JP5201451B2 - Epoxy resin composition for semiconductor encapsulation - Google Patents

Epoxy resin composition for semiconductor encapsulation Download PDF

Info

Publication number
JP5201451B2
JP5201451B2 JP2008109103A JP2008109103A JP5201451B2 JP 5201451 B2 JP5201451 B2 JP 5201451B2 JP 2008109103 A JP2008109103 A JP 2008109103A JP 2008109103 A JP2008109103 A JP 2008109103A JP 5201451 B2 JP5201451 B2 JP 5201451B2
Authority
JP
Japan
Prior art keywords
epoxy resin
composition
mass
semiconductor device
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008109103A
Other languages
Japanese (ja)
Other versions
JP2009256512A (en
Inventor
将一 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2008109103A priority Critical patent/JP5201451B2/en
Publication of JP2009256512A publication Critical patent/JP2009256512A/en
Application granted granted Critical
Publication of JP5201451B2 publication Critical patent/JP5201451B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/4824Connecting between the body and an opposite side of the item with respect to the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73215Layer and wire connectors

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

本発明は、半導体封止用エポキシ樹脂組成物に関し、詳細には特定の硬化剤と充填剤の組合せを含み、反りが小さく、耐リフロー性等に優れた、封止された半導体装置を与えることができる半導体封止用エポキシ樹脂組成物に関する。また、本発明は、該樹脂組成物で封止された、反りが小さく表面実装に適する半導体装置にも関する。   The present invention relates to an epoxy resin composition for semiconductor encapsulation, and in particular, to provide a sealed semiconductor device that includes a combination of a specific curing agent and a filler, has low warpage, and has excellent reflow resistance and the like. The present invention relates to an epoxy resin composition for semiconductor encapsulation. The present invention also relates to a semiconductor device which is sealed with the resin composition and has a small warp and is suitable for surface mounting.

従来、半導体デバイスは樹脂封止型のダイオード、トランジスター、IC、LSI、超LSIが主流である。樹脂封止には、成形性、接着性、電気特性、機械特性、耐湿性等に優れているため、エポキシ樹脂組成物が一般的に使用されている。しかし、ここ数年の半導体素子の高集積化、表面実装技術の進歩及び鉛フリー半田の使用等に伴い、上記諸特性において、さらなる改良が求められている。   Conventionally, resin-sealed diodes, transistors, ICs, LSIs, and super LSIs have been the mainstream of semiconductor devices. An epoxy resin composition is generally used for resin sealing because it is excellent in moldability, adhesiveness, electrical properties, mechanical properties, moisture resistance, and the like. However, with the high integration of semiconductor elements, the progress of surface mounting technology and the use of lead-free solder in the past few years, further improvements are required in the above characteristics.

例えば、近年ICやLSIの主流となっている、ボールグリッドアレイ(BGA)やQFNなどMAP(マルチアレイパッケージ)等の、基板上に複数の半導体素子を搭載し、樹脂封止後、半導体素子毎に個片化されるCSP(チップサイズパッケージ)は、大型であるため、封止樹脂の充填性、即ち、樹脂が隅々まで回り込み、欠陥の無い硬化物を形成する性能、また、基板の片面のみ封止することによる成型後の反りが大きな問題となってきている。   For example, a plurality of semiconductor elements such as a ball grid array (BGA) and a MAP (multi-array package) such as QFN, which have become mainstream in recent years, are mounted on a substrate, and each semiconductor element is sealed after resin sealing. Since the CSP (chip size package) to be singulated is large, the filling property of the sealing resin, that is, the ability of the resin to wrap around every corner to form a cured product without defects, Warping after molding due to sealing only has become a big problem.

特に高集積化によるチップの大型化、コストダウンの為の半導体素子高密度搭載化、MAPの封止エリアの大型化、パッケージの薄型化に伴い、パッケージ総体積における封止樹脂が占める体積が少なくなっている。これらの半導体装置では、従来の装置とは反対に、半導体素子搭載側を上にした場合、凸側の反りになりやすい。このような凸型の反りを防止するためには、無機充填剤の量を減らすことが考えられる。しかし、充填剤量が少ないと、樹脂硬化物の吸湿量が増加し、リフロー工程時の熱衝撃によるクラックや基板ないし半導体素子界面との剥離が発生しやすい。 The volume of sealing resin occupies less of the total package volume, especially as the size of chips increases due to high integration, the density of semiconductor elements increases for cost reduction, the MAP sealing area increases, and the package becomes thinner. It has become. In these semiconductor devices, contrary to the conventional devices, when the semiconductor element mounting side is turned up, the warp tends to be convex. In order to prevent such convex warpage, it is conceivable to reduce the amount of the inorganic filler. However, if the amount of the filler is small, the moisture absorption of the cured resin increases, and cracks due to thermal shock during the reflow process and peeling from the substrate or semiconductor element interface are likely to occur.

他の方法として、比較的熱膨張の大きい充填剤を用いることも考えられる。そのような充填剤として、球状クリストバライトを使用した組成物も提案されている(特許文献1)。しかしながら、クリストバライトは268℃で、α−クリストバライトからβ−クリストバライトへと相転移し、熱膨張が変化する。そのため、最高温度が265℃程度になるリフロー工程において、基板と封止樹脂硬化物との界面で剥離が生じ、あるいは基板の反りが大きくなる場合がある。
特開平11−302506号公報
Another method is to use a filler having a relatively large thermal expansion. A composition using spherical cristobalite as such a filler has also been proposed (Patent Document 1). However, cristobalite undergoes a phase transition from α-cristobalite to β-cristobalite at 268 ° C., and the thermal expansion changes. Therefore, in the reflow process in which the maximum temperature is about 265 ° C., peeling may occur at the interface between the substrate and the cured encapsulated resin, or the warpage of the substrate may increase.
JP-A-11-302506

本発明者らは、反りが少なく、欠陥の無い封止された半導体装置(以下「封止体」という)を作ることができる、半導体封止用エポキシ樹脂組成物を提供すべく研究を重ね、特定の樹脂系と無機充填剤との組み合わせにより、反りを低減できることを見出した(特願2007−049649号)。本発明は、さらに反りを低減することができる封止用組成物を提供することを目的とする。 The present inventors have repeated research to provide an epoxy resin composition for semiconductor encapsulation, which can produce a sealed semiconductor device (hereinafter referred to as “sealing body”) with less warpage and without defects, It has been found that warpage can be reduced by a combination of a specific resin system and an inorganic filler (Japanese Patent Application No. 2007-049649). An object of this invention is to provide the composition for sealing which can reduce curvature further.

本発明者らは、上記目的を達成すべく鋭意検討を行った結果、特定の硬化剤を使用すると無機充填剤の組み合わせが上記目的を達成できることを見出した。   As a result of intensive studies to achieve the above object, the present inventors have found that when a specific curing agent is used, a combination of inorganic fillers can achieve the above object.

即ち、本発明は、下記(A)〜(D)を含む半導体封止用エポキシ樹脂組成物である。
(A)クレゾールノボラックエポキシ樹脂
(B)下記(1)式で示されるフェノールアラルキル型樹脂のみから成る硬化剤を、組成物中に含まれるエポキシ基1モルに対して、該硬化剤中に含まれるフェノール性水酸基のモル比が0.8〜1.2となる量

Figure 0005201451
(mは0〜100の整数であり、R〜Rは、互いに独立に、水素原子、炭素数1〜6のアルキル基又はアリール基である)
(C)球状溶融シリカを、組成物総質量の82〜87質量%となる量
(D)下記(2)式で表される硬化促進剤(d1)及び(3)式で表される硬化促進剤(d2)を、合計で成分(A)と成分(B)の合計100質量部に対して0.2〜3質量部となる量、且つ、(d1)に対する(d2)の質量比が0.3〜3となる量
Figure 0005201451
(Rは、互いに独立に、水素原子または炭素数1〜4のアルキル基、又はアルコキシ基である)
Figure 0005201451
(Rは、互いに独立に、水素原子、炭素数1〜4のアルキル基、アルコキシ基、又はヒドロキシ基である)。 That is, this invention is an epoxy resin composition for semiconductor sealing containing the following (A)-(D).
(A) Cresol novolak epoxy resin (B) A curing agent consisting only of a phenol aralkyl type resin represented by the following formula (1) is contained in the curing agent with respect to 1 mol of an epoxy group contained in the composition. Amount in which the molar ratio of phenolic hydroxyl group is 0.8 to 1.2
Figure 0005201451
(M is an integer of 0 to 100, and R 1 to R 4 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group)
(C) Spherical fused silica in an amount of 82 to 87% by mass of the total mass of the composition (D) Curing accelerators represented by the following formula (2) (d1) and curing acceleration represented by formula (3) The amount of the agent (d2) is 0.2 to 3 parts by mass with respect to the total of 100 parts by mass of the component (A) and the component (B), and the mass ratio of (d2) to (d1) is 0. .3 to 3
Figure 0005201451
(R 3 is, independently of each other, a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group)
Figure 0005201451
(R 4 are, independently of one another, a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group, or hydroxy group).

上記本発明の組成物は、反りが顕著に小さく、耐リフロー性に優れた封止体を与える。   The composition of the present invention provides a sealed body with significantly small warpage and excellent reflow resistance.

以下、各成分につき、詳細に説明する。
[(A)クレゾールノボラックエポキシ樹脂]
本発明組成物の主剤であるエポキシ樹脂は、成形性、熱膨張/収縮性の面から下記(4)式で示されるクレゾールノボラック型エポキシ樹脂(以下「エポキシ樹脂(A)」と称する)である。

Figure 0005201451
Hereinafter, each component will be described in detail.
[(A) Cresol novolac epoxy resin]
The epoxy resin which is the main component of the composition of the present invention is a cresol novolac type epoxy resin (hereinafter referred to as “epoxy resin (A)”) represented by the following formula (4) in terms of moldability and thermal expansion / shrinkage. .
Figure 0005201451

式(4)において、nは0〜100であり、その平均が0.1〜50、好ましくは0.5〜20である。より好ましくは、nが1〜5、もしくは、ポリスチレン換算の重量平均分子量が300〜1500である。また、ASTM D4287に従い、コーン/プレート粘度計を用いて150℃で測定されるICI粘度が、0.1Pa・s以下であることが、後述する(C)球状の無機充填剤を多く配合することができるので好ましく、より好ましくは0.01〜0.1Pa・sである。 In Formula (4), n is 0-100, The average is 0.1-50, Preferably it is 0.5-20. More preferably, n is 1 to 5, or a polystyrene equivalent weight average molecular weight is 300 to 1500. Further, in accordance with ASTM D4287, the ICI viscosity measured at 150 ° C. using a cone / plate viscometer is 0.1 Pa · s or less, and a large amount of (C) spherical inorganic filler described later is blended. Is preferable, and more preferably 0.01 to 0.1 Pa · s.

エポキシ樹脂(A)に加えて、本発明の目的が阻害されない範囲の量で、他のエポキシ樹脂を併用してもよい。他のエポキシ樹脂としては、例えば、トリフェノールアルカン型エポキシ樹脂、アラルキル型エポキシ樹脂、ビフェニル骨格含有アラルキル型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、複素環型エポキシ樹脂、ナフタレン環含有エポキシ樹脂、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、スチルベン型エポキシ樹脂等が挙げられ、これらの2種以上を組み合わせても使用することができる。 In addition to the epoxy resin (A), another epoxy resin may be used in combination in such an amount that the object of the present invention is not impaired. Other epoxy resins include, for example, triphenolalkane type epoxy resins, aralkyl type epoxy resins, biphenyl skeleton-containing aralkyl type epoxy resins, biphenyl type epoxy resins, dicyclopentadiene type epoxy resins, heterocyclic type epoxy resins, and naphthalene rings. An epoxy resin, a bisphenol A type epoxy compound, a bisphenol F type epoxy compound, a bisphenol S type epoxy compound, a stilbene type epoxy resin and the like can be mentioned, and these two or more types can be used in combination.

エポキシ樹脂(A)は、加水分解性塩素が1000ppm以下、特に500ppm以下であり、ナトリウム及びカリウム量が、それぞれ10ppm以下であることが好ましい。加水分解性塩素が1000ppmを超えたり、ナトリウム又はカリウム量が10ppmを超える樹脂で封止された半導体装置は、長時間高温高湿下に放置されたときも、耐湿性が劣化し易い傾向がある。 It is preferable that the epoxy resin (A) has a hydrolyzable chlorine of 1000 ppm or less, particularly 500 ppm or less, and the amount of sodium and potassium is 10 ppm or less, respectively. A semiconductor device encapsulated with a resin having a hydrolyzable chlorine content exceeding 1000 ppm or a sodium or potassium content exceeding 10 ppm tends to deteriorate its moisture resistance even when left for a long time under high temperature and high humidity. .

[(B)フェノールアラルキル型硬化剤]
本発明で用いられる硬化剤(B)は下記(1)式で表される。

Figure 0005201451
式(1)において、mは0〜100の整数であり、好ましくは、1〜10である。R1〜R4は、互いに独立に、水素原子、炭素数1〜6のアルキル基又はアリール基であり、好ましくは水素原子及びメチル基である。 [(B) phenol aralkyl type curing agent]
The curing agent (B) used in the present invention is represented by the following formula (1).
Figure 0005201451
In Formula (1), m is an integer of 0-100, Preferably it is 1-10. R 1 to R 4 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an aryl group, preferably a hydrogen atom and a methyl group.

該フェノールアラルキル型硬化剤とエポキシ樹脂(A)との硬化物は、熱膨張及び熱収縮量が大きく、封止体体積に占める半導体素子の体積割合が高い半導体素子の反りを小さくするのに有効である。組成物中の該硬化剤の含有量は、組成物中に含まれるエポキシ基1モルに対して、硬化剤中に含まれるフェノール性水酸基のモル比が0.8〜1.2となる量である。該比が前記範囲外であると、封止体の反りが大きく、耐リフロー性に劣る傾向がある。 The cured product of the phenol aralkyl type curing agent and the epoxy resin (A) has a large amount of thermal expansion and thermal shrinkage, and is effective for reducing the warpage of the semiconductor element in which the volume ratio of the semiconductor element occupies the encapsulant volume is high. It is. The content of the curing agent in the composition is such that the molar ratio of the phenolic hydroxyl group contained in the curing agent is 0.8 to 1.2 with respect to 1 mole of the epoxy group contained in the composition. is there. When the ratio is outside the above range, the warping of the sealing body is large and the reflow resistance tends to be inferior.

上記硬化剤(B)も、エポキシ樹脂(A)と同様に、ナトリウム及びカリウム量がそれぞれ10ppm以下であることが好ましい。ナトリウム又はカリウムが10ppmを超える硬化剤を用いた封止体は、長時間高温高湿下に半導体装置を放置すると、耐湿性が劣化する場合がある。   Similarly to the epoxy resin (A), the curing agent (B) preferably has an amount of sodium and potassium of 10 ppm or less. In a sealed body using a curing agent in which sodium or potassium exceeds 10 ppm, moisture resistance may deteriorate when the semiconductor device is left under high temperature and high humidity for a long time.

[(C)球状溶融シリカ]
本発明の組成物において、(C)球状の溶融シリカ量は、組成物総重量の82〜87重量%である。前記下限値未満では、硬化物の吸湿量が大きくなり、耐リフロー特性が低下する場合がある。前記上限値を超えると、組成物の溶融粘度が高くなり、ワイヤー流れが生じて硬化物中に欠陥が生じ、凸反りが大きくなる場合がある。
[(C) Spherical fused silica]
In the composition of the present invention, the amount of (C) spherical fused silica is 82 to 87% by weight of the total weight of the composition. If it is less than the said lower limit, the moisture absorption amount of hardened | cured material may become large and a reflow-proof characteristic may fall. When the upper limit is exceeded, the melt viscosity of the composition increases, wire flow occurs, defects occur in the cured product, and convex warpage may increase.

球状溶融シリカの平均粒径(d50)は5〜40μmであることが好ましく、より好ましくは7〜30μmである。該平均粒径は、例えばレーザー回折・散乱法で測定することができる。 The average particle size (d 50 ) of the spherical fused silica is preferably 5 to 40 μm, more preferably 7 to 30 μm. The average particle diameter can be measured by, for example, a laser diffraction / scattering method.

球状充填剤は、樹脂成分との結合強度を強くするため、シランカップリング剤、チタネートカップリング剤などのカップリング剤で予め表面処理することが好ましい。このようなカップリング剤としては、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン、N−β(アミノエチル)−γ−アミノプロピルトリメトキシシラン、イミダゾールとγ−グリシドキシプロピルトリメトキシシランの反応物、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン等のアミノシラン、γ−メルカプトシラン、γ−エピスルフィドキシプロピルトリメトキシシラン等のメルカプトシランなどのシランカップリング剤を用いることが好ましい。カップリング剤の配合量及び表面処理方法については従来法に従ってよい。   The spherical filler is preferably surface-treated in advance with a coupling agent such as a silane coupling agent or a titanate coupling agent in order to increase the bond strength with the resin component. As such a coupling agent, epoxy silane such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, N -Β (aminoethyl) -γ-aminopropyltrimethoxysilane, reaction product of imidazole and γ-glycidoxypropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, etc. It is preferable to use a silane coupling agent such as mercaptosilane such as aminosilane, γ-mercaptosilane, and γ-episulfideoxypropyltrimethoxysilane. The blending amount of the coupling agent and the surface treatment method may be in accordance with conventional methods.

[(D)硬化促進剤]
本発明の組成物は、エポキシ樹脂(A)と硬化剤(B)との反応を促進するため、下記(3)式で表される硬化促進剤(d1)及び(4)式で表される硬化促進剤(d2)を含む。

Figure 0005201451
は、互いに独立に、水素原子または炭素数1〜4のアルキル基、又はアルコキシ基であり、好ましくは水素原子である。

Figure 0005201451
は、互いに独立に、水素原子、炭素数1〜4のアルキル基、アルコキシ基、又はヒドロキシ基であり、好ましくは水素原子である。 [(D) Curing accelerator]
In order to accelerate the reaction between the epoxy resin (A) and the curing agent (B), the composition of the present invention is represented by the curing accelerators (d1) and (4) represented by the following formula (3). A curing accelerator (d2) is included.
Figure 0005201451
R 3 is independently of each other a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group, preferably a hydrogen atom.

Figure 0005201451
R 4 is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group, or a hydroxy group, preferably a hydrogen atom.

硬化促進剤(D)の組成物中の含有量は、(d1)と(d2)の合計質量が、成分(A)と成分(B)の合計100質量部に対して0.2〜3質量部、好ましくは0.9〜2質量部である。含有量が前記下限値未満では、硬化までの時間が長くなりすぎる為、生産性が低下する。前記上限値よりも大きくなると、硬化時間が短くなり、未充填、ワイヤー流れなどを引き起こす傾向がある。 As for content in the composition of a hardening accelerator (D), the total mass of (d1) and (d2) is 0.2-3 mass with respect to a total of 100 mass parts of a component (A) and a component (B). Part, preferably 0.9 to 2 parts by weight. If the content is less than the lower limit, the time until curing becomes too long, and the productivity is lowered. When it is larger than the upper limit, the curing time is shortened, which tends to cause unfilling, wire flow, and the like.

さらに、(d1)に対する(d2)の質量比、(d2)/(d1)、は0.3〜3、好ましくは0.5〜3である。(d1)と(d2)の合計質量が同じであっても、該質量比が前記下限値未満では硬化性が早くなり、充填性が不十分となる恐れがあり、前記上限値を超えると硬化性が不十分であり、反り、耐リフロー性が低下する場合がある。(d1)と(d2)は、そのまま配合しても硬化剤(B)と予混合した後に配合してもかまわない。   Further, the mass ratio of (d2) to (d1), (d2) / (d1), is 0.3 to 3, preferably 0.5 to 3. Even if the total mass of (d1) and (d2) is the same, if the mass ratio is less than the lower limit value, the curability may be accelerated and the filling property may be insufficient. Insufficient properties may cause warping and reflow resistance may decrease. (D1) and (d2) may be blended as they are or after being premixed with the curing agent (B).

本発明の樹脂組成物には、上記成分に加えて、必要に応じて各種の添加剤を配合することができる。例えば、カルナバワックス、脂肪酸エステル等の離型剤、カーボンブラック等の着色剤、モリブデン酸亜鉛担持タルク、モリブデン酸亜鉛担持亜鉛、ホスファゼン化合物、シリコーン化合物等の難燃剤、ハイドロタルサイト類、ビスマス化合物、希土類酸化物等のハロゲントラップ剤等が挙げられる。   In addition to the above components, various additives can be blended in the resin composition of the present invention as necessary. For example, release agents such as carnauba wax and fatty acid esters, colorants such as carbon black, zinc molybdate-supported talc, zinc molybdate-supported zinc, phosphazene compounds, flame retardants such as silicone compounds, hydrotalcites, bismuth compounds, Examples include halogen trapping agents such as rare earth oxides.

[エポキシ樹脂組成物の調製等]
本発明の封止樹脂組成物は、成分(A)〜(D)及び、所望により上記添加剤を、所定の組成比で配合し、これをミキサー等によって十分混合して均一にした後、熱ロール、ニーダー、エクストルーダー等による溶融混合処理を行い、次いで、冷却固化させた後、適当な大きさに粉砕して調製することができる。
[Preparation of epoxy resin composition, etc.]
In the sealing resin composition of the present invention, the components (A) to (D) and, if desired, the above additives are blended at a predetermined composition ratio, and this is mixed thoroughly by a mixer or the like to make it uniform. It can be prepared by carrying out a melt mixing process using a roll, a kneader, an extruder, etc., then cooling and solidifying, and then pulverizing to an appropriate size.

なお、組成物をミキサー等によって混合するに際して、ウエッターとしてシランカップリング剤を配合してよい。該シランカップリング剤としては、球状充填剤の表面処理に関して既に述べたものを使用することができる。   In addition, when mixing a composition with a mixer etc., you may mix | blend a silane coupling agent as a wetter. As the silane coupling agent, those already described with respect to the surface treatment of the spherical filler can be used.

このようにして得られる本発明の半導体封止用樹脂組成物は、各種の半導体装置の封止に有効に利用できる。封止の最も一般的な方法としては、低圧トランスファー成形法が挙げられ、その成形温度は150〜185℃で30〜180秒である。また、後硬化は150〜185℃で2〜20時間行うことが望ましい。 Thus obtained resin composition for encapsulating a semiconductor of the present invention can be effectively used for encapsulating various semiconductor devices. The most common method for sealing is a low-pressure transfer molding method, and the molding temperature is 150 to 185 ° C. and 30 to 180 seconds. Further, it is desirable to perform post-curing at 150 to 185 ° C. for 2 to 20 hours.

以下、実施例により、本発明をさらに説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not restrict | limited to the following Example.

[実施例1〜5、比較例1〜5]
表2に示す量(質量部)の各成分を、熱2本ロールにて均一に溶融混合した後、冷却し、次いで、粉砕して半導体封止用エポキシ樹脂組成物を得た。表中の各成分を下記に示す。
[Examples 1-5, Comparative Examples 1-5]
Each component (parts by mass) shown in Table 2 was uniformly melt-mixed with two hot rolls, cooled, then pulverized to obtain an epoxy resin composition for semiconductor encapsulation. Each component in the table is shown below.

(A)クレゾールノボラックエポキシ樹脂
(イ)(4)式のクレゾールノボラックエポキシ樹脂:EOCN−1020−55、日本化薬(株)製)

Figure 0005201451
(Mw=500)
(B)フェノールアラルキル硬化剤
(ロ)下記式(1)式で表されるフェノールアラルキル樹脂
Figure 0005201451
(式中 R及びRは水素、R及びRはメチル基、Mw=1,300)
(C)球状充填剤
(ホ)球状溶融シリカ:平均粒径12μm((株)龍森製)
(D)硬化促進剤
(ト)硬化促進剤(d1)
Figure 0005201451

(チ)硬化促進剤(d2):TPP−K(北興化学(株)製)
Figure 0005201451

その他の成分
(リ)離型剤:カルナバワックス、TOWAX132(東亜化成株式会社製)
(ヌ)シランカップリング剤:KBM−403、γ−グリシドキシプロピルトリメトキシシラン(信越化学工業(株)製)
(ル)着色剤:デンカブラック(電気化学工業(株)製)
比較例で使用の材料
(B)以外の硬化剤
(ハ)MEH−7800SS(明和化成(株)製)フェノール性水酸基当量175)

Figure 0005201451
(Mw=900)
(ニ)MEH−7851SS(明和化成(株)製)フェノール性水酸基当量199

Figure 0005201451
(Mw=760)
(ヘ)球状クリストバライト: 粒径26μm((株)龍森製) (A) Cresol novolac epoxy resin (A) Cresol novolac epoxy resin of formula (4): EOCN-1020-55, manufactured by Nippon Kayaku Co., Ltd.)

Figure 0005201451
(Mw = 500)
(B) Phenol aralkyl curing agent (b) Phenol aralkyl resin represented by the following formula (1)
Figure 0005201451
(Wherein R 1 and R 3 are hydrogen, R 2 and R 4 are methyl groups, Mw = 1,300)
(C) Spherical filler (e) Spherical fused silica: average particle size 12 μm (manufactured by Tatsumori)
(D) Curing accelerator (G) Curing accelerator (d1)
Figure 0005201451

(H) Curing accelerator (d2): TPP-K (manufactured by Hokuko Chemical Co., Ltd.)
Figure 0005201451

Other ingredients (Li) Release agent: Carnauba wax, TOWAX132 (manufactured by Toa Kasei Co., Ltd.)
(Nu) Silane coupling agent: KBM-403, γ-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.)
(L) Colorant: Denka Black (manufactured by Denki Kagaku Kogyo Co., Ltd.)
Curing agent other than the material (B) used in the comparative example (c) MEH-7800SS (manufactured by Meiwa Kasei Co., Ltd.) phenolic hydroxyl group equivalent 175)

Figure 0005201451
(Mw = 900)
(D) MEH-7851SS (Maywa Kasei Co., Ltd.) phenolic hydroxyl group equivalent 199

Figure 0005201451
(Mw = 760)
(F) Spherical cristobalite: particle size 26 μm (manufactured by Tatsumori)

得られた組成物を、以下の方法で評価した。結果を表2に示す。
(a)スパイラルフロー値
EMMI規格に準じた金型を使用して、175℃、6.9N/mmの条件で測定した。50インチ以上が好ましい。
(b)溶融粘度
高化式フローテスターを用い、10kgfの加圧下、直径1mmのノズルを用い、温度175℃で粘度を測定した。最低粘度が10Pa・s以下であることが好ましい。
(c)反り量
図1に示す断面構造、但し、表1に示すチップ数N(装置1:4×4、装置2:5×5)の半導体装置を作製した。表1のサイズF〜Lは、図2に示すとおりである。使用した基板及びダイボンド剤は以下のとおりである。
有機回路基板:CCL−HL−832、三菱ガス化学製、ガラス転移温度180℃、ガラス転移温度以下熱膨張係数1.5×10−5/℃、ガラス転移温度以上の熱膨張/収縮係数1.1×10−5/℃;
ダイボンド剤:Able6202C、日本Ablestick社製、ガラス転移温度40℃、ガラス転移温度以下の熱膨張7.0×10−5/℃、ガラス転移温度超の熱膨張係数35.0×10−5/℃、硬化後の厚み50μm。
上記装置を、各組成物により、175℃、6.9N/mm、成形時間120秒で封止した。得られた半導体装置を、室温まで冷却した後、レーザー三次元測定機を用いて、対角線方向に高さの変位を測定し、変位差の最も大きい値を基板の反り量とした。表3において、凸型の反りの値を正の値、凹型の反りを負の値で表した。+/−500μm以下であることが好ましい。
The obtained composition was evaluated by the following methods. The results are shown in Table 2.
(A) Spiral flow value Using a mold conforming to the EMMI standard, measurement was performed under the conditions of 175 ° C. and 6.9 N / mm 2 . 50 inches or more are preferable.
(B) Melt viscosity Using a Koka flow tester, the viscosity was measured at a temperature of 175 ° C. using a nozzle having a diameter of 1 mm under a pressure of 10 kgf. The minimum viscosity is preferably 10 Pa · s or less.
(C) Warpage amount A semiconductor device having the cross-sectional structure shown in FIG. 1 but the number of chips N shown in Table 1 (device 1: 4 × 4, device 2: 5 × 5) was manufactured. The sizes F to L in Table 1 are as shown in FIG. The used substrates and die bonding agents are as follows.
Organic circuit board: CCL-HL-832, manufactured by Mitsubishi Gas Chemical Co., Ltd., glass transition temperature 180 ° C., coefficient of thermal expansion below glass transition temperature 1.5 × 10 −5 / ° C., coefficient of thermal expansion / shrinkage above glass transition temperature 1 × 10 −5 / ° C .;
Die-bonding agent: Able 6202C, manufactured by Japan Ablestick, glass transition temperature 40 ° C., thermal expansion below glass transition temperature 7.0 × 10 −5 / ° C., coefficient of thermal expansion above glass transition temperature 35.0 × 10 −5 / ° C. The thickness after curing is 50 μm.
The above device was sealed with each composition at 175 ° C., 6.9 N / mm 2 and a molding time of 120 seconds. After cooling the obtained semiconductor device to room temperature, the height displacement was measured in a diagonal direction using a laser three-dimensional measuring machine, and the largest value of the displacement difference was taken as the amount of warpage of the substrate. In Table 3, the value of the convex warp is represented by a positive value, and the value of the concave warp is represented by a negative value. It is preferably +/− 500 μm or less.

Figure 0005201451

(d)耐リフロー性
反り量の測定をした半導体装置2を、チップ毎に切断し、85℃/60%RHの恒温恒湿器に168時間放置した後、半導体パッケージの表面温度が、図3に示す変化を示すような温度プロフィールのIRリフローを3回通した後に、超音波探査装置を用いて内部クラック又は剥離の発生したチップ数を数えた。
Figure 0005201451

(D) The semiconductor device 2 whose reflow resistance warpage amount was measured was cut for each chip and left in a constant temperature and humidity chamber of 85 ° C./60% RH for 168 hours. After passing IR reflow of the temperature profile which shows the change shown in 3 times, the number of chips having internal cracks or peeling was counted using an ultrasonic probe.

Figure 0005201451
Figure 0005201451

実施例1〜5の組成物で封止された装置は、反りがいずれも500μm以下であり、耐リフロー性にも優れた。
これに対して、本発明の(B)成分以外の硬化剤を含む比較例1及び2の組成物で封止された装置、特に装置2は反りが大きかった。
球状シリカの量が少ない比較例3の組成物は装置1で、及び球状シリカの量が多い比較例4の組成物は装置2で、夫々、反りが大きくなった。
比較例5の組成物は、球状クリストバライトを含み、該組成物で封止された装置はリフロー工程でクラックが発生した。
The devices sealed with the compositions of Examples 1 to 5 all had a warp of 500 μm or less, and were excellent in reflow resistance.
On the other hand, the device sealed with the composition of Comparative Examples 1 and 2 containing a curing agent other than the component (B) of the present invention, particularly the device 2, was greatly warped.
The composition of Comparative Example 3 with a small amount of spherical silica was warped in apparatus 1, and the composition of Comparative Example 4 with a large amount of spherical silica was warped in apparatus 2, respectively.
The composition of Comparative Example 5 contained spherical cristobalite, and the device sealed with the composition was cracked during the reflow process.

ボードオンチップボールグリッドアレイパッケージの一例の断面図である。FIG. 6 is a cross-sectional view of an example of a board on chip ball grid array package. 実施例で作成したボードオンチップボールグリッドアレイパッケージ及び該パッケージ中の半導体素子の体積の求め方を示す平面図及び断面図である。It is the top view and sectional drawing which show how to obtain | require the board | substrate on-chip ball grid array package created in the Example, and the volume of the semiconductor element in this package. 実施例で使用したIRリフローの温度プロフィールを示す図である。It is a figure which shows the temperature profile of IR reflow used in the Example.

符号の説明Explanation of symbols

1 エポキシ樹脂組成物
2 半導体チップ
3 ダイボンド層
4 有機回路基板
5 ワイヤー
6 エポキシ樹脂組成物
DESCRIPTION OF SYMBOLS 1 Epoxy resin composition 2 Semiconductor chip 3 Die bond layer 4 Organic circuit board 5 Wire 6 Epoxy resin composition

Claims (5)

下記(A)〜(D)を含む半導体封止用エポキシ樹脂組成物
(A)クレゾールノボラックエポキシ樹脂
(B)下記(1)式で示されるフェノールアラルキル型樹脂のみから成る硬化剤を、組成物中に含まれるエポキシ基1モルに対して、該硬化剤中に含まれるフェノール性水酸基のモル比が0.8〜1.2となる量
Figure 0005201451
(mは0〜100の整数であり、R〜Rは、互いに独立に、水素原子、炭素数1〜6のアルキル基又はアリール基である)
(C)球状溶融シリカを、組成物総質量の82〜87質量%となる量
(D)下記(2)式で表される硬化促進剤(d1)及び(3)式で表される硬化促進剤(d2)を、合計で成分(A)と成分(B)の合計100質量部に対して0.2〜3質量部となる量、且つ、(d1)に対する(d2)の質量比が0.3〜3となる量
Figure 0005201451
(Rは、互いに独立に、水素原子または炭素数1〜4のアルキル基、又はアルコキシ基である)
Figure 0005201451
(Rは、互いに独立に、水素原子、炭素数1〜4のアルキル基、アルコキシ基、又はヒドロキシ基である)。
An epoxy resin composition for semiconductor encapsulation containing the following (A) to (D) (A) a cresol novolac epoxy resin (B) a curing agent consisting only of a phenol aralkyl type resin represented by the following formula (1): The amount by which the molar ratio of the phenolic hydroxyl group contained in the curing agent is 0.8 to 1.2 with respect to 1 mol of the epoxy group contained in
Figure 0005201451
(M is an integer of 0 to 100, and R 1 to R 4 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group)
(C) Spherical fused silica in an amount of 82 to 87% by mass of the total mass of the composition (D) Curing accelerators represented by the following formula (2) (d1) and curing acceleration represented by formula (3) The amount of the agent (d2) is 0.2 to 3 parts by mass with respect to the total of 100 parts by mass of the component (A) and the component (B), and the mass ratio of (d2) to (d1) is 0. .3 to 3
Figure 0005201451
(R 3 is, independently of each other, a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group)
Figure 0005201451
(R 4 are, independently of one another, a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group, or hydroxy group).
(C)球状溶融シリカの平均粒径(d50)が5〜40μmである請求項1記載の組成物。 (C) The composition of claim 1, wherein an average particle diameter of the spherical fused silica (d 50) is 5 to 40 m. 請求項1または2記載のエポキシ樹脂組成物の硬化物で封止された半導体装置。 A semiconductor device sealed with a cured product of the epoxy resin composition according to claim 1. 半導体装置の総体積のうち、半導体素子が占める体積が2132%である、請求項3記載の半導体装置 The semiconductor device according to claim 3, wherein a volume occupied by the semiconductor element is 21 to 32 % of the total volume of the semiconductor device. 基板に表面実装されている、請求項3または4記載の半導体装置。 The semiconductor device according to claim 3, wherein the semiconductor device is surface-mounted on a substrate.
JP2008109103A 2008-04-18 2008-04-18 Epoxy resin composition for semiconductor encapsulation Active JP5201451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008109103A JP5201451B2 (en) 2008-04-18 2008-04-18 Epoxy resin composition for semiconductor encapsulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008109103A JP5201451B2 (en) 2008-04-18 2008-04-18 Epoxy resin composition for semiconductor encapsulation

Publications (2)

Publication Number Publication Date
JP2009256512A JP2009256512A (en) 2009-11-05
JP5201451B2 true JP5201451B2 (en) 2013-06-05

Family

ID=41384355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008109103A Active JP5201451B2 (en) 2008-04-18 2008-04-18 Epoxy resin composition for semiconductor encapsulation

Country Status (1)

Country Link
JP (1) JP5201451B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017039944A (en) * 2016-10-05 2017-02-23 日立化成株式会社 Phenolic compound, method for producing the same, resin composition and electronic component device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08169939A (en) * 1994-12-20 1996-07-02 Sumitomo Metal Ind Ltd Epoxy resin composition suitable for semiconductor sealng
JPH09157353A (en) * 1995-12-08 1997-06-17 Sumitomo Metal Ind Ltd Epoxy resin composition suitable for semiconductor sealing
JP2005154717A (en) * 2003-10-31 2005-06-16 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP4565503B2 (en) * 2005-03-16 2010-10-20 信越化学工業株式会社 Epoxy resin composition and semiconductor device

Also Published As

Publication number Publication date
JP2009256512A (en) 2009-11-05

Similar Documents

Publication Publication Date Title
JP4386453B2 (en) Resin-sealed semiconductor device
KR100834351B1 (en) Epoxy Resin Composition for Encapsulating Multichip?Package and the Multichip?Package using the same
US20070207322A1 (en) Semiconductor encapsulating epoxy resin composition and semiconductor device
JP4827192B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2006282958A (en) Semiconductor-sealing epoxy resin composition and semiconductor device
JP2006328362A (en) Semiconductor-encapsulating epoxy resin composition and semiconductor device
JP5201451B2 (en) Epoxy resin composition for semiconductor encapsulation
JP4710200B2 (en) Manufacturing method of area mounting type semiconductor sealing epoxy resin composition and area mounting type semiconductor device
JP4496740B2 (en) Epoxy resin composition and semiconductor device
JP4950010B2 (en) Manufacturing method of epoxy resin composition for semiconductor encapsulation and manufacturing method of semiconductor device
TW202225244A (en) Resin composition for encapsulating semiconductor and semiconductor device
JP4491900B2 (en) Epoxy resin composition and semiconductor device
KR101266542B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device package using the same
JP5055778B2 (en) Epoxy resin composition, epoxy resin molding material and semiconductor device
JP5226387B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2008156403A (en) Epoxy resin composition for sealing semiconductor, and semiconductor device
JP2005325210A (en) Epoxy resin composition for sealing semiconductor and semiconductor device using the same
JP2009235164A (en) Semiconductor sealing epoxy resin composition, and single side sealing type semiconductor device manufactured by sealing semiconductor device using the composition
JP3915545B2 (en) Epoxy resin composition for sealing and single-side sealed semiconductor device
JP2009256475A (en) Epoxy resin composition for sealing semiconductor and semiconductor device using the same
JP3973137B2 (en) Epoxy resin composition and semiconductor device
JP2000281748A (en) Epoxy resin composition and semiconductor device
JP2006022188A (en) Epoxy resin composition and method for producing the same and semiconductor device
JP2002241588A (en) Sealing epoxy resin composition and one side-sealing type semiconductor device
JP2002317102A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130131

R150 Certificate of patent or registration of utility model

Ref document number: 5201451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3