JP5207056B2 - 放射線検出器、放射線検査装置および励起子発光シンチレータ - Google Patents

放射線検出器、放射線検査装置および励起子発光シンチレータ Download PDF

Info

Publication number
JP5207056B2
JP5207056B2 JP2008298231A JP2008298231A JP5207056B2 JP 5207056 B2 JP5207056 B2 JP 5207056B2 JP 2008298231 A JP2008298231 A JP 2008298231A JP 2008298231 A JP2008298231 A JP 2008298231A JP 5207056 B2 JP5207056 B2 JP 5207056B2
Authority
JP
Japan
Prior art keywords
radiation detector
radiation
scintillator
geiger mode
exciton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008298231A
Other languages
English (en)
Other versions
JP2010122166A (ja
Inventor
彰 吉川
健之 柳田
直人 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2008298231A priority Critical patent/JP5207056B2/ja
Publication of JP2010122166A publication Critical patent/JP2010122166A/ja
Application granted granted Critical
Publication of JP5207056B2 publication Critical patent/JP5207056B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Measurement Of Radiation (AREA)
  • Nuclear Medicine (AREA)
  • Luminescent Compositions (AREA)

Description

本発明は、放射線検出器および放射線検査装置に関する。より詳細には、励起子発光シンチレータを用いる放射線検出器およびこれを用いる放射線検査装置に関する。
高エネルギー物理やポジトロン放出型断層撮影(PET)イメージング・システムでは、シンチレータへの(核崩壊事象によって発生される)放射線の衝突に基づいて画像が作成される。被検体内に陽電子放出性医薬品が投与されると、ポジトロンと対応する電子との相互作用から、511keVのエネルギーを有する、2つの逆方向に向いたガンマ線が生じ、そのガンマ線がシンチレータ結晶の中へ入って、受光素子によって検出することのできるフォトンに変換される。被検体内の特定の位置から放出された光は、例えば、フォトダイオード(PD)、光電子増倍管(PMT)、または他の受光素子により電気信号に変換されて検出される。
フォトダイオードは、特に放射線検出器やイメージング機器において、広範な用途を有している。現在、様々な公知のフォトダイオードが使用されている。その中で、ガイガーモードAPD(ガイガーモードアバランシェフォトダイオード)と称される特定の形式のフォトダイオードでは、APDの逆バイアスを降伏電圧以上に設定することで内部電界が非常に高くなり、増倍率が10〜10倍と非常に大きくなる。このような状態で動作させることをガイガーモードといい、ガイガーモード時にフォトンの入射でアバランシェ層にキャリアが注入されると、非常に大きいパルスが発生する。このパルスを検出することによって、シングルフォトンの検出を行い、このフォトンがアレイに衝突する位置を突き止めることができる。このような用途での使用は、それらがアレイに衝突するフォトンの位置を検知する能力を持っているので、特に関心が持たれている。
ところで、PETを用いた検査は、治療前の腫瘍悪性度診断、癌の浸潤範囲や転移病巣の検出などによる臨床病期の診断、治療中・治療直後の癌治療に対する反応の判定・評価、治療後の予後予測や再発診断など、癌診断について精度の高い情報を提供するものと期待され、癌臨床への応用が広まっている。しかし、癌浸潤範囲の正確な診断という観点では、PETにより得られる画像のみでは、生体臓器や組織の正確な位置情報が得にくいという欠点がある。
一方、X線CT装置やMRI装置は、生体の解剖学的な詳細情報を正確に描出でき、医療分野において広く利用されているが、PETのような代謝機能に関する解析能は備わっていない。特にMRIは、患者または他のイメージング対象物において磁気共鳴を生成したり、空間的にエンコード化したりするものであり、高い磁場、磁場勾配及び高周波励起パルスを組み合わせている。磁気共鳴は、空間エンコードを復号し、対象物の再構成画像を生成するために、フーリエ変換又は他の再構成処理により処理される。
このMRI装置やX線CT装置およびPET装置の互いの欠点を補い、両者の優れた特徴を利用した新しい癌診断装置として、近年、PET画像による代謝機能情報と磁気共鳴イメージングであるMRI画像による解剖学的位置情報とを同時期に収集し、両画像の重ね合わせによる診断を可能としたMRI付PET装置(MRI−PET)の開発が行われている。PETスキャナは、一般にガンマ線を光のバーストに変換するためにシンチレータを用い、そのシンチレータ事象を検出するために光電子増倍管を用いている。MRI−PETでは、強力な磁場を発するMRIを使用するため、光電子増倍管が使用できない。すなわち、光電子増倍管は、シンチレータに放射線が入射した際に発せられる蛍光を電気信号へと変換するものであるが、電子を加速して増幅する構造上、強力な磁場が存在する環境下では使用できない。このため、磁場の影響を受けず、シンチレータから発せられる蛍光を電気信号に変換可能な素子として、量子変換効率の高いモード型受光素子がMRI−PETに用いられる。
ガイガーモードAPDは、電子の移動距離が数μmと短いので、強力な磁場が存在する環境下であっても使用することができるため、MRI−PET用の素子として適している。ガイガーモードAPDは安価で、他の受光素子と比較して低バイアス電圧動作での高い増幅率、高いフォトン検出効率、高速応答、高係数率、優れた時間分解能、広い感度波長範囲を有し、SN比が非常に優れている。さらに固体素子であるため、衝撃などに強く、入射光の飽和による焼つきがなく、冷却が不要で、常温動作でフォトカウンティングが可能であることから、フォトカウンティングに用いられてきた従来の検出器に代わる受光素子として期待されている。
これまで、ガイガーモードAPDを利用した放射線検出器の開発がいくつか行われている(例えば、特許文献1および非特許文献1参照)。また、特許文献1などで報告されている一般的なシンチレータ結晶は、蛍光寿命が数10nsである(例えば、特許文献2参照)。
特表2008−536600号公報 E. Lorenz, I. Britvich, D. Ferenc, N. Otte, D. Renker, Z. Sadygovand A. Stoykov, "Some studies for a development of a small animal PET based onLYSO crystals and Geiger mode-APDs", Nuclear Instruments and Methodsin Physics Research, 2007, A 572, p.259-261 国際公開第2005/019862号パンフレット
PET等に用いられる放射線検出器では、数え落としを少なくするため、応答速度の速いPET装置や放射線検出器が求められている。特に、PET装置では、検査時間を短くし、検査の対象となる被検体の負担を軽減する観点、及び、複数の蛍光が重なり合う現象、いわゆるパイルアップを防止して高い時間分解能を有する放射線検出器を構成する観点から、発光量が低くとも蛍光寿命が短いシンチレータと、その発光ピーク波長で量子変換効率が高く、時間応答性の速い受光素子とを組み合わせた、高速応答の放射線検出器が求められている。
しかしながら、特許文献1などに記載の一般的なシンチレータ結晶は、蛍光寿命が数10nsであるため、例えば1ナノ秒以下の高速応答が可能なシンチレータを特定しない限り、1ナノ秒以下の応答を有する検出器の具現化は実現しない。特許文献1では、「1ナノ秒以下の時間分解能を有する」との記載があるにも関わらず、それを可能とするような具体的なシンチレータの構成や、時間応答に関するデータを一切示しておらず、高速応答の放射線検出器を実現することはできないという課題があった。また、サブナノ〜数ナノ秒の蛍光寿命を呈するシンチレータを、ガイガーモードAPDとアセンブリさせた放射線検出器に関するものは、これまで全く報告されていない。
本発明は、このような課題に着目してなされたもので、発光量はさほど高くないが、サブナノ〜数ナノ秒という極めて短い蛍光寿命を示すシンチレータと、低発光量の光に対しても高い感度を有するとともに応答速度が速い受光素子とを組み合わせた高速応答の放射線検出器および放射線検査装置を提供することを目的としている。
高速応答が期待される短い蛍光寿命の発光を持つ一方で、発光量があまり高くないシンチレータとして、励起子発光シンチレータがある。また、低発光量の光に対して高い感度を有し、且つ高速応答を有する受光素子として、ガイガーモードAPDがある。本発明者等は、ガイガーモードAPDと組み合わせることにより、特性の優れた高速応答の放射線検出器を具現化することができる励起子発光シンチレータを特定することに成功し、本発明に至った。
本発明に係る放射線検出器および放射線検査装置は、高速応答性を有する励起子発光シンチレータを特定し、これとガイガーモードAPDとを組み合わせてサブナノ〜数ナノ秒の応答速度を具現化するものである。このような高速応答の放射線検出器および放射線検査装置を具現化するためには、高速応答性を有するシンチレータを新たに特定することが必要不可欠であり、既存の技術から実現することは不可能である。なお、「放射線」とは、原子、分子をイオン化させるのに十分なエネルギーをもった粒子線(α線、β線、γ線、X線、中性子線等)を示す。
本発明に関する放射線検出器は、励起子による0.05ナノ秒〜10ナノ秒の蛍光寿命を有する、直接遷移型半導体の励起子から発光する励起子発光シンチレータと、ガイガーモードAPD(ガイガーモードアバランシェフォトダイオード)とを、有することを特徴とする。この場合、前記直接遷移型半導体は、ZnOまたはZnOのZnサイトの一部をAl、Ga、In、Cd、Mg、RE(希土類元素:Sc、Y、ランタノイド)のいずれか1種以上の元素で置換した化学組成を有していてもよく、GaNまたはGaNのGaサイトの一部をSi、Ge、Sn、Pb、In、Al、のいずれか1種以上の元素で置換した化学組成を有していてもよい。
また、本発明に係る放射線検出器は、ZrO2、HfO2、Yb:Y2O3、Gd2O3、Sc2O3、Lu2O3のうち、少なくともいずれか一種類を含み、励起子による0.05ナノ秒〜10ナノ秒の蛍光寿命を有する励起子発光シンチレータと、ガイガーモードAPD(ガイガーモードアバランシェフォトダイオード)とを、有することを特徴とする
本発明に係る放射線検出器は、励起子発光シンチレータおよびガイガーモードAPD(ガイガーモードアバランシェフォトダイオード)ともに、0.05ナノ秒〜10ナノ秒(サブナノ〜数ナノ秒)という極めて速い応答速度を有するため、時間分解能が高く、サブナノ〜数ナノ秒という高速応答性を備えることができる。また、ガイガーモードAPDが低発光量の光に対して高い感度を有するため、発光量があまり高くない励起子発光シンチレータと組み合わせても、高精度での放射線の検出が可能である。時間分解能が高くパイルアップを防止することができるため、数え落としが少なく、高精度で放射線を検出することができる。
本発明に係る放射線検出器で、前記励起子発光シンチレータは270〜900nmに発光ピーク波長を有し、前記ガイガーモードAPDは270〜900nmに波長感度を有することが好ましい。特に、本発明に係る放射線検出器で、前記励起子発光シンチレータは300〜600nmに発光ピーク波長を有し、前記ガイガーモードAPDは300〜600nmの波長域で10%以上の量子変換効率を有することが好ましい。これらの場合、特に高精度で放射線を検出することができる。
本発明に係る放射線検出器で、前記ガイガーモードAPDは1photonの発光を検出可能な感度を有していてもよい。この場合、ガイガーモードAPDの検出感度が高く、高精度で放射線を検出することができる。なお、現在のところ、1photonの発光を検出できる受光素子は、ガイガーモードAPDしか存在していない。このため、励起子発光シンチレータの発光量が1photon程度しかない場合でも、ガイガーモードAPDを使用することにより、特性の優れた放射線検出器を具現化することが可能となる。
本発明に係る放射線検出器で、前記ガイガーモードAPDは、3.0eV以上のバンドギャップエネルギーを有する半導体を有していてもよい。この場合、3.0eV以上のバンドギャップエネルギーを有する半導体として、例えば、GaN、(In,Ga)N、(Al,Ga)N、(In,Al,Ga)N、ZnO、(Mg,Zn)O、ZnSe、Ga、SiC等の半導体を使用することができる。
ここで、暗電流をI、バンドギャップエネルギーをE、ボルツマン定数をk、温度[K]をTとすると、下記のような関係がある。
I ∝ exp{−E/(2×k×T)}
上式から、温度Tが一定でバンドギャップエネルギーEが大きければ、暗電流は指数関数的に小さくなる。
理論的には、バンドギャップエネルギーが3.0eV以上の半導体では、460℃の高温環境下においても、バンドギャップエネルギーが1.1eV程度のSi系半導体の室温時と同等の暗電流しか発生しない。したがって、バンドギャップエネルギーが3.0eV以上の半導体を有するガイガーモードAPDを使用することにより、高温での暗電流が小さくなり、放射線検出器の冷却機構を簡素化することができる。これにより、放射線検出器およびこれを備える放射線検査装置を小型化することができ、低価格化を図ることができる。
本発明に係る放射線検出器で、前記ガイガーモードAPDは、Si、II−VI族化合物半導体、III族元素としてGa、AlまたはInを含むIII−V族窒化物半導体、有機半導体、またはダイヤモンド半導体を有していてもよい。この場合、高性能のガイガーモードAPDを形成することができ、高性能化を図ることができる。
本発明に係る放射線検査装置は、本発明に係る放射線検出器を備えることを、特徴とする。
本発明に係る放射線検査装置は、高速応答の放射線検出器を備えるため、データ取得時間を大幅に短縮することができる。このため、本発明に係る放射線検査装置を医療画像装置などに利用することにより、検査時間を短くすることができ、被検体の負担を大幅に軽減することができる。また、ガイガーモードAPDは強力な磁場が存在する環境下であっても使用することができるため、本発明に係る放射線検査装置をMRI−PET装置のPET装置として使用することもできる。
本発明によれば、発光量はさほど高くないが、サブナノ〜数ナノ秒という極めて短い蛍光寿命を示すシンチレータと、低発光量の光に対しても高い感度を有するとともに応答速度が速い受光素子とを組み合わせた高速応答の放射線検出器および放射線検査装置を提供することができる。
以下、図面に基づき本発明の実施の形態について説明する。
図1乃至図13は、本発明の実施の形態の放射線検出器および放射線検査装置と、その特性とを示している。
図1に示すように、放射線検査装置10は、放射線検出器11とバイアス電源12と前置増幅器13と波形整形増幅器14とマルチチャンネルアナライザ15とパーソナルコンピュータ(PC)16とを有している。
図1に示すように、放射線検出器11は、チャンバー21と励起子発光シンチレータ22とガイガーモードAPD23と反射材24とを有している。励起子発光シンチレータ22は、チャンバー21の内部に収納され、ZrO 2 、HfO2、Yb:Y2O3、Gd2O3、Sc2O3、または、Lu2O3のうちのいずれか一種類の化学組成を有している。励起子発光シンチレータ22は、励起子による0.05ナノ秒〜10ナノ秒の蛍光寿命を有している。また、励起子発光シンチレータ22は、300nm〜600nmに発光ピーク波長を有している。
図1に示すように、ガイガーモードAPD23は、チャンバー21の内部に収納され、励起子発光シンチレータ22に隣接して設置されている。ガイガーモードAPD23は、励起子発光シンチレータ22から発せられた蛍光を電気信号に変換可能に構成されている。ガイガーモードAPD23は、3.0eV以上のバンドギャップエネルギーを有するGaN、(In,Ga)N、(Al,Ga)N、(In,Al,Ga)N、ZnO、(Mg,Zn)O、ZnSe、Ga、SiC等のいずれかの半導体を有している。ガイガーモードAPD23は、励起子発光シンチレータ22の発光ピーク波長、すなわち300〜600nmの波長域で10%以上の量子変換効率を有している。また、ガイガーモードAPD23は、1photonの発光を検出可能な感度を有している。
図1に示すように、反射材24は、チャンバー21の内部に収納され、励起子発光シンチレータ22の外面のうち、ガイガーモードAPD23で覆われている部分以外の部分を覆っている。
放射線検出器11は、線源1からの放射線が励起子発光シンチレータ22の内部に入ると、励起子発光シンチレータ22が蛍光を発し、その蛍光をガイガーモードAPD23が検出して電気信号に変換して出力するようになっている。
本発明に関し、Ga:ZnOシンチレータ(Ga添加濃度26、53、550ppm)の蛍光強度を、ラジオルミネッセンスにより測定した結果を、図2に示す。図2に示すように、このGa:ZnOシンチレータの蛍光強度スペクトルにおける最大ピーク波長は、390nmである。なお、図2中の520nm付近に最大ピーク波長を有する発光は、蛍光寿命が長いため、放射線検出器11には利用しない。また本発明に関し、GaNシンチレータの蛍光減衰時間を、フォトルミネッセンスにより測定した結果を、図3に示す。図3に示すように、このGaNシンチレータは、0.8nsという極めて短い蛍光寿命を有する。
放射線検出器11のガイガーモードAPD23の一例として、市販されている3種類のガイガーモードAPD(浜松ホトニクス株式会社製)の200nm〜900nmの波長域における量子変換効率(検出効率;%)を、図4に示す。図4に示すように、これら3種類のガイガーモードAPDは、300nm〜600nmの波長域で量子変換効率が10%以上である。
図1に示すように、バイアス電源12は、放射線検出器11に電力を供給可能に、ガイガーモードAPD23に接続されている。前置増幅器13は、ガイガーモードAPD23に接続され、ガイガーモードAPD23から出力された電気信号を増幅するようになっている。波形整形増幅器14は、前置増幅器13に接続され、前置増幅器13から出力された信号波形を整形し、さらに増幅するようになっている。マルチチャンネルアナライザ15は、波形整形増幅器14に接続され、波形整形増幅器14からの信号を入力して、サンプリング、データの保存、データの表示などを行うようになっている。パーソナルコンピュータ(PC)16は、マルチチャンネルアナライザ15に接続され、測定データに対して各種処理を実施可能になっている。これにより、放射線検査装置10は、線源1からの放射線を放射線検出器11で検出し、検出されたデータを保存・解析可能になっている。
次に、作用について説明する。
放射線検出器11は、励起子発光シンチレータ22およびガイガーモードAPD23ともに、0.05ナノ秒〜10ナノ秒(サブナノ〜数ナノ秒)という極めて速い応答速度を有するため、時間分解能が高く、サブナノ〜数ナノ秒という高速応答性を備えることができる。また、ガイガーモードAPD23が低発光量の光に対して高い感度を有するため、発光量があまり高くない励起子発光シンチレータ22と組み合わせても、高精度での放射線の検出が可能である。時間分解能が高くパイルアップを防止することができるため、数え落としが少なく、高精度で放射線を検出することができる。
また、励起子発光シンチレータ22の発光量が1photon程度しかない場合でも、ガイガーモードAPD23により検出することができ、高感度である。バンドギャップエネルギーが3.0eV以上の半導体を有するガイガーモードAPD23を使用しているため、高温での暗電流が小さくなり、放射線検出器11の冷却機構を簡素化することができる。これにより、放射線検出器11および放射線検査装置10を小型化することができ、低価格化を図ることができる。
放射線検査装置10は、高速応答の放射線検出器11を備えるため、データ取得時間を大幅に短縮することができる。このため、放射線検査装置10を医療画像装置などに利用することにより、検査時間を短くすることができ、被検体の負担を大幅に軽減することができる。また、ガイガーモードAPD23は強力な磁場が存在する環境下であっても使用することができるため、放射線検査装置10をMRI−PET装置のPET装置として使用することもできる。
放射線検査装置10は、例えば、PET、X線CT、SPECT(単一光子放射断層撮影)などから成っている。また、放射線検査装置10は、PETからなる場合、特に限定されることはないが、MRI−PET、CT−PET、2次元型PET、三次元型PET、TOF型PET、深さ検出(DOI)型PET、OPEN−PETから成ることが好ましい。さらに、放射線検査装置10は、これらの組み合わせから成っていてもよい。
特に、現在実現が期待されている飛行時間陽電子放出装置(TOF型PET)では、従来の両検出器を結ぶ直線(LOR)上に等確率を付与する方法と異なり、対向する両検出器の計測時刻の差から放射線源の座標点を求め、LORに沿って検出器の時間分解能に相当するガウス関数でぼかした分布を位置情報とする。このため、従来のシンチレータ応答速度では、100センチ弱の位置特定能力しか有することができない。これに対して、励起子発光シンチレータ22を利用する放射線検査装置10を使用することにより、数センチメートルの位置特定能力を有することができ、高性能化を図ることができる。
本発明に関し、励起子発光シンチレータ22としてGa:ZnO、およびフォトダイオードとしてガイガーモードAPD23を用いた放射線検出器11を準備した。この放射線検出器11を用いて、70Vの高電圧を印加し、90Sr線源からの1.8MeVのエネルギーをもつβ線を検出したときのエネルギー波高分布を測定し、その結果を図5に示す。図5に示すように、熱電子ノイズ(図5中の黒線)に比較し有意に信号(図5中のグレーの線)を検出することができ、放射線検出器11として動作可能であることが確認できた。
本発明に関し、励起子発光シンチレータ22としてGa:ZnO、およびフォトダイオードとしてガイガーモードAPD23を用いた放射線検出器11を準備した。この放射線検出器11を用いて、70Vの高電圧を印加し、90Sr線源からの1.8MeVのエネルギーをもつβ線を照射したときの蛍光減衰時間を、フォトルミネッセンスにより測定し、その結果を図6に示す。図6に示すように、実測値(図6中の黒点)に対して、二成分の蛍光時定数を持つものと仮定してフィッティングを行った結果(図6中の破線)、第一成分として9.2nsという結果が得られた。ここで、フィッティングに用いた関数はtを時間として、I
= exp(-t/τ) 型の自然指数減少関数であり、強度Iが1/eになる時間τ を蛍光時定数と定義し、仮に一成分モデルが棄却された場合は複数の指数減少関数の和を仮定してフィッティングを行うものである。図6に示すように、放射線検出器11によれば、励起子発光シンチレータ22の10ns以下の高速な発光成分を、有意に検出可能であることが確認できた。
本発明に関し、励起子発光シンチレータ22としてIn:ZnO、およびフォトダイオードとしてガイガーモードAPD23を用いた放射線検出器11を準備した。この放射線検出器11を用いて、70Vの高電圧を印加し、荷電粒子として241Am線源からの5.5MeVのエネルギーをもつα線を検出したときのエネルギー波高分布を測定し、その結果を図7に示す。図7に示すように、熱電子ノイズ(図7中の黒線)に比較し有意に信号(図7中のグレーの線)を検出することができ、放射線検出器11として動作可能であることが確認できた。このように、荷電粒子を照射した場合でも、β線を照射したときと同様の結果が得られた。
本発明に関し、励起子発光シンチレータ22としてIn:ZnO、およびフォトダイオードとしてガイガーモードAPD23を用いた放射線検出器11を準備した。この放射線検出器11を用いて、70Vの高電圧を印加し、荷電粒子として241Am線源からの5.5MeVのエネルギーをもつα線を照射したときの蛍光減衰時間を、フォトルミネッセンスにより測定し、その結果を図8に示す。図8に示すように、実測値(図8中の黒点)に対して、二成分の蛍光時定数を持つものと仮定して、実施例2と同様にフィッティングを行った結果(図8中の破線)、第一成分として9.5nsという結果が得られた。このように、放射線検出器11によれば、励起子発光シンチレータ22の10ns以下の高速な発光成分を、有意に検出可能であることが確認できた。このように、荷電粒子を照射した場合でも、β線を照射したときと同様の結果が得られた。
励起子発光シンチレータ22としてYb:Y23、およびフォトダイオードとしてガイガーモードAPD23を用いた放射線検出器11を準備した。この放射線検出器11を用いて、70Vの高電圧を印加し、90Sr線源からの1.8MeVのエネルギーをもつβ線を検出したときのエネルギー波高分布を測定し、その結果を図9に示す。図9に示すように、熱電子ノイズ(図9中の黒線)に比較し有意に信号(図9中のグレーの線)を検出することができ、放射線検出器11として動作可能であることが確認できた。
励起子発光シンチレータ22としてYb:Y23、およびフォトダイオードとしてガイガーモードAPD23を用いた放射線検出器11を準備した。この放射線検出器11を用いて、70Vの高電圧を印加し、90Sr線源からの1.8MeVのエネルギーをもつβ線を照射したときの蛍光減衰時間を、フォトルミネッセンスにより測定し、その結果を図10に示す。図10に示すように、実測値(図10中の黒点)に対して、二成分の蛍光時定数を持つものと仮定して、実施例2と同様にフィッティングを行った結果(図10の破線)、第一成分として0.1ns という結果が得られた。このように、放射線検出器11によれば、励起子発光シンチレータ22の10ns以下の高速な発光成分を、有意に検出可能であることが確認できた。
励起子発光シンチレータ22としてHfO、およびフォトダイオードとしてガイガーモードAPD23を用いた放射線検出器11を準備した。この放射線検出器11を用いて、70Vの高電圧を印加し、90Sr線源からの1.8MeVのエネルギーをもつβ線を検出したときのエネルギー波高分布を測定し、その結果を図11に示す。図11に示すように、熱電子ノイズ(図11中の黒線)に比較し有意に信号(図11中のグレーの線)を検出することができ、放射線検出器11として動作可能であることが確認できた。
励起子発光シンチレータ22としてHfO、およびフォトダイオードとしてガイガーモードAPD23を用いた放射線検出器11を準備した。この放射線検出器11を用いて、70Vの高電圧を印加し、90Sr線源からの1.8MeVのエネルギーをもつβ線を照射したときの蛍光減衰時間を、フォトルミネッセンスにより測定し、その結果を図12に示す。図12に示すように、実測値(図12中の黒点)に対して、二成分の蛍光時定数を持つものと仮定して、実施例2と同様にフィッティングを行った結果(図12中の破線)、第一成分として1.4nsという結果が得られた。このように、放射線検出器11によれば、励起子発光シンチレータ22の10ns以下の高速な発光成分を、有意に検出可能であることが確認できた。
本発明に関し、励起子発光シンチレータ22としてGaN、およびフォトダイオードとしてガイガーモードAPD23を用いた放射線検出器11を準備した。この放射線検出器11を用いて、70Vの高電圧を印加し、90Sr線源からの1.8MeVのエネルギーをもつβ線を検出したときのエネルギー波高分布を測定し、その結果を図13に示す。図13に示すように、熱電子ノイズ(図13中の黒線)に比較し有意に信号(図13中のグレーの線)を検出することができ、放射線検出器11として動作可能であることが確認できた。
以上、実施例を参照して本発明を詳細に説明したが、本発明はこれらに限定されるものではない。また、図面を参照して本発明の実施の形態について述べたが、これらは本発明の例示であり、これら以外の様々な構成を採用することができる。
本発明の実施の形態の放射線検出器および放射線検査装置を示す全体構成図である。 本発明に関し、実施の形態の放射線検出器および放射線検査装置の、励起子発光シンチレータとしてGa:ZnOシンチレータを用いたときの蛍光強度を、ラジオルミネッセンスにより測定したグラフである。 本発明に関し、実施の形態の放射線検出器および放射線検査装置の、励起子発光シンチレータとしてGaN、フォトダイオードとしてガイガーモードAPDを用いた場合の、90Sr線源からの1.8MeVのエネルギーをもつβ線を照射したときの蛍光減衰時間を、フォトルミネッセンスにより測定したグラフである。 図1に示す放射線検出器および放射線検査装置のガイガーモードAPDの、200nm〜900nmの波長域における量子変換効率を示すグラフである。 本発明に関し、実施の形態の放射線検出器および放射線検査装置の、励起子発光シンチレータとしてGa:ZnO、フォトダイオードとしてガイガーモードAPDを用いた場合の、90Sr線源からの1.8MeVのエネルギーをもつβ線を検出したときのエネルギー波高分布を示すグラフである。 本発明に関し、実施の形態の放射線検出器および放射線検査装置の、励起子発光シンチレータとしてGa:ZnO、フォトダイオードとしてガイガーモードAPDを用いた場合の、90Sr線源からの1.8MeVのエネルギーをもつβ線を照射したときの蛍光減衰時間を、フォトルミネッセンスにより測定したグラフである。 本発明に関し、実施の形態の放射線検出器および放射線検査装置の、励起子発光シンチレータとしてIn:ZnO、フォトダイオードとしてガイガーモードAPDを用いた場合の、荷電粒子である241Am線源からの5.5MeVのエネルギーをもつα線を検出したときのエネルギー波高分布を示すグラフである。 本発明に関し、実施の形態の放射線検出器および放射線検査装置の、励起子発光シンチレータとしてIn:ZnO、フォトダイオードとしてガイガーモードAPDを用いた場合の、荷電粒子である241Am線源からの5.5MeVのエネルギーをもつα線を照射したときの蛍光減衰時間を、フォトルミネッセンスにより測定したグラフである。 図1に示す放射線検出器および放射線検査装置の、励起子発光シンチレータとしてYb:Y23、フォトダイオードとしてガイガーモードAPDを用いた場合の、90Sr線源からの1.8MeVのエネルギーをもつβ線を検出したときのエネルギー波高分布を示すグラフである。 図1に示す放射線検出器および放射線検査装置の、励起子発光シンチレータとしてYb:Y23、フォトダイオードとしてガイガーモードAPDを用いた場合の、90Sr線源からの1.8MeVのエネルギーをもつβ線を照射したときの蛍光減衰時間を、フォトルミネッセンスにより測定したグラフである。 図1に示す放射線検出器および放射線検査装置の、励起子発光シンチレータとしてHfO、フォトダイオードとしてガイガーモードAPDを用いた場合の、90Sr線源からの1.8MeVのエネルギーをもつβ線を検出したときのエネルギー波高分布を示すグラフである。 図1に示す放射線検出器および放射線検査装置の、励起子発光シンチレータとしてHfO、フォトダイオードとしてガイガーモードAPDを用いた場合の、90Sr線源からの1.8MeVのエネルギーをもつβ線を照射したときの蛍光減衰時間を、フォトルミネッセンスにより測定したグラフである。 本発明に関し、実施の形態の放射線検出器および放射線検査装置の、励起子発光シンチレータとしてGaN、フォトダイオードとしてガイガーモードAPDを用いた場合の、90Sr線源からの1.8MeVのエネルギーをもつβ線を検出したときのエネルギー波高分布を示すグラフである。
符号の説明
1 線源
10 放射線検査装置
11 放射線検出器
12 バイアス電源
13 前置増幅器
14 波形整形増幅器
15 マルチチャンネルアナライザ
16 パーソナルコンピュータ(PC)
21 チャンバー
22 励起子発光シンチレータ
23 ガイガーモードAPD
24 反射材

Claims (7)

  1. ZrO2、HfO2、Yb:Y2O3、Gd2O3、Sc2O3、Lu2O3のうち、少なくともいずれか一種類を含み、励起子による0.05ナノ秒〜10ナノ秒の蛍光寿命を有する励起子発光シンチレータと、
    ガイガーモードAPD(ガイガーモードアバランシェフォトダイオード)とを、
    有することを特徴とする放射線検出器。
  2. 前記励起子発光シンチレータは270〜900nmに発光ピーク波長を有し、
    前記ガイガーモードAPDは270〜900nmに波長感度を有することを、
    特徴とする請求項1記載の放射線検出器。
  3. 前記励起子発光シンチレータは300〜600nmに発光ピーク波長を有し、
    前記ガイガーモードAPDは300〜600nmの波長域で10%以上の量子変換効率を有することを、
    特徴とする請求項1記載の放射線検出器。
  4. 前記ガイガーモードAPDは、3.0eV以上のバンドギャップエネルギーを有する半導体を有することを、特徴とする請求項1、2または3記載の放射線検出器。
  5. 前記ガイガーモードAPDは、Si、II−VI族化合物半導体、III族元素としてGa、AlまたはInを含むIII−V族窒化物半導体、有機半導体、またはダイヤモンド半導体を有することを、特徴とする請求項1、2、3または4記載の放射線検出器。
  6. 請求項1、2、3、4または5記載の放射線検出器を備えることを、特徴とする放射線検査装置。
  7. ZrO 2 、HfO 2 、Yb:Y 2 O 3 、Gd 2 O 3 、Sc 2 O 3 、Lu 2 O 3 のうち、少なくともいずれか一種類を含み、励起子による0.05ナノ秒〜10ナノ秒の蛍光寿命を有することを特徴とする励起子発光シンチレータ。
JP2008298231A 2008-11-21 2008-11-21 放射線検出器、放射線検査装置および励起子発光シンチレータ Expired - Fee Related JP5207056B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008298231A JP5207056B2 (ja) 2008-11-21 2008-11-21 放射線検出器、放射線検査装置および励起子発光シンチレータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008298231A JP5207056B2 (ja) 2008-11-21 2008-11-21 放射線検出器、放射線検査装置および励起子発光シンチレータ

Publications (2)

Publication Number Publication Date
JP2010122166A JP2010122166A (ja) 2010-06-03
JP5207056B2 true JP5207056B2 (ja) 2013-06-12

Family

ID=42323631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008298231A Expired - Fee Related JP5207056B2 (ja) 2008-11-21 2008-11-21 放射線検出器、放射線検査装置および励起子発光シンチレータ

Country Status (1)

Country Link
JP (1) JP5207056B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136667A (ja) * 2010-12-27 2012-07-19 Tohoku Univ シンチレータ用発光材料、それを用いたシンチレータ及びそれを用いた放射線検出器並びに放射線検査装置
JP2012229999A (ja) * 2011-04-26 2012-11-22 Fujifilm Corp 放射線画像検出装置及び放射線撮影装置
JP2012233781A (ja) * 2011-04-28 2012-11-29 Fujifilm Corp 放射線画像検出装置、及び放射線撮影装置
RU2589461C2 (ru) * 2011-05-24 2016-07-10 Конинклейке Филипс Н.В. Устройство для создания присваиваний между областями изображения и категориями элементов
JP2013002881A (ja) * 2011-06-14 2013-01-07 Fujifilm Corp 放射線画像検出装置及び放射線撮影装置
CN102735351B (zh) * 2012-06-27 2014-05-07 华南师范大学 一种单光子探测器电路及其探测方法
KR101862223B1 (ko) * 2017-05-24 2018-05-31 한국과학기술원 방사선 흡수체를 집적한 방사선량계 및 그 제조방법
CN115274893B (zh) * 2022-08-01 2023-08-04 江苏宝浦莱半导体有限公司 一种稀土掺杂硅基薄膜材料及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6278832B1 (en) * 1998-01-12 2001-08-21 Tasr Limited Scintillating substance and scintillating wave-guide element
JP3877162B2 (ja) * 2002-02-05 2007-02-07 日立化成工業株式会社 Gso単結晶及びpet用シンチレータ
JP2004131567A (ja) * 2002-10-09 2004-04-30 Hamamatsu Photonics Kk 発光体と、これを用いた電子線検出器、走査型電子顕微鏡及び質量分析装置
JP2005095514A (ja) * 2003-09-26 2005-04-14 Hitachi Medical Corp 放射線検出器及びそれを用いたx線ct装置
US20070193499A1 (en) * 2004-05-24 2007-08-23 Tsuguo Fukuda Zno single crystal as super high speed scintillator...
JP2007123587A (ja) * 2005-10-28 2007-05-17 Doshisha 受光素子
US7403589B1 (en) * 2007-03-27 2008-07-22 General Electric Company Photon counting CT detector using solid-state photomultiplier and scintillator

Also Published As

Publication number Publication date
JP2010122166A (ja) 2010-06-03

Similar Documents

Publication Publication Date Title
JP5207056B2 (ja) 放射線検出器、放射線検査装置および励起子発光シンチレータ
Surti et al. Advances in time-of-flight PET
Schaart et al. A novel, SiPM-array-based, monolithic scintillator detector for PET
US7173247B2 (en) Lu1-xI3:Cex—a scintillator for gamma ray spectroscopy and time-of-flight PET
JP6282729B2 (ja) 安定化光出力を有する画像化応用のための放射線検出器
WO2016015061A1 (en) Multiple spatial resolution scintillation detectors
RU2007121448A (ru) Pr-содержащий сцинтилляционный монокристалл, способ его получения, детектор излучения и устройство обследования
Lee et al. High-resolution time-of-flight PET detector with 100 ps coincidence time resolution using a side-coupled phoswich configuration
Caracciolo et al. BeNEdiCTE (Boron Neutron Capture): a versatile gamma-ray detection module for boron neutron capture therapy
Pavel Particle detectors for biomedical applications—demands and trends
KR101595929B1 (ko) 양전자방출단층촬영장치용 반응 위치 판별 방법 및 시스템
Braem et al. High precision axial coordinate readout for an axial 3-D PET detector module using a wave length shifter strip matrix
Cinti et al. Spectrometric performances of high quantum efficiency multi and single anode PMTs coupled to LaBr3 (Ce) crystal
Uenomachi et al. Double photon coincidence crosstalk reduction method for multi-nuclide Compton imaging
Polito et al. Comparison of the imaging performances for recently developed monolithic scintillators: CRY018 and CRY019 for dual isotope gamma ray imaging applications
YOSHINO Study on a novel Compton-PET hybrid camera using newly developed scintillators for simultaneous imaging of PET/SPECT application
Melcher et al. Scintillators for PET and SPECT
JP2015152356A (ja) ダークカウントレス放射線検出エネルギー弁別イメージングシステム
Kim et al. Large size CdWO4 crystal for energetic X-and γ-ray detection
Preziosi et al. A crystal identification method for monolithic phoswich detectors based on scintillation light distribution
Arrigoni et al. X-Ray Sensors in Computed Tomography
JP2009300307A (ja) 放射線検出器およびこれを用いる放射線検査装置
Michail et al. Radiation Detectors and Sensors in Medical Imaging
Dahlbom Preclinical Molecular Imaging Systems
JP4997603B2 (ja) 陽電子画像の感度を向上させる方法及び装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5207056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees