JP5206514B2 - Exhaust gas recirculation device for internal combustion engine - Google Patents

Exhaust gas recirculation device for internal combustion engine Download PDF

Info

Publication number
JP5206514B2
JP5206514B2 JP2009060298A JP2009060298A JP5206514B2 JP 5206514 B2 JP5206514 B2 JP 5206514B2 JP 2009060298 A JP2009060298 A JP 2009060298A JP 2009060298 A JP2009060298 A JP 2009060298A JP 5206514 B2 JP5206514 B2 JP 5206514B2
Authority
JP
Japan
Prior art keywords
exhaust
passage
throttle valve
internal combustion
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009060298A
Other languages
Japanese (ja)
Other versions
JP2010216263A (en
Inventor
崇士 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009060298A priority Critical patent/JP5206514B2/en
Publication of JP2010216263A publication Critical patent/JP2010216263A/en
Application granted granted Critical
Publication of JP5206514B2 publication Critical patent/JP5206514B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は内燃機関の排気還流装置に関する。   The present invention relates to an exhaust gas recirculation device for an internal combustion engine.

内燃機関(エンジン)の排気中の窒素酸化物量を低減するため、排気の一部を吸気側へ合流させる排気還流装置が採用されている。特許文献1には、エンジンのより広い運転領域で排気還流(以下、「EGR」と称する。)を利用するために、高圧EGR経路と低圧EGR経路とを備えた装置が開示されている。   In order to reduce the amount of nitrogen oxides in the exhaust gas of an internal combustion engine (engine), an exhaust gas recirculation device that joins part of the exhaust gas to the intake side is employed. Patent Document 1 discloses an apparatus having a high pressure EGR path and a low pressure EGR path in order to use exhaust gas recirculation (hereinafter referred to as “EGR”) in a wider operating range of the engine.

特開2004−150319号公報JP 2004-150319 A

低圧EGR経路のEGR量は、排気通路に設けられた排気絞り弁により、排気側の圧力を上昇させて排気ガスを押し込む手段と、吸気通路に設けられた吸気絞り弁により、吸気側の圧力を低下させて排気ガスを吸い込む手段とにより調節されている。   The amount of EGR in the low-pressure EGR path is determined by the means for pushing the exhaust gas by increasing the pressure on the exhaust side by the exhaust throttle valve provided in the exhaust passage and the pressure on the intake side by the intake throttle valve provided in the intake passage. It is adjusted by means for lowering and sucking exhaust gas.

ところが、排気通路に設けられた排気絞り弁は、高温、高圧、高湿度の環境に曝され、かじり、さび、変形、軸ずれなどが生じることから、クリアランスを大きくしている。このため、クリアランス変化の外乱により、精度の高い制御を行うことが困難である。   However, the exhaust throttle valve provided in the exhaust passage is exposed to high-temperature, high-pressure, and high-humidity environments, and galling, rust, deformation, shaft misalignment, and the like occur, so that the clearance is increased. For this reason, it is difficult to perform highly accurate control due to the disturbance of the clearance change.

そこで、本発明は外乱に強く、精度の高いEGR量の制御を行うことを課題とする。   Therefore, an object of the present invention is to control the amount of EGR with high accuracy against disturbance.

かかる課題を解決する本発明の内燃機関の排気還流装置は、内燃機関の排気通路にタービンを有し、内燃機関の吸気通路にコンプレッサを有する過給機と、前記排気通路の前記タービンよりも下流側と前記吸気通路の前記コンプレッサよりも上流側とを接続し、内燃機関からの排気の一部を吸気通路に還流させる低圧通路と、前記排気通路の前記タービンよりも上流側と前記吸気通路の前記コンプレッサよりも下流側とを接続し、内燃機関からの排気の一部を吸気通路に還流させる高圧通路と、前記吸気通路の前記低圧通路が接続する上流側に配設されて、吸気の流路面積を変更する吸気絞り弁と、前記排気通路の前記低圧通路が接続する下流側に配設されて、排気の流路面積を変更する排気絞り弁と、前記低圧通路を通じて排気ガスを前記吸気通路へ導入する場合、前記吸気絞り弁を、流量センサから取得される低圧通路を通過する排気ガス流量に基づいて、閉ループ制御し、前記排気絞り弁を開ループ制御する制御手段と、を備えたことを特徴とする。 An exhaust gas recirculation device for an internal combustion engine according to the present invention that solves such a problem includes a turbocharger having a turbine in an exhaust passage of the internal combustion engine, a compressor in an intake passage of the internal combustion engine, and a downstream of the turbine in the exhaust passage. A low pressure passage for connecting a portion of the exhaust gas from the internal combustion engine to the intake passage, an upstream side of the exhaust passage from the turbine and the intake passage. A high-pressure passage connected to the downstream side of the compressor and returning a part of the exhaust gas from the internal combustion engine to the intake passage, and an upstream side connected to the low-pressure passage of the intake passage, An intake throttle valve that changes a passage area; an exhaust throttle valve that is disposed downstream of the exhaust passage to which the low-pressure passage is connected; and an exhaust throttle valve that changes an exhaust passage area; If introduced into the gas passage, the intake throttle valve based on the exhaust gas flow through the low-pressure passage which is acquired from the flow rate sensor, and closed-loop control, and a control means for open loop control of the exhaust throttle valve It is characterized by that.

このような構成とすることにより、排気絞り弁で概ねのEGR量を調整し、吸気絞り弁で微調整を行うことができる。これにより、高い精度でEGR量を制御することができる。本発明では、吸気絞り弁が閉ループ制御、すなわち、フィードバック制御を行うため、外乱にも強い。また、制御手段による排気絞り弁の開ループ制御は、エンジン回転数とエンジン負荷とに基づいて行うこととしても良い。   With this configuration, it is possible to adjust the general EGR amount with the exhaust throttle valve and perform fine adjustment with the intake throttle valve. Thereby, the amount of EGR can be controlled with high accuracy. In the present invention, since the intake throttle valve performs closed loop control, that is, feedback control, it is resistant to disturbance. Further, the open-loop control of the exhaust throttle valve by the control means may be performed based on the engine speed and the engine load.

加速時など過給機の過給圧を上昇させる領域で排気絞り弁を使用して低圧通路における排気ガスの導入を行う場合、タービンの膨張比が減少し、過給機の応答性が低下する。過給機の応答性が低下すると、エミッションを悪化することが考えられる。   When exhaust gas is introduced into the low-pressure passage using an exhaust throttle valve in an area where the turbocharger pressure is increased, such as during acceleration, the turbine expansion ratio decreases and the turbocharger response decreases. . If the responsiveness of the turbocharger is lowered, it is possible that the emission is deteriorated.

本発明では、内燃機関の排気還流装置において、前記制御手段は、アクセル開度の変化量が閾値を超える場合、前記排気絞り弁の制御を停止することができる。   According to the present invention, in the exhaust gas recirculation apparatus for an internal combustion engine, the control means can stop the control of the exhaust throttle valve when the amount of change in the accelerator opening exceeds a threshold value.

このような構成とすることにより、加速時など過給圧を上昇させる領域においても低圧通路に排気ガスを導入し、過給機を応答性良く制御することができる。過給機を応答性良く制御することにより、エミッションの悪化を抑制できる。   With such a configuration, it is possible to control the supercharger with good responsiveness by introducing exhaust gas into the low-pressure passage even in a region where the supercharging pressure is increased, such as during acceleration. By controlling the turbocharger with good responsiveness, it is possible to suppress the deterioration of emissions.

本発明の内燃機関の排気還流装置は、排気絞り弁で概ねのEGR導入量を調整し、吸気絞り弁で微調整を行うことにより、外乱に強く、精度の高いEGR導入量の制御を行うことができる。   The exhaust gas recirculation apparatus for an internal combustion engine according to the present invention controls the EGR introduction amount with high resistance to disturbance and high accuracy by adjusting the general EGR introduction amount with the exhaust throttle valve and finely adjusting with the intake throttle valve. Can do.

排気還流装置を組み込んだ内燃機関の概略構成を示した説明図である。It is explanatory drawing which showed schematic structure of the internal combustion engine incorporating the exhaust gas recirculation apparatus. 低圧通路を通じて吸気管へ排気ガスを導入する際の制御を示したフローである。It is the flow which showed the control at the time of introduce | transducing exhaust gas to an intake pipe through a low pressure passage.

以下、本発明を実施するための形態を図面と共に詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.

本発明の実施例1について図面を参照しつつ説明する。図1は本実施例の排気還流装置1を組み込んだ内燃機関2の概略構成を示した説明図である。内燃機関2は4つの気筒を持つ水冷式のディーゼルエンジンである。   Embodiment 1 of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram showing a schematic configuration of an internal combustion engine 2 in which an exhaust gas recirculation device 1 according to this embodiment is incorporated. The internal combustion engine 2 is a water-cooled diesel engine having four cylinders.

内燃機関2には、吸気管4および排気管5が接続されている。この吸気管4の途中には、ターボチャージャ6のコンプレッサ61が配設されている。このターボチャージャ6は本発明の過給機である。吸気管4のコンプレッサ61よりも上流側には、吸気絞り弁7が配設されている。吸気絞り弁7は、吸気管4内を通過する吸気の流路面積を変更し、吸気管4内を流通する吸気流量を調節する。吸気管4のコンプレッサ61よりも下流側には、インタークーラ8が配設されている。   An intake pipe 4 and an exhaust pipe 5 are connected to the internal combustion engine 2. A compressor 61 of the turbocharger 6 is disposed in the middle of the intake pipe 4. This turbocharger 6 is the supercharger of the present invention. An intake throttle valve 7 is disposed upstream of the compressor 61 in the intake pipe 4. The intake throttle valve 7 changes the flow area of the intake air that passes through the intake pipe 4 and adjusts the flow rate of the intake air flowing through the intake pipe 4. An intercooler 8 is disposed downstream of the compressor 61 in the intake pipe 4.

一方、排気管5の途中には、前記ターボチャージャ6のタービン62が設けられている。また、排気管5のタービン62よりも下流側に吸蔵還元型NOx触媒を担持したフィルタ9が配設されている。さらに、排気管5のフィルタ9の下流側に排気絞り弁10が配設されている。排気絞り弁10は、排気管5内を通過する排気の流路面積を変更し、排気管5内を流通する排気の流量を調整する。   On the other hand, a turbine 62 of the turbocharger 6 is provided in the middle of the exhaust pipe 5. A filter 9 carrying an NOx storage reduction catalyst is disposed downstream of the turbine 62 in the exhaust pipe 5. Further, an exhaust throttle valve 10 is disposed downstream of the filter 9 in the exhaust pipe 5. The exhaust throttle valve 10 changes the flow area of the exhaust gas passing through the exhaust pipe 5 and adjusts the flow rate of the exhaust gas flowing through the exhaust pipe 5.

そして、排気循環装置1には、排気管5内を流通する排気の一部を低圧で吸気管4へ再循環させる低圧通路11が備えられている。この低圧通路11は排気管5のフィルタ9と排気絞り弁10との間と、吸気管4の吸気絞り弁7とコンプレッサ61との間と、を接続している。すなわち、吸気絞り弁7は、吸気管4上において、低圧通路11が接続する上流側に配設され、また、排気絞り弁10は、排気管5上において、低圧通路11が接続する下流側に配設されていることとなる。排気絞り弁10により排気管5内の排気の流路面積が狭まると、排気絞り弁10の上流側の圧力が上昇し、低圧通路11内へ流入する排気ガス流量が増加する。また、吸気絞り弁7により吸気管4内の吸気の流路面積が狭まると、吸気絞り弁7の下流側の圧力が低下し負圧となり、低圧通路11内へ流入する排気ガス流量が増加する。また、低圧通路11には、排気管5側からEGRクーラ12、低圧EGRバルブ13が順に配設されている。また、この低圧通路11のEGRクーラ12と低圧EGRバルブ13との間に、流量センサ14が配設されている。   The exhaust circulation device 1 is provided with a low pressure passage 11 for recirculating a part of the exhaust gas flowing through the exhaust pipe 5 to the intake pipe 4 at a low pressure. This low pressure passage 11 connects between the filter 9 of the exhaust pipe 5 and the exhaust throttle valve 10 and between the intake throttle valve 7 of the intake pipe 4 and the compressor 61. That is, the intake throttle valve 7 is disposed on the intake pipe 4 on the upstream side to which the low pressure passage 11 is connected, and the exhaust throttle valve 10 is on the exhaust pipe 5 on the downstream side to which the low pressure passage 11 is connected. It will be arranged. When the exhaust flow passage area in the exhaust pipe 5 is narrowed by the exhaust throttle valve 10, the pressure on the upstream side of the exhaust throttle valve 10 increases and the flow rate of the exhaust gas flowing into the low pressure passage 11 increases. Further, when the intake air flow path area in the intake pipe 4 is narrowed by the intake throttle valve 7, the pressure on the downstream side of the intake throttle valve 7 is reduced to a negative pressure, and the flow rate of the exhaust gas flowing into the low pressure passage 11 is increased. . Further, an EGR cooler 12 and a low-pressure EGR valve 13 are arranged in this order from the exhaust pipe 5 side in the low-pressure passage 11. A flow rate sensor 14 is disposed between the EGR cooler 12 and the low pressure EGR valve 13 in the low pressure passage 11.

また、排気循環装置1には、排気管5内を流通する排気の一部を高圧で吸気管4へ再循環させる高圧通路15が備えられている。この高圧通路15は排気管5のタービン62の上流側と、吸気管4のインタークーラ8の下流側と、を接続している。また、高圧通路15には、高圧EGRバルブ16が配設されている。   Further, the exhaust circulation device 1 is provided with a high-pressure passage 15 for recirculating a part of the exhaust gas flowing through the exhaust pipe 5 to the intake pipe 4 at a high pressure. The high-pressure passage 15 connects the upstream side of the turbine 62 in the exhaust pipe 5 and the downstream side of the intercooler 8 in the intake pipe 4. The high pressure passage 15 is provided with a high pressure EGR valve 16.

さらに、排気循環装置1は、ECU(Electronic Control Unit)17を備えている。ECU17は、流量センサ14と電気的に接続されており、低圧通路11を通過する排気ガスの流量を取得する。また、ECU17は、回転センサ18、アクセルポジションセンサ19と電気的に接続されており、これらのセンサが取得するエンジン回転数、アクセル位置から、エンジン回転数、及びエンジン負荷を算出する。また、ECU17は、吸気絞り弁7、排気絞り弁10、低圧EGRバルブ13、高圧EGRバルブ16のそれぞれと電気的に接続されており、これらの弁を制御する。   Further, the exhaust gas circulation device 1 includes an ECU (Electronic Control Unit) 17. The ECU 17 is electrically connected to the flow sensor 14 and acquires the flow rate of the exhaust gas passing through the low pressure passage 11. The ECU 17 is electrically connected to the rotation sensor 18 and the accelerator position sensor 19, and calculates the engine rotation speed and the engine load from the engine rotation speed and the accelerator position acquired by these sensors. The ECU 17 is electrically connected to each of the intake throttle valve 7, the exhaust throttle valve 10, the low pressure EGR valve 13, and the high pressure EGR valve 16, and controls these valves.

ECU17は、低中速、低中負荷領域で内燃機関2が運転される場合、高圧EGRバルブ16を制御し、高圧通路15を通じて吸気管4へ排気ガスを導入させる。また、ECU17は、補助的に低圧EGRバルブ13を制御し、低圧通路11を通じて吸気管4へ排気ガスを導入させる。このとき、内燃機関2の筒内では予混合燃焼が行われる。また、低中速、高負荷領域で内燃機関2が運転される場合、ECU17は、低圧EGRバルブ13を制御し、低圧通路11を通じて吸気管4へ排気ガスを導入させる。このとき、内燃機関2の筒内では、通常燃焼が行われる。さらに、内燃機関2が高速で運転される場合、EGR17は、高圧EGRバルブ16を制御し、高圧通路15を通じて吸気管4へ排気ガスを導入させる。このとき、内燃機関2の筒内では通常燃焼が行われる。   The ECU 17 controls the high-pressure EGR valve 16 to introduce the exhaust gas into the intake pipe 4 through the high-pressure passage 15 when the internal combustion engine 2 is operated in the low-medium speed and low-medium load region. Further, the ECU 17 controls the low pressure EGR valve 13 to assist the exhaust gas to be introduced into the intake pipe 4 through the low pressure passage 11. At this time, premixed combustion is performed in the cylinder of the internal combustion engine 2. When the internal combustion engine 2 is operated in the low, medium speed and high load range, the ECU 17 controls the low pressure EGR valve 13 to introduce the exhaust gas into the intake pipe 4 through the low pressure passage 11. At this time, normal combustion is performed in the cylinder of the internal combustion engine 2. Further, when the internal combustion engine 2 is operated at a high speed, the EGR 17 controls the high pressure EGR valve 16 to introduce the exhaust gas into the intake pipe 4 through the high pressure passage 15. At this time, normal combustion is performed in the cylinder of the internal combustion engine 2.

ECU17が低圧EGRバルブ13を制御し、低圧通路11を通じて吸気管4へ排気ガスを送る場合、ECU17は、吸気絞り弁7と排気絞り弁10とを制御する。ECU17は、回転センサ18とアクセルポジションセンサ19とから取得するエンジン回転数、アクセル位置から、エンジン回転数、及びエンジン負荷を算出し、算出したエンジン回転数、エンジン負荷に基づいて、排気絞り弁10を開ループ制御する。さらに、ECU17は、流量センサ14から取得される低圧通路11を通過する排気ガス流量に基づいて、吸気絞り弁7を閉ループ制御、すなわち、フィードバック制御する。   When the ECU 17 controls the low pressure EGR valve 13 and sends exhaust gas to the intake pipe 4 through the low pressure passage 11, the ECU 17 controls the intake throttle valve 7 and the exhaust throttle valve 10. The ECU 17 calculates the engine speed and the engine load from the engine speed and the accelerator position acquired from the rotation sensor 18 and the accelerator position sensor 19, and based on the calculated engine speed and the engine load, the exhaust throttle valve 10 Open loop control. Further, the ECU 17 performs the closed loop control, that is, feedback control, on the intake throttle valve 7 based on the exhaust gas flow rate passing through the low pressure passage 11 acquired from the flow rate sensor 14.

以上より、低圧通路11を通じて吸気管4へ排気ガスを送る場合、排気還流装置1は、排気絞り弁10により低圧通路11への排気ガス導入量を粗く調整し、吸気絞り弁7により内燃機関2の運転状態に基づいて要求される排気ガス導入量となるように微調整を行う。このような制御を行うことにより、排気絞り弁7のクリアランスが変化するような外乱があっても、吸気絞り弁7により排気ガス導入量が微調整されるため、精度良くEGR導入量を制御することができる。   From the above, when exhaust gas is sent to the intake pipe 4 through the low pressure passage 11, the exhaust gas recirculation device 1 roughly adjusts the amount of exhaust gas introduced into the low pressure passage 11 by the exhaust throttle valve 10, and the internal combustion engine 2 by the intake throttle valve 7. Fine adjustment is performed so that the exhaust gas introduction amount required based on the operating state is obtained. By performing such control, even if there is a disturbance that changes the clearance of the exhaust throttle valve 7, the intake throttle valve 7 finely adjusts the exhaust gas introduction amount, so that the EGR introduction amount is controlled with high accuracy. be able to.

次に、本実施例において、加速時等、ターボチャージャ6の過給圧を上昇させる場合の制御について説明する。図2は、低圧通路11による排気ガス導入時の制御を示したフローである。この制御はECU17により実行される。この制御は、低圧通路11に排気ガスを導入する場合に行われる。   Next, in the present embodiment, the control for increasing the supercharging pressure of the turbocharger 6 during acceleration or the like will be described. FIG. 2 is a flow showing control at the time of exhaust gas introduction by the low pressure passage 11. This control is executed by the ECU 17. This control is performed when exhaust gas is introduced into the low pressure passage 11.

ECU17は、ステップS1でアクセル開度の変化量が閾値xを超えているか否かを判断する。閾値xは急加速時と判断できる変化量である。ECU17はステップS1でYesと判断する場合、すなわち、アクセル開度の変化量が閾値xを超えている場合、ステップS2へ進む。   The ECU 17 determines whether or not the amount of change in the accelerator opening exceeds the threshold value x in step S1. The threshold value x is a change amount that can be determined to be during rapid acceleration. When the ECU 17 determines Yes in step S1, that is, when the change amount of the accelerator opening exceeds the threshold value x, the process proceeds to step S2.

ECU17は、ステップS2で吸気絞り弁7の制御を行う。このとき、ECU17は、排気絞り弁10の制御を停止し、排気絞り弁10は、流路面積を拡張した状態で停止する。排気絞り弁10の制御を行い、排気の流路面積を絞ると、タービン62の下流側の圧力が上昇するため、ターボチャージャ6の応答性が低下する。本ステップS2において、排気絞り弁10の制御を停止するため、ターボチャージャ6の応答性低下を抑制し、エミッションの悪化を抑える。   The ECU 17 controls the intake throttle valve 7 in step S2. At this time, the ECU 17 stops the control of the exhaust throttle valve 10, and the exhaust throttle valve 10 stops in a state where the flow passage area is expanded. When the exhaust throttle valve 10 is controlled to reduce the exhaust passage area, the pressure on the downstream side of the turbine 62 increases, and the responsiveness of the turbocharger 6 decreases. In step S2, in order to stop the control of the exhaust throttle valve 10, the responsiveness of the turbocharger 6 is suppressed from decreasing, and the emission is prevented from deteriorating.

ECU17はステップS1でNoと判断する場合、すなわち、アクセル開度の変化量が閾値x以下である場合、ステップS3へ進む。ECU17はステップS3で吸気絞り弁7の制御と排気絞り弁10の制御との両方を実行する。すなわち、ターボチャージャ6の過給圧が急に変化しない場合には、排気絞り弁10の制御を行う。   If the ECU 17 determines No in step S1, that is, if the change amount of the accelerator opening is equal to or less than the threshold value x, the process proceeds to step S3. The ECU 17 executes both the control of the intake throttle valve 7 and the control of the exhaust throttle valve 10 in step S3. That is, when the supercharging pressure of the turbocharger 6 does not change suddenly, the exhaust throttle valve 10 is controlled.

このような制御処理により、ターボチャージャ6の応答性低下が抑制されてエミッション悪化が抑制される。   By such a control process, the response deterioration of the turbocharger 6 is suppressed, and the emission deterioration is suppressed.

上記実施例は本発明を実施するための例にすぎず、本発明はこれらに限定されるものではなく、これらの実施例を種々変形することは本発明の範囲内であり、さらに本発明の範囲内において、他の様々な実施例が可能であることは上記記載から自明である。   The above-described embodiments are merely examples for carrying out the present invention, and the present invention is not limited thereto. Various modifications of these embodiments are within the scope of the present invention. It is apparent from the above description that various other embodiments are possible within the scope.

1 排気還流装置
2 エンジン
4 吸気管
5 排気管
6 ターボチャージャ
61 コンプレッサ
62 タービン
7 吸気絞り弁
10 排気絞り弁
11 低圧通路
13 低圧EGRバルブ
15 高圧通路
16 高圧EGRバルブ
17 ECU
DESCRIPTION OF SYMBOLS 1 Exhaust gas recirculation apparatus 2 Engine 4 Intake pipe 5 Exhaust pipe 6 Turbocharger 61 Compressor 62 Turbine 7 Intake throttle valve 10 Exhaust throttle valve 11 Low pressure passage 13 Low pressure EGR valve 15 High pressure passage 16 High pressure EGR valve 17 ECU

Claims (2)

内燃機関の排気通路にタービンを有し、内燃機関の吸気通路にコンプレッサを有する過給機と、
前記排気通路の前記タービンよりも下流側と前記吸気通路の前記コンプレッサよりも上流側とを接続し、内燃機関からの排気の一部を吸気通路に還流させる低圧通路と、
前記排気通路の前記タービンよりも上流側と前記吸気通路の前記コンプレッサよりも下流側とを接続し、内燃機関からの排気の一部を吸気通路に還流させる高圧通路と、
前記吸気通路の前記低圧通路が接続する上流側に配設されて、吸気の流路面積を変更する吸気絞り弁と、
前記排気通路の前記低圧通路が接続する下流側に配設されて、排気の流路面積を変更する排気絞り弁と、
前記低圧通路を通じて排気ガスを前記吸気通路へ導入する場合、前記排気絞り弁を開ループ制御し、前記吸気絞り弁を、流量センサから取得される低圧通路を通過する排気ガス流量に基づいて、閉ループ制御する制御手段と、
を備えたことを特徴とする内燃機関の排気還流装置。
A turbocharger having a turbine in the exhaust passage of the internal combustion engine and having a compressor in the intake passage of the internal combustion engine;
A low pressure passage for connecting a portion of the exhaust passage downstream of the turbine and a portion of the intake passage upstream of the compressor, and returning a part of the exhaust from the internal combustion engine to the intake passage;
A high-pressure passage that connects an upstream side of the turbine of the exhaust passage and a downstream side of the compressor of the intake passage, and returns a part of the exhaust from the internal combustion engine to the intake passage;
An intake throttle valve disposed on the upstream side to which the low-pressure passage of the intake passage is connected to change an intake passage area;
An exhaust throttle valve that is disposed downstream of the exhaust passage to which the low-pressure passage is connected, and changes an exhaust passage area;
When exhaust gas is introduced into the intake passage through the low pressure passage, the exhaust throttle valve is controlled in an open loop, and the intake throttle valve is closed loop based on an exhaust gas flow rate passing through the low pressure passage obtained from a flow rate sensor. Control means for controlling;
An exhaust gas recirculation device for an internal combustion engine.
請求項1記載の内燃機関の排気還流装置において、
前記制御手段は、アクセル開度の変化量が閾値を超える場合、前記排気絞り弁の制御を停止することを特徴とする内燃機関の排気還流装置。
The exhaust gas recirculation device for an internal combustion engine according to claim 1,
The exhaust gas recirculation apparatus for an internal combustion engine, wherein the control means stops the control of the exhaust throttle valve when a change amount of an accelerator opening exceeds a threshold value.
JP2009060298A 2009-03-12 2009-03-12 Exhaust gas recirculation device for internal combustion engine Expired - Fee Related JP5206514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009060298A JP5206514B2 (en) 2009-03-12 2009-03-12 Exhaust gas recirculation device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009060298A JP5206514B2 (en) 2009-03-12 2009-03-12 Exhaust gas recirculation device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2010216263A JP2010216263A (en) 2010-09-30
JP5206514B2 true JP5206514B2 (en) 2013-06-12

Family

ID=42975365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009060298A Expired - Fee Related JP5206514B2 (en) 2009-03-12 2009-03-12 Exhaust gas recirculation device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5206514B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003343287A (en) * 2002-05-27 2003-12-03 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for internal combustion engine
JP2005337011A (en) * 2004-05-24 2005-12-08 Nissan Diesel Motor Co Ltd Exhaust recirculation device
JP2006317296A (en) * 2005-05-13 2006-11-24 Hitachi Ltd Thermal flowmeter and system
JP2008057449A (en) * 2006-08-31 2008-03-13 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine
JP2008274833A (en) * 2007-04-27 2008-11-13 Mazda Motor Corp Supercharging device for engine

Also Published As

Publication number Publication date
JP2010216263A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
JP4534514B2 (en) Diesel engine control device
JP4301295B2 (en) EGR system for internal combustion engine
JP4301296B2 (en) Exhaust gas recirculation system for internal combustion engines
JP4215069B2 (en) Exhaust gas recirculation device for internal combustion engine
EP1870584B1 (en) Exhaust gas recirculation device of internal combustion engine, and control method of the device
CA2997893C (en) Exhaust gas recirculation control method and exhaust gas recirculation control device
JP5364610B2 (en) Exhaust gas recirculation control device for internal combustion engine
JP5187123B2 (en) Control device for internal combustion engine
JP2007315230A (en) Apparatus for recirculating exhaust gas of internal combustion engine
JP4736931B2 (en) Exhaust gas recirculation device for internal combustion engine
JP2009156090A (en) Exhaust recirculating device of variable cylinder internal combustion engine
JP6565109B2 (en) Control method and control apparatus for internal combustion engine
JP4765966B2 (en) Exhaust gas recirculation device for internal combustion engine
JP2007303380A (en) Exhaust gas control device for internal combustion engine
JP2007321658A (en) Exhaust gas recirculating device of internal combustion engine
JP2006016975A (en) Feedback control device
JP5206514B2 (en) Exhaust gas recirculation device for internal combustion engine
JP2007303355A (en) Egr control device for internal combustion engine
JP2005299570A (en) Premixed combustion control system for compression ignition internal combustion engine
JP4601518B2 (en) EGR device
JP2019152122A (en) Internal combustion engine system
JP2011241723A (en) Egr device of internal combustion engine with supercharger
JP2013253532A (en) Egr device for supercharged engine
JP2007321657A (en) Exhaust gas recirculating device of internal combustion engine
JP2020067016A (en) Control system of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5206514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees