて混練分散し、ペースト状の塗布液を調製した。なお、PVdFは固形分が溶解分散された液を用い、固形重量換算した。該塗布液を厚さ15μmのアルミニウム箔からなる正極集電体の両面に塗布・乾燥し、プレスすることにより、正極集電体上に正極合剤が形成された正極を作製した。ここで、プレス圧力を適宜調整することにより、正極充填密度が3.1g/cm3、3.3g/cm3、3.4g/cm3、3.5g/cm3、3.6g/cm3及び3.7g/cm3のそれぞれである正極を作製した。
(Preparation of positive electrode)
LiCoO 2 (positive electrode active material), acetylene black and polyvinylidene fluoride (PVdF) are mixed at a weight ratio of 90: 5: 5, and N-methylpyrrolidone is added as a dispersion medium and kneaded and dispersed to obtain a paste-like coating solution. Was prepared. In addition, PVdF converted into solid weight using the liquid by which solid content was melt | dissolved and disperse | distributed. The coating solution was applied to both sides of a positive electrode current collector made of an aluminum foil having a thickness of 15 μm, dried, and pressed to produce a positive electrode in which a positive electrode mixture was formed on the positive electrode current collector. Here, the positive electrode filling density is adjusted to 3.1 g / cm 3 , 3.3 g / cm 3 , 3.4 g / cm 3 , 3.5 g / cm 3 , 3.6 g / cm 3 by appropriately adjusting the pressing pressure. And positive electrodes of 3.7 g / cm 3 respectively.

(負極の作製)
グラファイト(負極活物質)、カルボキシメチルセルロース及びスチレンーブタジエンゴムが重量比97:1.5:1.5の割合で混合しているペースト状の水性塗布液を調製した。該塗布液を厚さ10μmの銅箔からなる負極集電体の両面に塗布・乾燥し、プレスすることにより、負極集電体上に負極合剤が形成された負極を作製した。ここで、プレス圧力を適宜調整することにより、負極充填密度が1.4g/cm3、1.5g/cm3、1.6g/cm3、1.7g/cm3及び1.8g/cm3のそれぞれである負極を作製した。
(Preparation of negative electrode)
A paste-like aqueous coating solution in which graphite (negative electrode active material), carboxymethylcellulose, and styrene-butadiene rubber were mixed at a weight ratio of 97: 1.5: 1.5 was prepared. The coating solution was applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 10 μm, dried, and pressed to prepare a negative electrode in which a negative electrode mixture was formed on the negative electrode current collector. Here, by appropriately adjusting the press pressure, a negative electrode packing density of 1.4g / cm 3, 1.5g / cm 3, 1.6g / cm 3, 1.7g / cm 3 and 1.8 g / cm 3 The negative electrode which is each of these was produced.

非水電解質電池は次の処方により組み立てる。正極集電体及び負極集電体に正極リード端子及び負極リード端子をそれぞれ取り付ける。ポリプロピレン製セパレータ(空隙率50%)を介して正極及び負極を積層し、扁平に捲回することにより極群を構成する。金属樹脂複合フィルム(アルミラミネートフィルム)製の袋状外装体に前記極群を収納し、外装体の開口部を注液孔部を除いて封止する。次いで、減圧環境下で注液孔から非水電解質を注入し、注液孔部を封止する。次に、スタンディング工程を経た後、5サイクル初期充放電からなる初期化成を経て非水電解質電池が完成される。初期化成における充電条件は温度20℃で0.1ItmA、電圧4.2V、15時間の定電流定電圧充電とし、放電条件は電流0.2ItmA、終止電圧3.0Vの定電流放電とし、充電/放電の切り替わり時にはそれぞれ30分間の休止を設ける。初期化成の5サイクル目の放電容量をその電池の初期容量とする。本実施例及び比較例で作製する非水電解質電池の寸法は、いずれも厚さ約4mm、幅35mm、高さ62mmである。   The nonaqueous electrolyte battery is assembled according to the following formulation. A positive electrode lead terminal and a negative electrode lead terminal are attached to the positive electrode current collector and the negative electrode current collector, respectively. A positive electrode and a negative electrode are laminated via a polypropylene separator (porosity 50%), and the electrode group is formed by winding flatly. The electrode group is housed in a bag-shaped exterior body made of a metal resin composite film (aluminum laminate film), and the opening of the exterior body is sealed except for the liquid injection hole. Next, a nonaqueous electrolyte is injected from the liquid injection hole under a reduced pressure environment to seal the liquid injection hole. Next, after passing through a standing process, a non-aqueous electrolyte battery is completed through an initialization process consisting of five cycles of initial charge / discharge. The charge condition in the initialization process is a constant current / constant voltage charge of 0.1 ItmA at a temperature of 20 ° C., a voltage of 4.2 V, 15 hours, and a discharge condition is a constant current discharge of a current of 0.2 ItmA, a final voltage of 3.0 V. A 30-minute pause is provided for each discharge change. The discharge capacity at the fifth cycle of initialization is defined as the initial capacity of the battery. The dimensions of the nonaqueous electrolyte batteries produced in this example and the comparative example are all about 4 mm thick, 35 mm wide, and 62 mm high.

表1に示すように、正極と負極を組み合わせ、それぞれの組み合わせに対して非水電解質A〜Cを用いて、前記処方で非水電解質電池を組み立てた。次に、スタンディング工程として20℃環境下に1日間放置した。初期化成により確認された初期容量の値に基づき、電池内の電極合剤体積当たりの放電容量を表1に併せて示す。なお、電池内の電極合剤体積とは、正極合剤及び負極合剤が占める体積のことであり、正極集電体、負極集電体、セパレータ、外装体等、電極合剤以外の部分の体積は含まない。   As shown in Table 1, a positive electrode and a negative electrode were combined, and nonaqueous electrolyte batteries A to C were used for each combination, and nonaqueous electrolyte batteries were assembled according to the above formulation. Next, it was left in a 20 ° C. environment for 1 day as a standing step. Table 1 also shows the discharge capacity per volume of the electrode mixture in the battery based on the value of the initial capacity confirmed by the initialization. The volume of the electrode mixture in the battery is the volume occupied by the positive electrode mixture and the negative electrode mixture, and the portion other than the electrode mixture, such as the positive electrode current collector, the negative electrode current collector, the separator, and the outer package. Does not include volume.

表1に示したように、電池1〜10は、いずれも正極充填密度が3.1g/cm3である正極を用い、負極充填密度が1.4〜1.8g/cm3のそれぞれである負極と組み合わせ、非水電解質A又はBを用いて上記処方により作成した非水電解質電池である。これらの結果から次のことがわかる。 As shown in Table 1, each of the batteries 1 to 10 uses a positive electrode having a positive electrode packing density of 3.1 g / cm 3 and a negative electrode packing density of 1.4 to 1.8 g / cm 3. It is a non-aqueous electrolyte battery prepared by the above formulation using a non-aqueous electrolyte A or B in combination with a negative electrode. These results show the following.

電解質塩としてLiPF6を単独で用いた非水電解質Bを用いた電池6〜10において、負極充填密度が1.4g/cm3である負極を用いた電池6に比べ、負極充填密度が1.5g/cm3である負極を用いた電池7の放電容量は向上している。これは電池7の方がより負極充填密度の高い負極を用いたことによりエネルギー密度が向上したためである。しかしながら、電池8〜10はより負極充填密度の高い負極を用いているにもかかわらず、放電容量は逆に低下している。これは、負極充填密度が高すぎて非水電解質Bが負極の空隙内に充分に配置されなかったことによると考えられる。この結果、同一体積の電池である電池6〜10の中では電池7が最もエネルギー密度が高い結果となった。 In the batteries 6 to 10 using the non-aqueous electrolyte B using LiPF 6 alone as the electrolyte salt, the negative electrode filling density is 1 as compared with the battery 6 using the negative electrode having a negative electrode filling density of 1.4 g / cm 3 . The discharge capacity of the battery 7 using the negative electrode of 5 g / cm 3 is improved. This is because the energy density of the battery 7 is improved by using a negative electrode having a higher negative electrode packing density. However, although the batteries 8 to 10 use the negative electrode having a higher negative electrode packing density, the discharge capacity is decreased. This is presumably because the negative electrode packing density was too high and the non-aqueous electrolyte B was not sufficiently disposed in the gap of the negative electrode. As a result, the battery 7 has the highest energy density among the batteries 6 to 10 having the same volume.

電解質塩としてLiPF6及びLiN(C25SO22を用いた非水電解質Aを用いた電池1〜5において、負極充填密度が1.4g/cm3である負極を用いた電池1の放電容量は前記電池6と同程度であるが、負極充填密度が1.5g/cm3〜1.8g/cm3である負極を用いた電池2〜5は、いずれも前記電池7の放電容量を上回っている。これは、負極充填密度の高い負極に対しても、非水電解質Aが充分に行き渡ったことによると考えられ、この結果、より体積エネルギー密度の高い非水電解質電池が得られた。 Battery 1 using batteries 1 to 5 using nonaqueous electrolyte A using LiPF 6 and LiN (C 2 F 5 SO 2 ) 2 as electrolyte salts, and using a negative electrode having a negative electrode packing density of 1.4 g / cm 3 discharge of the discharge capacity is of the same order as the battery 6, the battery 2-5 using the anode of the negative electrode packing density is 1.5g / cm 3 ~1.8g / cm 3 are all of the battery 7 The capacity is exceeded. This is considered to be due to the fact that the non-aqueous electrolyte A was sufficiently distributed even to the negative electrode having a high negative electrode packing density, and as a result, a non-aqueous electrolyte battery having a higher volumetric energy density was obtained.

電池11〜20は、いずれも負極充填密度が1.5g/cm3である負極を用い、正極充填密度が3.3〜3.7g/cm3のそれぞれである正極と組み合わせ、非水電解質A又はBを用いて上記処方により作成した非水電解質電池である。これらの結果から次のことがわかる。 Each of the batteries 11 to 20 uses a negative electrode having a negative electrode filling density of 1.5 g / cm 3 and is combined with a positive electrode having a positive electrode filling density of 3.3 to 3.7 g / cm 3. Or it is the nonaqueous electrolyte battery created by the said prescription using B. These results show the following.

電解質塩としてLiPF6を単独で用いた非水電解質Bを用いた電池16〜20において、正極充填密度が3.3g/cm3である正極を用いた電池16に比べ、正極充填密度が3.4g/cm3である負極を用いた電池17の放電容量は向上している。これは電池17の方がより正極充填密度の高い正極を用いたことによりエネルギー密度が向上したためである。しかしながら、電池18はより正極充填密度の高い正極を用いているにもかかわらず、放電容量は電池17と同程度であり、さらに正極充填密度の高い正極を用いた電池19, 20では放電容量が逆に低下している。これは、正極充填密度が高すぎて正極の空隙率が低いため、非水電解質Bが正極の空隙内に充分に行き渡らかったことによると考えられる。この結果、電池1620の中では電池17が最もエネルギー密度が高い結果となった。 In batteries 16 to 20 using nonaqueous electrolyte B using LiPF 6 alone as an electrolyte salt, compared with the battery 16 using the positive electrode the positive electrode packing density of 3.3 g / cm 3, a positive electrode packing density 3. The discharge capacity of the battery 17 using the negative electrode of 4 g / cm 3 is improved. This is because the energy density was improved by using the positive electrode having a higher positive electrode packing density in the battery 17. However, although the battery 18 uses a positive electrode with a higher positive electrode packing density, the discharge capacity is almost the same as that of the battery 17, and the batteries 19 and 20 using a positive electrode with a higher positive electrode packing density have a higher discharge capacity. Conversely, it is falling. This is presumably because the non-aqueous electrolyte B was sufficiently spread within the voids of the positive electrode because the positive electrode packing density was too high and the porosity of the positive electrode was low. As a result, among the batteries 16 to 20 , the battery 17 had the highest energy density.

電解質塩としてLiPF6及びLiN(C25SO22を用いた非水電解質Aを用いた電池11〜15において、正極充填密度が3.3g/cm3又は3.4g/cm3である正極を用いた電池11,12の放電容量は前記電池16,17とそれぞれ同程度であるが、正極充填密度が3.5g/cm3又は3.6g/cm3である正極を用いた電池13〜14は、いずれも前記電池17の放電容量を上回っている。これは、正極充填密度の高い負極に対しても、非水電解質が充分に行き渡ったことによると考えられ、この結果、より体積エネルギー密度の高い非水電解質電池が得られた。正極充填密度が3.7g/cm3である正極を用いた電池15の放電容量は前記電池12と同程度であるが、電極充填密度が大きい電極を用いることで、同一体積内に収納できる活物質量が多くなるために、同一体積の電池を作製して比較すればより放電容量の大きい電池とすることができる利点がある。 In the batteries 11 to 15 using the non-aqueous electrolyte A using LiPF 6 and LiN (C 2 F 5 SO 2 ) 2 as the electrolyte salt, the positive electrode packing density is 3.3 g / cm 3 or 3.4 g / cm 3 . Batteries 11 and 12 using a positive electrode have the same discharge capacity as batteries 16 and 17, respectively, but a battery using a positive electrode having a positive electrode packing density of 3.5 g / cm 3 or 3.6 g / cm 3. 13 to 14 all exceed the discharge capacity of the battery 17. This is considered to be due to the fact that the non-aqueous electrolyte was sufficiently distributed even to the negative electrode having a high positive electrode packing density. As a result, a non-aqueous electrolyte battery having a higher volumetric energy density was obtained. The discharge capacity of the battery 15 using the positive electrode having a positive electrode packing density of 3.7 g / cm 3 is about the same as that of the battery 12, but the use of an electrode having a high electrode packing density enables the active capacity that can be accommodated in the same volume. Since the amount of substances increases, there is an advantage that a battery having a larger discharge capacity can be obtained by making and comparing batteries having the same volume.

(実施例2)
非水電解質には非水電解質C(モノマー液)を用いたことを除いては、実施例5及び実施例15と同一の電極の組み合わせにより前記処方で非水電解質電池を組み立てた。次に、スタンディング工程として60℃環境下に1日間放置した後、20℃にて10時間放置した。この工程により、非水電解質Cは固化しゲル電解質となっている。この電池をそれぞれ電池21,電池22とする。
(Example 2)
A nonaqueous electrolyte battery was assembled according to the above formulation with the same electrode combination as in Example 5 and Example 15, except that nonaqueous electrolyte C (monomer solution) was used as the nonaqueous electrolyte. Next, after standing in a 60 ° C. environment for 1 day as a standing step, it was left at 20 ° C. for 10 hours. By this step, the nonaqueous electrolyte C is solidified to become a gel electrolyte. These batteries are referred to as a battery 21 and a battery 22, respectively.

電池21,電池22の初期容量の値は、それぞれ電池5,電池15とほとんど同程度であった。このことから、メチルメタクリレートやエチレングリコールジメタクリレートが加えられ、非水電解質Aよりも粘度が高いと考えられるモノマー液(非水電解質C)であっても活物質が高密度に充填された電極の空隙内へ充分に配置できることがわかった。このように、今回準備した正極及び負極の中でも最も充填密度の高い電極を選んだ場合においても実施例1と同程度の電池性能が確認されたことから、これより充填密度の低い電極を用いた場合にも何ら問題なく適用できることがわかる。従って、スタンディング工程以降に非水電解質が空隙内にさらに行き渡ることが期待されないゲル電解質電池にも本発明が有効に適用できる。なお、初期化成後にこの電池を解体して正極及び負極を調査したところ、正極合剤及び負極合剤の空隙部分には、流動性や滲出性を有さないゲル電解質が配置されていることが確認された。   The initial capacity values of the battery 21 and the battery 22 were almost the same as those of the battery 5 and the battery 15, respectively. Thus, methyl methacrylate or ethylene glycol dimethacrylate is added, and even in the case of a monomer liquid (nonaqueous electrolyte C) that is considered to have a higher viscosity than the nonaqueous electrolyte A, the active material is filled with an active material at a high density. It was found that it can be sufficiently arranged in the gap. Thus, even when the electrode with the highest packing density was selected from among the positive electrode and the negative electrode prepared this time, the same battery performance as in Example 1 was confirmed, so an electrode with a lower packing density was used. It can be seen that the present invention can be applied without any problem. Therefore, the present invention can be effectively applied to a gel electrolyte battery in which the nonaqueous electrolyte is not expected to further spread into the voids after the standing step. In addition, when the battery was disassembled after initialization and the positive electrode and the negative electrode were examined, it was found that a gel electrolyte having no fluidity or exudation property was disposed in the space between the positive electrode mixture and the negative electrode mixture. confirmed.

以上の実施例では、正極側の効果と負極側の効果を独立して確認するため、一方の電極に従来の範囲の充填密度であるものを用いたが、正極及び負極の双方に本発明の範囲の充填密度である電極を用いることが最適であることはいうまでもない。   In the above example, in order to independently confirm the effect on the positive electrode side and the effect on the negative electrode side, one electrode having a packing density in the conventional range was used. It goes without saying that it is optimal to use electrodes with a packing density in the range.

以上、正極活物質としてLiCoO2を用いた場合を例に挙げて説明したが、LiNi0.165Mn0.165Co0.672を用いた場合にも同様の効果が確認された。また、リチウム塩としてLiN(C25SO22及びLiPF6を混合して用いた場合を例に挙げて説明したが、LiN(CF3SO22及びLiPF6を混合して用いた場合、LiN(C25SO22,LiPF6及びLiBF4を混合して用いた場合にも同様の効果が確認された。 The case where LiCoO 2 is used as the positive electrode active material has been described above as an example, but the same effect was confirmed when LiNi 0.165 Mn 0.165 Co 0.67 O 2 was used. Moreover, although the case where LiN (C 2 F 5 SO 2 ) 2 and LiPF 6 were mixed and used as a lithium salt was described as an example, LiN (CF 3 SO 2 ) 2 and LiPF 6 were mixed and used. In such a case, the same effect was confirmed when LiN (C 2 F 5 SO 2 ) 2 , LiPF 6 and LiBF 4 were mixed and used.

Claims (6)

正極、負極及び非水電解質を備える非水電解質電池において、前記正極は、リチウム遷移金属複合酸化物からなる正極活物質を含有し、前記正極の正極充填密度が3.5g/cm以上であり、前記非水電解質は、無機アニオン及び有機アニオンを含み、前記無機アニオンはPF 及びBF のうちいずれか一方又は両方を含み、前記有機アニオンは(Cn2n+1SO2)(Cm2m+1SO2)N-(n、mは共に1〜4の整数であり、nとmは同じであっても異なっていてもよい)で表される1種又は2種以上を含むとともに、前記無機アニオンに対する前記有機アニオンのモル比が1/4以上1/1以下であり、さらに、前記非水電解質は誘電率40以上の溶媒を60体積%以上含むことを特徴とする非水電解質電池。 In a nonaqueous electrolyte battery comprising a positive electrode, a negative electrode, and a nonaqueous electrolyte, the positive electrode contains a positive electrode active material made of a lithium transition metal composite oxide, and the positive electrode has a positive electrode filling density of 3.5 g / cm 3 or more. the non-aqueous electrolyte comprises an inorganic anions and organic anions, the inorganic anions are PF 6 - and BF 4 - includes either or both of the organic anion is (C n F 2n + 1 SO 2) (C m F 2m + 1 SO 2) n - (n, m are both an integer of 1 to 4, n and m may be different even in the same) one or represented by In addition to the above, the molar ratio of the organic anion to the inorganic anion is 1/4 or more and 1/1 or less, and the non-aqueous electrolyte contains 60% by volume or more of a solvent having a dielectric constant of 40 or more. Non-aqueous electrolyte battery. 前記正極の正極充填密度が3.7g/cm3以下である請求項1記載の非水電解質電池。 The nonaqueous electrolyte battery according to claim 1, wherein a positive electrode filling density of the positive electrode is 3.7 g / cm 3 or less. 前記負極は、炭素材からなる負極活物質を含有し、前記負極の負極充填密度が1.5g/cm以上である請求項1記載の非水電解質電池。 The non-aqueous electrolyte battery according to claim 1, wherein the negative electrode contains a negative electrode active material made of a carbon material, and a negative electrode filling density of the negative electrode is 1.5 g / cm 3 or more. 前記負極の負極充填密度が1.8g/cm以下である請求項3記載の非水電解質電池。 The nonaqueous electrolyte battery according to claim 3, wherein a negative electrode filling density of the negative electrode is 1.8 g / cm 3 or less. 前記非水電解質は、ゲル電解質である請求項1〜4のいずれかに記載の非水電解質電池。 The non-aqueous electrolyte battery according to claim 1, wherein the non-aqueous electrolyte is a gel electrolyte. 外装体は、電池内圧の変化によって変形しうるものである請求項1〜5のいずれかに記載の非水電解質電池。 The nonaqueous electrolyte battery according to any one of claims 1 to 5, wherein the exterior body is deformable by a change in battery internal pressure.
JP2004308349A 2004-10-22 2004-10-22 Non-aqueous electrolyte battery Expired - Fee Related JP5214088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004308349A JP5214088B2 (en) 2004-10-22 2004-10-22 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004308349A JP5214088B2 (en) 2004-10-22 2004-10-22 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2006120517A JP2006120517A (en) 2006-05-11
JP5214088B2 true JP5214088B2 (en) 2013-06-19

Family

ID=36538206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004308349A Expired - Fee Related JP5214088B2 (en) 2004-10-22 2004-10-22 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP5214088B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5147342B2 (en) * 2007-03-28 2013-02-20 三洋電機株式会社 Nonaqueous electrolyte secondary battery
WO2015166621A1 (en) * 2014-05-02 2015-11-05 ソニー株式会社 Battery, battery pack, electronic device, electric vehicle, electricity storage device and electric power system
CN110537274B (en) 2017-04-21 2023-06-13 株式会社Lg新能源 Electrode, method for manufacturing the same, electrochemical device, and polymer electrolyte composition
WO2018198168A1 (en) * 2017-04-24 2018-11-01 日立化成株式会社 Battery member for secondary battery, and secondary battery and production method therefor
JP6973477B2 (en) 2017-04-21 2021-12-01 昭和電工マテリアルズ株式会社 Polymer electrolyte composition and polymer secondary battery
WO2018193630A1 (en) 2017-04-21 2018-10-25 日立化成株式会社 Electrochemical device electrode and electrochemical device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4433701B2 (en) * 2002-07-24 2010-03-17 三菱化学株式会社 Non-aqueous electrolyte secondary battery and non-aqueous electrolyte
JP4945879B2 (en) * 2002-08-21 2012-06-06 三菱化学株式会社 Non-aqueous electrolyte secondary battery and non-aqueous electrolyte
JP4056346B2 (en) * 2002-09-30 2008-03-05 三洋電機株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2006120517A (en) 2006-05-11

Similar Documents

Publication Publication Date Title
WO2018214972A1 (en) Flexible all-solid-state lithium-ion secondary battery and manufacturing method therefor
JP3959708B2 (en) Method for producing positive electrode for lithium battery and positive electrode for lithium battery
US20180248220A1 (en) Nonaqueous electrolyte secondary batteries
CN109585921B (en) Lithium ion battery non-aqueous electrolyte and lithium ion battery
JP5907682B2 (en) Composition for positive electrode protective film of lithium secondary battery, lithium secondary battery including the positive electrode protective film, and method for producing the same
JP6477708B2 (en) Positive electrode for sodium ion secondary battery and sodium ion secondary battery
JP2007207699A (en) Nonaqueous electrolyte secondary battery
EP2913879B1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing same
JP4626020B2 (en) Non-aqueous electrolyte secondary battery
JPH09147913A (en) Nonaqueous electrolyte battery
CN110024048A (en) Semisolid electrolyte layer, cell piece and secondary cell
JP6208560B2 (en) Lithium secondary battery
JP2006004739A (en) Lithium secondary battery and positive electrode equipped with the battery, and its manufacturing method
JP5214088B2 (en) Non-aqueous electrolyte battery
JP2001052699A (en) Lithium secondary battery
JP2006066298A (en) Lithium secondary battery
JP2003163032A (en) Organic electrolyte including carbonate with carbon- carbon double bond, and polymer electrolyte and lithium secondary battery manufactured by using the same
JP2002216744A (en) Nonaqueous electrolyte battery and manufacturing method of positive electrode for nonaqueous electrolyte battery
EP4362138A1 (en) Electrode sheet, lithium ion battery, battery module, battery pack, and electrical device
JP5350168B2 (en) Method for producing lithium ion secondary battery
JP4707312B2 (en) Non-aqueous solvent type secondary battery
JP6875522B2 (en) Semi-solid electrolyte, electrodes, electrodes with semi-solid electrolyte layer, and secondary batteries
JP4649691B2 (en) Positive electrode for lithium secondary battery
JPH09306546A (en) Positive electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2016072119A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070806

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130227

R150 Certificate of patent or registration of utility model

Ref document number: 5214088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees