JP5211381B2 - Flying object - Google Patents

Flying object Download PDF

Info

Publication number
JP5211381B2
JP5211381B2 JP2008153612A JP2008153612A JP5211381B2 JP 5211381 B2 JP5211381 B2 JP 5211381B2 JP 2008153612 A JP2008153612 A JP 2008153612A JP 2008153612 A JP2008153612 A JP 2008153612A JP 5211381 B2 JP5211381 B2 JP 5211381B2
Authority
JP
Japan
Prior art keywords
blower
air
fixed wing
hole
conical surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008153612A
Other languages
Japanese (ja)
Other versions
JP2009298248A (en
Inventor
紀代子 稲森
Original Assignee
紀代子 稲森
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 紀代子 稲森 filed Critical 紀代子 稲森
Priority to JP2008153612A priority Critical patent/JP5211381B2/en
Publication of JP2009298248A publication Critical patent/JP2009298248A/en
Application granted granted Critical
Publication of JP5211381B2 publication Critical patent/JP5211381B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Toys (AREA)

Description

この発明は、大気中を浮上・飛行する飛行体に関し、有人機、無人機の他、玩具にも実施可能な発明に関する。   The present invention relates to a flying object that floats and flies in the atmosphere, and relates to an invention that can be applied to toys in addition to manned aircraft and unmanned aircraft.

従来の飛行体は、プロペラ・ジェットエンジン・ロケットエンジンなどの推力によって機体を前進させることにより翼を大気に対して相対的に移動させ、その表裏に揚力を発生する空気の流れを作って浮上する。従って、揚力を得るために常に前進しなければならず、空中で停止・ホバリングすることは、特殊な例を除いては不可能であり、失速すれば墜落することが避けられない。   A conventional flying object moves up with the thrust of a propeller, jet engine, rocket engine, etc., and moves the wings relative to the atmosphere, creating a flow of air that generates lift on the front and back of the aircraft. . Therefore, it is necessary to always move forward in order to obtain lift, and it is impossible to stop and hover in the air except for a special case.

これに対し、ヘリコプタは翼を回転させることにより翼を大気に対して相対的に移動させて揚力を発生させて浮上する。従って、空中で停止・ホバリングすることが出来るが、回転翼は機体よりはるかに大きく、機体外で回転するので外的な障害物に対して回転翼が無防備となり破損の危険があり使用環境が制約を受けやすい問題があった。   On the other hand, the helicopter moves by moving the wing relative to the atmosphere by rotating the wing, thereby generating lift and rising. Therefore, it can be stopped and hovered in the air, but the rotor blade is much larger than the fuselage and rotates outside the fuselage, so the rotor blade is unprotected against external obstacles and may be damaged, restricting the use environment There was a problem that was easy to receive.

また、ジェットエンジンの推力を垂直方向に向けることにより浮上する垂直離着陸機も存在するが、水平方向の安定性が悪いという問題があった。   There is also a vertical take-off and landing aircraft that floats by directing the thrust of the jet engine in the vertical direction, but it has a problem of poor horizontal stability.

一方、上記の問題点を解消するために、複数の回転翼を機体の上方投影輪郭線内に装備した飛行体が提案されている(特許文献1)。   On the other hand, in order to solve the above-mentioned problems, a flying object equipped with a plurality of rotor blades in the upper projected contour line of the airframe has been proposed (Patent Document 1).

また、リング状の翼の中央に遠心方向に送風する送風機を設けることにより浮上を企図した発明も提案されている(特許文献2)。この発明はリング状の翼を持ち、遠心方向に送風する送風機からリング状の翼に向かって放射状に送風することにより、リング状の翼に空気流を生じさせ揚力を発生させるという原理を前提としている。   In addition, an invention has also been proposed that intends to float by providing a blower that blows air in the centrifugal direction at the center of a ring-shaped blade (Patent Document 2). This invention has a ring-like wing, and presupposes the principle of generating lift by generating an air flow in the ring-like wing by blowing air radially from a blower that blows in the centrifugal direction toward the ring-like wing. Yes.

特開平2004−82999号公報Japanese Patent Laid-Open No. 2004-82999 特開平2004−168276号公報Japanese Patent Laid-Open No. 2004-168276

しかしながら、特許文献1に記載の飛行体においては機体内に納めるために回転翼に大きさの制約が生じ、大出力のエンジンを用いない限り十分な揚力を得られないという問題があった。   However, in the flying body described in Patent Document 1, there is a problem that the size of the rotor blade is restricted in order to be accommodated in the airframe, and sufficient lift cannot be obtained unless a high-power engine is used.

一方、特許文献2に記載の飛行体においては、リング状翼中央に置かれた送風機が、中央上方又は中央上下方向から空気を取り込み、リング状の翼に向かって放射状に送風することを前提としているので、翼は中央の穴において翼上方の空気と連通し、揚力は送風機下方から取り入れることにより打ち消される。すなわち、機体を定位置に固定した場合は揚力が認められるとしても、実際に機体に荷重が加わった状態の場合には、送風機と翼の中央の穴との隙間から、気流は負荷の分だけ逆荷重方向に逃げ、結果として翼断面が揚力を発生させたとしても、荷重の分だけ送風機上辺からの送風が翼上面に逃げることとなり浮上は適わないこととなる。   On the other hand, in the flying body described in Patent Document 2, it is assumed that the blower placed in the center of the ring-shaped wing takes air from the upper center or the vertical direction of the center and blows it radially toward the ring-shaped wing. Therefore, the wing communicates with the air above the wing in the central hole, and the lift is canceled by taking in from below the blower. That is, even if lift is recognized when the aircraft is fixed at a fixed position, in the state where a load is actually applied to the aircraft, the airflow is only the amount of the load from the gap between the blower and the center hole of the wing. Even if the blade crosses away in the reverse load direction and the blade cross section generates lift as a result, the air blown from the upper side of the blower escapes to the blade upper surface by the amount of the load, so that the levitation is not suitable.

この発明は前記の問題を解消する飛行体を提供することを目的として創作されたものであり、空気を軸流方向に圧送する回転羽根からなる上部送風装置と、上記の上部送風装置から圧送された空気を遠心方向に圧送する回転羽根からなる下部送風装置を互いに逆方向に回転するよう同軸上に配した送風装置と、上記送風装置が同心状に配される少なくとも内面が円錐面を構成するスカート状の固定翼からなり、上記固定翼の内方上部には遠心方向に圧送送風された空気が固定翼の円錐面に衝突するように下部送風装置が垂設されると共に、固定翼上部は上部送風装置から下部送風装置に圧送される軸流の通路を除いては閉塞されている飛行体において、下部送風装置の回転中心から等分割角度位置にして動径方向に向けてそれぞれの噴射ノズルを配した複数のジェットエンジンまたはロケットエンジンからの噴流の衝突により回転羽根を駆動することを特徴とする。   The present invention was created for the purpose of providing a flying body that solves the above-mentioned problems, and is supplied by an upper blower composed of rotating blades that pump air in an axial flow direction and the upper blower. The lower blower composed of rotating blades for pumping the air in the centrifugal direction is arranged coaxially so as to rotate in opposite directions, and at least the inner surface where the blower is arranged concentrically forms a conical surface. It consists of a skirt-shaped fixed wing, and a lower blower is suspended from the inner upper part of the fixed wing so that air blown in the centrifugal direction collides with the conical surface of the fixed wing. In the airframe that is closed except for the axial flow passage that is pumped from the upper blower to the lower blower, each injection nose in the radial direction from the rotation center of the lower blower to the equally divided angle position And drives the rotary blade by the collision of the jet from a plurality of jet engine or rocket engine arranged.

以上の構成よりなるこの発明によれば、第1に、遠心方向に圧送送風された空気が固定翼の内側の円錐面に衝突することにより、空気の流れにより固定翼外側との間に気圧差が生じて揚力を発生する。そして、この場合、固定翼上部は上部送風装置から下部送風装置に圧送される軸流の通路を除いては閉塞されており、上記の軸流の通路からは上部送風装置から空気が下方に向かって常時圧送されているので、特許文献2に記載の飛行体のように気流が負荷の分だけ逆荷重方向に逃げ、揚力が打ち消されることがない。   According to the present invention having the above-described configuration, first, the air pressure-fed in the centrifugal direction collides with the inner conical surface of the fixed wing, so that the pressure difference between the fixed wing and the outside due to the air flow. Is generated and lift is generated. In this case, the upper portion of the fixed wing is closed except for the axial flow passage that is pumped from the upper blower to the lower blower, and the air flows downward from the upper blower from the axial flow passage. Therefore, as in the flying body described in Patent Document 2, the airflow escapes in the reverse load direction as much as the load, and the lift is not canceled out.

第2に、遠心方向に圧送された空気が固定翼の内側の円錐面に衝突することにより、傾斜角度によって斜め下方に気流が偏向することとなり応力が得られ、この応力が飛行体を上昇させる推力となる。また、この場合、下部送風装置の回転羽根は内面が円錐面を構成するスカート状の固定翼と同心に配されるので、遠心方向に圧送されて固定翼の内側の円錐面に衝突することの反力は軸に集まりそれぞれ打ち消しあう作用を生じる。   Second, the air pumped in the centrifugal direction collides with the inner conical surface of the fixed wing, so that the airflow is deflected obliquely downward depending on the inclination angle, and stress is obtained, and this stress raises the flying body. It becomes a thrust. Also, in this case, the rotating blades of the lower blower are arranged concentrically with the skirt-shaped fixed wing whose inner surface forms a conical surface, so that they are pumped in the centrifugal direction and collide with the inner conical surface of the fixed wing. The reaction force gathers on the shaft and causes an action to cancel each other.

第3に、回転羽根はジェットエンジンまたはロケットエンジンからの噴流の衝突により回転させるので、同じ出力をレシプロエンジンで得る場合に比べて駆動部分を小型化できる。   Thirdly, since the rotating blades are rotated by the collision of the jet flow from the jet engine or the rocket engine, the driving portion can be reduced in size as compared with the case where the same output is obtained by the reciprocating engine.

第4に、前記の場合においてジェットエンジンまたはロケットエンジンが存する上部送風装置から下部送風装置に圧送される軸流の通路は圧送により気圧が高まっているので、高能率の燃焼効果を得ることができる。   Fourth, in the above case, since the pressure of the axial flow passage that is pumped from the upper blower to the lower blower where the jet engine or rocket engine exists is increased by the pumping, a highly efficient combustion effect can be obtained. .

第5に、回転羽根からなる上部送風装置と下部送風装置とは互いに逆方向に回転するよう同軸上に配されるので、トルクが相殺され固定翼が回転することが防止される。   Fifth, since the upper blower device and the lower blower device made of rotating blades are arranged coaxially so as to rotate in opposite directions, the torque is canceled and the fixed blade is prevented from rotating.

第6に、回転羽根からなる上部送風装置と下部送風装置とは互いに逆方向に回転するよう同軸上に配されるので、自己求心力が生まれ、そのジャイロ効果により自律安定性が生じ、ジェットエンジンの推力を垂直方向に向けることにより浮上する垂直離着陸機に比べ水平方向の安定性が格段に高まる。   Sixth, since the upper fan and the lower fan made of rotating blades are arranged on the same axis so as to rotate in opposite directions, self-centripetal force is generated, autonomous stability is generated by the gyro effect, and the jet engine Compared to a vertical take-off and landing aircraft that emerges by directing thrust in the vertical direction, the stability in the horizontal direction is significantly increased.

第7に、遠心方向に圧送された空気を固定翼の内側の円錐面に衝突させる下部送風装置の直下には空気は圧送されないので、その箇所の空間を利用して荷室や乗員室などを垂設することが可能となる。   Seventh, since air is not pumped directly below the lower blower that collides the air pumped in the centrifugal direction with the conical surface inside the fixed wing, the cargo space, passenger compartment, etc. It can be suspended.

第8に、飛行体の機体を兼ねる固定翼は内面が円錐面を構成するスカート状なので、それが平面方向に移動することにより翼が大気に対して相対的に移動し、その表裏に揚力を発生する空気の流れが生成される。   Eighth, the fixed wing that also serves as the aircraft body is a skirt shape whose inner surface forms a conical surface, so that the wing moves relative to the atmosphere when it moves in the plane direction, and lift is applied to the front and back. A generated air flow is generated.

この発明の飛行体は回転翼を持たず機体を兼ねる固定翼およびその内側で揚力を発生することによって空中に浮遊し、またその方向を制御することによって飛行するため、障害物の多い場所に着陸することが可能となる。例えば、高層ビル等にも機体を接触させたまま浮遊出来るので、火災時の救助等にも使用できる。また、飛翔、飛行することにおいても固定翼が機体を兼ねる全翼機の形態であり、いくつもの翼を持たないことにより複雑な形体が引き起こす過流の問題にも対処出来、離陸や着陸に要する飛行場面積が節約できる。一方、玩具の飛行体に実施した場合は回転するプロペラや回転翼がないのでそのことによる事故や怪我を防ぐことが出来る。   The flying object of the present invention has a fixed wing that does not have a rotor wing and also functions as a fuselage and floats in the air by generating lift inside it, and also flies by controlling its direction, so it landed in a place with many obstacles It becomes possible to do. For example, it can float on a high-rise building or the like while the aircraft is in contact with it, so it can be used for rescue in the event of a fire. Also, in flying and flying, the fixed wing is a form of an all-wing aircraft that also serves as a fuselage, and it can cope with overflow problems caused by complicated shapes by not having several wings, and it is necessary for takeoff and landing Airfield area can be saved. On the other hand, when implemented on a toy aircraft, there are no rotating propellers or rotor blades, which can prevent accidents and injuries.

以下、この発明の飛行体の具体的実施例を添付図面に基づいて説明する。図1〜図5はこの発明の飛行体の実施例を示す図である。図中符号1は飛行体の機体を兼ねる固定翼である。上記固定翼は少なくとも内面が円錐面Tを構成するスカート状であることが要件となり、ここでは上部が平面状の天板3を構成する切頭円錐状に構成される。   Hereinafter, specific embodiments of the flying object of the present invention will be described with reference to the accompanying drawings. 1 to 5 are views showing an embodiment of a flying object of the present invention. Reference numeral 1 in the figure denotes a fixed wing that also serves as an aircraft body. The fixed wing is required to have a skirt shape in which at least the inner surface forms a conical surface T. Here, the upper portion is formed in a truncated cone shape that forms a flat top plate 3.

次に図中符号10は送風装置であり、空気を軸流方向に圧送する回転羽根からなる上部送風装置11と、上記の上部送風装置から圧送された空気を遠心方向に圧送する回転羽根からなる下部送風装置21を互いに逆方向に回転するよう同軸上に配した構成よりなる(図3、4参照)。この実施例においては、上部送風装置11は閉塞した円板13と中央に貫通穴12を設けた円板14の間にブレード15を設けたターボファン、同じく下部送風装置21も閉塞した円板23と中央に貫通穴22を設けた円板24の間にブレード25を設けたターボファンとしている。これらは同相に構成され、互いの貫通穴12、22同士を対向して同軸上に配すると共に、互いに逆方向に回転させることにより、上部送風装置11側のターボファンにおいては遠心方向から吸気した空気を貫通穴12を介して軸流方向に圧送し、下部送風装置21側のターボファンにおいては貫通穴22を介して吸気した空気を遠心方向に圧送するようにしている。   Next, reference numeral 10 in the figure denotes an air blower, which is composed of an upper air blower 11 comprising rotary blades that pump air in the axial direction, and a rotary vane that pumps air pumped from the upper air blower in the centrifugal direction. It consists of the structure which has arrange | positioned coaxially so that the lower air blower 21 may rotate in a mutually reverse direction (refer FIG. 3, 4). In this embodiment, the upper air blower 11 is a turbo fan in which a blade 15 is provided between a closed disc 13 and a disc 14 having a through hole 12 in the center, and a lower plate 23 in which the lower blower 21 is also closed. And a turbo fan in which a blade 25 is provided between a disc 24 having a through hole 22 in the center. These are configured in the same phase, and the through holes 12 and 22 face each other on the same axis and are rotated in opposite directions, so that the turbo fan on the upper blower 11 side sucks air from the centrifugal direction. Air is pumped in the axial direction through the through hole 12, and in the turbofan on the lower blower 21 side, the air sucked in through the through hole 22 is pumped in the centrifugal direction.

以上の送風装置は上部送風装置11と下部送風装置21とが、固定翼1の上部の内外に振り分けて配される。すなわち、上部送風装置11は固定翼1の天板3の外側上方に回転自在に立設されると共に、下部送風装置21は上記の天板3の内側下方に回転自在に垂設される。この場合、固定翼1の天板3は上部送風装置11から下部送風装置21に互いの貫通穴12、22を介して圧送される軸流の通路Dを除いては閉塞されなければならない(図1参照)。   In the above air blower, the upper air blower 11 and the lower air blower 21 are distributed inside and outside the upper portion of the fixed wing 1. That is, the upper air blower 11 is erected on the upper side of the top plate 3 of the fixed wing 1 so as to be rotatable, and the lower air blower 21 is hanged on the lower side of the top plate 3 so as to be rotatable. In this case, the top plate 3 of the fixed wing 1 must be closed except for the axial flow passage D that is pumped from the upper blower 11 to the lower blower 21 via the through holes 12 and 22 (see FIG. 1).

上記の下部送風装置21から圧送される空気は遠心方向にのみ送風されなければならず、図に矢印で示すように圧送送風された空気は固定翼1の内側の円錐面Tに衝突することにより、空気の流れにより固定翼外側との間に気圧差が生じて揚力を発生すると共に、傾斜角度によって斜め下方に気流が偏向することとなり、飛行体を上昇させる推力となる応力が得られる。一方、上部送風装置11においては空気の吸気方向には特に制約はないが、この実施例においては固定翼1の天板上3に上部送風装置が収容される部屋4を設け、この部屋の周側に通気口5を設けることにより円周方向から吸気するようにしている。   The air pumped from the lower blower 21 must be blown only in the centrifugal direction, and the pumped air collides with the conical surface T inside the fixed wing 1 as shown by the arrows in the figure. As a result of the air flow, an air pressure difference is generated between the fixed wing and the outside, and lift is generated, and the airflow is deflected obliquely downward depending on the inclination angle, thereby obtaining a stress that is a thrust force that raises the flying object. On the other hand, in the upper air blower 11, there is no particular restriction on the air intake direction, but in this embodiment, a room 4 in which the upper air blower is accommodated is provided on the top plate 3 of the fixed wing 1, and the periphery of this room is By providing a vent hole 5 on the side, air is sucked from the circumferential direction.

以上の送風装置10中の下部送風装置21は、下部送風装置の回転中心から等分割角度位置にして動径方向に向けてそれぞれの噴射ノズル31を配した複数のジェットエンジン30からの噴流のブレード25への衝突により回転駆動される(図5参照)。なお、ここではジェットエンジン30を等分割角度位置に2つ配した例を図示しているが、その数は3つでも、あるいはそれ以上でもよい。また、ジェットエンジンに代えてロケットエンジンを使用してもよい。   The lower blower 21 in the blower 10 described above is a blade of jets from a plurality of jet engines 30 in which the respective injection nozzles 31 are arranged in the radial direction from the rotation center of the lower blower to the equally divided angle position. It is rotationally driven by the collision to 25 (see FIG. 5). Here, an example in which two jet engines 30 are arranged at equal division angle positions is illustrated, but the number may be three or more. A rocket engine may be used instead of the jet engine.

一方、送風装置10中の上部送風装置11は下部送風装置21とギア列(図示せず)を介して連動させることにより反対方向に回転させる。   On the other hand, the upper blower 11 in the blower 10 is rotated in the opposite direction by interlocking with the lower blower 21 via a gear train (not shown).

なお、この実施例においては固定翼1の下端2を円周方向に拡散させないで、垂直方向に折り込んでいるが、このような構成とすることにより固定翼内面の傾斜角度によって斜め下方に偏向する気流を更に直下に誘導させることが可能となり推力の効率を高めることができる。   In this embodiment, the lower end 2 of the fixed wing 1 is not diffused in the circumferential direction but is folded in the vertical direction. With such a configuration, it is deflected obliquely downward depending on the inclination angle of the inner surface of the fixed wing. The airflow can be further guided directly below, and the thrust efficiency can be increased.

以上の飛行体において、垂直方向に上昇する揚力及び推力が得られることは前記した通りであるが、水平方向への推力を得るには、プロペラやジェットエンジンなどの推力発生装置を別途設ける他、固定翼1を傾斜させることにより行ってもよい。固定翼1を傾斜させる手段としては次のようなものが想定できる。
(1) 固定翼の重心バランスを変化させることにより固定翼を傾斜させる。
(2) 下部送風装置から固定翼の円錐面に衝突する空気のバランスを変化させることにより固定翼を傾斜させる。
In the above aircraft, ascending lift and thrust in the vertical direction can be obtained as described above, but in order to obtain the thrust in the horizontal direction, a thrust generator such as a propeller or a jet engine is separately provided. You may carry out by making the fixed wing | blade 1 incline. The following can be assumed as means for inclining the fixed wing 1.
(1) Tilt the fixed wing by changing the center of gravity balance of the fixed wing.
(2) The fixed wing is inclined by changing the balance of the air impinging on the conical surface of the fixed wing from the lower blower.

以上の構成よりなるこの発明は、有人機、無人機の他、玩具の飛行体にも実施可能である。また、有人機、無人機に実施した場合は、図1に示すように固定翼1内の下部送風装置21の下方に乗員室または荷室Cを垂設することができる。この場合、下部送風装置21においては、遠心方向に圧送された空気を固定翼1の内側の円錐面に衝突させるので直下には空気は圧送されず、上記のようなレイアウトが可能となる。   This invention which consists of the above structure can be implemented not only on manned aircraft and unmanned aircraft, but also on toy aircrafts. Moreover, when it implements to a manned machine and an unmanned aircraft, as shown in FIG. 1, the passenger | crew's room or the luggage compartment C can be suspended below the lower air blower 21 in the fixed wing | blade 1. FIG. In this case, since the air blown in the centrifugal direction collides with the conical surface inside the fixed wing 1 in the lower blower 21, the air is not pumped directly below, and the layout as described above is possible.

この発明の飛行体の正断面図。The front sectional view of the flying body of this invention. 同上、斜視図。FIG. 同上、送風装置の分解斜視図。The exploded perspective view of an air blower same as the above. 同上、送風装置の斜視図。The perspective view of an air blower same as the above. 同上、下部送風装置の駆動機構を示す要部の斜視図。The perspective view of the principal part which shows the drive mechanism of a lower air blower same as the above.

符号の説明Explanation of symbols

1 固定翼
3 天板(閉塞部)
10 送風装置
11 上部送風装置
12 貫通穴
21 下部送風装置
22 下部送風装置
30 ジェットエンジン
31 噴射ノズル
D 軸流の通路
T 円錐面
1 Fixed wing 3 Top plate (blocking part)
DESCRIPTION OF SYMBOLS 10 Air blower 11 Upper air blower 12 Through-hole 21 Lower air blower 22 Lower air blower 30 Jet engine 31 Injection nozzle D Axial flow path T Conical surface

Claims (3)

空気を軸流方向に圧送する回転羽根からなる上部送風装置と、上記の上部送風装置から圧送された空気を遠心方向に圧送する回転羽根からなる下部送風装置を互いに逆方向に回転するよう同軸上に配した送風装置と、上記送風装置が同心状に配される少なくとも内面が円錐面を構成するスカート状の固定翼からなり、上記固定翼の内方上部には遠心方向に圧送送風された空気が固定翼の円錐面に衝突するように下部送風装置が垂設されると共に、固定翼上部は上部送風装置から下部送風装置に圧送される軸流の通路を除いては閉塞されている飛行体において、下部送風装置の回転中心から等分割角度位置にして動径方向に向けてそれぞれの噴射ノズルを配した複数のジェットエンジンまたはロケットエンジンからの噴流の衝突により回転羽根を駆動することを特徴とする飛行体。   The upper blower composed of rotary blades that pump air in the axial direction and the lower blower composed of rotary blades that pump the air pumped from the upper blower in the centrifugal direction are coaxial with each other so that they rotate in opposite directions. The air blower is arranged in a concentric manner, and at least the inner surface is composed of a skirt-like fixed wing whose conical surface forms a conical surface. The lower air blower is suspended so that the upper air blower collides with the conical surface of the fixed wing, and the upper part of the fixed wing is closed except for the axial flow passage fed from the upper air blower to the lower air blower. , The rotating blades due to the collision of jets from a plurality of jet engines or rocket engines in which the respective injection nozzles are arranged in the radial direction from the rotation center of the lower blower device at equal angular positions Flying body and drives. 上部送風装置の回転羽根は一方は閉塞し、他方は中央に貫通穴を設けた2枚の円板の間にブレードを設けたターボファンであり、上部送風装置側のターボファンの貫通穴と下部送風装置側のターボファンの貫通穴を対向して同軸上に配すると共に、上部送風装置側のターボファンにおいては遠心方向から吸気した空気を貫通穴を介して軸流方向に圧送し、下部送風装置側のターボファンにおいては貫通穴を介して吸気した空気を遠心方向に圧送するよう互いに逆方向に回転するようにした請求項1記載の飛行体。   One of the rotating blades of the upper blower is closed, and the other is a turbofan in which a blade is provided between two discs having a through hole in the center. The through hole of the turbofan on the upper blower side and the lower blower The through hole of the turbo fan on the side is arranged concentrically so as to oppose, and in the turbo fan on the upper blower side, air sucked from the centrifugal direction is pumped in the axial direction through the through hole, and the lower blower side 2. The flying body according to claim 1, wherein the turbofan rotates in opposite directions so as to pump air sucked in through the through hole in the centrifugal direction. 下部送風装置の下方に乗員室または荷室を垂設した請求項1または2記載の飛行体。   The flying body according to claim 1 or 2, wherein an occupant room or a cargo room is provided below the lower blower.
JP2008153612A 2008-06-11 2008-06-11 Flying object Active JP5211381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008153612A JP5211381B2 (en) 2008-06-11 2008-06-11 Flying object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008153612A JP5211381B2 (en) 2008-06-11 2008-06-11 Flying object

Publications (2)

Publication Number Publication Date
JP2009298248A JP2009298248A (en) 2009-12-24
JP5211381B2 true JP5211381B2 (en) 2013-06-12

Family

ID=41545610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008153612A Active JP5211381B2 (en) 2008-06-11 2008-06-11 Flying object

Country Status (1)

Country Link
JP (1) JP5211381B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105407993B (en) * 2013-07-01 2017-08-25 安泰克私人有限公司 Air force lifting device
RU2548294C2 (en) * 2013-08-06 2015-04-20 Игорь Александрович Шестаков Atmospheric flying saucer (versions)
JP7284685B2 (en) * 2019-10-24 2023-05-31 株式会社Subaru Disc-type vertical take-off and landing aircraft

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301495A (en) * 1988-02-02 1989-12-05 Kobe Steel Ltd Lift generator, flying body using same and lift generating method
JPH0524500U (en) * 1991-09-14 1993-03-30 株式会社メイテツク Blois Juan
WO1993024367A1 (en) * 1992-06-04 1993-12-09 Vincent Fodera Vector rotary wing ensemble
JP2003118696A (en) * 2001-10-10 2003-04-23 Kenichi Imada Lift generator with supercharger
JP4085799B2 (en) * 2002-07-02 2008-05-14 トヨタ自動車株式会社 Vertical take-off and landing aircraft
JP2007215556A (en) * 2006-02-14 2007-08-30 Japan Aviation Electronics Industry Ltd Radio-controlled helicopter operation training apparatus
JP4930936B2 (en) * 2006-12-04 2012-05-16 紀代子 稲森 Flying object

Also Published As

Publication number Publication date
JP2009298248A (en) 2009-12-24

Similar Documents

Publication Publication Date Title
WO2009098758A1 (en) Flying body
US5178344A (en) VTOL aircraft
US6561456B1 (en) Vertical/short take-off and landing aircraft
US8181902B2 (en) Aerodynamic lifting device and airborne craft
JP5779643B2 (en) Peripheral control ejector
JP6825050B2 (en) aircraft
US20020139894A1 (en) Roadable aircraft boat that flies in a wind of its own making
US20180072408A9 (en) Torque balanced, lift rotor module providing increased lift with few or no moving parts
US9045227B1 (en) Dual fan aerodynamic lift device
US3465988A (en) Aerodynamic lift producing devices
JP4930936B2 (en) Flying object
JP5211381B2 (en) Flying object
WO2009025632A1 (en) Vertical-takeoff-and-landing aircraft
US20090016877A1 (en) Thrust vectoring shroud for fluid dynamic device
WO2009068835A1 (en) Static wing for an aircraft
JP3150942U (en) Flying toy
GB2438848A (en) Static wing for an aircraft
JP4279898B1 (en) Airborne body
RU2212358C1 (en) Flying vehicle
JP5512612B2 (en) Flying object
CN118201847A (en) Method for obtaining horizontal flight lift and thrust of vertical take-off and landing aircraft while maintaining horizontal flight stability of aircraft and aircraft for implementing same
KR20110000767A (en) Gyroscopic vtol craft
US11873083B2 (en) Ducted wing propulsion system
WO2016037543A1 (en) Suction-cup-type aircraft
US12017752B2 (en) Induced autorotation rotating wing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120713

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130206

R150 Certificate of patent or registration of utility model

Ref document number: 5211381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250