JP5203845B2 - Grinding method - Google Patents

Grinding method Download PDF

Info

Publication number
JP5203845B2
JP5203845B2 JP2008206085A JP2008206085A JP5203845B2 JP 5203845 B2 JP5203845 B2 JP 5203845B2 JP 2008206085 A JP2008206085 A JP 2008206085A JP 2008206085 A JP2008206085 A JP 2008206085A JP 5203845 B2 JP5203845 B2 JP 5203845B2
Authority
JP
Japan
Prior art keywords
grinding
thickness
wafer
grinding tool
chuck table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008206085A
Other languages
Japanese (ja)
Other versions
JP2010042454A (en
Inventor
敏行 酒井
康隆 溝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Corp filed Critical Disco Corp
Priority to JP2008206085A priority Critical patent/JP5203845B2/en
Publication of JP2010042454A publication Critical patent/JP2010042454A/en
Application granted granted Critical
Publication of JP5203845B2 publication Critical patent/JP5203845B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本発明は、半導体ウェーハの如きウェーハを薄化研削する研削方法に関する。   The present invention relates to a grinding method for thinning and grinding a wafer such as a semiconductor wafer.

半導体デバイスの製造プロセスでは、デバイスの目的の仕上げ厚さを得るために、多数のデバイスの集合体である半導体ウェーハの段階で、研削工具を使用し薄化することが行われている。仕上げ厚さを高精度で研削するために、例えば下記特許文献1に記載の接触式(プローブ等)厚さ測定器にて、研削時のウェーハ残留厚さを測定しながら研削を行っている。研削工具による研削では、砥石で形成された研削工具を回転させて研削送りさせていくが、その際に砥石は摩耗し新規の砥粒を露呈させる自生発刃を繰り返しながらウェーハを研削していく。そのため、研削工具の移動量と実際の研削除去量とが厳密に合致せず、研削工具の摩耗量分に対応した差が発生する。それ故に、仕上げ厚さになるまで残留厚さを計測しながら研削工具の移動量の制御を行っている。   In the manufacturing process of a semiconductor device, in order to obtain a desired finish thickness of the device, thinning is performed by using a grinding tool at a stage of a semiconductor wafer which is an aggregate of a large number of devices. In order to grind the finished thickness with high accuracy, for example, a contact type (probe or the like) thickness measuring device described in Patent Document 1 below is used to perform grinding while measuring the residual wafer thickness during grinding. In grinding with a grinding tool, the grinding tool formed with a grindstone is rotated and fed by grinding. At that time, the grindstone wears and grinds the wafer while repeating a self-generated blade that exposes new abrasive grains. . For this reason, the amount of movement of the grinding tool and the actual amount of grinding removal do not exactly match, and a difference corresponding to the amount of wear of the grinding tool occurs. Therefore, the amount of movement of the grinding tool is controlled while measuring the residual thickness until the finished thickness is reached.

一方、昨今のデバイスの顕著な薄型化に応じてウェーハは一層薄く加工される傾向にあり、ウェーハにプローブ等を接触させることなく厚さを測定可能な非接触式のものが、ウェーハを傷つけず抗折強度を低下させない点では有利とされる。非接触式の厚さ測定手段としては、レーザー光を利用したものが挙げられる。下記特許文献2には所定周波数のレーザー光をウェーハに向けて照射し、そのレーザー光のウェーハの表面からの反射波と裏面からの反射波との干渉波の波形から、厚さを測定する形式の非接触式厚さ測定器が記載されている。また、1μm程度の波長のレーザー光にてシリコンウェーハの厚さのみを10〜400μmの範囲で測定できるレーザー式非接触式厚さ測定器が株式会社ディスコから商品名「NCG」として販売されている。   On the other hand, wafers tend to be processed even thinner in response to the recent thinning of devices, and the non-contact type that can measure the thickness without bringing a probe into contact with the wafer does not damage the wafer. This is advantageous in that the bending strength is not lowered. Examples of the non-contact type thickness measuring means include those using laser light. In Patent Document 2 below, a laser beam having a predetermined frequency is irradiated toward a wafer, and the thickness is measured from the waveform of an interference wave between a reflected wave from the front surface of the wafer and a reflected wave from the back surface of the wafer. A non-contact thickness measuring instrument is described. A laser-type non-contact thickness measuring instrument that can measure only the thickness of a silicon wafer in the range of 10 to 400 μm with a laser beam having a wavelength of about 1 μm is sold by Disco Co., Ltd. under the trade name “NCG”. .

特開2001-009716号公報JP 2001-009716 A 特許3491337号公報Japanese Patent No. 3491337

しかるに、更なる極薄化の要請からウェーハ厚さを10μm以下にすることを要求されることも少なくない。10μm以下の薄さに研削する場合、非接触式で厚さ計測を行うことが重要であるが、測定器の測定範囲外の厚さであるため測定が不可能になってしまう。このように測定器の測定限界厚さ以下の厚さの測定を可能にするためには、例えば、測定器に複雑な光学制御系や可変波長レーザーを装備することが必要であり、大幅なコスト高になってしまう。   However, there are many cases where it is required to reduce the wafer thickness to 10 μm or less due to a request for further ultrathinning. When grinding to a thickness of 10 μm or less, it is important to measure the thickness in a non-contact manner, but the measurement is impossible because the thickness is outside the measuring range of the measuring instrument. In order to make it possible to measure a thickness below the measurement limit thickness of the measuring instrument in this way, for example, it is necessary to equip the measuring instrument with a complicated optical control system and a variable wavelength laser, which is a significant cost. It becomes high.

本発明は、上記事実に鑑みてなされたものであって、その主たる技術課題は、厚み測定器の測定限界厚さよりも更に薄化研削する場合において、別途複雑且つ高価な計測器を設ける必要がなく、高精度の研削を行うことができる、新規且つ改良された研削方法を提供することである。   The present invention has been made in view of the above-mentioned fact, and the main technical problem is that it is necessary to provide a separate complicated and expensive measuring instrument in the case of further thinning grinding than the measurement limit thickness of the thickness measuring instrument. And providing a new and improved grinding method capable of performing high-precision grinding.

本発明によれば、上記主たる技術課題を達成する研削方法として、ウェーハを保持したチャックテーブルを回転すると共に研削工具を回転し且つ研削工具をチャックテーブルに向けて漸次移動して、所望の仕上げ厚さまで研削工具によってウェーハの被研削面を研削する研削方法にして、
チャックテーブル上に保持されているウェーハの残留厚さを非接触式厚さ測定器を用いて継続して測定しながら、測定されるウェーハの残留厚さが非接触式厚さ測定器の測定限界厚さ以上の予め定めた厚さになるまで、チャックテーブルを回転すると共に研削工具を回転し且つチャックテーブルに向けて研削工具を移動してウェーハの被研削面を研削する第一の研削工程と、
第一の研削工程の後に、非接触式厚さ測定器の測定を停止し、チャックテーブルを回転すると共に研削工具を回転し且つチャックテーブルに向けて研削工具を更に予め定めた厚さと仕上げ厚さの差に対応した量だけ移動させてウェーハの被研削面を研削する第二の研削工程と、
を含むことを特徴とする研削方法が提供される。
According to the present invention, as a grinding method for achieving the main technical problem, a desired finishing thickness is obtained by rotating a chuck table holding a wafer, rotating a grinding tool, and gradually moving the grinding tool toward the chuck table. The grinding method is to grind the surface to be ground of the wafer with a grinding tool.
While the residual thickness of the wafer held on the chuck table is continuously measured using a non-contact type thickness measuring device, the residual thickness of the measured wafer is the measurement limit of the non-contact type thickness measuring device. A first grinding step of rotating the chuck table and rotating the grinding tool and moving the grinding tool toward the chuck table to grind the surface to be ground of the wafer until a predetermined thickness equal to or greater than the thickness is reached; ,
After the first grinding step, stop the measurement of the non-contact type thickness measuring device, rotate the chuck table and rotate the grinding tool, and further turn the grinding tool toward the chuck table with the predetermined thickness and finish thickness A second grinding step of grinding the surface to be ground of the wafer by moving the amount corresponding to the difference of
The grinding method characterized by including is provided.

第一の研削工程の際に、該研削工具の移動量と測定された残留厚さとの相関関係を算出し、
第二の研削工程では、算出された相関関係に基づき該研削工具の移動量を決定する、ことが好適である。
Calculating the correlation between the amount of movement of the grinding tool and the measured residual thickness during the first grinding step;
In the second grinding step, it is preferable to determine the amount of movement of the grinding tool based on the calculated correlation.

本発明の研削方法においては、非接触式厚さ測定器の測定限界厚さ以上の予め定めた厚さ(測定限界厚さ或いはこれに可及的に近い厚さであるのが好都合である)までは、ウエーハの残留厚さを継続して測定しながらウエーハを研削する(第一の研削工程)。そして、予め定めた厚さから更に薄化する際には研削工具の移動量を適宜に制御してウエーハを研削する(第二の研削工程)。予め定めた厚さから所望の厚さまでの研削量は僅かであり、この際の研削工具の摩耗量は著しく小さく、それ故にウエーハの残留厚さを継続して測定しなくても充分精密に所望厚さまで研削することができる。第一の研削工程の際に研削工具の移動量と測定された残留厚さとの相関関係、換言すれば研削工具の移動量と研削量との相関関係を算出し、第二の研削工程においては算出した相関関係に基いて研削工具の移動量を制御すれば、更に一層精密に所望の仕上げ厚さにすることができる。   In the grinding method of the present invention, a predetermined thickness equal to or greater than the measurement limit thickness of the non-contact type thickness measuring device (the measurement limit thickness or a thickness as close as possible to this is convenient). Until then, the wafer is ground while continuously measuring the residual thickness of the wafer (first grinding step). When the thickness is further reduced from a predetermined thickness, the wafer is ground by appropriately controlling the moving amount of the grinding tool (second grinding step). The amount of grinding from a predetermined thickness to the desired thickness is very small, and the amount of wear of the grinding tool at this time is very small, so that the desired thickness is sufficiently precise without having to continuously measure the residual thickness of the wafer. Can be ground to thickness. Calculate the correlation between the amount of movement of the grinding tool and the measured residual thickness during the first grinding process, in other words, the correlation between the amount of movement of the grinding tool and the grinding amount. If the amount of movement of the grinding tool is controlled based on the calculated correlation, the desired finished thickness can be made even more precisely.

以下、本発明に従って構成された研削方法の好適な実施形態について、添付図面を参照して、更に詳細に説明する。   Hereinafter, a preferred embodiment of a grinding method configured according to the present invention will be described in more detail with reference to the accompanying drawings.

図1には、本発明の研削を方法実施するために使用することができる研削装置の要部、即ち仕上研削手段に関する構成要素、が図示されている。研削装置全体は、例えば特開2000−354962号公報に開示されている形態でよく、従ってその詳細な説明は本明細書においては省略する。当業者には周知の如く、半導体ウエーハの薄化においては、最初にウエーハの裏面を比較的高速で粗研削し、次いで所望の仕上げ厚さに仕上げ研削するが、以下ウエーハの仕上げ研削に関連せしめて本発明の好適実施形態を説明する。   FIG. 1 shows the main part of a grinding apparatus that can be used for carrying out the grinding method of the present invention, that is, the components relating to the finish grinding means. The entire grinding apparatus may be in the form disclosed in, for example, Japanese Patent Application Laid-Open No. 2000-354962, and therefore detailed description thereof is omitted in this specification. As is well known to those skilled in the art, in thinning a semiconductor wafer, the back surface of the wafer is first roughly ground at a relatively high speed, and then finish ground to a desired finish thickness. The following is related to the finish grinding of the wafer. A preferred embodiment of the present invention will be described.

図示の研削装置は、研削すべきウエ−ハWを保持するためのチャックテーブル2、チャックテーブル2上に保持されたウエーハWを研削するための仕上げ研削手段4を具備している。適宜の回転駆動源(図示していない)によって回転駆動されるチャックテーブル2は多孔性チャック板を有し、その上面に載置されたウエーハWを真空吸着するそれ自体は周知の形態のものでよい。チャックテーブル2に対向して配設されている仕上げ研削手段4はケーシング6を有し、このケーシング6にはスピンドル8が回転自在に装着されている。ケーシング6内にはスピンドル8を高速回転するための回転駆動源10も配置されている。回転駆動源10はパルスモータから構成することができる。チャックテーブル2の表面に対して実質上垂直に延在するスピンドル8はケーシング6を超えて下方に突出しており、スピンドル6の下端には研削工具12が装着されている。この研削工具12は環状支持部材14とこの支持部材14の下面に固定された複数個の弧状研削砥石16とから構成されている。ケーシング6は適宜の研削送り手段18によって昇降動自在に装着されている。研削送り手段18は回転ボールねじを有する送り機構及びかかる送り機構のボールねじを回転駆動するためのサーボモータを含むそれ自体は周知の形態でよい。   The illustrated grinding apparatus includes a chuck table 2 for holding a wafer W to be ground, and finish grinding means 4 for grinding the wafer W held on the chuck table 2. The chuck table 2 that is rotationally driven by an appropriate rotational drive source (not shown) has a porous chuck plate, and the wafer W placed on the upper surface of the chuck table 2 is of a well-known form. Good. The finish grinding means 4 arranged facing the chuck table 2 has a casing 6, and a spindle 8 is rotatably mounted on the casing 6. A rotational drive source 10 for rotating the spindle 8 at high speed is also arranged in the casing 6. The rotational drive source 10 can be composed of a pulse motor. A spindle 8 extending substantially perpendicular to the surface of the chuck table 2 protrudes downward beyond the casing 6, and a grinding tool 12 is attached to the lower end of the spindle 6. The grinding tool 12 includes an annular support member 14 and a plurality of arc-shaped grinding wheels 16 fixed to the lower surface of the support member 14. The casing 6 is mounted so as to be movable up and down by an appropriate grinding feed means 18. The grinding feed means 18 may be of a well-known form including a feed mechanism having a rotating ball screw and a servo motor for rotationally driving the ball screw of the feed mechanism.

図示のウエーハWは回路が形成されている回路層W1とこの回路層W1の裏面(図1において上面)に積層されたシリコン層W2とを有し、回路層W1の表面(図1において下面)には適宜の合成樹脂テープから形成された保護テープTが貼着されている。   The illustrated wafer W has a circuit layer W1 on which a circuit is formed and a silicon layer W2 laminated on the back surface (upper surface in FIG. 1) of the circuit layer W1, and the front surface (lower surface in FIG. 1) of the circuit layer W1. Is attached with a protective tape T formed of an appropriate synthetic resin tape.

図示の研削装置には、更に、非接触式厚さ測定器20が装備されている。この測定器20は、チャックテーブル2上に保持されているウエーハWに対向して位置するように適宜の支持機構(図示していない)によって支持されている。非接触式厚さ測定器20の典型例としては、株式会社ディスコから商品名「NCG」として販売されている測定器を挙げることができる。かかる測定器は波長が略1μmであるレーザ光をウエーハWに向けて投射し、シリコン層W2の上面で反射される反射光とシリコン層W2の下面で反射される反射光との干渉波を受光し、これによってシリコン層W2の厚さを測定する。公称測定可能範囲は10乃至400μmである。かかる測定器20はシリコン層W2の厚さを測定するものであり、従ってウエーハW厚さは測定器20の測定値に既知である回路層W1の厚さを加えた値である。図示の研削装置には、更に、非接触式厚さ測定器20及び研削送り手段18に関連せしめて演算手段22及び制御手段24も配設されている。演算手段22及び制御手段24については後に更に言及する。   The illustrated grinding apparatus is further equipped with a non-contact type thickness measuring device 20. The measuring instrument 20 is supported by an appropriate support mechanism (not shown) so as to be opposed to the wafer W held on the chuck table 2. A typical example of the non-contact type thickness measuring instrument 20 is a measuring instrument sold under the trade name “NCG” from DISCO Corporation. Such a measuring instrument projects laser light having a wavelength of approximately 1 μm toward the wafer W, and receives interference waves between reflected light reflected from the upper surface of the silicon layer W2 and reflected light reflected from the lower surface of the silicon layer W2. Thus, the thickness of the silicon layer W2 is measured. The nominal measurable range is 10 to 400 μm. The measuring device 20 measures the thickness of the silicon layer W2. Therefore, the wafer W thickness is a value obtained by adding the known thickness of the circuit layer W1 to the measured value of the measuring device 20. The illustrated grinding apparatus is further provided with a calculation means 22 and a control means 24 in association with the non-contact type thickness measuring device 20 and the grinding feed means 18. The calculation means 22 and the control means 24 will be further described later.

図2は、制御手段24によって実行される研削動作の処理制御例を示す概略フローチャートである。非接触式厚さ測定器20の測定限界厚さ以上の予め定めた厚さH1、所望のウェーハ仕上げ厚さH2は加工を行うウェーハ毎に予め設定されている。予め定めた厚さH1は、非接触式厚さ測定器20の測定限界厚さ以上の予め定めた厚さであり、測定限界厚さ、或いはこれに可及的に近い厚さであるのが好都合である。ウェーハの種類によっては非接触式厚さ測定器20の測定限界の厚さを測定する際に測定厚さに幾分かの誤差が発生してしまうこともあり、この場合は、測定限界厚さ以上の厚さの安定して測定可能な値を、予め定めた厚さとする。   FIG. 2 is a schematic flowchart showing an example of processing control of the grinding operation executed by the control means 24. A predetermined thickness H1 equal to or greater than the measurement limit thickness of the non-contact type thickness measuring device 20 and a desired wafer finish thickness H2 are set in advance for each wafer to be processed. The predetermined thickness H1 is a predetermined thickness that is equal to or greater than the measurement limit thickness of the non-contact type thickness measuring instrument 20, and is a measurement limit thickness or a thickness as close as possible to this. Convenient. Depending on the type of wafer, there may be some error in the measurement thickness when measuring the measurement limit thickness of the non-contact type thickness measuring instrument 20, and in this case, the measurement limit thickness A value that can be stably measured for the above thickness is defined as a predetermined thickness.

研削動作を開始する前に、研削すべきウェーハWをチャックテーブル2上にセットし、次いで研削工具12及びチャックテーブル2を所定回転数で回転開始する、研削工具12はチャックテーブル2上のウェーハWの上方へ位置付けられている。そして、研削動作を開始すると、図2のステップS1においては、研削送り手段18のパルスモータが駆動され所定の送り速度にて研削工具12をチャックテーブル2上のウェーハWに向かって下降する。次いで、ステップS2に進行し、所定の送り速度で研削工具12の下降が進んでいる間においては、研削工具12の作用面がウェーハWの加工面に接触したか否かを確認し、接触を確認するとステップS3に進行し研削動作が開始される。研削工具12の作用面がウェーハWの加工面に接触したか否かは、例えばスピンドル8に作用する応力の微細な変化を検出することによって確認することができる。   Before starting the grinding operation, the wafer W to be ground is set on the chuck table 2, and then the grinding tool 12 and the chuck table 2 are started to rotate at a predetermined number of revolutions. It is positioned above. When the grinding operation is started, in step S1 of FIG. 2, the pulse motor of the grinding feed means 18 is driven to lower the grinding tool 12 toward the wafer W on the chuck table 2 at a predetermined feed speed. Next, the process proceeds to step S2, and while the lowering of the grinding tool 12 is proceeding at a predetermined feed rate, it is confirmed whether or not the working surface of the grinding tool 12 has contacted the processing surface of the wafer W, and the contact is made. If it confirms, it will progress to step S3 and a grinding operation will be started. Whether or not the working surface of the grinding tool 12 has come into contact with the processing surface of the wafer W can be confirmed, for example, by detecting a minute change in stress acting on the spindle 8.

ステップS4においては、非接触式厚さ測定器20による残留厚さHの測定が開始される。ステップS3の研削動作が開始されてからの非接触式厚さ測定器20におけるウェーハWの残留厚さHは、研削工具12の下降量即ち移動量と共に、演算手段22に送られる。研削動作が進行し、ステップS5において、ウェーハ残留厚さHが非接触式厚さ測定器20の予め定めた厚さH1に達したのが確認されると、ステップS6に進行し非接触式厚さ測定器20の測定が停止される。   In step S4, the measurement of the residual thickness H by the non-contact type thickness measuring device 20 is started. The residual thickness H of the wafer W in the non-contact thickness measuring instrument 20 after the start of the grinding operation in step S3 is sent to the computing means 22 together with the descending amount of the grinding tool 12, that is, the moving amount. When the grinding operation proceeds and it is confirmed in step S5 that the residual wafer thickness H has reached the predetermined thickness H1 of the non-contact thickness measuring instrument 20, the process proceeds to step S6 and the non-contact thickness is reached. Measurement of the measuring instrument 20 is stopped.

非接触式厚さ測定器20の測定を停止すると同時にステップS7に進行し、演算手段22において、ウェーハ残留厚さHと研削工具12の移動量Lの相関関係および第二の研削工程における研削工具12の移動量が算出される(ステップ1からステップ7までが第一の研削工程)。   At the same time as the measurement by the non-contact type thickness measuring device 20 is stopped, the process proceeds to step S7, where the calculating means 22 correlates the wafer residual thickness H with the movement amount L of the grinding tool 12 and the grinding tool in the second grinding step. 12 movement amounts are calculated (from step 1 to step 7 is the first grinding step).

ここで、演算手段22の演算処理について説明する。ステップS3の研削動作が開始すると、非接触式厚さ測定器20においてウェーハWの残留厚さHの測定が開始され、演算手段22へウェーハ残留厚さHの情報が送られる(ステップS4)。ウェーハ残留厚さHは、ステップS3の研削動作開始時点からの研削工具12の移動量Lの情報と共に演算手段22に記録される。ウェーハ残留厚さHが非接触式厚さ測定器20の予め定めた厚さH1に達した際の研削工具12の移動量L1の情報により、研削厚さ(H0−H1)と移動量との相関関数が算出される(図3参照)。ウェーハWの元厚をH0、所望仕上げウェーハ厚さH2までの研削工具12の移動量をL2とすると、下記の相関関係式Aが得られる。
(H1−H0)/L1=(H2−H1)/(L2−L1) ・・・A
ステップS7においては、相関関係式Aから非接触式厚さ測定器20の予め定めた厚さH1から仕上げ厚さH2までの研削工具12の移動量、すなわち第二の研削工程における研削工具12の移動量L2―L1(μm)を同時に算出する。
Here, the calculation process of the calculation means 22 will be described. When the grinding operation in step S3 is started, measurement of the residual thickness H of the wafer W is started in the non-contact type thickness measuring instrument 20, and information on the residual thickness H of the wafer is sent to the computing means 22 (step S4). The residual wafer thickness H is recorded in the calculation means 22 together with information on the movement amount L of the grinding tool 12 from the start of the grinding operation in step S3. Based on the information on the movement amount L1 of the grinding tool 12 when the residual wafer thickness H reaches the predetermined thickness H1 of the non-contact type thickness measuring device 20, the grinding thickness (H0-H1) and the movement amount are calculated. A correlation function is calculated (see FIG. 3). When the original thickness of the wafer W is H0 and the movement amount of the grinding tool 12 up to the desired finished wafer thickness H2 is L2, the following correlation formula A is obtained.
(H1-H0) / L1 = (H2-H1) / (L2-L1)... A
In step S7, the movement amount of the grinding tool 12 from the correlation equation A to the predetermined thickness H1 of the non-contact type thickness measuring device 20 from the predetermined thickness H2, that is, the grinding tool 12 in the second grinding step. The movement amount L2-L1 (μm) is calculated simultaneously.

ステップS7及びS8においては、ステップS7で算出された研削工具12の移動量に応じて研削するように研削送り手段18のパルスモータが制御される(第二の研削工程)。すなわち、更に所定の送り速度で研削動作を行い、L2−L1(μm)だけ研削工具12を下降した後に、研削送り手段18による研削送り、即ち研削工具12の下降を停止する(第二の研削工程)。このように、第一の研削工程の際の研削工具の移動量と測定された残留厚さとの相関関係、換言すれば研削工具の移動量と研削量との相関関係を算出し、第二の研削工程においては算出した相関関係に基いて研削工具の移動量を制御すれば、更に一層精密に所望の仕上げ厚さにすることができる。   In steps S7 and S8, the pulse motor of the grinding feed means 18 is controlled so as to perform grinding according to the movement amount of the grinding tool 12 calculated in step S7 (second grinding step). That is, the grinding operation is further performed at a predetermined feed speed, and after the grinding tool 12 is lowered by L2-L1 (μm), the grinding feed by the grinding feed means 18, that is, the lowering of the grinding tool 12 is stopped (second grinding). Process). Thus, the correlation between the amount of movement of the grinding tool and the measured residual thickness during the first grinding step, in other words, the correlation between the amount of movement of the grinding tool and the amount of grinding is calculated, and the second In the grinding process, if the movement amount of the grinding tool is controlled based on the calculated correlation, the desired finished thickness can be made even more precisely.

ウェーハ残留厚さHと研削工具12の移動量Lとの相関関係に基づき第二の研削工程における研削工具12の移動量を制御する様式は、非接触式厚さ測定器20の予め定めた厚さH1から所望の仕上げ厚さH2までの研削量が比較的大きい場合には、研削工具12の摩耗量が比較的大きい故に、特に有効である。一方、予め定めた厚さH1から所望の仕上げ厚さH2までの研削量が僅かな場合、この際の研削工具の摩耗量は著しく小さく、それ故にウェーハ残留厚さHと研削工具12の移動量との相関関係に基づくことなく、単に研削工具12の下降量を(H1−H2)μmに制御することによっても充分に精密な所望厚さにウェーハWを研削することができる。   The mode of controlling the movement amount of the grinding tool 12 in the second grinding step based on the correlation between the residual wafer thickness H and the movement amount L of the grinding tool 12 is a predetermined thickness of the non-contact type thickness measuring device 20. When the grinding amount from the height H1 to the desired finish thickness H2 is relatively large, the wear amount of the grinding tool 12 is relatively large, which is particularly effective. On the other hand, when the amount of grinding from the predetermined thickness H1 to the desired finished thickness H2 is small, the amount of wear of the grinding tool at this time is extremely small, and hence the wafer residual thickness H and the amount of movement of the grinding tool 12 are reduced. The wafer W can be ground to a sufficiently precise desired thickness simply by controlling the descending amount of the grinding tool 12 to (H1−H2) μm.

本発明の研削方法を実施するための研削装置の典型例の要部概略図。The principal part schematic of the typical example of the grinding apparatus for enforcing the grinding method of this invention. 研削動作の処理制御例を示す概略フローチャート。The schematic flowchart which shows the process control example of grinding operation. ウェーハ残留厚さHと研削工具12の移動量Lとの相関関係を表す概念図。The conceptual diagram showing the correlation with the wafer residual thickness H and the movement amount L of the grinding tool 12. FIG.

符号の説明Explanation of symbols

2 チャックテーブル
4 研削手段
12 研削工具
18 研削送り手段
20 非接触式厚さ測定器
22 演算手段
24 制御手段
H 半導体ウェーハの残留厚さ
H1 非接触式厚さ測定器の予め定めた厚さ
H2 所望の仕上げウェーハ厚さ
L1 予め定めた厚さH1までの研削工具12の移動量
L2 所望の仕上げウェーハ厚さH2までの研削工具12の移動量
W 半導体ウェーハ
W1 シリコン層
W2 回路層
2 Chuck table 4 Grinding means 12 Grinding tool 18 Grinding feed means 20 Non-contact type thickness measuring instrument 22 Calculation means 24 Control means H Residual thickness of semiconductor wafer H1 Predetermined thickness of non-contact type thickness measuring instrument H2 desired Finished wafer thickness L1 Amount of movement of the grinding tool 12 to a predetermined thickness H1 L2 Amount of movement of the grinding tool 12 to a desired finished wafer thickness H2 W Semiconductor wafer W1 Silicon layer W2 Circuit layer

Claims (2)

ウェーハを保持したチャックテーブルを回転すると共に研削工具を回転し且つ該研削工具を該チャックテーブルに向けて漸次移動して、所望の仕上げ厚さまで該研削工具によって該ウェーハの被研削面を研削する研削方法にして、
該チャックテーブル上に保持されている該ウェーハの残留厚さを非接触式厚さ測定器を用いて継続して測定しながら、測定される該ウェーハの残留厚さが該非接触式厚さ測定器の測定限界厚さ以上の予め定めた厚さになるまで、該チャックテーブルを回転すると共に該研削工具を回転し且つ該チャックテーブルに向けて該研削工具を移動して該ウェーハの該被研削面を研削する第一の研削工程と、
該第一の研削工程の後に、該非接触式厚さ測定器の測定を停止し、該チャックテーブルを回転すると共に該研削工具を回転し且つ該チャックテーブルに向けて該研削工具を更に該予め定めた厚さと該仕上げ厚さの差に対応した量だけ移動させて該ウェーハの該被研削面を研削する第二の研削工程と、
を含むことを特徴とする研削方法。
Grinding by rotating the chuck table holding the wafer and rotating the grinding tool and gradually moving the grinding tool toward the chuck table to grind the surface to be ground of the wafer by the grinding tool to a desired finished thickness In the way
While the residual thickness of the wafer held on the chuck table is continuously measured by using a non-contact type thickness measuring device, the residual thickness of the wafer to be measured is measured by the non-contact type thickness measuring device. The chuck table is rotated and the grinding tool is rotated and the grinding tool is moved toward the chuck table until a predetermined thickness equal to or greater than a measurement limit thickness of A first grinding step of grinding
After the first grinding step, the measurement of the non-contact type thickness measuring device is stopped, the chuck table is rotated and the grinding tool is rotated, and the grinding tool is further predetermined toward the chuck table. A second grinding step of grinding the surface to be ground of the wafer by moving an amount corresponding to the difference between the thickness and the finished thickness;
A grinding method comprising:
該第一の研削工程の際に、該研削工具の移動量と測定された該残留厚さとの相関関係を算出し、
該第二の研削工程では、算出された該相関関係に基づき該研削工具の該移動量を決定する、請求項1記載の研削方法。
Calculating a correlation between the amount of movement of the grinding tool and the measured residual thickness during the first grinding step;
The grinding method according to claim 1, wherein in the second grinding step, the amount of movement of the grinding tool is determined based on the calculated correlation.
JP2008206085A 2008-08-08 2008-08-08 Grinding method Active JP5203845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008206085A JP5203845B2 (en) 2008-08-08 2008-08-08 Grinding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008206085A JP5203845B2 (en) 2008-08-08 2008-08-08 Grinding method

Publications (2)

Publication Number Publication Date
JP2010042454A JP2010042454A (en) 2010-02-25
JP5203845B2 true JP5203845B2 (en) 2013-06-05

Family

ID=42014256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008206085A Active JP5203845B2 (en) 2008-08-08 2008-08-08 Grinding method

Country Status (1)

Country Link
JP (1) JP5203845B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742017B (en) * 2019-01-25 2020-11-13 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) Wafer thinning process

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340679A (en) * 2004-05-31 2005-12-08 Matsushita Electric Ind Co Ltd Polishing equipment, polishing end detecting method, and manufacturing method of semiconductor device
JP4408244B2 (en) * 2004-07-07 2010-02-03 大日本スクリーン製造株式会社 Substrate polishing method and substrate polishing apparatus
JP4851227B2 (en) * 2006-04-12 2012-01-11 株式会社ディスコ Grinding equipment
JP4913481B2 (en) * 2006-06-12 2012-04-11 株式会社ディスコ Wafer grinding equipment
JP2008277450A (en) * 2007-04-26 2008-11-13 Tokyo Seimitsu Co Ltd Device and method for controlling polishing condition of cmp apparatus

Also Published As

Publication number Publication date
JP2010042454A (en) 2010-02-25

Similar Documents

Publication Publication Date Title
US8152597B2 (en) Wafer grinding method and wafer grinding machine
EP1779969B1 (en) Method of grinding the back surface of a semiconductor wafer and semiconductor wafer grinding apparatus
TW200807538A (en) Wafer grinding apparatus
JP2008073785A (en) Thickness measuring method in grinding work
CN1447396A (en) Chemical mechanical polishing appts. and its control method
JP2007220775A (en) Grinder for semiconductor substrate, and method of manufacturing semiconductor device
JP5357477B2 (en) Grinding method and grinding apparatus
JP7281901B2 (en) SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
JP2007019434A (en) Polishing pad profile modification equipment and polishing equipment
JP2015116637A (en) Grinding method
JP5203845B2 (en) Grinding method
JP6633954B2 (en) Wafer chamfering method
JP6539467B2 (en) Grinding machine
JP4615275B2 (en) Wafer polishing apparatus and wafer polishing method
JP7068096B2 (en) Grinding method for workpieces
JP6262593B2 (en) Grinding equipment
JP2004106123A (en) Polishing method, cmp equipment, and film thickness measuring instrument
JPH06151586A (en) Method and device for dicing
TW200941569A (en) Machining quality judging method for wafer grinding machine and wafer grinding machine
JP2003300155A (en) Grinding method and grinding device
JP5554612B2 (en) Grinding equipment
JP6467685B2 (en) Grinder equipment
JP2003071708A (en) Polishing method and polishing apparatus
JP2005217326A (en) Wafer grinding apparatus and grinding method therefor
JP2008254147A (en) Grinding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130214

R150 Certificate of patent or registration of utility model

Ref document number: 5203845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250