JP5207157B2 - High-precision anomaly detection method for folded paper - Google Patents
High-precision anomaly detection method for folded paper Download PDFInfo
- Publication number
- JP5207157B2 JP5207157B2 JP2011250119A JP2011250119A JP5207157B2 JP 5207157 B2 JP5207157 B2 JP 5207157B2 JP 2011250119 A JP2011250119 A JP 2011250119A JP 2011250119 A JP2011250119 A JP 2011250119A JP 5207157 B2 JP5207157 B2 JP 5207157B2
- Authority
- JP
- Japan
- Prior art keywords
- value
- determined
- paper
- point
- points
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Controlling Sheets Or Webs (AREA)
Description
本発明は、折り加工された用紙の枚数の計数のさいに生じる用紙の配列状態の異常検出方法に関するものであり、詳しくはカタログ、パンフレット、説明書などの印刷物の折り加工された用紙の枚数の計数のさいに生じる用紙の配列状態の高精度異常検出方法に関するものである。 The present invention relates to a method for detecting an abnormality in the arrangement state of sheets that occurs when counting the number of folded sheets. Specifically, the present invention relates to the number of sheets of folded sheets of printed matter such as catalogs, pamphlets, and manuals. The present invention relates to a highly accurate abnormality detection method for the arrangement state of sheets generated during counting.
カタログ、パンフレット、説明書などの多数枚の同一種類の印刷物においては、所定の大きさに整理するために折り加工機で折り加工することが行われており、その状態で所定の枚数に整理するために計数することが必要となっている。このような折り加工された用紙の計数方法としては、特許文献1,2に記載されているように、用紙の背部を、カラーテレビカメラやモノクロテレビカメラで撮像して映像情報を得たり、輝度計などを用いて輝度情報を得た後、得られた映像情報や輝度情報を二値化または三値化して計数する方法が提案されている。 A large number of printed materials of the same type, such as catalogs, pamphlets, and manuals, are folded by a folding machine in order to arrange them into a predetermined size, and in that state, arrange them into a predetermined number of sheets. Therefore, it is necessary to count. As a method of counting such folded paper, as described in
しかし、折り加工された複数の用紙の同一性が高い場合には、色の強さや明るさは各用紙ともほぼ同様の傾向にあるので、二値化または三値化する場合には、それぞれの用紙の基準値を容易に設定することができるが、実際には用紙の背部の形状に微妙な変化がある場合が少なくなく、この場合には、色の強さや明るさの情報に微妙なノイズが発生し、誤計数を生じることが少なくない。このように必然的に生じる用紙の折り加工状態の微妙な変動によって、得られた映像情報や輝度情報にノイズが発生し、誤計数を生じる場合が生じることがあり、正確な計数を必要とする場合の問題点となっている。 However, when the identity of a plurality of folded sheets is high, the color intensity and brightness tend to be almost the same for each sheet, so when binarizing or binarizing, The paper reference value can be set easily, but in reality there are often subtle changes in the shape of the back of the paper. In this case, subtle noise in the color intensity and brightness information can occur. Often occurs and miscounts occur. Such subtle fluctuations in the state of paper folding that occur inevitably may cause noise in the obtained video information and luminance information, resulting in erroneous counts, requiring accurate counting. The case has become a problem.
また、折り加工された複数の用紙の撮像時などにおいて、照明装置からの光の照射具合や光源からの距離により均一に光が当たらず、計数対象の映像情報が均一ではない状態であるのにも関わらず、比較する基準値が一定値であるため、誤差が生じることも多くなっている。特に、最近においては、光源からの距離を長くして多数枚の用紙の計数が必要になってきているが、この場合には、一層正確な計数状況を加えた用紙の計数方法の提供が必要となってきている。 In addition, when imaging multiple folded sheets, the light from the lighting device is not evenly irradiated due to the irradiation condition of the light and the distance from the light source, and the video information to be counted is not uniform. Nevertheless, since the reference value to be compared is a constant value, errors often occur. In particular, recently, it has become necessary to count a large number of sheets by increasing the distance from the light source. In this case, it is necessary to provide a sheet counting method with more accurate counting conditions. It has become.
しかし、本発明者の特許文献3に記載されているように、折り加工された複数の用紙の同一性が高い場合には、色の強さや明るさは各用紙ともほぼ同様の傾向にあるので、二値化または三値化する場合には、それぞれの用紙の基準値を容易に設定することができるが、実際には用紙の背部の形状に微妙な変化がある場合が少なくなく、この場合には、色の強さや明るさの情報に微妙なノイズが発生し、誤計数を生じることが少なくない。
このように必然的に生じる用紙の折り加工状態の微妙な変動によって、得られた映像情報や輝度情報にノイズが発生し、誤計数を生じる場合が生じることがあり、正確な計数を必要とする場合の問題点となっている。また、折り加工された複数の用紙の撮像時などにおいて、照明装置からの光の照射具合や光源からの距離により均一に光が当たらず、計数対象の映像情報が均一ではない状態であるのに関わらず、比較する基準値が一定であるため、誤差が生じることも多くなっており、特許文献3でも未だ不十分である。However, as described in Patent Document 3 of the present inventor, when the identity of a plurality of folded sheets is high, the color strength and brightness tend to be almost the same for each sheet. In the case of binarization or ternarization, the standard value of each paper can be set easily, but in reality there are often cases where there is a subtle change in the shape of the back of the paper. In many cases, subtle noise is generated in the information of color intensity and brightness, resulting in erroneous counting.
Such subtle fluctuations in the state of paper folding that occur inevitably may cause noise in the obtained video information and luminance information, resulting in erroneous counts, requiring accurate counting. The case has become a problem. In addition, when imaging multiple folded sheets, the light from the lighting device is not evenly irradiated due to the irradiation condition of the light and the distance from the light source, and the video information to be counted is not uniform. Regardless, since the reference value to be compared is constant, errors often occur, and even Patent Document 3 is still insufficient.
本発明は、折り加工された複数の同一種類の用紙の計数において、折り加工された複数の同一種類の用紙の異常状態を高精度で検出することを可能とする用紙枚数の異常状態検出方法の提供を目的とするものである。 The present invention relates to a method for detecting an abnormal state of the number of sheets, which can detect an abnormal state of a plurality of sheets of the same type of folded paper with high accuracy in counting a plurality of sheets of the same type of folded paper. It is for the purpose of provision.
本発明は、上記目的を達成するものであって、折り加工された複数の用紙を背部が同一平面に並ぶように揃え、揃えた複数の用紙を両側から押さえ板で押さえ、背部の前方斜めより光を照射して背間の凹部に影部、背部に非影部を生じさせ、前記の両側の押さえ板と、前記の揃えた複数の用紙の背部を前方よりアナログ方式のカラーテレビカメラで、前記の凹部の影部が、前記アナログ方式のカラーテレビカメラから得られるカラー画像信号の水平走査線と直角になるように撮像し、得られたアナログカラー画像信号の背部撮像部の水平走査線1本分のアナログ信号の赤・緑・青の色の強さを、一方端から他方端までカラーアナログ−デジタル変換回路によって、前記のアナログカラーテレビカメラの最小解像単位ごとに多値化した値に変換し、変換された赤・緑・青の色の強さの値を、一方端から他方端まで、前記のアナログカラーテレビカメラの解像度の数の構成されるデジタル信号の各構成点に対応させて順次記憶させ、記憶された色の強さの値を前後の3〜15の値で移動平均処理して平滑化し、赤・緑・青の3色の水平走査線1本分の構成点を、均一に8ないし20に分割し、あらかじめ設定された下限線の値を下限値として採用して、赤、緑、青ごとにそれぞれの分割された範囲の構成点の色の強さの平均値を求め、これを分割範囲の中央の構成点位置の値とし、かつ両端の値をあらかじめ設定された下限線の値を下限値として採用して、一方の端から順に分割範囲の中央の構成点位置の値を次々に結び、他方端まで結んで基準屈曲線を作成し、その線上の値をそれぞれの構成点に対応する基準値として採用し、一方端から他方端まで前記水平走査線1本分の構成点の色の強さの測定信号を順次それぞれの構成点ごとに、対応する基準値と比較して、基準値より色が強い構成点を判定し、判定された構成点の色の強さを、前後の水平走査線1本分の構成点の数を計数予定枚数で除算した値の25%から75%の値の数の構成点と比較して、判定された構成点の色の強さが、比較する前後の構成点の色の強さより全て強い場合に非影部と判定し、判定された非影部を用紙の背部分とし、用紙の背部と判定された構成点と次に用紙の背部と判定された構成点間の構成点の数を順次、最初に用紙の背部判定された構成点と最後に用紙の背部判定された構成点の間の構成点の数を、計数予定枚数より1減算した値で除算して平均的な構成点間の平均値を求め、用紙の幅の個体差による影響を除くために除算した値に、除算された値の25%〜50%の値を加算及び減算した値と比較して、減算された値より小さいか、加算された値より大きい場合には異常とすることを特徴とする折り加工された用紙の高精度異常検出方法であり、折り加工された複数の用紙を背部が同一平面に並ぶように揃え、揃えた複数の用紙を両側から押さえ板で押さえ、背部の前方斜めより光を照射して背間の凹部に影部、背部に非影部を生じさせ、前記の両側の押さえ板と、前記の揃えた複数の用紙の背部を前方よりアナログ方式のモノクロテレビカメラで、前記の凹部の影部が、前記アナログ方式のモノクロテレビカメラから得られる輝度信号の水平走査線と直角になるように撮像し、得られたアナログ輝度信号の背部撮像部の水平走査線1本分のアナログ信号の輝度の強さを、一方端から他方端までモノクロアナログ−デジタル変換回路によって、前記のアナログモノクロテレビカメラの最小解像単位ごとに多値化した値に変換し、変換された輝度の強さの値を、一方端から他方端まで、前記のアナログモノクロテレビカメラの解像度の数の構成されるデジタル信号の各構成点に対応させて順次記憶させ、記憶された輝度の強さの値を前後の3〜15の値で移動平均処理して平滑化し、輝度の水平走査線1本分の構成点を、均一に8ないし20に分割し、あらかじめ設定された下限線の値を下限値として採用して、それぞれの分割された範囲の構成点の輝度の強さの平均値を求め、これを分割範囲の中央の構成点位置の値として採用して、一方端から順に分割範囲の中央の構成点位置の値を次々に結び、最後は他方端まで結んで構成される基準屈曲線を作成し、得られた屈曲線上の点をそれぞれの構成点に対応する基準値として採用し、一方端から他方端まで前記水平走査線1本分の構成点の輝度の強さの測定信号を順次それぞれの構成点ごとに、対応する基準値と比較して、基準値より輝度が強い構成点を判定し、判定された構成点の輝度の強さを、前後の水平走査線1本分の構成点の数を計数予定枚数で除算した値の25%から75%の値の数の構成点と比較して、判定された構成点の輝度の強さが、比較する前後の構成点の輝度の強さより全て強い場合に非影部と判定し、判定された非影部を用紙の背部分とし、用紙の背部と判定された構成点と次に用紙の背部と判定された構成点間の構成点の数を順次、最初に用紙の背部判定された構成点と最後に用紙の背部判定された構成点の間の構成点の数を、計数予定枚数より1減算した値で除算して平均的な構成点間の平均値を求め、用紙の幅の個体差による影響を除くために除算した値に、除算された値の25%〜50%の値を加算及び減算した値と比較して、加算した値より大きい場合や減算された値より小さい場合に、用紙の揃い状態の異常、または折り加工の形状の異常、折り加工後の用紙の厚さの異常として検出することを特徴とする折り加工された用紙の高精度異常検出方法である。 The present invention achieves the above-described object, and aligns a plurality of folded sheets so that the back portion is aligned in the same plane, and presses the aligned plurality of sheets with a pressing plate from both sides, obliquely in front of the back portion. Irradiate light to create a shadow part in the recess between the back and a non-shadow part in the back part, and press the plate on both sides and the back part of the plurality of aligned sheets with an analog color TV camera from the front, The shadow portion of the concave portion is imaged so as to be perpendicular to the horizontal scanning line of the color image signal obtained from the analog color television camera, and the horizontal scanning line 1 of the back imaging portion of the obtained analog color image signal. Value obtained by multi-leveling the intensity of red, green, and blue colors of the analog signal for each minimum resolution unit of the analog color TV camera by a color analog-digital conversion circuit from one end to the other end Conversion to The intensity values of the converted red, green, and blue colors are sequentially assigned from one end to the other end corresponding to each constituent point of the digital signal that is composed of the number of resolutions of the analog color TV camera. The stored color intensity values are smoothed by moving average processing with the previous and subsequent values of 3 to 15, and the constituent points for one horizontal scanning line of three colors of red, green, and blue are uniform. Is divided into 8 to 20, and the value of the preset lower limit line is adopted as the lower limit value, and the average value of the color intensity of the constituent points of each divided range for each of red, green, and blue is obtained. Then, this is used as the value of the central point of the divided range, and the values of both ends are set as the lower limit values set in advance. Connect the values one after the other and connect to the other end to create a reference bend line, and each value on that line Is used as a reference value corresponding to each of the constituent points, and the measurement signal of the color intensity of the constituent point for one horizontal scanning line from one end to the other end is sequentially assigned to the corresponding reference value for each constituent point. In comparison, a component point having a color stronger than the reference value is determined, and the color strength of the determined component point is a value obtained by dividing the number of component points for one horizontal scanning line before and after by the scheduled count number. Compared to the number of component points with a value between 25% and 75%, if the color strength of the determined component points is all stronger than the color strength of the component points before and after the comparison, it is determined as a non-shadow part. The determined non-shadow part is the back part of the paper, and the number of constituent points between the constituent point determined to be the back part of the paper and the constituent point determined to be the back part of the paper is sequentially determined first. The number of component points between the determined component point and the component point finally determined for the paper back is divided by a value obtained by subtracting 1 from the estimated number of sheets. Then, an average value between average component points is obtained, and a value obtained by adding and subtracting a value of 25% to 50% of the divided value to a value obtained by dividing to eliminate the influence of individual differences in the width of the paper, A method for detecting abnormalities of folded paper, characterized in that an abnormality is detected when the value is smaller than the subtracted value or larger than the added value. Align the back of the paper so that the backs are aligned on the same plane, and press the aligned sheets from both sides with the holding plate, and irradiate light from diagonally forward of the back to create shadows in the back and non-shadows in the back. In addition, the pressing plates on both sides and the back of the plurality of aligned sheets are an analog monochrome TV camera from the front, and the shadow portion of the recess is a luminance signal obtained from the analog monochrome TV camera. Imaging so that it is perpendicular to the horizontal scanning line The intensity of the luminance of the analog signal for one horizontal scanning line of the back imaging unit of the obtained analog luminance signal is reduced from the one end to the other end by a monochrome analog-to-digital conversion circuit. Converted into a multi-valued value for each resolution unit, and converted luminance intensity values from one end to the other end of each digital signal composed of the number of resolutions of the analog monochrome TV camera. Sequentially stored in correspondence with the constituent points, smoothed by moving average processing of the stored luminance intensity values before and after 3 to 15 values, uniform constituent points for one horizontal scanning line of luminance Are divided into 8 to 20, and the value of the preset lower limit line is adopted as the lower limit value to obtain the average value of the intensity of the luminance of the constituent points of each divided range, and this is calculated as the center of the divided range. Of the component point of Adopt as one, create a reference bend line that connects the values of the constituent points at the center of the division range one after the other, and connects to the other end at the end, and each point on the obtained bend line Is used as a reference value corresponding to each component point, and the measurement signal of the intensity of the luminance of the component point for one horizontal scanning line from one end to the other end is sequentially assigned to the corresponding reference value for each component point. In comparison, a component point having a higher luminance than the reference value is determined, and the intensity of the determined component point is obtained by dividing the number of component points for one horizontal scanning line before and after by the scheduled count number. Compared with the number of component points with a value of 25% to 75%, if the intensity of the determined component point is all stronger than the intensity of the component points before and after the comparison, it is determined as a non-shadow part. The determined non-shadow part is the back part of the paper, the component point determined to be the back part of the paper, and then the paper The number of constituent points between the constituent points determined to be the back of the paper is sequentially counted, and the number of constituent points between the constituent points first determined for the back of the paper and the constituent points finally determined for the back of the paper is counted Divide by the value obtained by subtracting one more to obtain the average value between the average component points, and the value divided by 25% to 50% of the divided value to eliminate the influence of individual differences in paper width If the value is larger than the added value or smaller than the subtracted value, the paper is not aligned correctly, or the folding shape is abnormal, the paper thickness after folding This is a high-precision abnormality detection method for folded paper, characterized in that it is detected as an abnormality.
本発明の折り加工された用紙の高精度異常検出方法によれば、用紙の揃い状態の異常、または折り加工の形状の異常、または折り加工後の用紙の厚さの異常として異常検出することができるため、最終的には、誤計数を防止し、安定した高精度の計数を行うことが可能である。 According to the high accuracy abnormality detection method for folded paper of the present invention, abnormality detection can be performed as an abnormality in the alignment state of paper, an abnormality in the shape of folding, or an abnormality in the thickness of the paper after folding. Therefore, finally, it is possible to prevent erroneous counting and perform stable and highly accurate counting.
以下、図面に基づいて本発明の実施態様を詳細に説明する。
図1は所望の大きさに折り加工された用紙の一例であって、1は二つ折りされた用紙、2は二つ折りされた用紙1の背部であり、背部2は図のように半円形状になる。Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows an example of a sheet folded into a desired size. 1 is a folded sheet, 2 is a back part of the folded sheet 1, and the
図2は、折り加工された複数の用紙1の枚数を計数する手段を示すものであって、折り加工された複数の用紙1を背部2が同一平面に並ぶように揃え、両側から押さえ板3で押さえ、背部2の前方の斜め方向から照明装置4で光を照射して背部の凸部に非影部(輝部)5を、背間の凹部に影部6を生じさせる。照明装置4は、右方又は左方のいずれか一方に配置してあれば良いが、右方と左方の両斜め方向に配置して、両斜め方向から照射すると、均一な照明が可能である。揃えた複数の用紙1の背部2と両側の押さえ板3とを、その前方に固定配置したテレビカメラ7で、すべての影部6が撮像されるように影部6とテレビカメラ信号の水平走査線と直角となるように撮像する。テレビカメラ7の位置は左右が均一に撮像することができるように複数の用紙1の中央であることが望ましい。得られた画像は画像モニター8で画像の状態を確認し、良好な画像を得るようにする。 FIG. 2 shows a means for counting the number of folded sheets 1. The folded sheets 1 are aligned so that the
次に、テレビカメラ7がアナログ方式のカラーテレビカメラの場合には、カラーテレビカメラから得られたアナログカラー画像信号をカラーアナログーデジタル変換回路9によって、赤、緑、青の色の強さを多値化したデジタル信号に変換し、コンピュータ10に送り、多値化したデジタル化信号のそれぞれの色の強さを、水平走査線を構成する各構成点に対応する多値化した色信号に変換する。得られたデジタル信号の三色すべてを計数に使用することもできるし、用紙の色に応じてもっとも強く現れる最適の色信号を選び、代表する信号とすることもできる。特に、用紙の色が紺色・青色系統の場合には、青色信号だけが鮮明にあらわれ、赤・緑色の色の強さは不鮮明になるので、誤計数を防止するために計数に使用しない方がよい場合が多い。紺色・青色系統の用紙色の場合には、モノクロカメラを使用すると、計数が難しくなるので、これらの色の用紙の計数には、カラーテレビカメラを使用することが望ましい。 Next, when the TV camera 7 is an analog color TV camera, an analog color image signal obtained from the color TV camera is converted by the color analog-to-digital conversion circuit 9 to the intensity of red, green, and blue colors. Converted into a multi-valued digital signal, sent to the
テレビカメラ7がモノクロテレビカメラの場合には、得られた画像信号をカラーアナログーデジタル変換回路9をモノクロアナログーデジタル回路に変更し、前記モノクロアナログーデジタル回路に送り、アナログ輝度信号を多値化した輝度信号に変換し、図2のコンピュータ10に送り、画像信号の輝度を水平走査線を構成する各構成点に対する多値化した信号に変換する。以下の説明では、輝度をカラーの一色と同様に扱うこととする。 When the TV camera 7 is a monochrome TV camera, the obtained image signal is changed from the color analog-digital conversion circuit 9 to a monochrome analog-digital circuit and sent to the monochrome analog-digital circuit, and the analog luminance signal is multi-valued. 2 is sent to the
変換された赤・緑・青の色の強さの値を、一方端から他方端まで、前記のアナログカラーテレビカメラの解像度の数の構成されるデジタル信号の各構成点に対応させて順次記憶させ、揃えた複数の用紙1の計数にさいしては、一方の押さえ板3から複数の用紙1を経て他方の押さえ板3に至るまでの水平走査線を構成する各構成点の信号の強さを、影部6と直交する方向に水平走査線1本分検出し、コンピュータモニター11で、図3に示すようにX軸に水平走査線構成点をとり、Y軸に信号の強さをとって表示し、水平走査線構成点の各点に対する信号の強さを示す点を直線で結ぶグラフを表示する。このグラフでは、輝部5と影部6が山部と谷部を形成して振幅するように現れ、輝部5と影部6をその信号の強さの差として知ることができる。 The converted red, green, and blue color intensity values are sequentially stored from one end to the other end in correspondence with each constituent point of the digital signal that is composed of the number of resolutions of the analog color TV camera. In addition, when counting the plurality of aligned sheets 1, the signal strength of each constituent point constituting the horizontal scanning line from one pressing plate 3 to the other pressing plate 3 through the plurality of sheets 1 is determined. Is detected for one horizontal scanning line in a direction orthogonal to the
この信号の現れ方を利用して、前記水平走査線1本分の色の強さを一方の押さえ板3から複数の用紙1を経て他方の押さえ板3まで解析すると、複数の用紙1の枚数の計数や厚さの算出ができるが、図3に示すように、実際には山部と谷部の途中に微妙なノイズが生じて、正確な計数、算出に問題があることもわかる。 Using the appearance of this signal, the color intensity of one horizontal scanning line is analyzed from one holding plate 3 through the plurality of sheets 1 to the other holding plate 3. However, as shown in FIG. 3, it can be seen that there is actually a subtle noise in the middle of the peaks and valleys, and that there is a problem in accurate counting and calculation.
図3に示すグラフのように、信号に背部の形状や用紙の特性、印刷状態によりノイズが含まれる場合には、ノイズを除去するため、下記の数式を用いて移動平均し、図4に示すグラフのようにノイズを除去することが望ましい。図3は実際の移動平均化前のグラフの状態を示し、図4は枚数を24枚とし、水平走査線構成点数を640個とし、平均化個数を12個として、実際の移動平均化後のグラフを示す。 As shown in the graph of FIG. 3, when the signal includes noise depending on the shape of the back, the characteristics of the paper, and the printing state, a moving average is performed using the following formula in order to remove the noise, and the signal is shown in FIG. It is desirable to remove noise as in the graph. FIG. 3 shows the state of the graph before the actual moving average, and FIG. 4 shows that the number of sheets is 24, the number of horizontal scanning line constituting points is 640, the average number is 12, and the actual moving average after moving average is obtained. A graph is shown.
以下に、数式を用いる移動平均手法を用いてノイズを除去する例を示す。
図5は、得られた信号の強さを水平走査線開始端から用紙3枚分まで表示した模式的グラフであって、X軸に水平走査線、Y軸に信号の強さを示し、水平走査線開始端からの信号の強さS0、S1、S2、S3、・・・S48、S49、S50、S51をグラフにプロットし、各点間を結んだもので、S6、S25、S30、S45にノイズが含まれていることが分かる。これらの点はその前後の平均的傾向から突出したものである。An example in which noise is removed using a moving average method using mathematical expressions will be described below.
FIG. 5 is a schematic graph in which the strength of the obtained signal is displayed from the start edge of the horizontal scanning line to three sheets of paper. The horizontal scanning line is shown on the X axis, the signal strength is shown on the Y axis, and the horizontal The signal strengths S0, S1, S2, S3,... S48, S49, S50, and S51 from the scanning line start end are plotted on a graph and connected between the points, and S6, S25, S30, and S45. It can be seen that noise is included. These points stand out from the average tendency before and after.
そこで、これらのノイズを除去するためには、水平走査線開始端から終了端までの各点の信号の強さSxを、それぞれの点とその前後の複数の点の信号の強さを平均化した平均値値に修正することにより、前後の平均的傾向からの突出を除去する。そこで、任意の点Sxの平均値は、点Sxとその前後の複数の点の信号の強さを平均した値となる。ここで、平均化するために使用する前後の個数(平均化個数)を前後それぞれn個とすると、平均に使用する総数(平均化総数)は、n+n+1個である。 Therefore, in order to remove these noises, the signal strength Sx of each point from the horizontal scanning line start end to the end end is averaged, and the signal strength of each point and a plurality of points around it are averaged. By correcting to the average value, the protrusion from the average tendency before and after is removed. Therefore, the average value of the arbitrary point Sx is a value obtained by averaging the signal strengths of the point Sx and a plurality of points around it. Here, assuming that the number before and after (average number) used for averaging is n before and after, the total number (average number) used for averaging is n + n + 1.
そこで、n=3とした場合の例をあげて説明すると、点S3の平均値は、
S3の平均値=(S0+S1+S2+S3+S4+S5+S6)÷(3+3+1)となる。
従って、n=3の場合の任意の点Sxの平均値は、次のようにして計算する。
Sxの平均値=(S(x−3)+S(x−2)+S(x−1)+Sx+S(x+1)+S(x+2)+S(x+3))÷(3+3+1)
従って、一般にn=nの場合の任意の点Sxの平均値は、次のようにして計算する。
Sxの平均値=(S(x−n)+…+S(x−1)+…Sx+…+S(x+1)+…+S(x+n))÷(n+n+1)Therefore, to explain with an example where n = 3, the average value of the point S3 is
Average value of S3 = (S0 + S1 + S2 + S3 + S4 + S5 + S6) ÷ (3 + 3 + 1).
Therefore, the average value of an arbitrary point Sx when n = 3 is calculated as follows.
Average value of Sx = (S (x−3) + S (x−2) + S (x−1) + Sx + S (x + 1) + S (x + 2) + S (x + 3)) ÷ (3 + 3 + 1)
Therefore, in general, the average value of an arbitrary point Sx when n = n is calculated as follows.
Average value of Sx = (S (x−n) +... + S (x−1) +... Sx +... + S (x + 1) +... + S (x + n)) ÷ (n + n + 1)
ただし、S0の場合のように、その点の前側にデータが存在しない場合や、n=5でS4の場合のように、前側に必要なデータ数が存在しない場合や、同様に水平走査線終了端付近で後ろ側に必要なデータが存在しない場合は、存在するデータだけで平均化を行う。
即ち、n=5で、S4の場合には、下記式によって計算する。
S4の平均値=(S0+S1+S2+S3+S4+S5+S6+S7+S8+S9)÷(4+5+1)
なお、nの値は計数対象の用紙の状態により適切な値を選択することが望ましいが、水平走査線を構成する点数を計数予定枚数で除算した値の40%から60%程度の値が望ましく、本発明では、3〜15とする。However, as in the case of S0, when there is no data on the front side of the point, or when n = 5 and the required number of data does not exist on the front side, as in the case of S4, the horizontal scanning line ends similarly. If necessary data does not exist on the back side near the edge, averaging is performed only with the existing data.
That is, when n = 5 and S4, the calculation is performed according to the following formula.
Average value of S4 = (S0 + S1 + S2 + S3 + S4 + S5 + S6 + S7 + S8 + S9) ÷ (4 + 5 + 1)
It should be noted that an appropriate value of n is preferably selected depending on the state of the sheet to be counted, but is preferably about 40% to 60% of the value obtained by dividing the number of points constituting the horizontal scanning line by the scheduled number of sheets. In the present invention, 3-15.
図6は、上記の計算式を用いて移動平均化してノイズを除去した場合の理想的なグラフで、ノイズを除去し、グラフを先鋭化することにより、後述する山の頂点部が判別しやすく、頂点間の構成点の個数が精密に算出できる。 FIG. 6 is an ideal graph when the noise is removed by moving average using the above calculation formula. By removing the noise and sharpening the graph, the peak portion of the mountain described later can be easily identified. The number of constituent points between vertices can be calculated accurately.
図7(B)は、本発明者が特開2007−238324号公報で開示したように、横軸に水平走査線構成点をとり、縦軸に水平走査線一本分の開始端から終了端まで信号の強さをとって表したグラフであって、S0からS119の各点の位置は水平走査線の構成点の開始端X0から終了端X119に対応する信号の強さを表示している。任意の点Snが山の頂点であるための条件は、基準線X−Yより高いこと、かつ点Snとその前後の設定個数の各比較点とそれぞれ比較し、Sn点がすべての比較点よりも高いことが必要である。 In FIG. 7B, as disclosed in Japanese Patent Application Laid-Open No. 2007-238324, the horizontal axis is a horizontal scanning line composing point, and the vertical axis is a horizontal scanning line for one horizontal scanning line. The positions of the respective points from S0 to S119 indicate the signal strengths corresponding to the start end X0 to the end end X119 of the constituent points of the horizontal scanning line. . The condition for the arbitrary point Sn to be the peak of the mountain is higher than the reference line XY, and the point Sn is compared with each of the set number of comparison points before and after the point Sn. It is necessary to be high.
上記の比較点の個数(比較個数)を前後それぞれ4ヶずつとした例をあげて説明すると、点Snが山の頂点であるための条件式は下記の通りとなる。
Sn>Sn−1、Sn>Sn−2、Sn>Sn−3、Sn>Sn−4、
Sn≧S+1 、Sn≧Sn+2、Sn≧Sn+3、Sn≧Sn+4
ここで、厳密には、同じ値がある場合の処理のため、前部は不等号、後部は不等号と等号による計算とする。上記の条件式をすべて満たす場合には、点Snが山の頂点であると判定し、満たさない場合には、山の頂点であるとの判定をしないこととする。If the number of the comparison points (comparison number) is four before and after, the conditional expression for the point Sn to be the peak of the mountain is as follows.
Sn> Sn-1, Sn> Sn-2, Sn> Sn-3, Sn> Sn-4,
Sn ≧ S + 1, Sn ≧ Sn + 2, Sn ≧ Sn + 3, Sn ≧ Sn + 4
Strictly speaking, for the processing when there is the same value, the front part is calculated with an inequality sign, and the rear part is calculated with an inequality sign and an equal sign. If all of the above conditional expressions are satisfied, the point Sn is determined to be the peak of the mountain, and if not satisfied, it is not determined to be the peak of the mountain.
そこで、水平走査線開始端から終了端までのすべての構成点の値を順次Snに代入して、山の頂点かどうかを計算して判定する。なお、端部においては、比較する構成点が存在しない場合があり、この場合には、判定対象外とし、本例の場合には、図7(B)のS4から順次、S5、S6・・・S119までをSnに代入して比較し、山の頂点か否かを判定する。 Therefore, the values of all the constituent points from the start end to the end end of the horizontal scanning line are sequentially substituted into Sn, and it is determined by calculating whether the peak is a peak. Note that there may be a case where there is no component point to be compared at the end portion. In this case, it is excluded from the determination, and in this example, S5, S6,... Sequentially from S4 in FIG. Substitute up to S119 into Sn and compare to determine whether it is a peak of a mountain.
例えば、S1からS15は基準線より低く対象外となり、基準線より上のS17の場合には、S17とS16、S17とS15、S17とS14、S17とS13、S17とS18、S17とS19、S17とS20、S17とS21を比較すると、S17が比較するすべての点より高いとはいえないので、S17は山の頂点であると判定されない。これに対して、基準線より上のS21の場合には、比較対象となるS17、S18、S19、S20、およびS22、S23、S24、S25のすべてよりも高いので、S21は、山の頂点として判定される。 For example, S1 to S15 are lower than the reference line and excluded, and in the case of S17 above the reference line, S17 and S16, S17 and S15, S17 and S14, S17 and S13, S17 and S18, S17 and S19, S17 And S20, and S17 and S21 are not higher than all the points S17 compares, S17 is not determined to be the peak of the mountain. On the other hand, in the case of S21 above the reference line, it is higher than all of S17, S18, S19, S20 and S22, S23, S24, and S25 to be compared, so S21 is the peak of the mountain. Determined.
上記の山の頂点を判定するための比較個数は、用紙の紙質、折り形態、印刷状態によって最適な個数を設定することが望ましいが、水平走査線の構成点数を計数予定枚数で除算した比率が25%ないし75%の設定範囲内の個数とすることとする。図7(B)の例では、水平走査線の構成点数が200個であって、予定計数枚数が12枚であるので、設定範囲内の最小の比較個数は200÷12×25(%)÷100で4個となる。 It is desirable to set the optimum number for determining the peak of the above-mentioned peak according to the paper quality, folding form, and printing state, but the ratio obtained by dividing the number of horizontal scanning lines by the scheduled number of sheets is The number is set within a setting range of 25% to 75%. In the example of FIG. 7B, since the number of constituent points of the horizontal scanning line is 200 and the planned number of counts is 12, the minimum comparison number within the setting range is 200 ÷ 12 × 25 (%) ÷. 100 is 4 pieces.
比較個数が4個の場合の山の頂点の判定については、前述のとおりであるが、基準線にかかわりなく、SnがS0の場合や、SnがS1からS3の場合には、Snの前に信号が比較個数の4個が存在しないため、その場合は判定対象外とする。基準線が0の場合には実際の判定はS4から、水平走査線終了端の5個前の195個目の信号までとする。 The determination of the peak of the peak when the number of comparisons is four is as described above. Regardless of the reference line, when Sn is S0, or when Sn is S1 to S3, before the Sn Since there are no four comparison signals, in this case, the signal is not subject to determination. When the reference line is 0, the actual determination is from S4 to the 195th signal five times before the end of the horizontal scanning line.
上記の計算式に基づき、前後それぞれの比較個数を4として、図7(B)の各構成点の信号の強さをS4から終了端方向の195個目の点まで(本例ではS119まで)判定を行うと、S21、S36、S50、S66、S87、S104が山の頂点として判定される。
判定方法を演算式で表すと下記のようになる
Sn>Sn−1、Sn>Sn−2、Sn>Sn−3、Sn>Sn−4、
Sn≧S+1 、Sn≧Sn+2、Sn≧Sn+3、Sn≧Sn+4、
Sn>基準線
すなわち本例においては枚数は6枚と正確に計数されるBased on the above formula, the number of comparisons before and after is 4, and the signal strength of each component point in FIG. 7B is from S4 to the 195th point in the direction of the end edge (up to S119 in this example). If it determines, S21, S36, S50, S66, S87, and S104 will be determined as a peak of a mountain.
The determination method is expressed by an arithmetic expression as follows: Sn> Sn-1, Sn> Sn-2, Sn> Sn-3, Sn> Sn-4,
Sn ≧ S + 1, Sn ≧ Sn + 2, Sn ≧ Sn + 3, Sn ≧ Sn + 4,
Sn> reference line, that is, in this example, the number of sheets is accurately counted as 6.
しかし、比較個数として設定範囲の最小値より小さい3を採用して、下記の計算式に基づき、図7(B)の構成点を水平走査線の開始端(図7(B)のS3)から終了端方向(本例では図7(B)のS119まで)に計算を行うと、S21、S36、S50、S66、S71、S82、S87、S97、S104が山の頂点として判定され、山の頂点は9個となり、演算範囲内では9枚となる誤計数が発生する。
Sn>Sn−1、Sn>Sn−2、Sn>Sn−3、
Sn≧S+1 、Sn≧Sn+2、Sn≧Sn+3、
Sn>基準線However, by adopting 3 which is smaller than the minimum value of the setting range as the number of comparisons, based on the following calculation formula, the constituent point in FIG. 7B is determined from the start end of the horizontal scanning line (S3 in FIG. 7B). When calculation is performed in the end direction (up to S119 in FIG. 7B in this example), S21, S36, S50, S66, S71, S82, S87, S97, and S104 are determined as the peak of the mountain, and the peak of the mountain Nine, and an erroneous count of 9 occurs within the calculation range.
Sn> Sn-1, Sn> Sn-2, Sn> Sn-3,
Sn ≧ S + 1, Sn ≧ Sn + 2, Sn ≧ Sn + 3,
Sn> reference line
図7(B)の例では、水平走査線の構成点数が200個であって、予定計数枚数が12枚であるので、設定範囲内の最大の比較個数は、200÷12×75÷100で12個となる。 そこで、前後それぞれの比較個数を12として、下記の計算式に基づき、図7(B)の構成点を水平走査線の開始端(図7(B)のS12)から終了端方向(本例では図7(B)のS119まで)に計算を行うと、S21、S36、S50、S66、S87、S104が山の頂点として判定され、演算範囲内では枚数は6枚と正確に計数される。
Sn>Sn−1、Sn>Sn−2、Sn>Sn−3・・・Sn>Sn−12、
Sn≧S+1 、Sn≧Sn+2、Sn≧Sn+3・・・Sn≧Sn+12、
Sn>基準線In the example of FIG. 7B, since the number of constituent points of the horizontal scanning line is 200 and the planned number of counts is 12, the maximum comparison number within the setting range is 200 ÷ 12 × 75 ÷ 100. There will be twelve. Therefore, assuming that the number of comparisons before and after is 12, the component point in FIG. 7B is moved from the start end of the horizontal scanning line (S12 in FIG. 7B) to the end end direction (in this example, based on the following calculation formula). When calculation is performed up to S119 in FIG. 7B, S21, S36, S50, S66, S87, and S104 are determined as the peaks, and the number of sheets is accurately counted as six within the calculation range.
Sn> Sn-1, Sn> Sn-2, Sn> Sn-3... Sn> Sn-12,
Sn ≧ S + 1, Sn ≧ Sn + 2, Sn ≧ Sn + 3... Sn ≧ Sn + 12,
Sn> reference line
しかし、前後の比較個数を最大の割合より大きい13として、下記の計算式に基づき、図7(B)の構成点を水平走査線の開始端(図7(B)のS12から)終了端方向(本例では図7(B)のS119まで)に計算を行うと、用紙A,B,C,D,EのS21、S36、S50、S66、S87が山の頂点として判定され、用紙Fが山の頂点と判定されず、5個となり、演算範囲内では5枚となる誤計数が発生する。
Sn>Sn−1、Sn>Sn−2、Sn>Sn−3・・・Sn>Sn−13、
Sn≧S+1 、Sn≧Sn+2、Sn≧Sn+3・・・Sn≧Sn+13、
Sn>基準線However, assuming that the number of comparisons before and after is 13 which is larger than the maximum ratio, the component point in FIG. 7B is set to the start end of the horizontal scanning line (from S12 in FIG. 7B) based on the following calculation formula. When the calculation is performed (up to S119 in FIG. 7B in this example), S21, S36, S50, S66, and S87 of sheets A, B, C, D, and E are determined as the peaks, and sheet F is It is not determined as the peak of the mountain, but there are five, and an erroneous count of five occurs within the calculation range.
Sn> Sn-1, Sn> Sn-2, Sn> Sn-3... Sn> Sn-13,
Sn ≧ S + 1, Sn ≧ Sn + 2, Sn ≧ Sn + 3... Sn ≧ Sn + 13,
Sn> reference line
図7(B)の例では、水平走査線の構成点数が200個であって、予定計数枚数が12枚であるので、設定範囲(25〜75%)の平均値を使用した比較個数は200÷12×50÷100で8個となる。前後それぞれの比較個数を8として、下記の計算式に基づき、図7(B)の構成点を水平走査線の開始端(図7(B)のS8から)終了端方向(本例では図7(B)のS119まで)に計算を行うと、S21、S36、S50、S66、S87、S104が、山の頂点として検出され演算範囲内では枚数は6枚と正確に計数される。
Sn>Sn−1、Sn>Sn−2、Sn>Sn−3・・・Sn>Sn−8、
Sn≧S+1 、Sn≧Sn+2、Sn≧Sn+3・・・Sn≧Sn+8、
Sn>基準線
本例の場合では、比較個数が4から12の範囲で適正に判定できるが、もっとも安定して計数するためには比較個数を8とすることが望ましい。In the example of FIG. 7B, since the number of constituent points of the horizontal scanning line is 200 and the planned number of counts is 12, the number of comparisons using the average value in the set range (25 to 75%) is 200. ÷ 12 × 50 ÷ 100, which is 8 pieces. Based on the following calculation formula, the number of comparisons in the front and rear is 8, and the component point in FIG. 7B is set to the start end of the horizontal scanning line (from S8 in FIG. 7B) toward the end (in this example, FIG. 7). When calculation is performed in (B) (up to S119), S21, S36, S50, S66, S87, and S104 are detected as the peak of the mountain, and the number of sheets is accurately counted as six within the calculation range.
Sn> Sn-1, Sn> Sn-2, Sn> Sn-3... Sn> Sn-8,
Sn ≧ S + 1, Sn ≧ Sn + 2, Sn ≧ Sn + 3... Sn ≧ Sn + 8,
Sn> reference line In the case of this example, the number of comparisons can be properly determined in the range of 4 to 12, but the number of comparisons is desirably 8 for the most stable counting.
なお、水平走査線の構成点数が200個であって、予定計数枚数が20枚である場合には、標準的な設定範囲内の最適比較個数は200÷20×50÷100で、5個となり、この場合には、比較個数は、3から8の範囲で正確な計数が可能となる。 When the number of constituent points of the horizontal scanning line is 200 and the planned number of counted sheets is 20, the optimal comparison number within the standard setting range is 200 ÷ 20 × 50 ÷ 100, which is five. In this case, the comparison number can be accurately counted in the range of 3 to 8.
図8は図5のようなノイズのない理想的なグラフであるが、全体の形状で色の強さが中央部から両端に向かって減少した例であって、照明の照射や、照明からの距離などの影響がある場合であり、本発明者の従来方法ではこの例の場合には図10などの線分C−Dを基準として計数を行っていたので、問題であった。 FIG. 8 is an ideal graph with no noise as shown in FIG. 5, but the color intensity is decreased from the central part toward both ends in the overall shape. This is a case where there is an influence such as distance, and in the case of this example, the present inventor's conventional method is a problem because the counting is performed with reference to the line segment CD in FIG.
本発明では、水平走査線を8ないし20のいずれかに分割し、あらかじめ設定された下限線ABの値を下限値として採用して、赤、緑、青ごとにそれぞれの分割された範囲で、範囲内の構成点の色の強さの平均値を求める。次いで、これを分割範囲の中央の構成点位置の値とし、かつ両端の値をあらかじめ設定された下限線ABの値として採用して一方端から順に分割範囲の中央の構成点位置の値を次々に結び、他端まで結んで基準屈曲線を形成し、その線上の値をそれぞれの構成点に対応する基準値として採用する。即ち、分割された部分の色の強さの平均値をあらかじめ設定した下限線ABを下限値として採用して演算し、両端を下限値とし、各分割部分の中央を結んだ屈曲線を形成し、その屈曲線上の値をそれぞれ構成点に対応する基準値として採用する。ここで、屈曲線は、曲線で結んだ線であっても良い。 In the present invention, the horizontal scanning line is divided into any of 8 to 20, and the value of the preset lower limit line AB is adopted as the lower limit value, and in each divided range for each of red, green, and blue, The average value of the color strength of the constituent points within the range is obtained. Next, this is used as the value of the central component point of the divided range, and the values at both ends are adopted as the values of the preset lower limit line AB, and the values of the central constituent point positions of the divided range in turn from one end to the next. The reference bending line is formed by connecting to the other end, and the value on the line is adopted as the reference value corresponding to each constituent point. In other words, the lower limit line AB, in which the average value of the color intensity of the divided parts is set in advance, is used as the lower limit value and is calculated as the lower limit value, and a bent line connecting the centers of the divided parts is formed. The values on the bent line are adopted as reference values corresponding to the constituent points. Here, the bent line may be a line connected by a curve.
図9の例では、8分割とし、分割部分の平均値を各分割部分の中央に表している。
構成点の点数が640とすると、一分割あたりの構成点は80個となり、最初の構成点の平均は最初の構成点をS0から80個目のS79のうち下限線ABより低い値は下限値に変更した後の合計を80で除算した値になり、図の右から順次S80からS159の平均値、S160からS239の平均値、以下同様に演算して、終端部分は最初部分と同様に演算する。In the example of FIG. 9, there are 8 divisions, and the average value of the divided portions is shown at the center of each divided portion.
Assuming that the number of component points is 640, the number of component points per division is 80, and the average of the first component points is the lower limit value of the first component point that is lower than the lower limit line AB of S0 to S79. The total after the change is divided by 80. From the right in the figure, the average value from S80 to S159, the average value from S160 to S239, and so on are calculated, and the end portion is calculated in the same manner as the first portion. To do.
分割数は通常8分割で十分であるが、計数対象の用紙の幅が10cm以上のような広い場合には、光源からの距離、照明の照射が全体に均一にあたらないため、広さに合わせて最大20分割すると、適正な基準屈曲線が作成することができる。 The number of divisions is usually eight. However, if the paper to be counted is wide, such as 10 cm or more, the distance from the light source and the illumination irradiation will not be uniformly distributed over the entire area. When the number of divisions is 20 at maximum, an appropriate reference bending line can be created.
図10は、両端には下限線の値を採用し、そしてそれぞれの分割範囲の平均値を結んだ屈曲線A−a−b−c−d−e−f−g−h−Bを表している。 FIG. 10 shows a bent line A-ab-c-d-e-f-g-B that employs lower limit values at both ends and connects the average values of the respective divided ranges. Yes.
本発明では、一方端から他方端まで前記水平走査線1本分の構成点の色の強さの測定信号を順次それぞれの構成点ごとに、構成点の値と対応する基準値と比較して、基準値より色が強い構成点を判定し、判定された構成点の色の強さを、前後の水平走査線1本分の構成点の数を計数予定枚数で除算した値の25%から75%の値の数の構成点と比較して、判定された構成点の色の強さが、比較する前後の構成点の色の強さより全て強い場合に非影部と判定し、判定された非影部を用紙の背部とし、背部の数を積算して用紙の枚数を計数する。図10の場合においては、用紙が正常な場合であるので、適正な計数が可能である。 In the present invention, from one end to the other end, the color intensity measurement signal for one horizontal scanning line is sequentially compared for each constituent point with the reference value corresponding to the constituent point value. The composition point whose color is stronger than the reference value is determined, and the color strength of the determined composition point is calculated from 25% of the value obtained by dividing the number of composition points for one horizontal scanning line before and after by the scheduled number of sheets. Compared with the number of component points with a value of 75%, if the color strength of the determined component points is all stronger than the color strength of the component points before and after the comparison, it is determined as a non-shadow part and determined The non-shadow portion is set as the back portion of the sheet, and the number of sheets is counted by accumulating the number of the back portions. In the case of FIG. 10, since the sheet is normal, proper counting is possible.
これに対して、図11では、計数対象の用紙の揃えが乱れた状況もしくは、均一ではない用紙が存在し、S部分において基準屈曲線の一部d−eより低くなっているため、この部分で1枚計数が行われず正常値と比較して1枚少ない状況になる。本発明者の従来方法では線分C−Dより高いため、この例の場合には乱れた状態でも用紙は計数され、単純に計数を行うだけの場合には、どのような場合にも計数を行えるが、精度の高い正確な計数を行う場合には、用紙の揃えの乱れ、均一ではない用紙などを検出することが重要であって、これによって始めて誤計数を防止することが可能になるのである。 On the other hand, in FIG. 11, the alignment of the sheets to be counted is disordered, or there is a sheet that is not uniform, and this part is lower than the part de of the reference bending line in the S part. In this case, one sheet is not counted and one sheet is less than the normal value. In the case of this example, the sheet is counted even in a turbulent state, and in the case of simply performing the counting, the counting is performed in any case. However, when performing accurate counting with high accuracy, it is important to detect misaligned paper, non-uniform paper, etc., and this can only prevent erroneous counting. is there.
本発明者の従来の方式では端部の用紙と中央部の用紙では、用紙の揃えの乱れ、均一ではない用紙が存在した場合に、端部は基準線C−Dに近いため用紙が検出されやすい。中央部では端部と比較して基準線C−Dと遠いため用紙が検出されてしまう欠点があったが、本発明では、各用紙の間の構成点数を平均的な用紙間の構成点の点数と比較し、用紙の揃えの乱れ、均一ではない用紙などを検出でき、計数に使用する基準となる基準線が水平線ではなく、水平走査線の形状に合わせた屈曲線に設定されるため、用紙の位置に関係なく厳密に計数でき、用紙間の間の構成点数の比較が行いやすくなるのである。 In the conventional method of the present inventor, when the paper at the edge and the paper at the center are out of alignment, and there is a paper that is not uniform, the paper is detected because the edge is close to the reference line CD. Cheap. In the central portion, there is a defect that the sheet is detected because it is far from the reference line CD compared with the end portion. However, in the present invention, the number of constituent points between the sheets is determined by the average number of constituent points between the sheets. Compared to the number of points, it is possible to detect irregular paper alignment, non-uniform paper, etc., and the reference line used for counting is not a horizontal line but a bent line that matches the shape of the horizontal scanning line, Counting can be performed accurately regardless of the position of the sheet, and the number of constituent points between sheets can be easily compared.
本発明では、用紙の背部と判定された構成点と次に用紙の背部と判定された構成点間の構成点の数を順次算出し、算出されたそれぞれの構成点間の構成点の数を最初に用紙の背部判定された構成点と最後に用紙の背部判定された構成点の間の構成点の数を計数予定枚数より1減算した値で除算して平均的な構成点間の平均値を求め、用紙の幅の個体差による影響を除くために除算した値に、除算された値の25%〜50%の値を加算及び減算した値と比較して、加算した値より多い場合や減算された値より少ない場合に、用紙の揃い状態の異常、または折り加工の形状の異常、または折り加工後の用紙の厚さの異常として異常検出するのである。なお、後述のように、理想的な均一な用紙において特定した各背部位置と順次検査される複数の用紙の各背部の位置を比較し平均的な構成点間の個数の15%から50%以上位置が異なる場合に異常な状態として検出することも可能である。なお、平均的な用紙間の構成点の点数は理想的な複数の用紙の測定時の算出値を使用しても良い。 In the present invention, the number of constituent points between the constituent points determined to be the back portion of the paper and the constituent points determined to be the back portion of the paper are sequentially calculated, and the calculated number of constituent points between the respective constituent points is calculated. The average value between the average component points is divided by the value obtained by subtracting 1 from the number of component points between the component point first determined for the paper back and the component point finally determined for the paper back. And the value divided by 25% to 50% of the divided value is added to and subtracted to eliminate the influence of individual differences in the paper width. When the value is smaller than the subtracted value, an abnormality is detected as an abnormality in the alignment state of the sheets, an abnormality in the shape of the folding process, or an abnormality in the thickness of the sheet after the folding process. As will be described later, each back position specified on an ideal uniform sheet is compared with the position of each back of a plurality of sheets to be inspected sequentially, and 15% to 50% or more of the average number between constituent points. It is also possible to detect an abnormal state when the positions are different. It should be noted that an average calculated value for a plurality of sheets may be used as the average number of constituent points between sheets.
下記に用紙間の構成点数の比較の詳細を示す。
最初に用紙1枚と判定された構成点と最後に用紙1枚と判定された構成点の間の構成点の点数をGとし、これを計数枚数より1減算した値で除算して用紙間の構成点の点数の平均数を算出して、これをHとする。用紙枚数が30枚の場合には、HはG÷29となり、1枚当たりの間隔幅(構成点数)を意味する。次に、用紙には個体差があるので、これを考慮して許容値を与えるため、算出された平均値Hに25%から50%の値を乗算した値をIとする。用紙1枚当たりの間隔幅の0.25〜0.5を許容幅とするものである。ここで、許容幅は、厚めの場合と薄目の場合があるので、厚めの場合には、HにIを加算してJとし、厚めの許容幅とし、薄めの場合には、HにIを減算してKとし、薄めの許容幅とする。実際に測定されたそれぞれの用紙間の構成点の幅xをJおよびKと比較して、実際に得られた構成点の点数がJより大きい場合とKより小さい場合には、異常な背部間の構成点の点数として用紙の幅の異常状態を検出、表示することができる。Details of comparison of the number of constituent points between sheets are shown below.
G is the number of constituent points between the constituent point first determined as one sheet and the constituent point determined last as one sheet, and is divided by a value obtained by subtracting 1 from the counted number. The average number of points of the component points is calculated, and this is set as H. When the number of sheets is 30, H is G ÷ 29, which means the interval width (number of components) per sheet. Next, since there is an individual difference in the sheet, in order to give an allowable value in consideration of this, a value obtained by multiplying the calculated average value H by a value from 25% to 50% is set as I. An allowable width is an interval width of 0.25 to 0.5 per sheet. Here, the allowable width may be thicker or thinner, so in the case of thicker, I is added to H to become J, to be a thicker allowable width, and in the case of thinner, I is set to H. Subtract K to obtain a thinner allowable width. Compare the actual measured point width x between each sheet with J and K, and if the actual score obtained is greater than J and less than K, the abnormal back spacing The abnormal state of the sheet width can be detected and displayed as the number of constituent points.
なお、異常な構成点を検出する場合には、理想的な用紙で特定した背部位置をLとし、次に検査された複数の用紙の背部をMとし、LとMの構成点の位置の差を間隔幅Nとし、Gに15%から50%乗算した間隔幅の許容幅をOとし、NとOとを比較してNが多い場合には、異常な構成点位置とすることが可能である。上記のNは各位置について検査、算出することが可能である。 When an abnormal composing point is detected, the back position specified by the ideal paper is set as L, the back of the plurality of papers examined next is set as M, and the difference between the positions of the L and M composing points is detected. Is defined as an interval width N, an allowable width of an interval width obtained by multiplying G by 15% to 50% is O, and when N is large when N is compared with O, an abnormal component point position can be obtained. is there. The above N can be inspected and calculated for each position.
上記の両検査時において、それぞれの用紙間の構成点の点数が異常な場合や、構成点位置が異常な場合には、用紙の揃い状況の異常、形状が変化した用紙の混在、折り工程中に用紙の間に用紙が挟まった用紙の混在、2枚を同時に折った用紙の混在が検出でき、コンピュータなどの画面に表示することで走査員に異常の発生とその位置を明示することができる。 During both of the above inspections, if the number of component points between the sheets is abnormal or the position of the component points is abnormal, abnormal sheet alignment, mixed forms of paper, and folding process It is possible to detect a mixture of sheets with sheets sandwiched between them, and a mixture of sheets with two sheets folded at the same time, and display them on the screen of a computer or the like to clearly indicate the occurrence and position of the abnormality to the scanning staff. .
以上のように、計数に使用する基準を走査線の形状に合わせた屈曲線にすることにより用紙の位置にかかわらず、同一の条件で計数することが可能であり、しかも、用紙間の構成点の点数より用紙の揃えの乱れ、均一ではない用紙などを検出することが可能であり、最終的には、安定した正確な計数を可能とするものである。 As described above, it is possible to count under the same conditions regardless of the position of the paper by setting the reference used for counting to a bent line that matches the shape of the scanning line. Thus, it is possible to detect a misalignment of paper sheets, a non-uniform paper sheet, and the like, and finally enable stable and accurate counting.
1 二つ折りされた用紙
2 背部
3 押さえ板
4 照明装置
5 輝部
6 影部
7 テレビカメラ
8 画像モニター
9 アナログーデジタル変換回路
10 コンピュータ
11 コンピュータモニターDESCRIPTION OF SYMBOLS 1 Folded
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011250119A JP5207157B2 (en) | 2011-10-28 | 2011-10-28 | High-precision anomaly detection method for folded paper |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011250119A JP5207157B2 (en) | 2011-10-28 | 2011-10-28 | High-precision anomaly detection method for folded paper |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013095599A JP2013095599A (en) | 2013-05-20 |
JP5207157B2 true JP5207157B2 (en) | 2013-06-12 |
Family
ID=48617942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011250119A Expired - Fee Related JP5207157B2 (en) | 2011-10-28 | 2011-10-28 | High-precision anomaly detection method for folded paper |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5207157B2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3765112B2 (en) * | 1995-08-18 | 2006-04-12 | 和也 松田 | Counting the number of folded sheets |
JP2007220052A (en) * | 2006-02-15 | 2007-08-30 | Kazuya Matsuda | Counting method of numbers of folding processed sheets |
JP2007238324A (en) * | 2006-03-08 | 2007-09-20 | Kazuya Matsuda | Method of detecting abnormal condition of folded paper |
-
2011
- 2011-10-28 JP JP2011250119A patent/JP5207157B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013095599A (en) | 2013-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9292915B2 (en) | Digital optical comparator | |
US20070286471A1 (en) | Auto Distinction System And Auto Distinction Method | |
JP4230566B2 (en) | Defect integration processing apparatus and defect integration processing method | |
JP2007238324A (en) | Method of detecting abnormal condition of folded paper | |
JP2007220052A (en) | Counting method of numbers of folding processed sheets | |
JP6360782B2 (en) | Inspection method of screws | |
JP5131713B1 (en) | High-precision counting method for folded paper | |
JP2004349962A (en) | Automatic discrimination device | |
JP2011158367A (en) | Method, program and apparatus for inspection of object to be inspected | |
JP5207157B2 (en) | High-precision anomaly detection method for folded paper | |
US9503603B2 (en) | Reading apparatus, correction value calculating method and ink jet recording apparatus | |
JP5949214B2 (en) | Quality inspection method | |
JP5970710B2 (en) | Abnormal thickness detection method for folded paper | |
JP6111504B2 (en) | Folded paper counting method and abnormality detection method at that time | |
JP5953577B2 (en) | High-precision counting method for folded paper | |
JP2015059854A (en) | Defect inspection method and defect inspection device | |
JP4403036B2 (en) | Soot detection method and apparatus | |
JP5974337B2 (en) | Abnormality detection method for folded paper | |
JP4135367B2 (en) | Defect detection method | |
JP2009042978A (en) | Print identification apparatus and print identification method | |
JP7524878B2 (en) | Surface defect inspection system and surface defect inspection method | |
JP4918800B2 (en) | Appearance inspection device | |
JP7300155B2 (en) | Teaching device in solid preparation appearance inspection, and teaching method in solid preparation appearance inspection | |
JP7048979B2 (en) | Step forming inspection method | |
JPH0682390A (en) | Method and apparatus for inspecting surface defect |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130207 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160301 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |