JP5203598B2 - Solid electrolyte fuel cell module and air supply method for solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell module and air supply method for solid electrolyte fuel cell Download PDF

Info

Publication number
JP5203598B2
JP5203598B2 JP2006320810A JP2006320810A JP5203598B2 JP 5203598 B2 JP5203598 B2 JP 5203598B2 JP 2006320810 A JP2006320810 A JP 2006320810A JP 2006320810 A JP2006320810 A JP 2006320810A JP 5203598 B2 JP5203598 B2 JP 5203598B2
Authority
JP
Japan
Prior art keywords
air
solid electrolyte
fuel cell
electrolyte fuel
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006320810A
Other languages
Japanese (ja)
Other versions
JP2008135300A (en
Inventor
徳久 眞竹
健一郎 小阪
毅 松尾
達雄 加幡
重徳 古賀
長生 久留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2006320810A priority Critical patent/JP5203598B2/en
Publication of JP2008135300A publication Critical patent/JP2008135300A/en
Application granted granted Critical
Publication of JP5203598B2 publication Critical patent/JP5203598B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、モジュールの小型化を図ることができる固体電解質燃料電池モジュール及び固体電解質燃料電池の空気供給方法に関する。   The present invention relates to a solid electrolyte fuel cell module capable of reducing the size of the module and an air supply method for the solid electrolyte fuel cell.

固体電解質型燃料電池では、発電時の発熱を利用した自立運転を実現するため、従来構造では、発電室周りに断熱材を設置し、発電室からの放熱量を抑えている。   In the solid oxide fuel cell, in order to realize a self-supporting operation using heat generated during power generation, in the conventional structure, a heat insulating material is installed around the power generation chamber to suppress the heat radiation from the power generation chamber.

従来、高温固体電解質燃料電池は作動温度が800℃から1000℃と高く、固体電解質燃料電池スタックを含む発電室を高温に維持する必要があり、断熱構造でモジュールを構成している。また、空気の熱交換器を用いて排空気との間で再生熱交換を行い、供給空気を予熱するとともに、輻射変換体を用いて高温の燃料電池スタックから放射される熱を用いて輻射変換体で空気を加熱している。   Conventionally, a high-temperature solid electrolyte fuel cell has an operating temperature as high as 800 ° C. to 1000 ° C., and it is necessary to maintain the power generation chamber including the solid electrolyte fuel cell stack at a high temperature. In addition, regenerative heat exchange is performed with exhaust air using an air heat exchanger to preheat supply air, and radiation conversion is performed using heat radiated from a high-temperature fuel cell stack using a radiation converter. The body is heating the air.

図7は、従来の固体電解質燃料電池モジュール(以下「モジュール」ともいう。)20を示す。図7中の符番21は、モジュール全体を保温する断熱材からなる断熱部を示す。この断熱部21で囲まれた領域は、下部管板22,上部管板23により、下側から順に発電室24,燃料排出室25,燃料供給室26に分離されている。ここで、前記下部管板22は後述する高温固体電解質燃料電池スタック27を支持すると同時に、燃料排ガス40と発電室24内の空気45が混合燃焼するのを防止している。前記上部管板23は、後述する燃料供給管を支持すると共に、燃料供給室26と燃料排出室25の隔壁となっている。前記発電室24には、内側に図示していない燃料極、外側に空気極を配置した固体電解質燃料電池を複数直列に接続してなる円筒型の高温固体電解質燃料電池スタック27が配置されている。前記発電室24の下方には、多孔質熱電材料を用いた輻射変換体28が配置されている。   FIG. 7 shows a conventional solid electrolyte fuel cell module (hereinafter also referred to as “module”) 20. Reference numeral 21 in FIG. 7 indicates a heat insulating portion made of a heat insulating material that keeps the entire module warm. The region surrounded by the heat insulating portion 21 is separated into a power generation chamber 24, a fuel discharge chamber 25, and a fuel supply chamber 26 in this order from the lower side by the lower tube plate 22 and the upper tube plate 23. Here, the lower tube sheet 22 supports a high-temperature solid electrolyte fuel cell stack 27 described later, and at the same time, prevents the fuel exhaust gas 40 and the air 45 in the power generation chamber 24 from being mixed and burned. The upper tube plate 23 serves as a partition wall between a fuel supply chamber 26 and a fuel discharge chamber 25 while supporting a fuel supply tube, which will be described later. In the power generation chamber 24, a cylindrical high-temperature solid electrolyte fuel cell stack 27 is disposed, in which a plurality of solid electrolyte fuel cells each having a fuel electrode (not shown) on the inside and an air electrode on the outside are connected in series. . A radiation converter 28 using a porous thermoelectric material is disposed below the power generation chamber 24.

前記固体電解質燃料電池スタック27内には、一端(上端)が前記燃料供給室26に連通された燃料供給管29が配置されている。前記発電室24には空気排出管30が設けられ、この空気排出管30の下部には空気熱交換器31が連通されている。燃料ガスは前記燃料供給室26に供給される。燃料ガスは、燃料供給室26から燃料供給管29を通って固体電解質燃料電池スタック27に供給され、発電に使用された後、燃料排出室25に集められ排気される。空気は前記空気熱交換器31により排空気との間で再生熱交換を行い予熱される。前記輻射変換体28は、高温固体電解質燃料電池スタック27から放射される熱を受熱し予熱された空気をさらに加熱する。発電室24内の発熱を利用して輻射変換体28内で空気の加熱を行うことで、発電室24内部での空気の温度上昇幅を抑え、発電室24内の上部と下部との温度差を小さくしている。   A fuel supply pipe 29 having one end (upper end) communicating with the fuel supply chamber 26 is disposed in the solid electrolyte fuel cell stack 27. An air exhaust pipe 30 is provided in the power generation chamber 24, and an air heat exchanger 31 is communicated with the lower portion of the air exhaust pipe 30. The fuel gas is supplied to the fuel supply chamber 26. The fuel gas is supplied from the fuel supply chamber 26 to the solid electrolyte fuel cell stack 27 through the fuel supply pipe 29 and used for power generation, and then collected in the fuel discharge chamber 25 and exhausted. The air is preheated by the regenerative heat exchange with the exhausted air by the air heat exchanger 31. The radiation converter 28 receives the heat radiated from the high-temperature solid electrolyte fuel cell stack 27 and further heats the preheated air. By using the heat generated in the power generation chamber 24 to heat the air in the radiation converter 28, the temperature rise of the air in the power generation chamber 24 is suppressed, and the temperature difference between the upper and lower portions in the power generation chamber 24 is reduced. Is made smaller.

前記空気45は前記輻射変換体28から発電室24に供給され、発電室24内で発電を行い、900〜1000℃に加熱された後、空気排出管30に集められ、空気熱交換器31に送られ、排空気46として排気される。発電室24内は900〜1000℃の高温に保つ必要があり、モジュール全体は前記断熱部21により保温される(特許文献1)。   The air 45 is supplied from the radiation converter 28 to the power generation chamber 24, generates power in the power generation chamber 24, is heated to 900 to 1000 ° C., is collected in the air discharge pipe 30, and is supplied to the air heat exchanger 31. It is sent and exhausted as exhaust air 46. It is necessary to keep the inside of the power generation chamber 24 at a high temperature of 900 to 1000 ° C., and the entire module is kept warm by the heat insulating portion 21 (Patent Document 1).

特開平09−289030号公報JP 09-289030 A

ところで、前記断熱部21はその断熱効果を高めるために、モジュールに占める断熱材容積は大きいが、モジュールの小型化を促進するという観点からは、断熱材の薄肉化を達成するのが望ましい。   By the way, although the said heat insulation part 21 increases the heat insulation effect, the heat insulation material volume which occupies for a module is large, From the viewpoint of promoting the miniaturization of a module, it is desirable to achieve thinning of a heat insulation material.

しかしながら、単なる断熱材の薄肉化は、モジュール内の雰囲気温度の上昇による集電部品等の耐熱の問題や放熱量増大によるシステム効率の低下を招いてしまう、という問題がある。
また、一方、放熱を低く抑えるような高性能断熱材を使用すれば、断熱部21の一定の薄肉化は可能であるが、高性能断熱材の使用は製造コストの増大となる、という問題がある。
However, the mere thinning of the heat insulating material has a problem that it causes a problem of heat resistance of a current collecting component due to an increase in the ambient temperature in the module and a decrease in system efficiency due to an increase in the amount of heat radiation.
On the other hand, if a high-performance heat insulating material that suppresses heat dissipation is used, it is possible to reduce the thickness of the heat insulating portion 21, but the use of the high-performance heat insulating material increases the manufacturing cost. is there.

本発明は、前記問題に鑑み、モジュールの小型化を図ることができる固体電解質燃料電池モジュール及び固体電解質燃料電池の空気供給方法を提供することを課題とする。   In view of the above problems, an object of the present invention is to provide a solid electrolyte fuel cell module and a method for supplying air to the solid electrolyte fuel cell that can reduce the size of the module.

上述した課題を解決するための本発明の第1の発明は、発電室と、前記発電室に設けられ、内側に燃料極を外側に空気極を配置した円筒型の固体電解質燃料電池を複数接続してなるスタックと、前記スタックへ燃料を供給する燃料供給室と、前記固体電解質燃料電池で反応した燃料側排ガスを外部へ排出する燃料排出室と、前記発電室の周囲を断熱すると共に、該発電室内に空気を供給する空気供給配管を少なくとも一面の内部に配設してなり、前記発電室からの放熱により供給される空気を加熱する断熱炉壁部とを具備すると共に、前記円筒型のスタックからの放熱を用い、前記空気供給配管内を流れる外部からの供給空気を加熱し、前記スタックのセルの温度分布を、前記空気供給配管を前記断熱炉壁部内に配設しない場合に比べてフラット化してなることを特徴とする固体電解質燃料電池モジュールにある。 A first invention of the present invention for solving the above-mentioned problems is to connect a plurality of cylindrical solid electrolyte fuel cells provided in a power generation chamber and the power generation chamber and having a fuel electrode inside and an air electrode outside. and Luz tack such and a fuel supply chamber for supplying fuel to the stack, a fuel discharge chamber for discharging the reacted fuel side exhaust gas by the solid electrolyte fuel cell to the outside, as well as thermal insulation around the power generating chamber An air supply pipe for supplying air into the power generation chamber is disposed in at least one surface, and includes a heat insulating furnace wall portion for heating air supplied by heat radiation from the power generation chamber, and the cylinder When using heat radiation from the stack of the mold, heating the supply air from the outside flowing through the air supply pipe, the temperature distribution of the cells of the stack , when the air supply pipe is not arranged in the heat insulation furnace wall compared to hula In the solid electrolyte fuel cell module which is characterized by comprising collected by reduction.

第2の発明は、第1の発明において、前記発電室中央部分に配設される空気供給配管が熱放出部を有してなることを特徴とする固体電解質燃料電池モジュールにある。   A second invention is the solid electrolyte fuel cell module according to the first invention, wherein the air supply pipe disposed in the central portion of the power generation chamber has a heat release portion.

第3の発明は、第2の発明において、前記熱放出部がフィンであることを特徴とする固体電解質燃料電池モジュールにある。   According to a third invention, there is provided the solid electrolyte fuel cell module according to the second invention, wherein the heat release portion is a fin.

第4の発明は、円筒型の固体電解質燃料電池を複数直列に接続してなるスタックを配する発電室からの放熱を用い、発電室周囲を断熱する断熱炉壁部内に空気供給配管を配設し、発電室内に供給する空気を加熱するに際し、前記スタックのセルの温度分布を、前記空気供給配管を前記断熱炉壁部内に配設しない場合に比べてフラット化することを特徴とする固体電解質燃料電池の空気供給方法にある。 A fourth invention uses the heat radiation from the generator chamber to arrange the absence tack such connecting a solid electrolyte fuel cell of the cylindrical multiple series, the air supply pipe to the power generation chamber the heat insulating furnace wall portion insulating the surroundings When the air supplied to the power generation chamber is heated, the temperature distribution of the cells of the stack is flattened as compared with the case where the air supply pipe is not provided in the heat insulation furnace wall. It is in the air supply method of a solid electrolyte fuel cell.

第5の発明は、第4の発明において、供給する空気量を前記空気供給配管を前記断熱炉壁部内に配設しない場合に比べて絞りつつ空気を供給し熱交換し、システムの発電効率を向上することを特徴とする固体電解質燃料電池の空気供給方法にある。 According to a fifth aspect of the present invention, in the fourth aspect of the invention, the amount of air to be supplied is reduced by supplying air while reducing the amount of air to be supplied compared to the case where the air supply pipe is not disposed in the heat insulating furnace wall , thereby improving the power generation efficiency of the system. The present invention relates to an air supply method for a solid electrolyte fuel cell.

本発明によれば、断熱炉壁内部に発電室内に空気を供給する空気供給配管を配設するので、発電室からの放熱により空気を加熱することができ、外部への放熱の熱量を少なくすることで、断熱炉壁を薄くすることができる。   According to the present invention, since the air supply pipe for supplying air into the power generation chamber is disposed inside the heat insulation furnace wall, the air can be heated by heat radiation from the power generation chamber, and the amount of heat released to the outside is reduced. Thus, the heat insulation furnace wall can be thinned.

以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。   Hereinafter, the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same.

本発明による実施例に係るについて、図面を参照して説明する。
図1は、実施例に係る固体電解質燃料電池モジュールを示す概念図である。図2はその内部を省略した斜視概略図である。
図1及び図2に示すように、本実施例に係る固体電解質燃料電池モジュール10Aは、発電室24と、前記発電室24に設けられ、内側に燃料極を外側に空気極を配置した固体電解質燃料電池を複数直列に接続してなる円筒型のスタック27と、前記スタック27へ燃料41を供給する燃料供給室26と、前記固体電解質燃料電池で反応した燃料側排ガス41を外部へ排出する燃料排出室25と、一端が前記燃料供給室26に連通し、他端が前記スタック27の先端まで延出する燃料供給管29と、前記発電室24の周囲を断熱すると共に、該発電室24内に空気45を供給する空気供給配管11を少なくとも一面に有してなり、前記発電室24からの放熱により供給される空気45を加熱する断熱炉壁部12とを具備するものである。なお、円筒型のスタック27の接続には、前記直列複数接続以外に、例えば並列複数接続としてもよい。
An embodiment according to the present invention will be described with reference to the drawings.
FIG. 1 is a conceptual diagram illustrating a solid electrolyte fuel cell module according to an embodiment. FIG. 2 is a schematic perspective view with the inside omitted.
As shown in FIGS. 1 and 2, a solid electrolyte fuel cell module 10A according to this embodiment includes a power generation chamber 24 and a solid electrolyte provided in the power generation chamber 24, with a fuel electrode on the inside and an air electrode on the outside. A cylindrical stack 27 in which a plurality of fuel cells are connected in series, a fuel supply chamber 26 for supplying fuel 41 to the stack 27, and a fuel for exhausting the fuel side exhaust gas 41 reacted in the solid electrolyte fuel cell to the outside The discharge chamber 25, one end of which communicates with the fuel supply chamber 26, the other end of which extends to the tip of the stack 27, heat insulation around the power generation chamber 24, and the inside of the power generation chamber 24 The air supply pipe 11 for supplying the air 45 is provided on at least one surface, and includes the heat insulation furnace wall portion 12 for heating the air 45 supplied by heat radiation from the power generation chamber 24. For the connection of the cylindrical stack 27, for example, a plurality of parallel connections may be used in addition to the plurality of series connections.

ここで、本実施例では、円筒型のスタック27を支持する構造として、図1に示すような片端支持構造としているが、本発明はこれに限定されるものではなく、例えば図5に示すような両端で円筒型のスタック27を支持するような固体電解質燃料電池モジュール10A等の他の構造のものであってもよい。   Here, in this embodiment, the structure for supporting the cylindrical stack 27 is a one-end support structure as shown in FIG. 1, but the present invention is not limited to this, for example, as shown in FIG. Other structures such as the solid electrolyte fuel cell module 10A that supports the cylindrical stack 27 at both ends may be used.

本発明では、図3−1に示すように、発電室24側壁の断熱構造部に、供給空気(約400℃)45aを通気できる空気供給管11を設け、発電室24からの放熱量を供給空気45で積極的に受熱し、発電室24内に熱交換空気(約500℃)を導入することができると共に、その熱交換により断熱炉壁部12を冷却することで、必要な断熱材の薄肉化を図ることができる。
なお、空気供給管11の配設は、発電室24の周囲を覆う断熱炉壁部12の少なくとも一側面で足りるが、対向する炉壁或いは炉壁の周囲全てに亙って空気供給管11を配設するようにしてもよい。また、モジュールを複数連結するような場合には、その周囲を覆う炉壁部に同様に空気供給管を配設するようにすればよい。
In the present invention, as shown in FIG. 3A, an air supply pipe 11 that can ventilate supply air (about 400 ° C.) 45 a is provided in the heat insulating structure on the side wall of the power generation chamber 24 to supply the heat radiation amount from the power generation chamber 24. Heat is actively received by the air 45 and heat exchange air (about 500 ° C.) can be introduced into the power generation chamber 24, and the heat insulation furnace wall 12 is cooled by the heat exchange, so that necessary heat insulation material can be obtained. Thinning can be achieved.
The air supply pipe 11 may be disposed on at least one side surface of the heat insulating furnace wall 12 that covers the periphery of the power generation chamber 24. However, the air supply pipe 11 is extended over the entire periphery of the facing furnace wall or the furnace wall. It may be arranged. In addition, when a plurality of modules are connected, an air supply pipe may be similarly disposed on the furnace wall portion covering the periphery thereof.

具体的な構造としては、図2に示すような、発電室24側壁の断熱材自体に加工を施し、空気供給ラインを配設するような構造や、断熱材内に小径の配管を埋め込み空気ラインとする構造などにより放熱による熱交換を図るようにしている。なお、空気供給配管は直列接続に限定されるものではない。   As a specific structure, as shown in FIG. 2, the heat insulating material on the side wall of the power generation chamber 24 is processed and an air supply line is disposed, or a small diameter pipe is embedded in the heat insulating material. The heat exchange by heat dissipation is attempted by the structure etc. The air supply pipe is not limited to series connection.

本発明によれば、上述のとおり、積極的に発電室内の放熱を外部へ逃がすようにしているので、断熱材を薄肉化でき、その結果モジュールの小型化を促進することとなる。   According to the present invention, as described above, since the heat radiation in the power generation chamber is actively released to the outside, the heat insulating material can be thinned, and as a result, the module can be reduced in size.

また、従来構造では、図3−2に示すように、供給空気(約400℃)45aの加熱はモジュールからの排空気46を用いた空気熱交換器31の熱交換によっていたが、本実施例では、炉壁部からの放熱を利用して加熱するため、従来用いていた熱交換器31が不要となる。   In the conventional structure, as shown in FIG. 3-2, the heating of the supply air (about 400 ° C.) 45a is performed by the heat exchange of the air heat exchanger 31 using the exhaust air 46 from the module. Then, since it heats using the heat radiation from a furnace wall part, the heat exchanger 31 used conventionally is unnecessary.

また、従来構造での、円筒型のスタック27のセルの温度分布は、概略、図4−2のように鉛直軸方向に亙って弓なりの温度分布を持つので、セルの出力を上げるには、供給空気45を絞り、セル全体の温度を上げるのが有効であるが、セルの一部のみ(特に中央部)が、耐熱温度(約930℃近傍)に触れるため、供給空気を絞れず(システム効率を上げられず)、結果として出力も上げられない状態であった。   In addition, since the temperature distribution of the cells of the cylindrical stack 27 in the conventional structure is roughly a bow-shaped temperature distribution in the vertical axis direction as shown in FIG. 4-2, to increase the cell output It is effective to squeeze the supply air 45 and raise the temperature of the entire cell, but only a part of the cell (particularly the central part) touches the heat-resistant temperature (about 930 ° C.), so the supply air cannot be squeezed As a result, the output could not be increased.

一方、本実施例では、発電室内壁面からの放熱量を従来に比べ大きく確保できる(図3−1)ので、円筒型のスタック27のセルの温度分布はフラット化できることとなる(図4−1の点線)。この結果、供給空気流量を従来流量より絞って、セル全体の温度を上げることができ、システム効率の向上を図ることができる。   On the other hand, in this embodiment, the heat radiation from the wall surface of the power generation chamber can be ensured larger than in the conventional case (FIG. 3-1), so that the temperature distribution of the cells of the cylindrical stack 27 can be flattened (FIG. 4-1). Dotted line). As a result, the supply air flow rate can be reduced from the conventional flow rate, the temperature of the entire cell can be raised, and the system efficiency can be improved.

即ち、従来の断熱構造では、セルの温度分布が軸方向に100℃程度以上あり、セルの出力増加を期待して、セル全体をより高くするために、供給空気量を絞るとすると、一部のセル温度(中央部)が耐熱温度に触れるため、低い空気利用率での運転を余儀なくされていた。   That is, in the conventional heat insulation structure, the temperature distribution of the cell is about 100 ° C. or more in the axial direction, and if the supply air amount is reduced in order to increase the whole cell in anticipation of an increase in cell output, Since the cell temperature (in the center) of the cell was in contact with the heat-resistant temperature, it was forced to operate at a low air utilization rate.

これに対し、本発明の断熱構造を適用する場合には、そのようなことが解消され、より高空気利用率での運転が可能となり、システム効率の向上を図ることができる。また、セルの温度分布をより高温でフラット化(図4−1中一点鎖線)することが期待されるためセル出力も更に向上することとなる。   On the other hand, when the heat insulating structure of the present invention is applied, such a situation is solved, operation at a higher air utilization rate is possible, and system efficiency can be improved. Further, since the temperature distribution of the cell is expected to be flattened at a higher temperature (the chain line in FIG. 4A), the cell output is further improved.

一方、従来と同様に供給する空気45が同じ供給量の場合には、点線となり、空気を絞ることにより、軸方向に亙って弓状となる。また、上下のバランスをよくすることで一点鎖線のようになり、システム効率の向上を図ることができる。   On the other hand, when the supplied air 45 has the same supply amount as in the conventional case, it becomes a dotted line, and when the air is squeezed, it becomes arcuate over the axial direction. Further, by improving the balance between the upper and lower sides, it becomes like a one-dot chain line, and the system efficiency can be improved.

よって、本発明により、空気利用率の10〜15%の向上を図ることができ、出力の15〜20%以上の大幅な向上を図ることができる。   Therefore, according to the present invention, the air utilization rate can be improved by 10 to 15%, and the output can be significantly improved by 15 to 20% or more.

また、図6に示すように、前記発電室24の中央部分13に配設される空気供給配管11に対して、伝熱を促進することができるような例えばフィン等の熱放出部を設け、発電室内部からの放熱を促進させ、さらなる熱交換効率を向上させるようにしてもよい。
または空気ラインの配管の配設密度を上げる構造とするようにしてもよい。
Further, as shown in FIG. 6, for the air supply pipe 11 disposed in the central portion 13 of the power generation chamber 24, a heat release part such as a fin is provided so that heat transfer can be promoted. Heat dissipation from the inside of the power generation chamber may be promoted to further improve heat exchange efficiency.
Or you may make it make it the structure which raises the arrangement | positioning density of piping of an air line.

以上のように、本発明に係る固体電解質燃料電池モジュールによれば、高価な高性能の断熱材を用いることなく、内部から放熱する熱を供給する空気で熱交換する薄い断熱炉壁部を設けることにより、モジュールの小型化を図ることができる。   As described above, according to the solid electrolyte fuel cell module according to the present invention, a thin heat insulating furnace wall portion that exchanges heat with air that supplies heat radiated from the inside is provided without using an expensive high-performance heat insulating material. Thus, the module can be reduced in size.

本実施例に係る固体電解質燃料電池モジュールを示す概念図である。It is a conceptual diagram which shows the solid electrolyte fuel cell module which concerns on a present Example. その内部を省略した斜視概略図である。It is the isometric view schematic which abbreviate | omitted the inside. 本実施例に係る炉壁断熱構造概念図である。It is a furnace wall heat insulation structure conceptual diagram concerning a present Example. 従来技術に係る炉壁断熱構造概念図である。It is a furnace wall heat insulation structure conceptual diagram concerning a prior art. 本実施例に係るセル軸方向の温度分布とセル高さ方向温度分布との関係を示す図である。It is a figure which shows the relationship between the temperature distribution of a cell axial direction and the cell height direction temperature distribution which concern on a present Example. 従来技術に係るセル軸方向の温度分布とセル高さ方向温度分布との関係を示す図である。It is a figure which shows the relationship between the temperature distribution of a cell axis direction and the cell height direction temperature distribution which concern on a prior art. 本実施例に係る固体電解質燃料電池モジュールを示す概念図である。It is a conceptual diagram which shows the solid electrolyte fuel cell module which concerns on a present Example. 本実施例に係る他の固体電解質燃料電池モジュールを示す概念図である。It is a conceptual diagram which shows the other solid electrolyte fuel cell module which concerns on a present Example. 従来技術に係る体電解質燃料電池モジュールを示す概念図である。It is a conceptual diagram which shows the body electrolyte fuel cell module which concerns on a prior art.

10、20 固体電解質燃料電池モジュール
11 空気供給配管
12 断熱炉壁部
21 断熱材
22 下部管板
23 上部管板
24 発電室
25 燃料排出室
26 燃料供給室
27 円筒型のスタック
28 輻射変換体
29 燃料供給管
30 空気排出管
31 空気熱交換器
40 燃料
41 排燃料
45 空気
46 排空気
DESCRIPTION OF SYMBOLS 10, 20 Solid electrolyte fuel cell module 11 Air supply piping 12 Heat insulation furnace wall part 21 Heat insulating material 22 Lower tube plate 23 Upper tube plate 24 Power generation chamber 25 Fuel discharge chamber 26 Fuel supply chamber 27 Cylindrical stack 28 Radiation conversion body 29 Fuel Supply pipe 30 Air exhaust pipe 31 Air heat exchanger 40 Fuel 41 Exhaust fuel 45 Air 46 Exhaust air

Claims (5)

発電室と、
前記発電室に設けられ、内側に燃料極を外側に空気極を配置した円筒型の固体電解質燃料電池を複数接続してなるスタックと、
前記スタックへ燃料を供給する燃料供給室と、
前記固体電解質燃料電池で反応した燃料側排ガスを外部へ排出する燃料排出室と、
前記発電室の周囲を断熱すると共に、該発電室内に空気を供給する空気供給配管を少なくとも一面の内部に配設してなり、前記発電室からの放熱により供給される空気を加熱する断熱炉壁部とを具備すると共に、
前記円筒型のスタックからの放熱を用い、前記空気供給配管内を流れる外部からの供給空気を加熱し、前記スタックのセルの温度分布を、前記空気供給配管を前記断熱炉壁部内に配設しない場合に比べてフラット化してなることを特徴とする固体電解質燃料電池モジュール。
A power generation room,
Provided in the power generating chamber, and the absence tack such by connecting a plurality of solid electrolyte fuel cell of the cylindrical disposing the air electrode to the fuel electrode to the outside to the inside,
A fuel supply chamber for supplying fuel to the stack;
A fuel discharge chamber for discharging the fuel side exhaust gas reacted in the solid electrolyte fuel cell to the outside;
A heat insulating furnace wall that heats the air supplied by heat radiation from the power generation chamber, wherein the periphery of the power generation chamber is insulated and an air supply pipe for supplying air to the power generation chamber is disposed in at least one surface. And comprising
Using heat radiation from the cylindrical stack, the external supply air flowing in the air supply pipe is heated, and the temperature distribution of the cells of the stack is not arranged in the heat insulation furnace wall. A solid electrolyte fuel cell module characterized by being flattened compared to the case .
請求項1において、
前記発電室中央部分に配設される空気供給配管が熱放出部を有してなることを特徴とする固体電解質燃料電池モジュール。
In claim 1,
A solid electrolyte fuel cell module, wherein an air supply pipe disposed in a central portion of the power generation chamber has a heat release portion.
請求項2において、
前記熱放出部がフィンであることを特徴とする固体電解質燃料電池モジュール。
In claim 2,
The solid electrolyte fuel cell module, wherein the heat release part is a fin.
円筒型の固体電解質燃料電池を複数直列に接続してなるスタックを配する発電室からの放熱を用い、発電室周囲を断熱する断熱炉壁部内に空気供給配管を配設し、発電室内に供給する空気を加熱するに際し、前記スタックのセルの温度分布を、前記空気供給配管を前記断熱炉壁部内に配設しない場合に比べてフラット化することを特徴とする固体電解質燃料電池の空気供給方法。 Using the heat radiation from the generator chamber to arrange the absence tack such connecting a solid electrolyte fuel cell of the cylindrical multiple series, an air supply pipe disposed in the power generating chamber heat insulating furnace wall portion to insulate the periphery, power generating chamber When heating the air supplied to the stack, the temperature distribution of the cells of the stack is flattened as compared with the case where the air supply pipe is not arranged in the heat insulating furnace wall. Supply method. 請求項4において、
供給する空気量を前記空気供給配管を前記断熱炉壁部内に配設しない場合に比べて絞りつつ空気を供給し熱交換し、システムの発電効率を向上することを特徴とする固体電解質燃料電池の空気供給方法。
In claim 4,
Compared with the case where the air supply pipe is not disposed in the heat insulation furnace wall portion, the air supply is performed while the air is supplied and heat exchange is performed, and the power generation efficiency of the system is improved. Air supply method.
JP2006320810A 2006-11-28 2006-11-28 Solid electrolyte fuel cell module and air supply method for solid electrolyte fuel cell Active JP5203598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006320810A JP5203598B2 (en) 2006-11-28 2006-11-28 Solid electrolyte fuel cell module and air supply method for solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006320810A JP5203598B2 (en) 2006-11-28 2006-11-28 Solid electrolyte fuel cell module and air supply method for solid electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2008135300A JP2008135300A (en) 2008-06-12
JP5203598B2 true JP5203598B2 (en) 2013-06-05

Family

ID=39560004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006320810A Active JP5203598B2 (en) 2006-11-28 2006-11-28 Solid electrolyte fuel cell module and air supply method for solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP5203598B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011044361A (en) * 2009-08-21 2011-03-03 Toyota Motor Corp Fuel cell module
JP5959222B2 (en) * 2012-02-15 2016-08-02 大阪瓦斯株式会社 Solid oxide fuel cell
US9406965B2 (en) 2012-02-20 2016-08-02 Mitsubishi Hitachi Power Systems, Ltd. Fuel cell module
JP5922433B2 (en) * 2012-02-20 2016-05-24 三菱日立パワーシステムズ株式会社 Fuel cell and its oxidant supply method
JP6203627B2 (en) * 2013-12-18 2017-09-27 三菱日立パワーシステムズ株式会社 Fuel cell oxidant supply header, fuel cell, and method for supplying oxidant to fuel cell
JP6072111B2 (en) 2015-03-12 2017-02-01 本田技研工業株式会社 Fuel cell module
JP6093392B2 (en) * 2015-04-17 2017-03-08 本田技研工業株式会社 Fuel cell module

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2930326B2 (en) * 1989-07-31 1999-08-03 三菱重工業株式会社 Solid oxide fuel cell
US5143800A (en) * 1990-07-25 1992-09-01 Westinghouse Electric Corp. Electrochemical cell apparatus having combusted exhaust gas heat exchange and valving to control the reformable feed fuel composition
JP3268197B2 (en) * 1996-04-23 2002-03-25 三菱重工業株式会社 Solid electrolyte fuel cell module
EP1032954A4 (en) * 1997-10-01 2004-06-02 Acumentrics Corp Integrated solid oxide fuel cell and reformer
JP4704693B2 (en) * 2004-02-18 2011-06-15 東京瓦斯株式会社 Power generator
JP4814497B2 (en) * 2004-05-21 2011-11-16 京セラ株式会社 Fuel cell

Also Published As

Publication number Publication date
JP2008135300A (en) 2008-06-12

Similar Documents

Publication Publication Date Title
JP5203598B2 (en) Solid electrolyte fuel cell module and air supply method for solid electrolyte fuel cell
JP5109253B2 (en) Fuel cell
JP5109252B2 (en) Fuel cell
JP5941148B2 (en) Hybrid system
JP5575535B2 (en) Fuel cell
JP5122319B2 (en) Solid oxide fuel cell
JP5061094B2 (en) Mechanical device with multi-element sleeve for high temperature fuel cell and battery stack
JP3539562B2 (en) Solid oxide fuel cell stack
JP5231989B2 (en) Mechanical device with high temperature fuel cell and battery stack clamping device
JP2006173117A (en) Almost isothermal high-temperature type fuel cell
JP2005078859A (en) Fuel cell system
JP3268197B2 (en) Solid electrolyte fuel cell module
JP4389493B2 (en) Fuel cell
JP2007026928A (en) Fuel cell
JP6663694B2 (en) Fuel cell module
JP2007005134A (en) Steam generator and fuel cell
JP2020517068A (en) Fuel cell unit with stacked auxiliary devices
JP2008251237A (en) Fuel cell
JP5299839B2 (en) Fuel cell module and fuel cell
JP5216197B2 (en) Fuel cell power generation system
JP4945963B2 (en) Fuel cell
JP2005005073A (en) Fuel cell separator and solid oxide fuel cell
JP2008251493A (en) Fuel cell module
JP2007200703A (en) Solid oxide fuel cell
JP2007073358A (en) Fuel heat exchanger and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130214

R151 Written notification of patent or utility model registration

Ref document number: 5203598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350