JP5204182B2 - Manufacturing method of fuel cell separator - Google Patents

Manufacturing method of fuel cell separator Download PDF

Info

Publication number
JP5204182B2
JP5204182B2 JP2010209018A JP2010209018A JP5204182B2 JP 5204182 B2 JP5204182 B2 JP 5204182B2 JP 2010209018 A JP2010209018 A JP 2010209018A JP 2010209018 A JP2010209018 A JP 2010209018A JP 5204182 B2 JP5204182 B2 JP 5204182B2
Authority
JP
Japan
Prior art keywords
separator
water
iron
oxide film
hydrated oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010209018A
Other languages
Japanese (ja)
Other versions
JP2011029196A (en
Inventor
祐介 渡辺
督和 鈴木
孔伸 黒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Takaoka Co Ltd
Nippon Paint Co Ltd
Toyota Motor Corp
Nippon Paint Holdings Co Ltd
Original Assignee
Aisin Takaoka Co Ltd
Nippon Paint Co Ltd
Toyota Motor Corp
Nippon Paint Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Takaoka Co Ltd, Nippon Paint Co Ltd, Toyota Motor Corp, Nippon Paint Holdings Co Ltd filed Critical Aisin Takaoka Co Ltd
Priority to JP2010209018A priority Critical patent/JP5204182B2/en
Publication of JP2011029196A publication Critical patent/JP2011029196A/en
Application granted granted Critical
Publication of JP5204182B2 publication Critical patent/JP5204182B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Fuel Cell (AREA)

Description

本発明は、燃料電池用セパレータの製造方法、特に、セパレータ基材と樹脂被覆層との密着性を向上させ耐久性に優れた燃料電池用セパレータの製造方法に関する。   TECHNICAL FIELD The present invention relates to a method for producing a fuel cell separator, and more particularly to a method for producing a fuel cell separator having improved durability by improving the adhesion between a separator substrate and a resin coating layer.

例えば、固体高分子型燃料電池は、図10に示すように、固体高分子膜からなる電解質膜52を燃料極50と空気極54との2枚の電極で挟んだ接合体(MEA:Membrane Electrode Assembly)を、さらに2枚のセパレータ40に挟持してなるセルを最小単位とし、通常、このセルを複数積み重ねて燃料電池スタック(FCスタック)とし、高圧電圧を得るようにしている。   For example, in a polymer electrolyte fuel cell, as shown in FIG. 10, a joined body (MEA: Membrane Electrode) in which an electrolyte membrane 52 made of a solid polymer membrane is sandwiched between two electrodes, a fuel electrode 50 and an air electrode 54. Assembly) is a minimum unit of a cell sandwiched between two separators 40, and usually a plurality of cells are stacked to form a fuel cell stack (FC stack) to obtain a high voltage.

固体高分子型燃料電池の発電の仕組みは、一般に、燃料極(アノード側電極)50に燃料ガス、例えば水素含有ガスが、一方、空気極(カソード側電極)54には酸化剤ガス、例えば主に酸素(O2)を含有するガスあるいは空気が供給される。水素含有ガスは、セパレータ40の表面に加工された細かい溝を通って燃料極50に供給され、電極の触媒の作用により電子と水素イオン(H+)に分解される。電子は外部回路を通って、燃料極50から空気極54に移動し、電流を作り出す。一方、水素イオン(H+)は電解質膜52を通過して空気極54に達し、酸素および外部回路を通ってきた電子と結合し、反応水(H2O)になる。 The power generation mechanism of the polymer electrolyte fuel cell generally includes a fuel gas (anode side electrode) 50 containing a fuel gas, such as a hydrogen-containing gas, and an air electrode (cathode side electrode) 54 containing an oxidant gas such as a main gas. Is supplied with gas or air containing oxygen (O 2 ). The hydrogen-containing gas is supplied to the fuel electrode 50 through fine grooves processed on the surface of the separator 40, and is decomposed into electrons and hydrogen ions (H + ) by the action of the catalyst of the electrode. The electrons move from the fuel electrode 50 to the air electrode 54 through an external circuit, and produce an electric current. On the other hand, hydrogen ions (H + ) pass through the electrolyte membrane 52 to reach the air electrode 54 and combine with oxygen and electrons that have passed through the external circuit to become reaction water (H 2 O).

さらに、上述したMEAを挟持する2枚のセパレータは、水素ガスと酸素ガスとを隔てる役割をする仕切り板であるとともに、積み重ねられたセルを電気的に直列に接続する機能も有する。また、2枚のセパレータの表面には細かい凹凸の溝が形成され、この溝は水素含有ガスと酸素含有ガスまたは空気を流通させるガス流通路となっている。   Furthermore, the two separators that sandwich the MEA described above are partition plates that serve to separate hydrogen gas and oxygen gas, and also have a function of electrically connecting the stacked cells in series. In addition, fine concave and convex grooves are formed on the surfaces of the two separators, and these grooves serve as gas flow passages through which the hydrogen-containing gas and the oxygen-containing gas or air are circulated.

従来のセルの構造の一例が、図11および図12に示されている。なお、図12のA−A’線に沿った断面を図11に示す。   An example of a conventional cell structure is shown in FIGS. FIG. 11 shows a cross section taken along the line A-A ′ of FIG.

図11、図12に示すように、2枚のセパレータ110,120の両端には、それぞれ、燃料ガスと酸化剤ガスと冷却水が供給される供給連通孔12a,12b,12cおよび燃料ガスと酸化剤ガスと冷却水が排出される排出連通孔14a,14b,14cが設けられ、さらに、セパレータ110,120には、供給連通孔12a,12bから供給された燃料ガスや酸化剤ガスをそれぞれ流通させるガス流路152,154が設けられている。また、セパレータ110,120の対向面にはそれぞれ凹部106,116が設けられ、接合体であるMEA30の両面周縁部には、それぞれ燃料ガスと酸化剤ガスとを隔てるためのシール材60a,60bが設けられおり、このシール材60a,60bは、それぞれ接着材70a,70bによって、2枚のセパレータ110,120に接着されて、セルが形成されている。   As shown in FIGS. 11 and 12, supply communication holes 12a, 12b, and 12c to which fuel gas, oxidant gas, and cooling water are supplied and fuel gas and oxidation are provided at both ends of the two separators 110 and 120, respectively. Discharge communication holes 14a, 14b, and 14c for discharging the agent gas and the cooling water are provided, and further, the fuel gas and the oxidant gas supplied from the supply communication holes 12a and 12b are circulated through the separators 110 and 120, respectively. Gas flow paths 152 and 154 are provided. In addition, concave portions 106 and 116 are provided on the opposing surfaces of the separators 110 and 120, respectively, and seal materials 60a and 60b for separating the fuel gas and the oxidant gas are provided on both peripheral edges of the MEA 30, which is a joined body. The sealing materials 60a and 60b are bonded to the two separators 110 and 120 by adhesive materials 70a and 70b, respectively, to form cells.

ところで、セパレータとして、ステンレス鋼(いわゆる、SUS)を用いる場合、図6に示すように、SUS製セパレータ基材20の表面に酸化クロム膜からなる不動態皮膜22が形成されている。一方、上述した接着剤およびシール材は、近年環境に優しい素材を用いる傾向にあり、例えば、従来の溶剤に可溶な親油性の樹脂から親水性の高い水性樹脂を用いる傾向になってきている。しかしながら、上記不動態皮膜22は、水性樹脂との親和性が低い。したがって、上記水性樹脂を接着剤として、または接着剤を用いずシール材として直接SUS製セパレータ基材20上に接着させた場合、密着力が弱く、一対のセパレータ間に上記接合体を挟持した燃料電池用セルをスタック状に積層しマニホールドにて圧力をかけてスタック締結した際にずれ応力が発生し、樹脂の剥がれが生じたり、また、その他使用中に生じる熱膨張などにより樹脂が剥がれたり、場合によっては樹脂の脱着が発生したりするおそれがあった。   When stainless steel (so-called SUS) is used as the separator, a passive film 22 made of a chromium oxide film is formed on the surface of the SUS separator substrate 20 as shown in FIG. On the other hand, the above-mentioned adhesive and sealing material tend to use environmentally friendly materials in recent years. For example, there is a tendency to use a highly hydrophilic aqueous resin from a lipophilic resin soluble in a conventional solvent. . However, the passive film 22 has a low affinity with the aqueous resin. Therefore, when the water-based resin is bonded directly on the SUS separator base material 20 as an adhesive or as a sealing material without using an adhesive, the adhesion is weak, and the fuel sandwiched the bonded body between a pair of separators. When battery cells are stacked in stacks and pressure is applied at the manifold and the stack is tightened, shear stress occurs and the resin peels off, or the resin peels off due to other factors such as thermal expansion during use. In some cases, resin desorption may occur.

また、図13に示すように、表面に酸化クロム膜からなる不動態皮膜22が形成されているSUS製セパレータ基材20に水性樹脂を電着塗装によって形成した場合、図6に示すように不動態皮膜22と得られた水性樹脂層26との親和性が少なく、その結果、電着塗料の浴中にSUS製セパレータ基材20を浸漬する際に空気を巻き込み、図7に示すようにSUS製セパレータ基材20の表面に気泡23が残留したまま、電着塗装が行われ、形成された水性樹脂層26中に、径50μmから100μmのピンホール27が多数個発生してしまう。   As shown in FIG. 13, when an aqueous resin is formed by electrodeposition coating on a SUS separator base material 20 on which a passive film 22 made of a chromium oxide film is formed, the non-reactivity is shown in FIG. The affinity between the kinetic film 22 and the obtained aqueous resin layer 26 is low. As a result, air is entrained when the SUS separator substrate 20 is immersed in the bath of the electrodeposition paint, and as shown in FIG. Electrodeposition coating is performed with the bubbles 23 remaining on the surface of the separator substrate 20 made of the product, and a large number of pinholes 27 having a diameter of 50 μm to 100 μm are generated in the formed aqueous resin layer 26.

そこで、SUS製セパレータ基材の表面に形成された不動態皮膜と水性樹脂層との間に、両者と親和性の高い鉄系水和酸化物皮膜を設け、この鉄系水和酸化物皮膜を介して不動態皮膜と水性樹脂層とを密着性させ、SUS製セパレータ基材と水性樹脂層との密着性の高い燃料電池用セパレータを形成することが提案されている(例えば、特許文献1を参照)。   Therefore, an iron-based hydrated oxide film having high affinity with both is provided between the passive film formed on the surface of the separator substrate made of SUS and the aqueous resin layer. It is proposed that a passive film and an aqueous resin layer are adhered to each other to form a fuel cell separator having high adhesion between a SUS separator substrate and an aqueous resin layer (for example, Patent Document 1). reference).

また、電着塗装前に被塗物表面に消泡剤を付着させて、電着塗料の浴中に被塗物を浸漬する際の空気巻き込みを低減させ、浴中における被塗物表面の気泡付着を抑制し、これにより、局所的な電着塗料の未付着を防止して、電着塗膜のピンホール等の膜欠陥の発生を抑制する電着塗装方法が提案されている(例えば、特許文献2を参照)。   Also, an antifoaming agent is attached to the surface of the object to be coated before electrodeposition coating to reduce air entrainment when the object is immersed in the bath of electrodeposition paint, and bubbles on the surface of the object to be coated in the bath An electrodeposition coating method has been proposed that suppresses adhesion, thereby preventing local non-adhesion of the electrodeposition paint and suppressing the occurrence of film defects such as pinholes in the electrodeposition coating film (for example, (See Patent Document 2).

また、特許文献3には、基材であるウェハー表面にめっき処理を施す際に、水または界面活性剤を入れた水でウェハーを濡らした後、めっき液に浸しめっき処理を行うウェハーめっき方法が開示されている。   Further, Patent Document 3 discloses a wafer plating method in which, when a plating process is performed on a wafer surface as a base material, the wafer is wetted with water or water containing a surfactant and then immersed in a plating solution to perform the plating process. It is disclosed.

特開2007−242576号公報JP 2007-242576 A 特開2007−84877号公報JP 2007-84877 A 特開2004−59985号公報Japanese Patent Laid-Open No. 2004-59985

近年、益々燃料電池の需要が増すなか、燃料電池の耐久性向上が望まれている。   In recent years, with increasing demand for fuel cells, it is desired to improve the durability of fuel cells.

本発明は、上記課題に鑑みなされたものであり、セパレータ基材上に予め樹脂層と密着性の高い鉄系水和酸化物皮膜を形成し、さらに、鉄系水和酸化物皮膜と樹脂層との濡れ性を向上させるために、樹脂層形成前に、鉄系水和酸化物皮膜の表面を水処理してから鉄系水和酸化物皮膜上に樹脂層を形成させ、耐久性に優れた燃料電池用セパレータを製造する製造方法を提供する。   The present invention has been made in view of the above problems, and an iron-based hydrated oxide film having high adhesion to a resin layer is previously formed on a separator substrate, and further, an iron-based hydrated oxide film and a resin layer are formed. In order to improve the wettability, the surface of the iron-based hydrated oxide film is treated with water before forming the resin layer, and then the resin layer is formed on the iron-based hydrated oxide film. A manufacturing method for manufacturing a fuel cell separator is provided.

本発明の燃料電池用セパレータの製造方法は、以下の特徴を有する。   The manufacturing method of the fuel cell separator of the present invention has the following characteristics.

(1)ステンレス鋼からなる一対のセパレータ基材のそれぞれのガス流路を除く周縁部表面をアルカリ溶液中で陰極電解処理を行い、前記一対のセパレータ基材の周縁部表面に鉄系水和酸化物皮膜を形成する工程と、鉄系水和酸化物皮膜の表面を水で濡らし表面に一時的に水膜からなる水処理層を形成する水処理を行う工程と、前記一対のセパレータ基材の少なくとも一方のセパレータ基材であって、前記水膜からなる一時的に水処理層が形成されたセパレータ基材を電着浴に浸漬し、一時的に水処理層が形成された鉄系水和酸化物皮膜上に水性樹脂を含んだエレクトロコーティング材を電着塗装する工程と、を有する燃料電池用セパレータの製造方法である。 (1) The peripheral surface of each of the pair of separator base materials made of stainless steel, excluding the gas flow paths, is subjected to cathodic electrolysis in an alkaline solution, and iron-based hydration oxidation is performed on the peripheral surface of the pair of separator base materials. A step of forming a physical film, a step of performing water treatment to wet the surface of the iron-based hydrated oxide film with water and temporarily forming a water treatment layer composed of a water film on the surface, and the pair of separator base materials An iron-based hydration in which at least one separator base material, which is temporarily formed with a water treatment layer made of the water film, is immersed in an electrodeposition bath, and the water treatment layer is temporarily formed. And a step of electrodepositing an electrocoating material containing an aqueous resin on the oxide film.

(2)上記(1)に記載の燃料電池用セパレータの製造方法において、前記水処理を行う工程では、1秒から5分間の間、鉄系水和酸化物皮膜の表面を水で濡らし、表面に一時的に水処理層を形成することを特徴とする燃料電池用セパレータの製造方法である。   (2) In the method for producing a separator for a fuel cell according to (1) above, in the water treatment step, the surface of the iron-based hydrated oxide film is wetted with water for 1 to 5 minutes, A method for producing a separator for a fuel cell, characterized in that a water treatment layer is temporarily formed.

アルカリ溶液中で陰極電解処理により形成された鉄系水和酸化物皮膜は、ステンレス鋼からなるセパレータ基材の表面に存在する不動態皮膜上に形成されるため、上記電解処理されたセパレータ基材は、処理前のセパレータ基材の防食性を維持することが可能である。さらに、上記鉄系水和酸化物皮膜とセパレータ基材上の不動態皮膜とはその組成が近似するため金属結合により密着性が高い。また、鉄系水和酸化物皮膜の表面を水で濡らす水処理工程を設けることにより、鉄系水和酸化物皮膜の表面と水性樹脂を含んだエレクトロコーティング材との濡れ性が高くなり、その結果、水性樹脂を含んだエレクトロコーティング材の浴中にセパレータ基材を浸漬しても、セパレータ基材に形成された鉄系水和酸化物皮膜の表面に気泡が付着しにくく、これにより、鉄系水和酸化物皮膜の表面に万遍なく水性樹脂を含んだエレクトロコーティング材を電着塗装することによって水性樹脂が析出し、気泡跡によるピンホールの発生を抑制又は防止することができる。さらに、上記鉄系水和酸化物皮膜は、その上に形成される樹脂層を形成する水性樹脂の親水性官能基と例えば水素結合によって結合することができるため、上記鉄系水和酸化物皮膜と樹脂層との密着性も高い。したがって、燃料電池用セルをスタック締結した際に、ずり応力が発生したとしても、樹脂の剥がれを防止することができ、また、その他使用中に生じる熱膨張などがあったとしても樹脂とセパレータ基材との密着性が高いため、樹脂が剥がれたり、脱着したりするおそれもない。これにより、樹脂層によるセパレータ同士のシール効果がより向上し、得られる燃料電池の耐久性がより向上する。   Since the iron-based hydrated oxide film formed by cathodic electrolysis in an alkaline solution is formed on the passive film present on the surface of the separator base made of stainless steel, the electrolytically treated separator base It is possible to maintain the anticorrosion property of the separator substrate before treatment. Furthermore, since the composition of the iron-based hydrated oxide film and the passive film on the separator substrate are close to each other, the adhesiveness is high due to metal bonding. In addition, by providing a water treatment step that wets the surface of the iron-based hydrated oxide film with water, the wettability between the surface of the iron-based hydrated oxide film and the electrocoating material containing an aqueous resin increases. As a result, even if the separator substrate is immersed in an electrocoating material bath containing an aqueous resin, bubbles are less likely to adhere to the surface of the iron-based hydrated oxide film formed on the separator substrate. By electrocoating an electrocoating material containing an aqueous resin uniformly on the surface of the hydrated oxide film, the aqueous resin can be deposited, and the generation of pinholes due to bubble marks can be suppressed or prevented. Furthermore, since the iron-based hydrated oxide film can be bonded to the hydrophilic functional group of the aqueous resin forming the resin layer formed thereon, for example, by hydrogen bonding, the iron-based hydrated oxide film Adhesiveness to the resin layer is also high. Therefore, even if shear stress occurs when stacking the fuel cell, stacking of the resin can be prevented, and even if other thermal expansion occurs during use, the resin and the separator base can be prevented. Since the adhesiveness with the material is high, there is no possibility that the resin is peeled off or detached. Thereby, the sealing effect between the separators by the resin layer is further improved, and the durability of the obtained fuel cell is further improved.

(3)上記(1)または(2)に記載の燃料電池用セパレータの製造方法において、前記アルカリ溶液は電解処理溶液であって、前記電解処理溶液は、5〜50質量%の水酸化ナトリウム溶液、または、5〜50質量%の水酸化ナトリウム溶液に緩衝剤として0.2〜20質量%のリン酸三ナトリウム12水塩、0.2〜20質量%の炭酸ナトリウムを加えた水溶液で、液温が20℃〜95℃、電流密度0.5A/dm2以上、処理時間10秒以上である燃料電池用セパレータの製造方法である。 (3) In the method for manufacturing a fuel cell separator according to (1) or (2), the alkaline solution is an electrolytic treatment solution, and the electrolytic treatment solution is a 5 to 50 mass% sodium hydroxide solution. Or an aqueous solution obtained by adding 0.2 to 20% by mass of trisodium phosphate 12-hydrate and 0.2 to 20% by mass of sodium carbonate as a buffering agent to a 5 to 50% by mass sodium hydroxide solution. This is a method for producing a fuel cell separator having a temperature of 20 ° C. to 95 ° C., a current density of 0.5 A / dm 2 or more, and a treatment time of 10 seconds or more.

上記条件にて陰極電解処理を行うことにより、均一な鉄系水和酸化物皮膜を形成することができる。   By performing cathodic electrolysis under the above conditions, a uniform iron-based hydrated oxide film can be formed.

(4)上記(1)から(3)のいずれか1つに記載の燃料電池用セパレータの製造方法において、前記水が、イオン交換水である燃料電池用セパレータの製造方法である。   (4) The method for manufacturing a fuel cell separator according to any one of (1) to (3), wherein the water is ion-exchanged water.

セパレータ基材を介してエレクトロコーティング材の浴中に不純物が持ち込まれ、さらに不純物が浴中に蓄積されることを防止できるので、経時で安定した電着塗装を行うことができる。   Impurities are brought into the bath of the electrocoating material through the separator substrate, and further, impurities can be prevented from accumulating in the bath, so that stable electrodeposition coating can be performed over time.

(5)上記(1)から(4)のいずれか1つに記載の燃料電池用セパレータの製造方法において、前記水性樹脂がポリアミド系樹脂を含んでいる燃料電池用セパレータの製造方法である。   (5) The method for producing a fuel cell separator according to any one of (1) to (4) above, wherein the aqueous resin contains a polyamide-based resin.

ポリアミド系樹脂は、親和性官能基であるアミド基を有することから、セパレータ基材上に形成された鉄系水和酸化物皮膜の親和性が高く、その結果、セパレータ基材上の鉄系水和酸化物皮膜との密着性も高い。特に、上記鉄系水和酸化物皮膜は、鉄の水酸化物と酸化物との混合組成であることから、ポリアミド系樹脂におけるアミド基との水素結合可能な水酸基などがその表面に多く点在する。したがって、ポリアミド系電着樹脂がセパレータ基材上の鉄系水和酸化物皮膜に馴染み易く、均一な厚みで樹脂層を形成することができ、さらに従来より薄い厚みの樹脂層であっても十分にセパレータのシール効果を得ることができる。   Since the polyamide-based resin has an amide group that is an affinity functional group, the affinity of the iron-based hydrated oxide film formed on the separator substrate is high. As a result, the iron-based water on the separator substrate is high. Adhesiveness with Japanese oxide film is also high. In particular, since the iron-based hydrated oxide film has a mixed composition of iron hydroxide and oxide, many hydroxyl groups capable of hydrogen bonding with amide groups in the polyamide-based resin are scattered on the surface. To do. Therefore, the polyamide-based electrodeposition resin is easy to become familiar with the iron-based hydrated oxide film on the separator substrate, and can form a resin layer with a uniform thickness. In addition, the sealing effect of the separator can be obtained.

本発明によれば、電着塗装することにより得られた水性樹脂層に気泡跡が形成されることを抑制又は防止することができ、また樹脂層を介してセパレータ同士の密着性が高いので、防食性に優れ、耐久性の高い燃料電池を提供することができる。   According to the present invention, it is possible to suppress or prevent the formation of bubble marks in the aqueous resin layer obtained by electrodeposition coating, and because the adhesiveness between the separators is high through the resin layer, It is possible to provide a highly durable fuel cell with excellent anticorrosion properties.

本発明の燃料電池用セパレータの製造方法の工程の一例を示す工程図である。It is process drawing which shows an example of the process of the manufacturing method of the separator for fuel cells of this invention. 本発明の燃料電池用セパレータの陰極電解処理領域を説明するための図である。It is a figure for demonstrating the cathode electrolysis process area | region of the separator for fuel cells of this invention. 本発明の燃料電池用セパレータの製造方法のシャワー水洗による水処理工程を説明する図である。It is a figure explaining the water treatment process by the shower water washing of the manufacturing method of the separator for fuel cells of this invention. 本発明の燃料電池用セパレータの製造方法の浸漬水槽を用いた水処理工程を説明する図である。It is a figure explaining the water treatment process using the immersion water tank of the manufacturing method of the separator for fuel cells of the present invention. 本発明の燃料電池用セパレータにおける鉄系水和酸化物皮膜と水性樹脂層との密着力について説明する模式図である。It is a schematic diagram explaining the adhesive force of the iron-type hydrated oxide membrane | film | coat and aqueous resin layer in the separator for fuel cells of this invention. 従来の燃料電池用セパレータにおけるSUS表面と水性樹脂層との密着力について説明する模式図である。It is a schematic diagram explaining the adhesive force of the SUS surface and aqueous resin layer in the conventional separator for fuel cells. 水性樹脂層にピンホールが発生するメカニズムを説明する模式図である。It is a schematic diagram explaining the mechanism in which a pinhole generate | occur | produces in an aqueous resin layer. 水処理層を形成することによる気泡未残留のメカニズムを説明する模式図である。It is a schematic diagram explaining the bubble non-residual mechanism by forming a water treatment layer. 水性樹脂層におけるピンホール検出方法の一例を説明する概略図である。It is the schematic explaining an example of the pinhole detection method in an aqueous resin layer. 燃料電池のセルの構成および発電時のメカニズムを説明する図である。It is a figure explaining the structure of the cell of a fuel cell, and the mechanism at the time of electric power generation. 従来の燃料電池用のセルの一態様の構成を説明する断面図である。It is sectional drawing explaining the structure of the one aspect | mode of the conventional cell for fuel cells. 従来の燃料電池用のセルにおけるセパレータに接着されるシール材の位置を説明する図である。It is a figure explaining the position of the sealing material adhere | attached on the separator in the cell for the conventional fuel cell. SUS製セパレータ基材に直接電着塗装により水性樹脂層を形成した場合の樹脂層表面のピンホール発生を説明する図である。It is a figure explaining the pinhole generation | occurrence | production of the resin layer surface at the time of forming an aqueous resin layer by direct electrodeposition coating on the SUS separator base material.

以下、本発明の実施形態について、図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[燃料電池用セパレータの製造方法]
本発明の好適な実施の形態の燃料電池用セパレータについて、以下に説明する。
[Manufacturing method of fuel cell separator]
A fuel cell separator according to a preferred embodiment of the present invention will be described below.

図1に示すように、本実施の形態における燃料電池用セパレータの製造方法は、ステンレス鋼からなる一対のセパレータ基材のそれぞれのガス流路を除く周縁部表面をアルカリ溶液中で陰極電解処理を行い、前記一対のセパレータ基材の周縁部表面に鉄系水和酸化物皮膜を形成する工程(S200)と、前記鉄系水和酸化物皮膜の表面を水で濡らす水処理を行う工程(S202)と、前記一対のセパレータ基材の少なくとも一方の水処理された鉄系水和酸化物皮膜上に水性樹脂を含んだエレクトロコーティング材を電着塗装する工程(S204)と、必要に応じて水性樹脂の焼き付け工程(S206)とを有する。   As shown in FIG. 1, the manufacturing method of the separator for a fuel cell in the present embodiment is such that the peripheral surface of each of the pair of separator base members made of stainless steel excluding the gas flow paths is subjected to cathodic electrolysis treatment in an alkaline solution. Performing a step of forming an iron-based hydrated oxide film on the peripheral surface of the pair of separator base materials (S200) and a step of performing a water treatment of wetting the surface of the iron-based hydrated oxide film with water (S202) ), Electrodepositing an electrocoating material containing an aqueous resin on the water-treated iron-based hydrated oxide film of at least one of the pair of separator base materials (S204), and optionally water-based And a resin baking step (S206).

以下に、本実施の形態の燃料電池用セパレータの製造方法の各工程について、図2から図8を用いて、さらに詳細に説明する。   Below, each process of the manufacturing method of the separator for fuel cells of this Embodiment is demonstrated in detail using FIGS. 2-8.

まず、鉄系水和酸化物皮膜を形成する工程(図1のS200)について説明する。図2に示すSUS製セパレータ基材20としては、例えばSUS304、SUS305、SUS310、SUS316やSUSMX7などのオーステナイト系ステンレス、SUS430などのフェライト系ステンレス、SUS403、SUS410、SUS416やSUS420などのマルテンサイト系ステンレスと、SUS631などの析出硬化系ステンレスなどのステンレス鋼が挙げられる。   First, the process of forming the iron-based hydrated oxide film (S200 in FIG. 1) will be described. As the separator substrate 20 made of SUS shown in FIG. 2, for example, austenitic stainless steel such as SUS304, SUS305, SUS310, SUS316, and SUSMX7, ferritic stainless steel such as SUS430, martensitic stainless steel such as SUS403, SUS410, SUS416, and SUS420, and the like. , Stainless steel such as precipitation hardened stainless steel such as SUS631.

本実施の形態において、図2に示すように、SUS製セパレータ基材20の両端には、それぞれ、燃料ガスと酸化剤ガスと冷却水が供給される供給連通孔12a,12b,12cおよび燃料ガスと酸化剤ガスと冷却水が排出される排出連通孔14a,14b,14cが設けられ、さらに、SUS製セパレータ基材20には、供給連通孔12a,12bから供給された燃料ガスや酸化剤ガスをそれぞれ流通させる凹凸溝のガス流路152,154が設けられている。   In the present embodiment, as shown in FIG. 2, supply communication holes 12a, 12b, and 12c to which fuel gas, oxidant gas, and cooling water are supplied and fuel gas are provided at both ends of the SUS separator substrate 20, respectively. In addition, exhaust communication holes 14a, 14b, and 14c through which the oxidant gas and cooling water are discharged are provided, and the SUS separator base material 20 is provided with fuel gas and oxidant gas supplied from the supply communication holes 12a and 12b. Are provided with gas channels 152 and 154 of concave and convex grooves that respectively circulate.

本実施の形態では、マスキングを施したガス流路152,154を除くSUS製セパレータ20の周縁部28、すなわち、燃料ガスと酸化剤ガスと冷却水が供給される供給連通孔12a,12b,12cおよび燃料ガスと酸化剤ガスと冷却水が排出される排出連通孔14a,14b,14cの周辺端部並びにセパレータ結合のためのシール領域に、陰極電解処理による鉄系水和酸化物皮膜を形成する。この鉄系水和酸化物皮膜は、鉄の水酸化物と鉄の酸化物の混合物からなり、鉄系水和酸化物皮膜を形成する工程(図1のS200、以下「超親水処理」という)は、後述するように、鉄とクロムとに水酸基(OH基)を結合させる処理である。得られた電解処理済セパレータ100には、図2に示すように、ガス流路152,154を除く周縁部に鉄系水和酸化物皮膜24が形成される。   In the present embodiment, the peripheral portion 28 of the SUS separator 20 excluding the masked gas flow paths 152 and 154, that is, the supply communication holes 12a, 12b, and 12c to which fuel gas, oxidant gas, and cooling water are supplied. In addition, an iron-based hydrated oxide film is formed by cathodic electrolysis at the peripheral ends of the discharge communication holes 14a, 14b, and 14c from which the fuel gas, the oxidant gas, and the cooling water are discharged, and the seal region for the separator coupling. . This iron-based hydrated oxide film comprises a mixture of iron hydroxide and iron oxide, and forms an iron-based hydrated oxide film (S200 in FIG. 1, hereinafter referred to as “superhydrophilic treatment”). As described later, this is a treatment for bonding a hydroxyl group (OH group) to iron and chromium. In the obtained electrolytically treated separator 100, as shown in FIG. 2, an iron-based hydrated oxide film 24 is formed on the peripheral edge excluding the gas flow paths 152 and 154.

上記マスキングは、電解液の浸透を阻止する略矩形のシール皮膜をSUS製セパレータ基材20のガス流路上に脱離可能に接合してもよい。または、絶縁性の樹脂をSUS製セパレータ基材20のガス流路上に塗布して固化させるなど、従来のマスキング方法を用いることができる。   In the masking, a substantially rectangular seal film that prevents permeation of the electrolytic solution may be detachably bonded onto the gas flow path of the SUS separator substrate 20. Alternatively, a conventional masking method such as applying an insulating resin on the gas flow path of the SUS separator substrate 20 and solidifying it can be used.

本実施の形態の陰極電解処理は、アルカリ溶液からなる電解処理溶液中において、図2に示すSUS製セパレータ基材20の電極接続部15をカソードに接続し、このSUS製セパレータ基材20からなるワークを陰極とし、鉄または上述したステンレス鋼を陽極として、所定の厚みの鉄系水和酸化物皮膜を形成する。なお、ステンレス鋼を陽極として用いる場合、ニッケル含有量が3質量%未満のフェライト系ステンレス鋼が好ましい。   The cathode electrolytic treatment of the present embodiment is made of the SUS separator base material 20 by connecting the electrode connecting portion 15 of the SUS separator base material 20 shown in FIG. An iron-based hydrated oxide film having a predetermined thickness is formed using a workpiece as a cathode and iron or the above-described stainless steel as an anode. In addition, when using stainless steel as an anode, the ferritic stainless steel whose nickel content is less than 3 mass% is preferable.

上記陰極電解処理の条件は、前記アルカリ溶液は電解処理溶液であって、前記電解処理溶液は、5〜50質量%の水酸化ナトリウム溶液、または、5〜50質量%の水酸化ナトリウム溶液に緩衝剤として0.2〜20質量%のリン酸三ナトリウム12水塩、0.2〜20質量%の炭酸ナトリウムを加えた緩衝水溶液で、液温が20℃〜95℃、電流密度0.5A/dm2以上、処理時間10秒以上である。 The condition of the cathodic electrolysis is that the alkaline solution is an electrolysis solution, and the electrolysis solution is buffered in a 5 to 50 mass% sodium hydroxide solution or a 5 to 50 mass% sodium hydroxide solution. A buffer aqueous solution containing 0.2 to 20% by mass of trisodium phosphate 12-hydrate and 0.2 to 20% by mass of sodium carbonate as an agent. dm 2 or more and a processing time of 10 seconds or more.

上記条件の範囲が好ましい理由は、以下の通りである。すなわち、5質量%未満の水酸化ナトリウム、0.2質量%未満のリン酸三ナトリウム12水塩、0.2質量%未満の炭酸ナトリウムではSUS製セパレータ基材20の表面に均一な有効な鉄系水和酸化物皮膜が得られにくく、後の水性樹脂との密着性が低くなるおそれがある。また、50質量%を超える水酸化ナトリウム、20質量%を超えるリン酸三ナトリウム12水塩、20質量%を超える炭酸ナトリウムでは、電解溶液の劣化が著しく、また、経済的にも不利である。また、液温が20℃未満の場合には、鉄系水和酸化物皮膜の形成が不十分となり、一方95℃を超える場合には、鉄系水和酸化物皮膜の形成時間が短縮し、消費電力が軽減されるものの、電解溶液濃度の管理が難しく、場合によって不均一な皮膜が形成されるおそれがある。また、電流密度0.5A/dm2未満、処理時間10秒未満の場合には、鉄系水和酸化物皮膜の形成が不十分となり、のちの水性樹脂との密着性が劣化するおそれがある。 The reason why the range of the above conditions is preferable is as follows. That is, less than 5% by weight of sodium hydroxide, less than 0.2% by weight of trisodium phosphate 12 hydrate, and less than 0.2% by weight of sodium carbonate are uniformly effective iron on the surface of the SUS separator substrate 20. It is difficult to obtain a system hydrated oxide film, and there is a possibility that the adhesion with a later aqueous resin will be lowered. Further, sodium hydroxide exceeding 50% by mass, trisodium phosphate 12 hydrate exceeding 20% by mass, and sodium carbonate exceeding 20% by mass are remarkably deteriorated in electrolytic solution and economically disadvantageous. Further, when the liquid temperature is less than 20 ° C., the formation of the iron-based hydrated oxide film becomes insufficient, while when it exceeds 95 ° C., the formation time of the iron-based hydrated oxide film is shortened, Although power consumption is reduced, it is difficult to control the concentration of the electrolytic solution, and in some cases, a non-uniform film may be formed. In addition, when the current density is less than 0.5 A / dm 2 and the treatment time is less than 10 seconds, the formation of the iron-based hydrated oxide film becomes insufficient, and there is a possibility that the adhesiveness with the aqueous resin later deteriorates. .

本実施の形態の陰極電解処理において、セパレータ基材のガス流路領域をマスキングする理由は次の通りである。仮に、上述のマスキングを施すことなく陰極電解処理を行うと、セパレータ基材のガス流路領域にも、鉄系水和酸化物皮膜が形成されることとなる。一方、上述したように、一対のセパレータ間に接合体を挟持して燃料電池用セルを形成し、さらにこの燃料電池用セルを積層して燃料電池を形成する。この燃料電池を使用する際に、ガス流路に燃料ガスまたは酸化剤ガスを流通させると、ガス流路流域に形成された鉄系水和酸化物皮膜から水酸化鉄または酸化鉄が、固体高分子膜からなる電解質膜を燃料極と空気極との2枚の電極で挟んだ接合体に徐々に溶出してゆき、燃料電池の劣化を招くおそれがある。そこで、本実施の形態では、セパレータ基材のガス流路領域をマスキングして上記陰極電解処理時に鉄系水和酸化物皮膜が形成されないようにしている。   In the cathodic electrolysis treatment of the present embodiment, the reason for masking the gas flow path region of the separator substrate is as follows. If the cathodic electrolysis is performed without performing the above-described masking, an iron-based hydrated oxide film is also formed in the gas channel region of the separator substrate. On the other hand, as described above, a fuel cell is formed by sandwiching a joined body between a pair of separators, and this fuel cell is further stacked to form a fuel cell. When using this fuel cell, if fuel gas or oxidant gas is circulated through the gas flow path, iron hydroxide or iron oxide is converted from the iron-based hydrated oxide film formed in the gas flow path basin to a high solid content. There is a possibility that the electrolyte membrane made of a molecular membrane is gradually eluted into a joined body sandwiched between two electrodes, a fuel electrode and an air electrode, and the fuel cell is deteriorated. Therefore, in the present embodiment, the gas channel region of the separator base material is masked so that the iron-based hydrated oxide film is not formed during the cathode electrolysis treatment.

また、本実施の形態では、アルカリ溶液においてSUS製セパレータ基材20からなるワークを陰極として陰極電解処理を行っている。したがって、図5に示すように、上記鉄系水和酸化物皮膜24は、SUS製セパレータ基材20表面の酸化クロム皮膜からなる不動態皮膜22上に形成される。この鉄系水和酸化物皮膜24の厚みは、最大10nmである。また、図5に示すように、上述したアルカリ溶液中で陰極電解処理により形成された鉄系水和酸化物皮膜24は、SUS製セパレータ基材20の表面に存在する不動態皮膜22上に形成され、鉄とクロムとに水酸基(OH基)が結合されるため、電解処理済セパレータ基材100(図2参照)は、処理前のSUS製セパレータ基材20の防食性を維持しつつ、さらに、上記鉄系水和酸化物皮膜24とセパレータ基材上の不動態皮膜22とはその組成が近似するため金属結合により密着性が高い。   Moreover, in this Embodiment, the cathode electrolysis process is performed by making into a cathode the workpiece | work which consists of the SUS separator base material 20 in an alkaline solution. Therefore, as shown in FIG. 5, the iron-based hydrated oxide film 24 is formed on a passive film 22 made of a chromium oxide film on the surface of the SUS separator substrate 20. The iron-based hydrated oxide film 24 has a maximum thickness of 10 nm. Further, as shown in FIG. 5, the iron-based hydrated oxide film 24 formed by the cathodic electrolysis in the alkaline solution described above is formed on the passive film 22 existing on the surface of the SUS separator substrate 20. In addition, since the hydroxyl group (OH group) is bonded to iron and chromium, the electrolytically treated separator base material 100 (see FIG. 2) further maintains the corrosion resistance of the SUS separator base material 20 before treatment. The iron-based hydrated oxide film 24 and the passive film 22 on the separator substrate are close in composition, and therefore have high adhesion due to metal bonding.

仮に、SUS製セパレータ基材20を陽極としてアルカリ溶液にて電解処理した場合には、SUS製セパレータ基材20に形成されている不動態皮膜が溶出し、さらにSUS中の鉄が溶出して酸化鉄皮膜が形成されることとなる。かかる場合、不動態皮膜が消失しているため、防食性が劣化するおそれが高い。また、SUS製セパレータ基材を陽極として酸性溶液にて電解処理した場合、やはり、不動態皮膜が溶出し、さらにSUS中のクロムが溶出して酸化クロム皮膜が形成されることとなる。かかる場合、酸化クロム皮膜は不動態皮膜であることから防食性はあるものの、水性樹脂に対する濡れ性が悪いままとなる。したがって、本実施の形態では、SUS製セパレータ基材20を陰極としてアルカリ溶液にて電解処理することが好適である。   If the separator substrate 20 made of SUS is subjected to electrolytic treatment with an alkaline solution as an anode, the passive film formed on the separator substrate 20 made of SUS is eluted, and further, iron in SUS is eluted and oxidized. An iron film will be formed. In such a case, since the passive film has disappeared, the anticorrosion property is likely to deteriorate. In addition, when electrolytic treatment is performed with an acidic solution using a SUS separator substrate as an anode, the passive film is also eluted, and chromium in SUS is further eluted to form a chromium oxide film. In such a case, the chromium oxide film is a passive film and thus has anticorrosion properties, but the wettability with respect to the aqueous resin remains poor. Therefore, in the present embodiment, it is preferable to perform electrolytic treatment with an alkaline solution using the SUS separator substrate 20 as a cathode.

次に、電解処理済みセパレータ100(図2)にガス流路部分および電解処理済セパレータ基材100の接合体挟持面と反対面である背面領域に、マスキング材29を施した電解処理済セパレータ基材を吊しながら、電解処理済セパレータ基材の鉄系水和酸化物皮膜の表面を水で濡らし、鉄系水和酸化物皮膜の表面張力を調整する(図1のS202)。エレクトロコーティング材は、親水性の性質も有する樹脂を含有する。一方、鉄系水和酸化物皮膜は、超親水性皮膜である。したがって、図5に示すように、一時的に鉄系水和酸化物皮膜24の表面に形成された水処理層25(いわゆる、水膜)を介することにより、エレクトロコーティング材との濡れ性が向上し、図8に示すように、マスキングされた電解処理済セパレータ基材を電着浴中に浸漬した際に、電解処理済セパレータ基材の鉄系水和酸化物皮膜24の表面に気泡が残留することが抑制又は防止され、その結果、後述する電着塗装を好適に行うことができる。   Next, the electrolytically treated separator base in which the masking material 29 is applied to the back surface region opposite to the bonded body sandwiching surface of the electrolytically treated separator substrate 100 (FIG. 2) and the gas passage portion. While the material is suspended, the surface of the iron-based hydrated oxide film on the electrolytically treated separator base material is wetted with water to adjust the surface tension of the iron-based hydrated oxide film (S202 in FIG. 1). The electrocoating material contains a resin that also has hydrophilic properties. On the other hand, the iron-based hydrated oxide film is a superhydrophilic film. Therefore, as shown in FIG. 5, the wettability with the electrocoating material is improved by passing the water treatment layer 25 (so-called water film) temporarily formed on the surface of the iron-based hydrated oxide film 24. As shown in FIG. 8, when the masked electrolytically treated separator base material is immersed in the electrodeposition bath, bubbles remain on the surface of the iron-based hydrated oxide film 24 of the electrolytically treated separator base material. As a result, the electrodeposition coating described later can be suitably performed.

ここで、表面を水で濡らす水処理工程は、シャワー水洗工程であっても、水槽浸漬工程であってもよいが、清浄水であることと使用水量の削減を考慮すると、シャワー水洗工程が好ましい。また、使用する水は、イオン交換水が好ましく、例えば電気伝導率が10μS/cm以下のイオン交換水が好ましい。   Here, the water treatment step of wetting the surface with water may be a shower water washing step or a water bath immersion step, but considering the fact that it is clean water and the reduction in the amount of water used, the shower water washing step is preferred. . The water used is preferably ion-exchanged water, for example, ion-exchanged water having an electric conductivity of 10 μS / cm or less is preferred.

上述したシャワー水洗工程に用いる装置構成の一例を、図3に示す。図3に示すように、マスキング材29が施されたワーク102の接合体挟持面及びその反対面の両面に対し、それぞれ水噴射器30から水を噴射して、ワーク102の表面上に水を流す(例えば図3の黒矢印方向)。シャワー水洗時間は、1秒から5分間であり、より好ましくは60秒である。1秒未満では、ワーク102の鉄系水和酸化物皮膜24の表面全体の表面張力を水によって改質することができず、その結果、エレクトロコーティング材を満たした浴中にワーク102を浸漬する際に空気を巻き込み、図7に示す場合と同様に、ワーク102の鉄系水和酸化物皮膜24の表面に気泡が残留したまま、電着塗装が行われ、形成された水性樹脂層中に、ピンホールが発生してしまう。一方、5分を超えた場合は、水流による表面張力の改質の改善がこれ以上望めず、使用する水量が多くなるため経済性の点で劣る。また、水を噴射させる所定時間の半分以上を吊されたワーク102の上方から水を吹き付け、その後徐々に下方に水を吹きかけてもよい。かかる場合は、噴射する水量が多くなくても、ワーク102の表面のほぼ全面に水が流れ伝い、表面の濡れ性を改質することができる。   An example of the apparatus structure used for the shower water washing process mentioned above is shown in FIG. As shown in FIG. 3, water is sprayed from the water injector 30 to both the bonded body sandwiching surface of the workpiece 102 on which the masking material 29 is applied and the opposite surface, and the water is sprayed on the surface of the workpiece 102. Flow (for example, in the direction of the black arrow in FIG. 3). The shower water washing time is from 1 second to 5 minutes, more preferably 60 seconds. If it is less than 1 second, the surface tension of the entire surface of the iron-based hydrated oxide film 24 of the workpiece 102 cannot be modified by water, and as a result, the workpiece 102 is immersed in a bath filled with the electrocoating material. In the same way as in the case shown in FIG. 7, the electrodeposition coating is performed while air bubbles remain on the surface of the iron-based hydrated oxide film 24 of the workpiece 102, and the formed aqueous resin layer is filled with air. , Pinholes will occur. On the other hand, when it exceeds 5 minutes, the improvement of the surface tension modification by the water flow cannot be expected any more, and the amount of water to be used increases, resulting in poor economic efficiency. Alternatively, water may be sprayed from above the work 102 suspended for half or more of a predetermined time for injecting water, and then water may be gradually sprayed downward. In such a case, even if the amount of water to be sprayed is not large, water can flow over almost the entire surface of the workpiece 102, and the wettability of the surface can be improved.

また、図4に上述した水槽浸漬工程に用いる装置構成の一例を示す。図4に示すように、水槽32内にワーク102を浸漬して、ワーク102の鉄系水和酸化物皮膜の表面全体の水で濡らし、その表面張力を調整する。浸漬時間は、シャワー水洗の場合と同様に、1秒から5分間であり、より好ましくは60秒である。また、浸漬した際に、ワーク102をゆっくり上下させる(図4の矢印の方向)ことによって、鉄系水和酸化物皮膜24の表面に生じた気泡を表面より離脱させてもよい。   Moreover, an example of the apparatus structure used for the water tank immersion process mentioned above in FIG. 4 is shown. As shown in FIG. 4, the workpiece 102 is immersed in the water tank 32, wetted with water on the entire surface of the iron-based hydrated oxide film of the workpiece 102, and the surface tension is adjusted. The immersion time is from 1 second to 5 minutes, more preferably 60 seconds, as in the case of shower water washing. Further, when immersed, the bubbles generated on the surface of the iron-based hydrated oxide film 24 may be separated from the surface by slowly moving the workpiece 102 up and down (in the direction of the arrow in FIG. 4).

次に、水処理工程を経たのち、上記鉄系水和酸化物皮膜24上には、水性樹脂層26が形成される(図1のS204)。この場合は、電解処理済セパレータ基材100(図2)のガス流路部分および電解処理済セパレータ基材100の接合体挟持面と反対面である背面領域に、マスクキング材29を上述同様のマスキング処理を施した状態で樹脂層が形成される。   Next, after a water treatment step, an aqueous resin layer 26 is formed on the iron-based hydrated oxide film 24 (S204 in FIG. 1). In this case, the masking material 29 is applied to the gas flow path portion of the electrolytically treated separator base material 100 (FIG. 2) and the back surface region opposite to the joined body sandwiching surface of the electrolytically treated separator base material 100 in the same manner as described above. The resin layer is formed with the masking process applied.

マスキングを施した電解処理済セパレータ基材100(図2)を陰極とし、上記水性樹脂層26形成用のエレクトロコーティング材中に浸漬し、対極との間に直流電流を印加することによって、カチオン電着により鉄系水和酸化物皮膜24上に水性樹脂層26を形成する。ここで、電解処理済みセパレータ基材100(図2)は、そのガス流路152,154の裏面に相当する領域の複数箇所、または、電解処理済セパレータ基材100のマスキングされた領域を除く全面の複数箇所を電極接合部として、カソードに接続され、電解処理済セパレータ基材100からなるワークを陰極として、エレクトロコーティング材が、マスキング以外の領域に電着塗装される。   The electrolytically treated separator substrate 100 (FIG. 2) subjected to masking is used as a cathode, immersed in the electrocoating material for forming the aqueous resin layer 26, and a direct current is applied between the counter electrode and the cation electrode. An aqueous resin layer 26 is formed on the iron-based hydrated oxide film 24 by deposition. Here, the electrolytically treated separator base material 100 (FIG. 2) is a plurality of portions in the region corresponding to the back surfaces of the gas flow paths 152 and 154, or the entire surface excluding the masked region of the electrolytically treated separator base material 100. The electrode coating portion is connected to the cathode, and the electrocoating material is electrodeposited in a region other than the masking using the work made of the electrolytically treated separator substrate 100 as the cathode.

上記水性樹脂層26を形成するエレクトロコーティング材は、親水性官能基、例えばアミド基を有するポリアミド系樹脂を用いることができる。ポリアミド系樹脂としては、例えば、ポリアミド樹脂、ポリアミドイミド樹脂、アミン硬化エポキシ樹脂などが挙げられる。   As the electrocoating material for forming the aqueous resin layer 26, a polyamide-based resin having a hydrophilic functional group such as an amide group can be used. Examples of the polyamide-based resin include polyamide resin, polyamideimide resin, and amine-cured epoxy resin.

上記ポリアミド系樹脂は、親和性官能基であるアミド基を有することから、セパレータ基材上に形成された鉄系水和酸化物皮膜24の親和性が高く、その結果、鉄系水和酸化物皮膜24との密着性も高い。この鉄系水和酸化物皮膜24は、上述したように、鉄の水酸化物と酸化物との混合組成であることから、ポリアミド系樹脂におけるアミド基との水素結合可能な水酸基などがその表面に多く点在する。したがって、図5に示すように、特にポリアミド系電着樹脂は、セパレータ基材上の鉄系水和酸化物皮膜24に馴染み易く、均一な厚みで水性樹脂層26を形成することができ、さらに従来より薄い厚みの樹脂層であっても十分にセパレータのシール効果を得ることができる。   Since the polyamide-based resin has an amide group that is an affinity functional group, the affinity of the iron-based hydrated oxide film 24 formed on the separator substrate is high. Adhesion with the film 24 is also high. As described above, since the iron-based hydrated oxide film 24 has a mixed composition of iron hydroxide and oxide, a hydroxyl group capable of hydrogen bonding with an amide group in the polyamide-based resin has a surface thereof. There are many. Therefore, as shown in FIG. 5, particularly, the polyamide-based electrodeposition resin is easy to be familiar with the iron-based hydrated oxide film 24 on the separator substrate, and can form the aqueous resin layer 26 with a uniform thickness. Even if the resin layer is thinner than the conventional one, the sealing effect of the separator can be sufficiently obtained.

また、図1に示す電着塗装工程(S204)の後に、電着塗装されたセパレータ基材を塗料回収槽に移送して、未塗着のコーティング材を回収した後、例えば4段階からなる浸漬水洗槽により水洗し、次いで水切りエアーナイフで電着塗装されたセパレータ基材表面の水切りを行った後、必要に応じて、予備乾燥を行い、マスキング材を除去した後、所定の温度(例えば、210℃)で例えば30分間焼き付けを行う(図1のS206)。これにより、後述する実施の形態の燃料電池用セパレータが得られる。   In addition, after the electrodeposition coating step (S204) shown in FIG. 1, the electrodeposited separator base material is transferred to a paint recovery tank, and an uncoated coating material is recovered. After washing with a water washing tank and then draining the surface of the separator substrate electrodeposited with a draining air knife, if necessary, pre-drying and removing the masking material, a predetermined temperature (for example, For example, baking is performed at 210 ° C. for 30 minutes (S206 in FIG. 1). Thereby, the separator for fuel cells of the embodiment described later is obtained.

[燃料電池用セパレータ]
本実施の形態の燃料電池用セパレータは、ステンレス鋼からなる一対のセパレータ基材のそれぞれのガス流路を除く周縁部表面をアルカリ溶液中で陰極電解処理を行い、前記一対のセパレータ基材の周縁部表面に鉄系水和酸化物皮膜が形成され、前記一つのセパレータ基材の少なくとも一方の鉄系水和酸化物皮膜上に水性樹脂を含んだエレクトロコーティング材から得られる樹脂層が形成され、前記樹脂層の10cm×10cm平方の単位面積当たり径50μmから100μmのピンホールの数が4個以下である。
[Fuel cell separator]
The separator for a fuel cell according to the present embodiment performs cathodic electrolysis treatment in the alkaline solution on the peripheral surface of each of the pair of separator bases made of stainless steel except for the gas flow path, and the peripheral edges of the pair of separator bases An iron-based hydrated oxide film is formed on the surface of the part, and a resin layer obtained from an electrocoating material containing an aqueous resin is formed on at least one iron-based hydrated oxide film of the one separator substrate, The number of pinholes having a diameter of 50 μm to 100 μm per 10 cm × 10 cm square unit area of the resin layer is 4 or less.

前記樹脂層の10cm×10cm平方の単位面積当たり径50μmから100μmのピンホールの数が4個以下とすることで、樹脂層によるセパレータ同士のシール効果がより改善され、得られる燃料電池の耐久性がより向上する。   By reducing the number of pinholes having a diameter of 50 μm to 100 μm per 10 cm × 10 cm square unit area of the resin layer to 4 or less, the sealing effect between the separators by the resin layer is further improved, and the durability of the obtained fuel cell Will be improved.

以下に、本発明の燃料電池用セパレータの製造方法により得られた燃料電池用セパレータについて、実施例を用いて説明する。なお、本発明はその要旨を越えない限り、以下の実施例に制約されるものはない。   Hereinafter, the fuel cell separator obtained by the method for producing a fuel cell separator of the present invention will be described with reference to examples. The present invention is not limited to the following examples as long as it does not exceed the gist thereof.

[実施例1]
オーステナイト系ステンレス鋼SUS304からなるセパレータ基材のガス流路領域に、四隅に着脱可能な吸盤を有する略矩形のゴム製のシール部材を接合する。このマスキングされたセパレータ基材を陰極とし、フェライトステンレス鋼SUS430からなる板片を陽極として、水酸化ナトリウム20質量%、リン酸三ナトリウム12水塩5質量%、炭酸ナトリウム5質量%の電解水溶液とし、80℃の電解水溶液中で陰極電解電流密度6A/dm2で120秒処理した後、水洗し、上記シール部材を脱離させたのち、処理済みセパレータ基材を乾燥させた。得られた電解処理済みセパレータ基材を「セパレータ基材A」という。
[Example 1]
A substantially rectangular rubber seal member having suction cups that can be attached and detached at the four corners is joined to a gas flow path region of a separator base material made of austenitic stainless steel SUS304. The masked separator substrate is used as a cathode, and a plate piece made of ferritic stainless steel SUS430 is used as an anode. An electrolytic aqueous solution of 20% by mass of sodium hydroxide, 5% by mass of trisodium phosphate 12%, and 5% by mass of sodium carbonate is used. Then, after treatment for 120 seconds at a cathode electrolysis current density of 6 A / dm 2 in an aqueous electrolytic solution at 80 ° C., the substrate was washed with water and the sealing member was removed, and then the treated separator substrate was dried. The obtained electrolytically treated separator base material is referred to as “separator base material A”.

上記陰極電解処理が施されたセパレータ基材Aのガス流路領域に、四隅に着脱可能な吸盤を有する略矩形のゴム製のシール部材(図3のマスキング材29)を接合するとともに、セパレータAの接合体挟持面と反対面である背面全面に、同様にゴム製のシール部材を接続した。   A substantially rectangular rubber seal member (masking material 29 in FIG. 3) having suction cups that can be attached and detached at the four corners is joined to the gas flow path region of the separator base A subjected to the cathodic electrolysis treatment, and the separator A Similarly, a rubber seal member was connected to the entire back surface, which is the opposite surface to the bonded body sandwiching surface.

次に、図3に示すシャワー水洗装置を用い、マスキング処理されたセパレータ基材Aの接合体挟持面とその反対面の両方から、水噴射器30により1分間で1L/m2の量で60秒間、電気伝導率10μS/cmのイオン交換水を噴射し、水処理を行った。 Next, using the shower rinsing apparatus shown in FIG. 3, the water jet 30 is used for 60 minutes in an amount of 1 L / m 2 from both the bonded body sandwiching surface of the separator base A subjected to the masking treatment and the opposite surface. Water was treated by spraying ion-exchanged water having an electric conductivity of 10 μS / cm for 2 seconds.

そののち、水性化したポリアミドイミド樹脂を含んだカチオン型エレクトロコーティング材(「Insuleed 4200」:日本ペイント株式会社製)を含有する濃度20質量%の電着浴に、上記マスキング済みのセパレータ基材Aを陰極として浸漬し、塗極比+/−:−1/2、極間距離:15cm、液温30℃に調整した。5秒で所定の電圧となるよう印加電圧を上げ、所定の電圧に達した後、115〜145秒間印加電圧を保持し、カチオン電着塗装を行い、未塗着のコーティング材を回収した後、4段階からなる浸漬水洗槽により水洗し、次いで水切りエアーナイフで電着塗装されたセパレータ基材表面の水切りを行った後、予備乾燥を行い、マスキング材を除去した後、260℃で30分間焼き付けを行い、樹脂層形成セパレータ基材Bを得た。   After that, the above masked separator base A is applied to an electrodeposition bath having a concentration of 20% by mass containing a cationic electrocoating material (“Insuled 4200” manufactured by Nippon Paint Co., Ltd.) containing an aqueous polyamideimide resin. Was immersed as a cathode, and the coating electrode ratio was adjusted to +/−: − 1/2, the distance between the electrodes: 15 cm, and the liquid temperature of 30 ° C. After increasing the applied voltage to be a predetermined voltage in 5 seconds and reaching the predetermined voltage, holding the applied voltage for 115 to 145 seconds, performing cationic electrodeposition coating, and collecting the uncoated coating material, After washing with a 4-stage immersion water washing tank, and then draining the surface of the separator substrate electrodeposited with a draining air knife, pre-drying, removing the masking material, and baking at 260 ° C. for 30 minutes The resin layer forming separator base material B was obtained.

[実施例2]
実施例1で得られたセパレータ基材Aを、図4に示す水槽による水処理に代えた以外は、実施例1に準じて行い、樹脂層形成セパレータ基材Cを得た。なお、水槽に貯留された電気伝導率10μS/cmのイオン交換水の容量は、200m3であり、浸漬時間は、60秒であった。
[Example 2]
Except having replaced the separator base material A obtained in Example 1 with the water treatment by the water tank shown in FIG. 4, it carried out according to Example 1 and obtained the resin layer forming separator base material C. The capacity of ion-exchanged water electric conductivity 10 [mu] S / cm, which is stored in the water tank is 200 meters 3, the immersion time was 60 seconds.

[比較例1]
実施例1における上記電解処理を施していない未処理のオーステナイト系ステンレス鋼SUS304からなるセパレータ基材を「セパレータ基材D」という。このセパレータ基材Dのガス流路領域に、四隅に着脱可能な吸盤を有する略矩形のゴム製のシール部材を接合するとともに、セパレータDの接合体挟持面と反対面である背面全面に、同様にゴム製のシール部材(図3のマスキング材29)を接続した。そののち、実施例1と同様の電解浴で同条件の電着塗装条件にて電着塗装を行い、その後同様に水洗、水切り、予備乾燥を経て焼き付けを行い、樹脂層を形成し、樹脂形成セパレータ基材Eを得た。
[Comparative Example 1]
The separator base material made of untreated austenitic stainless steel SUS304 not subjected to the electrolytic treatment in Example 1 is referred to as “separator base material D”. A substantially rectangular rubber seal member having suction cups that can be attached and detached at the four corners is joined to the gas flow path region of the separator base D, and the same is applied to the entire back surface opposite to the joined body sandwiching surface of the separator D. A rubber seal member (masking material 29 in FIG. 3) was connected to the above. After that, electrodeposition coating is performed in the same electrolytic bath as in Example 1 under the same electrodeposition coating conditions, and then similarly washed with water, drained, and pre-dried to form a resin layer to form a resin. Separator substrate E was obtained.

[比較例2]
実施例1で得られたセパレータ基材Aを、水処理を行わない以外は、実施例1に準じて行い、樹脂層形成セパレータ基材Fを得た。
[Comparative Example 2]
The separator base material A obtained in Example 1 was performed according to Example 1 except that the water treatment was not performed, and a resin layer-forming separator base material F was obtained.

[比較例3]
実施例1で得られたセパレータ基材Aの両面に対し、図3に示すシャワー水洗装置の水噴射器30より、水の代わりに消泡剤であるエタノール(関東化学社製、特級)を噴射した以外は、実施例1に準じて行い、樹脂層形成セパレータ基材Gを得た。
[Comparative Example 3]
On both sides of the separator substrate A obtained in Example 1, ethanol (Kanto Chemical Co., Ltd., special grade), which is an antifoaming agent, is injected instead of water from the water injector 30 of the shower washing apparatus shown in FIG. Except having carried out, it carried out according to Example 1 and the resin layer forming separator base material G was obtained.

<樹脂層形成セパレータ基材のピンホール検出>
図9に示すピンホール検出方法を用いて、樹脂層形成セパレータ基材の樹脂層の10cm×10cm平方の単位面積当たり径50μmから100μmのピンホールの数を検出した。すなわち、図9に示すテスター34(HIOKI社製)を用い、切り替えスイッチで直流電流測定に設定した後、マイナス測定端子を樹脂層形成セパレータ基材のSUS製セパレータ基材20側に接触させ、一方、プラス測定端子の先端には硫酸含有pH2.0の酸性溶液+Cl-(500ppm)を湿らせた脱脂綿36を巻き付けておき、プラス測定端子とマイナス測定端子との間に電圧(25Vから125V)を印加し、その後、硫酸含有脱脂綿付きプラス測定端子を水性樹脂層26の表面に擦りながら当ててゆく。ここで、水性樹脂層26にピンホール27がある場合、ピンホール27の部分は、図9では鉄系水和酸化物皮膜24が露出し、電解処理を施していない場合にはSUS表面が露出しているため、脱脂綿36より染み出した硫酸溶液がピンホール27に浸透し、腐食電流が流れ出す。これにより、単位面積当たりのピンホール27の数をカウントした。また、ピンホールの径は、走査電子顕微鏡を用いて測定した。
<Pinhole detection of resin layer forming separator substrate>
Using the pinhole detection method shown in FIG. 9, the number of pinholes having a diameter of 50 μm to 100 μm per unit area of 10 cm × 10 cm square of the resin layer of the resin layer forming separator substrate was detected. That is, using the tester 34 (manufactured by HIOKI) shown in FIG. 9 and setting the direct current measurement with a changeover switch, the minus measurement terminal is brought into contact with the SUS separator substrate 20 side of the resin layer forming separator substrate, The absorbent cotton 36 dampened with sulfuric acid-containing pH 2.0 acidic solution + Cl (500 ppm) is wound around the tip of the plus measurement terminal, and a voltage (25 V to 125 V) is applied between the plus measurement terminal and the minus measurement terminal. Then, a positive measuring terminal with sulfuric acid-containing absorbent cotton is applied to the surface of the aqueous resin layer 26 while being rubbed. Here, when there is a pinhole 27 in the aqueous resin layer 26, the iron hydrated oxide film 24 is exposed in the portion of the pinhole 27 in FIG. 9, and the SUS surface is exposed when the electrolytic treatment is not performed. Therefore, the sulfuric acid solution oozed out from the absorbent cotton 36 penetrates into the pinhole 27 and a corrosion current flows out. Thereby, the number of pinholes 27 per unit area was counted. The pinhole diameter was measured using a scanning electron microscope.

上述した実施例1,2及び比較例1,2,3により得られた樹脂層形成セパレータ基材B,C,E,F,Gについて、上述したピンホール検出評価方法を用いて評価した。結果を表1に示す。   The resin layer forming separator base materials B, C, E, F, and G obtained in Examples 1 and 2 and Comparative Examples 1, 2 and 3 were evaluated using the pinhole detection evaluation method described above. The results are shown in Table 1.

Figure 0005204182
Figure 0005204182

本発明の燃料電池用セパレータの製造方法は、燃料電池を用いる用途であれば、いかなる用途にも有効であるが、特に車両用の燃料電池に供することができる。   The method for producing a fuel cell separator of the present invention is effective for any use as long as it uses fuel cells, but can be used particularly for a fuel cell for vehicles.

20 SUS製セパレータ基材、22 不動態皮膜、24 鉄系水和酸化物皮膜、25 水処理層、26 水性樹脂層、27 ピンホール、28 周縁部。   20 SUS separator substrate, 22 passive film, 24 iron-based hydrated oxide film, 25 water treatment layer, 26 aqueous resin layer, 27 pinhole, 28 peripheral portion.

Claims (5)

ステンレス鋼からなる一対のセパレータ基材のそれぞれのガス流路を除く周縁部表面をアルカリ溶液中で陰極電解処理を行い、前記一対のセパレータ基材の周縁部表面に鉄系水和酸化物皮膜を形成する工程と、
鉄系水和酸化物皮膜の表面を水で濡らし表面に一時的に水膜からなる水処理層を形成する水処理を行う工程と、
前記一対のセパレータ基材の少なくとも一方のセパレータ基材であって、前記水膜からなる一時的に水処理層が形成されたセパレータ基材を電着浴に浸漬し、一時的に水処理層が形成された鉄系水和酸化物皮膜上に水性樹脂を含んだエレクトロコーティング材を電着塗装する工程と、を有する燃料電池用セパレータの製造方法。
The peripheral surface of each of the pair of separator base materials made of stainless steel excluding the respective gas flow paths is subjected to cathodic electrolysis in an alkaline solution, and an iron-based hydrated oxide film is formed on the peripheral surface of the pair of separator base materials. Forming, and
A step of performing water treatment to wet the surface of the iron-based hydrated oxide film with water and form a water treatment layer consisting of a water film temporarily on the surface;
At least one separator substrate of the pair of separator substrates , wherein the separator substrate on which the water treatment layer is temporarily formed of the water film is immersed in an electrodeposition bath , and the water treatment layer temporarily And a step of electrodepositing an electrocoating material containing an aqueous resin on the formed iron-based hydrated oxide film.
請求項1に記載の燃料電池用セパレータの製造方法において、
前記水処理を行う工程では、1秒から5分間の間、鉄系水和酸化物皮膜の表面を水で濡らし、表面に一時的に水処理層を形成することを特徴とする燃料電池用セパレータの製造方法。
In the manufacturing method of the separator for fuel cells of Claim 1,
In the water treatment step, the surface of the iron-based hydrated oxide film is wetted with water for 1 to 5 minutes, and a water treatment layer is temporarily formed on the surface. Manufacturing method.
請求項1または請求項2に記載の燃料電池用セパレータの製造方法において、
前記アルカリ溶液は電解処理溶液であって、
前記電解処理溶液は、5〜50質量%の水酸化ナトリウム溶液、または、5〜50質量%の水酸化ナトリウム溶液に緩衝剤として0.2〜20質量%のリン酸三ナトリウム12水塩、0.2〜20質量%の炭酸ナトリウムを加えた水溶液で、液温が20℃〜95℃、電流密度0.5A/dm2以上、処理時間10秒以上である燃料電池用セパレータの製造方法。
In the manufacturing method of the separator for fuel cells of Claim 1 or Claim 2,
The alkaline solution is an electrolytic treatment solution,
The electrolytic treatment solution is 5 to 50% by weight of sodium hydroxide solution, or 5 to 50% by weight of sodium hydroxide solution and 0.2 to 20% by weight of trisodium phosphate 12-hydrate as a buffer, 0 A method for producing a separator for a fuel cell, which is an aqueous solution to which 2 to 20% by mass of sodium carbonate is added, the liquid temperature is 20 to 95 ° C., the current density is 0.5 A / dm 2 or more, and the treatment time is 10 seconds or more.
請求項1から請求項3のいずれか1項に記載の燃料電池用セパレータの製造方法において、
前記水が、イオン交換水である燃料電池用セパレータの製造方法。
In the manufacturing method of the separator for fuel cells of any one of Claims 1-3,
A method for producing a fuel cell separator, wherein the water is ion-exchanged water.
請求項1から請求項4のいずれか1項に記載の燃料電池用セパレータの製造方法において、
前記水性樹脂がポリアミド系樹脂を含んでいる燃料電池用セパレータの製造方法。
In the manufacturing method of the separator for fuel cells of any one of Claims 1-4,
The manufacturing method of the separator for fuel cells in which the said aqueous resin contains the polyamide-type resin.
JP2010209018A 2010-09-17 2010-09-17 Manufacturing method of fuel cell separator Expired - Fee Related JP5204182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010209018A JP5204182B2 (en) 2010-09-17 2010-09-17 Manufacturing method of fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010209018A JP5204182B2 (en) 2010-09-17 2010-09-17 Manufacturing method of fuel cell separator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008141595A Division JP2009287090A (en) 2008-05-29 2008-05-29 Method of manufacturing separator for fuel cell and separator for fuel cell

Publications (2)

Publication Number Publication Date
JP2011029196A JP2011029196A (en) 2011-02-10
JP5204182B2 true JP5204182B2 (en) 2013-06-05

Family

ID=43637660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010209018A Expired - Fee Related JP5204182B2 (en) 2010-09-17 2010-09-17 Manufacturing method of fuel cell separator

Country Status (1)

Country Link
JP (1) JP5204182B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11121380B2 (en) 2018-12-10 2021-09-14 Hyundai Motor Company Fuel cell stack

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014063165A1 (en) * 2012-10-19 2014-04-24 Colorado State University Research Foundation Electropolymerization of a coating onto an electrode material
JP7152202B2 (en) 2018-06-28 2022-10-12 トヨタ自動車株式会社 Fuel cell separator and fuel cell

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52139152A (en) * 1976-05-17 1977-11-19 Nissan Motor Co Ltd Electrodeposit coating
JPS56137000A (en) * 1980-03-26 1981-10-26 Fuji Heavy Ind Ltd Electrodeposition coating method
JPS61110778A (en) * 1984-11-02 1986-05-29 Nissan Motor Co Ltd Pretreatment of painting
JPS61190098A (en) * 1985-02-18 1986-08-23 Toyota Motor Corp Cation electrodeposition painting method
JP3835889B2 (en) * 1997-05-26 2006-10-18 日本ペイント株式会社 How to prevent repellency of electrodeposition coatings
JP4096922B2 (en) * 2004-07-13 2008-06-04 日産自動車株式会社 Coating pretreatment method and coating pretreatment apparatus
JP4996864B2 (en) * 2006-03-13 2012-08-08 トヨタ自動車株式会社 FUEL CELL SEPARATOR AND METHOD FOR PRODUCING FUEL CELL SEPARATOR

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11121380B2 (en) 2018-12-10 2021-09-14 Hyundai Motor Company Fuel cell stack

Also Published As

Publication number Publication date
JP2011029196A (en) 2011-02-10

Similar Documents

Publication Publication Date Title
CN101308934B (en) Removal of non-conductive hydrophilic coatings from lands of fuel cell bipolar plates
JP4796585B2 (en) Conductive polymer coatings on conductive elements in fuel cells
JP4073828B2 (en) Solid polymer fuel cell and fuel cell separator
JP4996864B2 (en) FUEL CELL SEPARATOR AND METHOD FOR PRODUCING FUEL CELL SEPARATOR
JP5204182B2 (en) Manufacturing method of fuel cell separator
JP2000323152A (en) Separator for stainless steel low-temperature type fuel cell and manufacture thereof
JP2009287090A (en) Method of manufacturing separator for fuel cell and separator for fuel cell
JP4906786B2 (en) Fuel cell separator and method for producing the same
KR101491752B1 (en) Bipolar plate for fuel cell and mehtod for manufacturing the same, and fuel cell including the same
CN102549823A (en) Separator material for fuel cell, and fuel cell stack using same
JP4976727B2 (en) Surface treatment method, fuel cell separator, and fuel cell separator manufacturing method
CN103026538A (en) Separator material for fuel cell, and separator for fuel cell and fuel cell stack each comprising same
JP5145767B2 (en) Fuel cell separator, fuel cell separator manufacturing method, pretreatment separator substrate, fuel cell
US8790848B2 (en) Process for producing separator and separator
JP3930393B2 (en) Metal separator for fuel cell and manufacturing method thereof
CN102738485B (en) Fuel cell metal separator and noble metal coating method therefor
KR101262600B1 (en) Fe-ni/cr-cnt metal separator for fuel cell and method of manufacturing the same
JP2021051856A (en) Rust-proof plate
KR20150038970A (en) Method for preparing bipolar plate for unitized regenerative fuel cell and bipolar plate for unitized regenerative fuel cell prepared by the same
KR101262590B1 (en) Fe/cr-cnt metal separator for fuel cell and method of manufacturing the same
WO2010128676A1 (en) Fuel cell separator and method for producing same
EP4297132A1 (en) Current collector steel foil, electrode, and battery
CN118263465A (en) Gold plating method of metal bipolar plate of hydrogen fuel cell and fuel cell
KR101262603B1 (en) Fe-ni/cr metal separator for fuel cell and method of manufacturing the same
JP2023049705A (en) Method for manufacturing separator for fuel cell, and separator for fuel cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130214

R151 Written notification of patent or utility model registration

Ref document number: 5204182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees