JP5201157B2 - Infrared imaging device - Google Patents

Infrared imaging device Download PDF

Info

Publication number
JP5201157B2
JP5201157B2 JP2010036119A JP2010036119A JP5201157B2 JP 5201157 B2 JP5201157 B2 JP 5201157B2 JP 2010036119 A JP2010036119 A JP 2010036119A JP 2010036119 A JP2010036119 A JP 2010036119A JP 5201157 B2 JP5201157 B2 JP 5201157B2
Authority
JP
Japan
Prior art keywords
infrared detection
detection pixel
line
infrared
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010036119A
Other languages
Japanese (ja)
Other versions
JP2011169857A (en
Inventor
大介 高室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010036119A priority Critical patent/JP5201157B2/en
Publication of JP2011169857A publication Critical patent/JP2011169857A/en
Application granted granted Critical
Publication of JP5201157B2 publication Critical patent/JP5201157B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、赤外線を熱に変換して検出する赤外線撮像素子に関する。   The present invention relates to an infrared imaging device that detects infrared rays by converting them into heat.

様々な分野で用いられる赤外線撮像素子において、冷却装置が不要な非冷却型の赤外線撮像素子がある。この非冷却型の赤外線撮像素子の一般的なものとして、基板に赤外線吸収部と熱電変換部とを備え、基板に接続される支持脚を介して中空に保持するように設けた赤外線検出画素を用いたものがある。これは入射される赤外線を赤外線吸収部が熱に変換し、熱電変換部が変換された熱による温度変化を電気信号に変換し、これを検出信号として出力するものである。また、赤外線撮像素子において微弱な熱変動に対する感度を向上させる為には、熱電変換部が受ける赤外線吸収部からの熱が支持脚を介して逃げないように支持脚の熱伝導率を低下させることが重要な要素の一つとなる。このため低熱伝導率の材料からなる支持脚を設計上可能な範囲でより細く、より長くレイアウトすることで支持脚の熱コンダクタンスを向上させて熱電変換部が受ける赤外線吸収部からの熱の逃げを抑制することが行なわれている。   Among infrared imaging devices used in various fields, there is an uncooled infrared imaging device that does not require a cooling device. As a general non-cooling type infrared imaging device, an infrared detection pixel provided with an infrared absorption part and a thermoelectric conversion part on a substrate and provided to be held hollow via a support leg connected to the substrate is provided. There is something used. In this method, incident infrared rays are converted into heat by the infrared absorption unit, and a temperature change due to the heat converted by the thermoelectric conversion unit is converted into an electrical signal, which is output as a detection signal. In addition, in order to improve sensitivity to weak thermal fluctuations in the infrared imaging device, the thermal conductivity of the support legs is reduced so that the heat from the infrared absorption part received by the thermoelectric conversion part does not escape via the support legs. Is one of the important factors. For this reason, the support legs made of a material with low thermal conductivity are made thinner and longer in the design range, and the heat conductance of the support legs is improved by laying out the support legs longer and heat escape from the infrared absorption part received by the thermoelectric conversion part. Suppression is done.

この赤外線検出画素が備える赤外線吸収部の領域を一つの画素領域として、2次元状に配列することで多画素化した画素エリアを備える赤外線撮像素子がある。従来の多画素化した赤外線撮像素子においては、各赤外線検出画素における熱電変換部を駆動する駆動線を各赤外線検出画素間の行方向に沿って配線し、各赤外線検出画素の検出信号を伝送する信号線を各赤外線検出画素間の列方向に沿って配線したうえで、各赤外線検出画素は隣接する駆動線の一方と支持脚を介して接続し、隣接する信号線の一方と支持脚を介して接続したものがある。このような構成によって各赤外線検出画素における熱電変換部の駆動を行単位で行い、検出信号の読み込みを列方向に時系列に読み込むことで赤外線撮像素子が備える画素全体の撮像結果を得ることを実現している。   There is an infrared imaging device including a pixel area that is multi-dimensionally arranged in a two-dimensional manner by using an infrared absorption portion included in the infrared detection pixel as one pixel region. In a conventional multi-pixel infrared imaging device, a drive line for driving a thermoelectric conversion unit in each infrared detection pixel is wired along the row direction between each infrared detection pixel, and a detection signal of each infrared detection pixel is transmitted. After wiring the signal lines along the column direction between the infrared detection pixels, each infrared detection pixel is connected to one of the adjacent drive lines via a support leg, and one of the adjacent signal lines is connected to the support leg. Connected. With such a configuration, the thermoelectric conversion unit in each infrared detection pixel is driven in units of rows, and the detection results are read in time series in the column direction to obtain the imaging results for the entire pixel included in the infrared imaging device. doing.

このような赤外線撮像素子の多画素化を進めていく上で、赤外線撮像素子そのものを小型化するには単位画素サイズの縮小が必要になり、従来の支持脚の構造をそのまま採用するとレイアウト長が短縮された支持脚による熱伝導の影響で感度の劣化が問題となる。そこで多画素化と高感度化とを実現する為に、支持脚を薄くすることで支持脚の熱コンダクタンスの低減を可能にし、熱電変換部からの熱の逃げを抑制するものがある(例えば、特許文献1参照)。   In proceeding with the increase in the number of pixels of the infrared imaging element, it is necessary to reduce the unit pixel size in order to reduce the size of the infrared imaging element itself. If the conventional support leg structure is used as it is, the layout length is increased. Sensitivity degradation becomes a problem due to the effect of heat conduction by the shortened support legs. Therefore, in order to realize a large number of pixels and high sensitivity, it is possible to reduce the thermal conductance of the support leg by thinning the support leg, and to suppress the escape of heat from the thermoelectric conversion part (for example, Patent Document 1).

特開2001−281065公報(第4頁、第2図)JP 2001-28165 A (page 4, FIG. 2)

しかしながら、特許文献1では、さらなる多画素化と高感度化とを実現するに当たって支持脚をさらに薄膜化を進めることは現状の製造プロセス技術では困難であり、支持脚における熱コンダクタンスの悪化による感度劣化を抑制する為には支持脚の線長を確保しなければならないという問題があった。一方、単位画素サイズが縮小する中で支持脚の線長を確保すれば赤外線検出画素の面積が小さくなる為、赤外線検出画素の面積を犠牲にすることとなり、面積縮小による感度の劣化を引き起こすというが問題があった。   However, in Patent Document 1, it is difficult to further reduce the thickness of the support leg in realizing the further increase in the number of pixels and the sensitivity, and it is difficult with the current manufacturing process technology, and the sensitivity deterioration due to the deterioration of the thermal conductance in the support leg. In order to suppress this, there was a problem that the line length of the support leg had to be secured. On the other hand, if the line length of the support leg is secured while the unit pixel size is reduced, the area of the infrared detection pixel is reduced, so that the area of the infrared detection pixel is sacrificed and the sensitivity is reduced due to the area reduction. There was a problem.

この発明は、上述のような問題を解決するためになされたもので、赤外線検出画素の面積を犠牲にすることなく、支持脚における熱コンダクタンスの悪化による感度劣化を抑制することができる赤外線撮像素子を得るものである。   The present invention has been made in order to solve the above-described problems, and an infrared imaging element capable of suppressing deterioration in sensitivity due to deterioration of thermal conductance in a support leg without sacrificing the area of the infrared detection pixel. Is what you get.

この発明に係る赤外線撮像素子においては、第一の支持脚及び第二の支持脚で基板に中空保持される赤外線検出画素が2次元配列された画素エリアと、赤外線検出画素に駆動信号を入力する駆動極を当該赤外線検出画素を保持する第一の支持脚を介して行毎に共通接続する駆動線と、赤外線検出画素の検出信号を出力する信号極を当該赤外線検出画素を保持する第二の支持脚を介して列毎に共通接続する信号線とを備え、駆動線は、絶縁層によって分離された2つの層を有する多層線を用いてそれぞれの赤外線検出画素に隣接する行方向のうち一方のみに配線され、それぞれの赤外線検出画素の駆動極は、当該赤外線検出画素に対して2番目に近接する駆動線と接続されるようにしたものである。
また、この発明に係る赤外線撮像素子においては、第一の支持脚及び第二の支持脚で基板に中空保持される赤外線検出画素が2次元配列された画素エリアと、赤外線検出画素に駆動信号を入力する駆動極を当該赤外線検出画素を保持する第一の支持脚を介して行毎に共通接続する駆動線と、赤外線検出画素の検出信号を出力する信号極を当該赤外線検出画素を保持する第二の支持脚を介して列毎に共通接続する信号線とを備え、信号線は、絶縁層によって分離された2つの層を有する多層線を用いてそれぞれの赤外線検出画素に隣接する列方向のうち一方のみに配線され、それぞれの赤外線検出画素の信号極は、当該赤外線検出画素に対して2番目に近接する信号線と接続されるようにしたものである。
In the infrared imaging device according to the present invention, a pixel area in which infrared detection pixels that are hollowly held on the substrate by the first support leg and the second support leg are two-dimensionally arranged, and a drive signal is input to the infrared detection pixel. A drive line that commonly connects the drive poles for each row via a first support leg that holds the infrared detection pixel, and a signal pole that outputs a detection signal of the infrared detection pixel is a second that holds the infrared detection pixel A signal line commonly connected to each column through a support leg, and the drive line is one of the row directions adjacent to each infrared detection pixel using a multilayer line having two layers separated by an insulating layer. only wired to the drive electrode of each of the infrared detection pixel is obtained by the so that is connected to a drive line close to the second with respect to the infrared detection pixel.
In the infrared imaging device according to the present invention, a pixel area in which infrared detection pixels that are hollowly held on the substrate by the first support leg and the second support leg are two-dimensionally arranged, and a drive signal is sent to the infrared detection pixel. A drive line for commonly connecting the drive electrodes to be input for each row via the first support legs for holding the infrared detection pixels, and a signal pole for outputting the detection signals of the infrared detection pixels are used for holding the infrared detection pixels. A signal line commonly connected to each column through two support legs, and the signal line is arranged in a column direction adjacent to each infrared detection pixel using a multilayer line having two layers separated by an insulating layer. Only one of them is wired, and the signal electrode of each infrared detection pixel is connected to the signal line closest to the infrared detection pixel.

この発明は、2次元配列された赤外線検出画素の行ごとおよび列ごとに接続される駆動線もしくは信号線に対して、駆動線もしくは信号線そのものを配線するのではなく、絶縁層によって分離された2つの層を有する多層線を用いて前記2つの層に前記駆動線を2つずつもしくは前記信号線を2つずつ設けるようにして配線することで、駆動線もしくは信号線の配線領域の一部が削減することが可能となる。これにより、削減された配線領域の一部を熱電変換部の面積拡大や支持脚の長さ確保に利用できる。従って、多画素化に対応する際に感度の劣化を抑制できる赤外線撮像素子を得ることが出来る。   In the present invention, the drive lines or signal lines connected to the rows and columns of the two-dimensionally arranged infrared detection pixels are separated by an insulating layer instead of wiring the drive lines or signal lines themselves. A part of the wiring region of the drive line or signal line is provided by using a multilayer line having two layers and wiring the two layers so that two drive lines or two signal lines are provided. Can be reduced. Thereby, a part of the reduced wiring area can be used for area expansion of the thermoelectric conversion part and securing of the length of the support leg. Therefore, it is possible to obtain an infrared imaging device capable of suppressing deterioration in sensitivity when dealing with the increase in the number of pixels.

この発明の実施の形態1を示す赤外線撮像素子の斜視図である。1 is a perspective view of an infrared imaging element showing Embodiment 1 of the present invention. この発明の実施の形態1の赤外線検出画素の模式図である。It is a schematic diagram of the infrared detection pixel of Embodiment 1 of this invention. この発明の実施の形態1を示す赤外線撮像素子における赤外線検出画素と支持脚とのレイアウト図である。FIG. 3 is a layout diagram of infrared detection pixels and support legs in the infrared imaging element showing Embodiment 1 of the present invention. この発明の実施の形態1を示す赤外線撮像素子における赤外線検出画素と支持脚とのレイアウト図の別例である。It is another example of the layout figure of the infrared detection pixel and support leg in the infrared image sensor which shows Embodiment 1 of this invention. この発明の実施の形態2を示す赤外線撮像素子における赤外線検出画素と支持脚とのレイアウト図である。It is a layout figure of the infrared detection pixel and support leg in the infrared image sensor which shows Embodiment 2 of this invention. この発明の実施の形態3を示す赤外線撮像素子における赤外線検出画素と支持脚とのレイアウト図である。It is a layout figure of the infrared detection pixel and support leg in the infrared image sensor which shows Embodiment 3 of this invention. この発明の実施の形態4を示す赤外線撮像素子における赤外線検出画素の模式図である。It is a schematic diagram of the infrared detection pixel in the infrared image sensor which shows Embodiment 4 of this invention.

実施の形態1.
図1は、この発明を実施するための実施の形態1における赤外線撮像素子の概略構成を示す斜視図である。図1に示すように、赤外線撮像素子は基板1上に赤外線検出画素2をM行×N列の2次元に配列されている。ここでMおよびNは自然数である。駆動線3aおよび3bを設ける多層線3は、行方向に沿って赤外線検出画素2と赤外線検出画素2の間に配線されており、各駆動線はそれぞれ所定の行に配列された赤外線検出画素2と駆動走査回路5又は8とに接続されている。信号線4は、列方向に沿って赤外線検出画素2と赤外線検出画素2の間に配線されており、各信号線はそれぞれ所定の行に配列された赤外線検出画素2と信号走査回路6又は9とに接続されている。また信号走査回路6は出力アンプ7に、信号走査回路9は出力アンプ10に接続される。多層線3は基板1上に斜線領域で示す絶縁層11の間に2つの配線層を備え、それぞれが第一の駆動線3aおよび第二の駆動線3bを設けている。また第一の駆動線3aおよび第二の駆動線3bは絶縁層11によって分割されているので電気的な接続関係にない。
Embodiment 1 FIG.
FIG. 1 is a perspective view showing a schematic configuration of an infrared imaging element according to Embodiment 1 for carrying out the present invention. As shown in FIG. 1, the infrared imaging element has infrared detection pixels 2 arranged on a substrate 1 in two dimensions of M rows × N columns. Here, M and N are natural numbers. The multilayer line 3 provided with the drive lines 3a and 3b is wired between the infrared detection pixel 2 and the infrared detection pixel 2 along the row direction, and each drive line is arranged in a predetermined row. And the drive scanning circuit 5 or 8. The signal line 4 is wired between the infrared detection pixel 2 and the infrared detection pixel 2 along the column direction, and each signal line is connected to the infrared detection pixel 2 and the signal scanning circuit 6 or 9 arranged in a predetermined row, respectively. And connected to. The signal scanning circuit 6 is connected to the output amplifier 7, and the signal scanning circuit 9 is connected to the output amplifier 10. The multilayer line 3 is provided with two wiring layers between the insulating layers 11 indicated by hatching on the substrate 1, and each has a first drive line 3 a and a second drive line 3 b. Further, since the first drive line 3a and the second drive line 3b are divided by the insulating layer 11, they are not electrically connected.

第一の駆動線3aおよび第二の駆動線3bは、例えばアルミニウム、チタン、窒化チタン、タングステン、タングステンシリサイドなどからなるものである。また特に、第一の駆動線3aおよび第二の駆動線3bと信号線4とが交差する部分においては、導電性シリコンおよびタングステン、チタン、コバルト、タンタル、プラチナ、モリブデン等の高融点金属や、これら高融点金属のシリサイド等で接続するように配線してもよい。このようにアルミニウム等の配線材料に代えて、高融点の材料を用いることにより、後の工程で形成される層間絶縁膜を形成温度の高い熱CVD(Chemical Vapor Deposition)法等で形成することができる。また第一の駆動線3aおよび第二の駆動線3bは配線の太さを同じ、あるいは抵抗値を同じにすることが好ましい   The first drive line 3a and the second drive line 3b are made of, for example, aluminum, titanium, titanium nitride, tungsten, tungsten silicide, or the like. In particular, in the portion where the first drive line 3a and the second drive line 3b intersect with the signal line 4, conductive silicon and a refractory metal such as tungsten, titanium, cobalt, tantalum, platinum, molybdenum, The wiring may be made so as to be connected by silicide of these refractory metals. In this manner, by using a material having a high melting point instead of a wiring material such as aluminum, an interlayer insulating film formed in a later step can be formed by a thermal CVD (Chemical Vapor Deposition) method having a high formation temperature. it can. Further, it is preferable that the first drive line 3a and the second drive line 3b have the same wiring thickness or the same resistance value.

図2は、図1の赤外線撮像素子において断面A部分の赤外線検出画素2周辺を水平方向から示した模式図である。図2において、11は絶縁膜、12は赤外線吸収部、13はエッチングホール、14は空洞、15aおよび15bは支持脚、16は熱電変換部、17は絶縁膜、18は薄膜配線、19は信号線である。   FIG. 2 is a schematic diagram showing the periphery of the infrared detection pixel 2 in the section A in the infrared imaging device of FIG. 1 from the horizontal direction. In FIG. 2, 11 is an insulating film, 12 is an infrared absorbing part, 13 is an etching hole, 14 is a cavity, 15a and 15b are support legs, 16 is a thermoelectric conversion part, 17 is an insulating film, 18 is a thin film wiring, and 19 is a signal. Is a line.

図2に示すように、基板1にエッチングホール13を介したエッチングにより凹状の空洞14を形成し、その空洞14に支持脚15aおよび15bで熱電変換部16を中空に保持されている。赤外線検出画素2は、絶縁膜17(埋め込み酸化膜)上に設けられた熱電変換部16と、その熱電変換部16の上に赤外線吸収部12が設けられて構成される。   As shown in FIG. 2, a concave cavity 14 is formed in the substrate 1 by etching through an etching hole 13, and the thermoelectric conversion portion 16 is held hollow by support legs 15 a and 15 b in the cavity 14. The infrared detection pixel 2 includes a thermoelectric conversion unit 16 provided on an insulating film 17 (buried oxide film), and an infrared absorption unit 12 provided on the thermoelectric conversion unit 16.

図2における赤外線吸収部12は、傘構造をしており、赤外線吸収膜である酸化インジウム、酸化亜鉛、酸化スズ、ITO(酸化インジウムスズ)などの導電性酸化物薄膜、チタン、クロム、ニクロムなどの金属薄膜や窒化チタン、窒化バナジウムなどの金属化合物薄膜とこれを保持する誘電体膜からなる。   The infrared absorption section 12 in FIG. 2 has an umbrella structure and is an infrared absorption film such as indium oxide, zinc oxide, tin oxide, ITO (indium tin oxide) conductive oxide thin film, titanium, chromium, nichrome, etc. And a metal compound thin film such as titanium nitride and vanadium nitride and a dielectric film holding the metal compound thin film.

熱電変換部16は、pn接合ダイオード、トランジスタ等、温度によって電気特性が変化する感温素子によって構成される。例えば熱電変換部16をpn接合ダイオードとする場合、pn接合ダイオードの陽極に駆動信号として所定の電圧を与えることで、陰極より出力される電位信号は、熱電変換部16が赤外線吸収部12から受けた熱に応じた電位信号となる。   The thermoelectric conversion unit 16 is configured by a temperature sensitive element whose electrical characteristics change with temperature, such as a pn junction diode or a transistor. For example, when the thermoelectric conversion unit 16 is a pn junction diode, by applying a predetermined voltage as a drive signal to the anode of the pn junction diode, the thermoelectric conversion unit 16 receives the potential signal output from the cathode from the infrared absorption unit 12. It becomes a potential signal according to the heat.

また絶縁膜17は、熱電変換部16の熱容量に含まれるため、より薄い方が熱容量が小さくなる。そこで絶縁膜17はシリコン基板上に酸化シリコン層を介してシリコン層が形成されたSOI(Silicon On Insulator)基板であることが好ましい。このSOI基板を用いることによりSOI層にpn接合ダイオードを形成し、熱電変換部16とすることができる。この場合、信号読み出し回路と感温素子を汎用の半導体プロセスで同時に形成できる為、高い歩留りで量産に適した赤外線撮像素子を作ることができる。   Moreover, since the insulating film 17 is included in the heat capacity of the thermoelectric conversion unit 16, the thinner one has a smaller heat capacity. Therefore, the insulating film 17 is preferably an SOI (Silicon On Insulator) substrate in which a silicon layer is formed on a silicon substrate via a silicon oxide layer. By using this SOI substrate, a pn junction diode can be formed in the SOI layer, and the thermoelectric converter 16 can be formed. In this case, since the signal readout circuit and the temperature sensitive element can be simultaneously formed by a general-purpose semiconductor process, an infrared imaging element suitable for mass production can be manufactured with a high yield.

支持脚15aおよび15bは、一方の支持脚15aを赤外線検出画素2と多層線3とに接続し、他方の支持脚15bを赤外線検出画素2と信号線4とに接続することで赤外線検出画素2を中空保持する。また駆動線と接続された支持脚15a内に設けられた薄膜配線18は、熱電変換部16と駆動線とを電気的に接続する為の配線であり、信号線と接続された支持脚15b内に設けられた薄膜配線18は、熱電変換部16と信号線とを電気的に接続する為の配線である。   The support legs 15 a and 15 b connect one support leg 15 a to the infrared detection pixel 2 and the multilayer line 3, and connect the other support leg 15 b to the infrared detection pixel 2 and the signal line 4 to thereby detect the infrared detection pixel 2. Hold the hollow. The thin film wiring 18 provided in the support leg 15a connected to the drive line is a wiring for electrically connecting the thermoelectric converter 16 and the drive line, and in the support leg 15b connected to the signal line. The thin film wiring 18 provided in the wiring is a wiring for electrically connecting the thermoelectric converter 16 and the signal line.

ここで本実施の形態の赤外線撮像素子における動作を説明する。それぞれの赤外線検出画素2に設けた赤外線吸収部12は、入射された赤外線を熱に変換して当該赤外線検出画素2の熱電変換部16に供給する。この際、駆動走査回路5又は8が、行単位で該当する行の赤外線検出画素2の熱電変換部16を当該赤外線検出画素2に接続された駆動線を介して駆動させる。これによって駆動させた行の赤外線検出画素2の熱電変換部16が、供給された熱による温度変化を電気信号に変換した検出信号を接続された信号線に出力する。これを信号走査回路6又は9によって列ごとに走査しながら、駆動されている行の赤外線検出画素2の熱電変換部16から出力されるそれぞれの検出信号を取り込み出力アンプ7又は10に供給し出力する。この信号走査回路6又は9が時系列に取り込む動作を完了したら、駆動走査回路5又は8が次の行を駆動させて同様の取り込み動作を信号走査回路6又は9が行なう。このようにしてM行×N列分の赤外線検出信号を得られる。またここでは1画面(M行×N列分)の検出にかかる時間を短縮する為、駆動走査回路、信号走査回路、及び出力アンプを2セットずつ持つことで、この走査制御を分割して並列動作させている。   Here, the operation of the infrared imaging device of the present embodiment will be described. The infrared absorption unit 12 provided in each infrared detection pixel 2 converts incident infrared rays into heat and supplies the heat to the thermoelectric conversion unit 16 of the infrared detection pixel 2. At this time, the drive scanning circuit 5 or 8 drives the thermoelectric conversion units 16 of the infrared detection pixels 2 in the corresponding row in units of rows via a drive line connected to the infrared detection pixels 2. The thermoelectric conversion unit 16 of the infrared detection pixel 2 in the row thus driven outputs a detection signal obtained by converting a temperature change caused by the supplied heat into an electric signal to a connected signal line. While this is scanned for each column by the signal scanning circuit 6 or 9, each detection signal output from the thermoelectric conversion unit 16 of the infrared detection pixel 2 in the driven row is captured and supplied to the output amplifier 7 or 10 for output. To do. When the signal scanning circuit 6 or 9 completes the capturing operation in time series, the driving scanning circuit 5 or 8 drives the next row, and the signal scanning circuit 6 or 9 performs a similar capturing operation. In this way, infrared detection signals for M rows × N columns can be obtained. Here, in order to shorten the time required for detecting one screen (for M rows × N columns), this scanning control is divided and provided in parallel by having two sets of drive scanning circuits, signal scanning circuits, and output amplifiers. It is operating.

次に赤外線検出画素2と多層線3及び信号線4とを接続する支持脚のレイアウト例について説明する。図3(a)は、図1のm−2行目からm+1行目の赤外線検出画素2の一部を上から見た模式図である。この図でのmは3以上M−1以下の任意の自然数として示している。ここではm行目の赤外線検出画素2とm+1行目の赤外線検出画素2との間には多層線3が配線されず、m−1行目の赤外線検出画素2とm行目の赤外線検出画素2との間及びm+1行目の赤外線検出画素2とm+2行目の赤外線検出画素2との間に多層線3が配線されている。   Next, an example of the layout of the support legs that connect the infrared detection pixels 2 to the multilayer lines 3 and the signal lines 4 will be described. FIG. 3A is a schematic view of a part of the infrared detection pixels 2 in the (m-2) th to (m + 1) th rows in FIG. 1 as viewed from above. M in this figure is shown as an arbitrary natural number of 3 or more and M-1 or less. Here, the multilayer line 3 is not wired between the infrared detection pixel 2 in the m-th row and the infrared detection pixel 2 in the m + 1-th row, and the infrared detection pixel 2 in the m-1 row and the infrared detection pixel in the m-th row. 2 and between the infrared detection pixel 2 in the (m + 1) th row and the infrared detection pixel 2 in the (m + 2) th row.

図3(b)は、図3(a)の断面Bを示す。断面Bは、多層線3とm−2行目の赤外線検出画素2を保持する支持脚15aとの接続点であって、多層線3内部に設けられた第一の駆動線3aと支持脚15a内部に設けられた薄膜配線18とが接続されていることを示す。また図3(c)は、図3(a)の断面Cを示す。断断面Cは、多層線3とm+1行目の赤外線検出画素2を保持する支持脚15aとの接続点であって、多層線3内部に設けられた第二の駆動線3bと支持脚15a内部に設けられた薄膜配線18とが接続されていることを示す。   FIG. 3B shows a cross section B of FIG. The cross section B is a connection point between the multilayer line 3 and the support leg 15a that holds the infrared detection pixels 2 in the (m-2) th row, and the first drive line 3a and the support leg 15a provided inside the multilayer line 3 are. It shows that the thin film wiring 18 provided inside is connected. FIG. 3C shows a cross section C of FIG. The section C is a connection point between the multilayer line 3 and the support leg 15a holding the infrared detection pixels 2 in the (m + 1) th row, and the second drive line 3b provided inside the multilayer line 3 and the inside of the support leg 15a. It is shown that the thin film wiring 18 provided in is connected.

これらの接続関係から、m−1行目とm行目の間に配線された多層線3の内部に設けられた駆動線3aは、m−2行目の熱電変換部16に接続され、駆動線3bは、m+1行目の熱電変換部16に接続されることになる。この接続関係は他の多層線3においても同様である。またこの際、1行目の赤外線検出画素2と隣接する多層線3の内部に設けられた駆動線3a用の内層及びM行目の赤外線検出画素2と隣接する多層線3の内部に設けられた駆動線3b用の内層はここでは使用されない。従って一番端に配線されるものは多層構造を持つ必要はない。   From these connection relationships, the drive line 3a provided inside the multilayer line 3 wired between the m-1 and m rows is connected to the thermoelectric conversion unit 16 in the m-2 row and driven. The line 3b is connected to the thermoelectric conversion unit 16 in the (m + 1) th row. This connection relationship is the same for the other multilayer wires 3. At this time, the inner layer for the drive line 3a provided in the multilayer line 3 adjacent to the infrared detection pixel 2 in the first row and the multilayer line 3 adjacent to the infrared detection pixel 2 in the Mth row are provided. The inner layer for the drive line 3b is not used here. Therefore, what is wired at the end need not have a multilayer structure.

以上のように、2次元配列された赤外線検出画素2の行ごとに接続される駆動線に対して、駆動線そのものを配線するのではなく、絶縁層によって分離された2つの層を有する多層線3を用いて前記2つの層に前記駆動線を2つずつ設けるようにして配線することで、従来それぞれの赤外線検出画素2に必要とされていた駆動線において2本分の配線領域が1本分の配線領域で済むこととなる。これにより、削減された配線領域の一部を赤外線検出画素2の領域拡大や支持脚15aおよび15bの長さ確保に利用できる。従って、多画素化に対応する際に感度の劣化を抑制できる赤外線撮像素子を得ることが出来る。   As described above, the drive line connected to each row of the two-dimensionally arranged infrared detection pixels 2 is not wired with the drive line itself, but has a multilayer line having two layers separated by an insulating layer. 3, wiring is performed so that two drive lines are provided in each of the two layers, so that one wiring region for two drive lines conventionally required for each infrared detection pixel 2 is provided. The wiring area for a minute is sufficient. Thereby, a part of the reduced wiring area can be used for expanding the area of the infrared detection pixel 2 and securing the length of the support legs 15a and 15b. Therefore, it is possible to obtain an infrared imaging device capable of suppressing deterioration in sensitivity when dealing with the increase in the number of pixels.

また、ある多層線に対して、隣接する赤外線検出画素における熱電変換部ではなく、さらに隣の赤外線検出画素2における熱電変換部と接続するようにすることで、支持脚の配線長を長くレイアウトすることが可能となる為、支持脚の熱コンダクタンスを向上させて熱電変換部が受ける赤外線吸収部からの熱の逃げに対する抑制力が大きくなるという効果を奏する。   In addition, the wiring length of the support legs is laid out longer by connecting the multilayered line to the thermoelectric conversion unit in the adjacent infrared detection pixel 2 instead of the thermoelectric conversion unit in the adjacent infrared detection pixel. Therefore, the thermal conductance of the support leg is improved, and the effect of suppressing the heat escape from the infrared absorption unit received by the thermoelectric conversion unit is increased.

図4は、支持脚15aおよび15bの引き回し形状における他の一例を示すものであり、m行目の赤外線検出画素の支持脚15aとm+1行目の赤外線検出画素の支持脚15aとの引き回し形状を同じ形状にし、m行目の赤外線検出画素の支持脚15bとm+1行目の赤外線検出画素の支持脚15bとの引き回し形状を同じ形状にしたものである。このように、それぞれの赤外線検出画素の支持脚15aおよび15bの引き回し形状が均一化するので、内部応力による熱電変換部16の傾きを抑制することができる。   FIG. 4 shows another example of the routing shape of the support legs 15a and 15b. The routing shape of the support leg 15a of the m-th row infrared detection pixel and the support leg 15a of the m + 1-th row infrared detection pixel is shown. The support legs 15b of the m-th infrared detection pixels and the support legs 15b of the m + 1-th infrared detection pixels are made to have the same shape. As described above, since the routing shapes of the support legs 15a and 15b of the respective infrared detection pixels are made uniform, the inclination of the thermoelectric conversion unit 16 due to internal stress can be suppressed.

実施の形態2.
実施の形態1では駆動線を多層線にするように構成したが、信号線を多層線にしても構わない。図5(a)はこの発明の実施の形態2の赤外線撮像素子における赤外線検出画素と支持脚とのレイアウト図を示すものであり、n−2列目からn+1列めの赤外線検出画素2の一部を上から見た模式図である。ここでnは3以上N−1以下の任意の自然数である。ここではn列目の赤外線検出画素2とn+1列目の赤外線検出画素2との間には多層線4が配線されず、n−1列目の赤外線検出画素2とn列目の赤外線検出画素2との間及びn+1列目の赤外線検出画素2とn+2列目の赤外線検出画素2との間に多層線4が配線されている。
Embodiment 2. FIG.
In the first embodiment, the drive line is configured to be a multilayer line, but the signal line may be a multilayer line. FIG. 5A shows a layout diagram of the infrared detection pixels and the support legs in the infrared imaging element according to Embodiment 2 of the present invention. One of the infrared detection pixels 2 in the (n−2) th column to the (n + 1) th column is shown in FIG. It is the schematic diagram which looked at the part from the top. Here, n is an arbitrary natural number of 3 to N-1. Here, the multilayer line 4 is not wired between the infrared detection pixel 2 in the nth column and the infrared detection pixel 2 in the (n + 1) th column, and the infrared detection pixel 2 in the (n−1) th column and the infrared detection pixel in the nth column. 2 and between the infrared detection pixels 2 in the (n + 1) th column and the infrared detection pixels 2 in the (n + 2) th column.

図5(b)は、図5(a)の断面Dを示す。断面Dは、多層線4とn−2列目の赤外線検出画素2を保持する支持脚15bとの接続点であって、多層線4内部に設けられた第一の信号線4aと支持脚15b内部に設けられた薄膜配線18とが接続されていることを示す。また図5(c)は、図5(a)の断面Eを示す。断断面Eは、多層線4とn+1列目の赤外線検出画素2を保持する支持脚15bとの接続点であって、多層線4内部に設けられた第二の信号線4bと支持脚15b内部に設けられた薄膜配線18とが接続されていることを示す。   FIG.5 (b) shows the cross section D of Fig.5 (a). A section D is a connection point between the multilayer line 4 and the support leg 15b that holds the infrared detection pixels 2 in the (n-2) th column, and the first signal line 4a and the support leg 15b provided inside the multilayer line 4 are. It shows that the thin film wiring 18 provided inside is connected. FIG. 5C shows a cross section E of FIG. The section E is a connection point between the multilayer line 4 and the support leg 15b that holds the n + 1-th infrared detection pixels 2, and the second signal line 4b provided inside the multilayer line 4 and the inside of the support leg 15b. It is shown that the thin film wiring 18 provided in is connected.

図5の示すように、n−1列目の赤外線検出画素2とn列目の赤外線検出画素2との間に配線される多層線4内部に設けられた第一の信号線4aと、n−2列目の赤外線検出画素2を保持する支持脚15b内部に設けられた薄膜配線18とを接続し、これを介して、n−2列目の熱電変換部16に接続される。他方、n−1列目の赤外線検出画素2とn列目の赤外線検出画素2との間に配線される多層線4内部に設けられた第二の信号線4bと、n+1列目の赤外線検出画素2を保持する支持脚15b内部に設けられた薄膜配線18とを接続し、これを介して、n+1列目の熱電変換部16に接続される。   As shown in FIG. 5, a first signal line 4a provided inside a multilayer line 4 wired between the infrared detection pixel 2 in the (n-1) th column and the infrared detection pixel 2 in the nth column, and n The thin film wiring 18 provided in the support leg 15b holding the infrared detection pixels 2 in the -2nd column is connected, and is connected to the thermoelectric conversion unit 16 in the (n-2) th column via this. On the other hand, the second signal line 4b provided in the multilayer line 4 wired between the infrared detection pixel 2 in the (n-1) th column and the infrared detection pixel 2 in the nth column, and the infrared detection in the (n + 1) th column. The thin film wiring 18 provided in the support leg 15b holding the pixel 2 is connected to the thermoelectric conversion unit 16 in the (n + 1) th column via the thin film wiring 18.

これらの接続関係から、n−1列目とn列目の間に配線された多層線4の内部に設けられた信号線4aは、n−2列目の赤外線検出画素2における熱電変換部16に接続され、信号線4bは、n+1列目の赤外線検出画素2における熱電変換部16に接続されることになる。この接続関係は他の多層線4においても同様である。この際、1列目の赤外線検出画素2と隣接する多層線4の内部に設けられた信号線4a用の内層及びN列目の赤外線検出画素2と隣接する多層線4の内部に設けられた信号線4b用の内層はここでは使用されない。従って一番端に配線されるものは多層構造を持つ必要はない。   From these connection relations, the signal line 4a provided inside the multilayer line 4 wired between the (n-1) th column and the nth column is connected to the thermoelectric conversion unit 16 in the infrared detection pixel 2 in the (n-2) th column. The signal line 4b is connected to the thermoelectric conversion unit 16 in the infrared detection pixel 2 in the (n + 1) th column. This connection relationship is the same for the other multilayer wires 4. At this time, the inner layer for the signal line 4a provided in the multilayer line 4 adjacent to the infrared detection pixel 2 in the first column and the multilayer line 4 adjacent to the infrared detection pixel 2 in the Nth column are provided. The inner layer for the signal line 4b is not used here. Therefore, what is wired at the end need not have a multilayer structure.

以上のように、2次元配列された赤外線検出画素2の列ごとに接続される信号線に対して、信号線そのものを配線するのではなく、絶縁層によって分離された2つの層を有する多層線4を用いて前記2つの層に前記信号線を2つずつ設けるようにして配線することで、従来それぞれの赤外線検出画素2に必要とされていた信号線において2本分の配線領域が1本分の配線領域で済むこととなる。これにより、削減された配線領域の一部を赤外線検出画素2の領域拡大や支持脚15aおよび15bの長さ確保に利用できる。従って、実施の形態1と同様に所期の目的を達成し得ることはいうまでもない。   As described above, the signal line connected to each column of the two-dimensionally arranged infrared detection pixels 2 is not wired with the signal line itself, but is a multilayer line having two layers separated by an insulating layer. 4 is provided so that two signal lines are provided in each of the two layers, thereby providing one wiring area for two signal lines that are conventionally required for each infrared detection pixel 2. The wiring area for a minute is sufficient. Thereby, a part of the reduced wiring area can be used for expanding the area of the infrared detection pixel 2 and securing the length of the support legs 15a and 15b. Therefore, it goes without saying that the intended purpose can be achieved as in the first embodiment.

実施の形態3.
実施の形態1では駆動線を多層線にし、実施の形態2では信号線を多層線にするように構成したが、駆動線と信号線とを両方多層線にして配線領域を削減することで赤外線検出画素2の画素領域拡大や支持脚15aおよび15bの長さ確保に利用できる。図6(a)はこの発明の実施の形態3を示すものであり、m−1行n−1列からm+2行n+2列の赤外線検出画素2の一部を上から見た模式図である。この図においてnは2以上N−2以下の任意の自然数、mは2以上M−2以下の任意の自然数である。図6(b)に断面Fを示す。ここではm行目の赤外線検出画素2とm+1行目の赤外線検出画素2との間と、n列目の赤外線検出画素2とn+1列目の赤外線検出画素2との間には多層線3および40が配線されず、m−1行目の赤外線検出画素2とm行目の赤外線検出画素2との間及びm+1行目の赤外線検出画素2とm+2行目の赤外線検出画素2との間に多層線3が、n−1列目の赤外線検出画素2とn列目の赤外線検出画素2との間及びn+1列目の赤外線検出画素2とn+2列目の赤外線検出画素2との間に多層線4が配線されている。
Embodiment 3 FIG.
In the first embodiment, the drive line is configured as a multilayer line, and in the second embodiment, the signal line is configured as a multilayer line. However, both the drive line and the signal line are configured as multilayer lines, thereby reducing the wiring area. This can be used to enlarge the pixel area of the detection pixel 2 and to secure the length of the support legs 15a and 15b. FIG. 6A shows a third embodiment of the present invention, and is a schematic view of a part of infrared detection pixels 2 from m−1 rows and n−1 columns to m + 2 rows and n + 2 columns as viewed from above. In this figure, n is an arbitrary natural number of 2 or more and N-2 or less, and m is an arbitrary natural number of 2 or more and M-2 or less. FIG. 6B shows a cross section F. Here, between the infrared detection pixel 2 in the m-th row and the infrared detection pixel 2 in the (m + 1) -th row, and between the infrared detection pixel 2 in the n-th column and the infrared detection pixel 2 in the (n + 1) -th row, the multilayer line 3 and 40 is not wired, and between the m-1 row infrared detection pixel 2 and the mth row infrared detection pixel 2 and between the m + 1 row infrared detection pixel 2 and the m + 2 row infrared detection pixel 2. A multilayer line 3 is formed between the infrared detection pixel 2 in the (n-1) th column and the infrared detection pixel 2 in the nth column and between the infrared detection pixel 2 in the (n + 1) th column and the infrared detection pixel 2 in the (n + 2) th column. Line 4 is wired.

この際、m行n列目の赤外線検出画素2に設けられる熱電変換部16にはn−1列目の赤外線検出画素2とn列目の赤外線検出画素2との間に配線される多層線4に設けられた信号線4bが支持脚15bを介して接続され、n+1列目の赤外線検出画素2に設けられる熱電変換部16にはn+1列目の赤外線検出画素2とn+2列目の赤外線検出画素2との間に配線される多層線4に設けられた信号線4aが支持脚15bを介して接続される。   In this case, the thermoelectric conversion unit 16 provided in the m-th row and n-th column infrared detection pixel 2 is a multilayer line wired between the n-1th column infrared detection pixel 2 and the n-th column infrared detection pixel 2. 4 is connected via a support leg 15b, and the thermoelectric converter 16 provided in the infrared detection pixel 2 in the (n + 1) th column includes the infrared detection pixel 2 in the (n + 1) th column and the infrared detection in the (n + 2) th column. A signal line 4a provided on the multilayer line 4 wired between the pixel 2 and the pixel 2 is connected via a support leg 15b.

以上のように、2次元配列された赤外線検出画素2の列ごとに接続される駆動線および信号線に対して、駆動線および信号線そのものを配線するのではなく、絶縁層によって分離された2つの層を有する多層線3および4を用いて前記2つの層に前記駆動線を2つずつ、もしくは前記信号線を2つずつ設けるようにして配線することで、従来それぞれの赤外線検出画素2に必要とされていた駆動線および信号線において計2本分の配線領域が削減できることとなる。これにより、削減された配線領域の一部を赤外線検出画素2の領域拡大や支持脚15aおよび15bの長さ確保に利用できる。従って、画素に対して必要な配線領域がさらに削減できることから、さらなる感度の向上の効果を奏する赤外線撮像素子を得ることが可能になる。   As described above, the drive lines and the signal lines themselves are not wired to the drive lines and the signal lines connected to each column of the two-dimensionally arranged infrared detection pixels 2 but separated by the insulating layer. By using multilayer lines 3 and 4 having two layers and wiring the two layers so that two drive lines are provided or two signal lines are provided, each of the conventional infrared detection pixels 2 is provided. A total of two wiring areas can be reduced in the required drive lines and signal lines. Thereby, a part of the reduced wiring area can be used for expanding the area of the infrared detection pixel 2 and securing the length of the support legs 15a and 15b. Therefore, since the wiring area required for the pixels can be further reduced, it is possible to obtain an infrared imaging device that can further improve the sensitivity.

実施の形態4.
図7(a)はこの発明の実施の形態4を示す赤外線撮像素子における赤外線検出画素を示すものである。図7(a)において、11は絶縁膜、12は赤外線吸収部、13はエッチングホール、14は空洞、15aおよび15bは支持脚、16は熱電変換部、17は絶縁膜、18は薄膜配線、19は信号線である。ここで図7(a)においても図1の赤外線撮像素子における断面A部分を水平方向から示した模式図である。図7(a)のように、支持脚15aおよび15bを熱電変換部16上で接続することで赤外線検出画素2を中空保持するように構成する。このような構成にすることで、図7(b)のm行目及びm+1行目の赤外線検出画素2と支持脚15aおよび15bとのレイアウト図のように支持脚15aおよび15bのレイアウト領域に依存して熱電変換部16の領域を小さくする必要がなくなる。
Embodiment 4 FIG.
FIG. 7 (a) shows an infrared detection pixel in the infrared imaging element showing Embodiment 4 of the present invention. In FIG. 7A, 11 is an insulating film, 12 is an infrared absorbing part, 13 is an etching hole, 14 is a cavity, 15a and 15b are support legs, 16 is a thermoelectric conversion part, 17 is an insulating film, 18 is a thin film wiring, Reference numeral 19 denotes a signal line. Here, FIG. 7A is also a schematic diagram showing a cross section A portion of the infrared imaging device of FIG. 1 from the horizontal direction. As shown in FIG. 7A, the support legs 15a and 15b are connected on the thermoelectric converter 16 so that the infrared detection pixel 2 is held hollow. With such a configuration, it depends on the layout area of the support legs 15a and 15b as shown in the layout diagram of the infrared detection pixels 2 and the support legs 15a and 15b in the m-th and m + 1-th lines in FIG. 7B. Thus, it is not necessary to reduce the area of the thermoelectric conversion unit 16.

また、熱電変換部16がpnダイオードで構成される場合にはショット雑音という物性で決まる成分と、1/f雑音のような構造やプロセス方法によって変わる成分があり、これらによって赤外線撮像素子が持つ信号対雑音比の性能が影響される。この1/f雑音はキャリア捕獲準位がある部分の体積、一般的には熱電変換部16全体積と相関があり、熱電変換部16ができるだけ大きな体積を持つ方が1/f雑音を小さくすることができ、低雑音化の効果を奏する。   In addition, when the thermoelectric conversion unit 16 is composed of a pn diode, there are a component determined by physical properties such as shot noise and a component that varies depending on the structure and process method such as 1 / f noise. The performance of the noise to noise ratio is affected. This 1 / f noise has a correlation with the volume of the portion where there is a carrier trap level, generally, the entire volume of the thermoelectric conversion unit 16, and the 1 / f noise is reduced when the thermoelectric conversion unit 16 has a volume as large as possible. It is possible to achieve a noise reduction effect.

以上のことから、図7(a)のように支持脚15aおよび15bを熱電変換部16上で接続することで赤外線検出画素2を中空保持するように構成することで、より支持脚のレイアウト配線長が確保しながらにして熱電変換部16全体積を確保できるので、上述した実施の形態1に示した赤外線検出画素よりも熱電変換部が受ける赤外線吸収部からの熱の逃げに対する抑制力が大きくし、さらに低雑音化の効果を奏する。   As described above, the support legs 15a and 15b are connected on the thermoelectric conversion unit 16 as shown in FIG. 7A so as to hold the infrared detection pixel 2 in a hollow state. Since the entire volume of the thermoelectric conversion unit 16 can be ensured while ensuring the length, the suppression force against the heat escape from the infrared absorption unit received by the thermoelectric conversion unit is larger than the infrared detection pixel shown in the first embodiment. In addition, the noise can be further reduced.

1 基板
2 赤外線検出画素
3 多層線
4 信号線
11 絶縁層
3a 駆動線
3b 駆動線
DESCRIPTION OF SYMBOLS 1 Substrate 2 Infrared detection pixel 3 Multi-layer line 4 Signal line 11 Insulating layer 3a Drive line 3b Drive line

Claims (2)

第一の支持脚及び第二の支持脚で基板に中空保持される赤外線検出画素が2次元配列された画素エリアと、
前記赤外線検出画素に駆動信号を入力する駆動極を当該赤外線検出画素を保持する第一の支持脚を介して行毎に共通接続する駆動線と、
前記赤外線検出画素の検出信号を出力する信号極を当該赤外線検出画素を保持する第二の支持脚を介して列毎に共通接続する信号線とを備え、
前記駆動線は、絶縁層によって分離された2つの層を有する多層線を用いてそれぞれの前記赤外線検出画素に隣接する行方向のうち一方のみに配線され
それぞれの前記赤外線検出画素の前記駆動極は、当該赤外線検出画素に対して2番目に近接する前記駆動線と接続されたことを特徴とする赤外線撮像素子。
A pixel area in which infrared detection pixels that are held hollow in the substrate by the first support leg and the second support leg are two-dimensionally arranged;
A drive line for commonly connecting a drive pole for inputting a drive signal to the infrared detection pixel for each row via a first support leg for holding the infrared detection pixel;
A signal line that outputs a detection signal of the infrared detection pixel, and a signal line that is commonly connected to each column via a second support leg that holds the infrared detection pixel;
The drive line is wired only in one of the row directions adjacent to each of the infrared detection pixels using a multilayer line having two layers separated by an insulating layer ,
The infrared imaging element , wherein the drive pole of each infrared detection pixel is connected to the drive line that is second closest to the infrared detection pixel .
第一の支持脚及び第二の支持脚で基板に中空保持される赤外線検出画素が2次元配列された画素エリアと、
前記赤外線検出画素に駆動信号を入力する駆動極を当該赤外線検出画素を保持する第一の支持脚を介して行毎に共通接続する駆動線と、
前記赤外線検出画素の検出信号を出力する信号極を当該赤外線検出画素を保持する第二の支持脚を介して列毎に共通接続する信号線とを備え、
前記信号線は、絶縁層によって分離された2つの層を有する多層線を用いてそれぞれの前記赤外線検出画素に隣接する列方向のうち一方のみに配線され
それぞれの前記赤外線検出画素の前記信号極は、当該赤外線検出画素に対して2番目に近接する前記信号線と接続されたことを特徴とする赤外線撮像素子。
A pixel area in which infrared detection pixels that are held hollow in the substrate by the first support leg and the second support leg are two-dimensionally arranged;
A drive line for commonly connecting a drive pole for inputting a drive signal to the infrared detection pixel for each row via a first support leg for holding the infrared detection pixel;
A signal line that outputs a detection signal of the infrared detection pixel, and a signal line that is commonly connected to each column via a second support leg that holds the infrared detection pixel;
The signal line is wired only in one of the column directions adjacent to each infrared detection pixel using a multilayer line having two layers separated by an insulating layer ,
The infrared imaging element , wherein the signal electrode of each infrared detection pixel is connected to the signal line that is second closest to the infrared detection pixel .
JP2010036119A 2010-02-22 2010-02-22 Infrared imaging device Active JP5201157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010036119A JP5201157B2 (en) 2010-02-22 2010-02-22 Infrared imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010036119A JP5201157B2 (en) 2010-02-22 2010-02-22 Infrared imaging device

Publications (2)

Publication Number Publication Date
JP2011169857A JP2011169857A (en) 2011-09-01
JP5201157B2 true JP5201157B2 (en) 2013-06-05

Family

ID=44684119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010036119A Active JP5201157B2 (en) 2010-02-22 2010-02-22 Infrared imaging device

Country Status (1)

Country Link
JP (1) JP5201157B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5738225B2 (en) * 2012-03-22 2015-06-17 三菱電機株式会社 Thermal infrared solid-state imaging device and manufacturing method thereof
EP3805718A4 (en) * 2018-06-05 2021-11-10 Sony Semiconductor Solutions Corporation Imaging device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140539A (en) * 1997-07-18 1999-02-12 Mitsuteru Kimura Semiconductor device with floating part and formation of floating single-crystal thin film
JP3605285B2 (en) * 1997-11-25 2004-12-22 三菱電機株式会社 Thermal infrared detector array
JP2000230857A (en) * 1999-02-12 2000-08-22 Nissan Motor Co Ltd Thermal type infrared sensor and thermal type infrared array element
JP4221940B2 (en) * 2002-03-13 2009-02-12 ソニー株式会社 Solid-state imaging device, solid-state imaging device, and imaging system
JP4264249B2 (en) * 2002-12-02 2009-05-13 富士フイルム株式会社 MOS type image sensor and digital camera
JP2010216819A (en) * 2009-03-13 2010-09-30 Toshiba Corp Non-cooled infrared image sensor

Also Published As

Publication number Publication date
JP2011169857A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
US7005644B2 (en) Thermal infrared detector and infrared focal plane array
KR100376925B1 (en) Infrared solid state image sensing device
JP6188433B2 (en) Solid-state imaging device
JP2010032410A (en) Image sensor and manufacturing method thereof
JP5959157B2 (en) Electromagnetic radiation detection device with low sensitivity to spatial noise
JP5201157B2 (en) Infrared imaging device
JP2011238897A (en) Detection device, manufacturing method thereof, and detection system
JP5936554B2 (en) Solid-state imaging device
US11322672B2 (en) Integrated thermoelectric structure, method for manufacturing an integrated thermoelectric structure, method for operating same as a detector, thermoelectric generator and thermoelectric Peltier element
JP2015037155A5 (en)
US20110049369A1 (en) Device to detect thermal radiation with high resolution method to manufacture and use the device
JP5359486B2 (en) Infrared imaging device
JP2009265091A (en) Highly isolated thermal detector
JP5919789B2 (en) Infrared imaging device
JP5725875B2 (en) Infrared detector and infrared solid-state image sensor
JP2004093535A (en) Thermal type infrared solid-state imaging device and its manufacturing method
JP2013120142A (en) Infrared imaging element and infrared imaging apparatus
JP5008580B2 (en) Infrared imaging device manufacturing method and infrared imaging device
JP6529679B2 (en) Infrared imaging device, infrared imaging array, and method of manufacturing infrared imaging device
JP6255527B1 (en) Solid-state imaging device
JP2009168613A (en) Infrared solid-state imaging device
JP3763822B2 (en) Infrared sensor
JP2002340685A (en) Thermal infrared detector array
US9068882B2 (en) Low power thermal imager
JP5978777B2 (en) Imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130128

R151 Written notification of patent or utility model registration

Ref document number: 5201157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250