JP5197932B2 - Powder microfeeder - Google Patents

Powder microfeeder Download PDF

Info

Publication number
JP5197932B2
JP5197932B2 JP2006186573A JP2006186573A JP5197932B2 JP 5197932 B2 JP5197932 B2 JP 5197932B2 JP 2006186573 A JP2006186573 A JP 2006186573A JP 2006186573 A JP2006186573 A JP 2006186573A JP 5197932 B2 JP5197932 B2 JP 5197932B2
Authority
JP
Japan
Prior art keywords
powder
compressed air
storage container
supply means
air supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006186573A
Other languages
Japanese (ja)
Other versions
JP2008013319A (en
Inventor
光司 二村
Original Assignee
株式会社ナルコ岩井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナルコ岩井 filed Critical 株式会社ナルコ岩井
Priority to JP2006186573A priority Critical patent/JP5197932B2/en
Publication of JP2008013319A publication Critical patent/JP2008013319A/en
Application granted granted Critical
Publication of JP5197932B2 publication Critical patent/JP5197932B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply Of Fluid Materials To The Packaging Location (AREA)
  • Jigging Conveyors (AREA)
  • Air Transport Of Granular Materials (AREA)

Description

本発明は、例えば数μmの粉体を微量ずつ被供給対象に供給する粉体微量供給装置に関する。   The present invention relates to a fine powder supply apparatus that supplies a small amount of powder of, for example, several μm to a supply target.

粉末染料や顔料を噴射して塗装を行う分野や、粉体の化学薬剤や貴金属の調合や配合等を行う分野では、粉体を定量供給する供給装置が用いられている。この種の装置としては、例えば、スクリューフィーダーやテーブルフィーダーを用いたもの(特許文献1等)、粉体を収容する容器を振動させて粉体を排出するもの(特許文献2等)等が公知である。
特開2004―151118号公報 特開2005―289632号公報
In the field of coating by spraying powder dyes and pigments, and the field of compounding and blending powder chemicals and precious metals, supply devices that supply powder in a fixed amount are used. As this type of device, for example, a device using a screw feeder or a table feeder (Patent Document 1 or the like), an apparatus for discharging a powder by vibrating a container that stores the powder (Patent Document 2 or the like), or the like is known. It is.
JP 2004-151118 A JP 2005-289632 A

上記のように粉体を供給する装置は各種知られているが、いずれも微量の供給を行うのは困難である。例えば、スクリューフィーダーを用いた供給装置の場合、1時間あたり50〜100gの供給を行うものは現在でも市販されているが、数g/h乃至それ以下という微量で粉体を供給できる装置は見当たらない。   Various apparatuses for supplying powder as described above are known, but it is difficult to supply a small amount of any of them. For example, in the case of a supply device using a screw feeder, a device that supplies 50 to 100 g per hour is still commercially available, but there is no device that can supply powder in a trace amount of several g / h or less. Absent.

また、上記のほかにも、空気搬送によって粉体を供給する装置も知られているが、微量の粉体を搬送するためには極細の粉体送給管が必要となり、管内で粉体の詰まりが生じ易くなる。また、微量供給するために、圧縮空気の流量を少なくしすぎると、粉体の搬送力不足で粉体が粉体送給管内で滞留しやすくなり、圧縮空気の流量を多くすると微量の供給が困難になる。   In addition to the above, an apparatus for supplying powder by pneumatic conveyance is also known, but in order to convey a small amount of powder, an extremely fine powder feed pipe is required, and the powder is fed inside the pipe. Clogging is likely to occur. In addition, if the flow rate of compressed air is too small to supply a minute amount, the powder tends to stay in the powder feed pipe due to insufficient powder conveying force, and if the flow rate of compressed air is increased, a small amount of supply will not occur. It becomes difficult.

本発明は、空気搬送を用いて粉体の微量供給が可能な粉体微量供給装置を提供することを目的とする。   An object of the present invention is to provide a fine powder supply device capable of supplying a small amount of powder using air conveyance.

本発明の粉体微量供給装置は、粉体を貯留する貯留容器と、一端が前記貯留容器内で粉体の上面よりも上方に配置され、且つ、他端側が前記貯留容器外に配置された粉体送給管と、前記貯留容器内に下方から圧縮空気を供給する第1圧縮空気供給手段と、前記粉体送給管の途中に圧縮空気を供給する第2圧縮空気供給手段と、を備えており、前記貯留容器は、前記粉体送給管を除いて前記粉体を密閉しており、前記第1圧縮空気供給手段、前記貯留容器内の空間部分に粉体を浮遊させるとともに、浮遊させた粉体を前記粉体送給管内に流入させており、前記第2圧縮空気供給手段前記粉体送給管内に流入した前記粉体を希薄化させるとともに、空気搬送することを特徴とする。
The fine powder supply device of the present invention has a storage container for storing powder, one end disposed above the upper surface of the powder in the storage container, and the other end disposed outside the storage container. A powder feed pipe, a first compressed air supply means for supplying compressed air from below into the storage container, and a second compressed air supply means for supplying compressed air in the middle of the powder feed pipe. with which the storage container is sealed with the powder except the powder feeding tube, the first compressed air supply means may be suspended powder in the space portion of the storage container , was suspended powder has flowed into the powder feed pipe, the second compressed air supply means may be dilute the powder that has flowed into the powder feed pipe, air transport, It is characterized by that.

上記粉体微量供給装置は、前記貯留容器を振動させる振動機構を、更に備えており、
前記振動機構は、前記貯留容器に連結されている基板と、前記基板の一端部を固定する本体部と、前記基板を振動させる振動発生部と、前記本体部を下側から弾性的に支持する弾性支持部とを備えており、前記振動発生部は、電磁石を備えており、且つ前記本体部に固定されており、前記電磁石に電流を流すことによって間欠的に前記基板を吸着する

The fine powder supply device further includes a vibration mechanism for vibrating the storage container ,
The vibration mechanism elastically supports the main body from below, a substrate connected to the storage container, a main body that fixes one end of the substrate, a vibration generating unit that vibrates the substrate, and The vibration generating unit includes an electromagnet and is fixed to the main body, and intermittently adsorbs the substrate by passing a current through the electromagnet .

前記第1圧縮空気供給手段は、前記貯留容器内に一定流量で連続的に圧縮空気を供給するように構成されていることが好ましい。   It is preferable that the first compressed air supply means is configured to continuously supply compressed air at a constant flow rate into the storage container.

前記第2圧縮空気供給手段は、前記粉体送給管に一定流量で連続的に圧縮空気を供給するように構成されていることが好ましい。   The second compressed air supply means is preferably configured to continuously supply compressed air at a constant flow rate to the powder feed pipe.

前記貯留容器は、空気の通過を許容するとともに粉体の通過を阻止する通気部材を内部に備え、該通気部材は、前記貯留容器内の粉体を下側から受けており、前記第1圧縮空気供給手段が、通気部材の下側から圧縮空気を供給するように構成されていることが好ましい。   The storage container includes a ventilation member that allows passage of air and prevents passage of powder therein, and the ventilation member receives the powder in the storage container from below, and the first compression It is preferable that the air supply means is configured to supply compressed air from below the ventilation member.

請求項1の発明によれば、第1圧縮空気供給手段によって貯留容器内に下方から圧縮空気を供給することにより、貯留容器内の粉体を流動化させ、貯留容器内の空間部分に浮遊した粉体を粉体送給管の一端から流入させる。したがって、粉体を微量ずつ粉体送給管内に流入することができる。さらに、第2圧縮空気供給手段によって粉体送給管内に粉体搬送方向の空気の流れを作り、粉体送給管に流入した粉体を空気搬送することができる。   According to the first aspect of the present invention, the compressed air is supplied into the storage container from below by the first compressed air supply means, thereby fluidizing the powder in the storage container and floating in the space portion in the storage container. Powder is introduced from one end of the powder feed tube. Therefore, it is possible to flow a small amount of powder into the powder feed pipe. Further, the second compressed air supply means can create an air flow in the powder conveying direction in the powder feeding pipe, and the powder flowing into the powder feeding pipe can be conveyed by air.

請求項2の発明によれば、微量の粉体を粉体送給管に流入させるため、第1圧縮空気供給手段により供給する圧縮空気量を少なくし、それによって、粉体容器内の粉体の流動化が不十分になったとしても、振動機構によって貯留容器を振動させることで、貯留容器内で粉体が偏って減少することが少なくなる。   According to the invention of claim 2, in order to allow a small amount of powder to flow into the powder feed pipe, the amount of compressed air supplied by the first compressed air supply means is reduced, whereby the powder in the powder container is reduced. Even if the fluidization of the liquid becomes insufficient, it is less likely that the powder is biased and reduced in the storage container by vibrating the storage container by the vibration mechanism.

請求項3の発明によれば、貯留容器内に連続的に圧縮空気を供給しているので、貯留容器内の空間部に略均一に粉体を浮遊させることができ、略一定量ずつ粉体送給管内に流入させることができる。   According to the invention of claim 3, since the compressed air is continuously supplied into the storage container, the powder can be suspended substantially uniformly in the space in the storage container, and the powder is supplied in a substantially constant amount. It can flow into the feed pipe.

請求項4の発明によれば、粉体送給管に連続的に圧縮空気を供給しているので、粉体送給管内に流入した粉体を均一に空気搬送し、排出することができる。   According to the invention of claim 4, since compressed air is continuously supplied to the powder feed pipe, the powder flowing into the powder feed pipe can be uniformly conveyed by air and discharged.

請求項5の発明によれば、第1圧縮空気供給手段によって通気部材上の粉体に略均一に圧縮空気を供給することができ、該粉体が貯留容器内で凝集したり閉塞したりすることを防止できる。   According to the invention of claim 5, the compressed air can be supplied to the powder on the ventilation member substantially uniformly by the first compressed air supply means, and the powder aggregates or closes in the storage container. Can be prevented.

図1は、本発明の実施形態にかかる粉体微量供給装置の概略的な全体構成図である。供給装置11は、粉体を貯留可能な貯留容器12と、該貯留容器12を振動させる振動機構13と、貯留容器12内の粉体を空気搬送する搬送機構14と、を備えている。   FIG. 1 is a schematic overall configuration diagram of a powder microfeeder according to an embodiment of the present invention. The supply device 11 includes a storage container 12 that can store powder, a vibration mechanism 13 that vibrates the storage container 12, and a transport mechanism 14 that transports the powder in the storage container 12 by air.

図2は、貯留容器12の縦断面図であり、該貯留容器12は、上下端部にフランジ部15、16を突出した円筒形状の容器本体17と、容器本体17の上部開口を閉鎖する蓋体18と、容器本体17の下部開口を閉鎖する覆板19と、容器本体17内の覆板19のやや上側に配置された通気部材20と、を備えている。   FIG. 2 is a longitudinal sectional view of the storage container 12. The storage container 12 has a cylindrical container body 17 with flanges 15 and 16 projecting from upper and lower ends, and a lid for closing the upper opening of the container body 17. A body 18, a cover plate 19 that closes the lower opening of the container body 17, and a ventilation member 20 disposed slightly above the cover plate 19 in the container body 17 are provided.

容器本体17は、ステンレス等の金属によって、全高が約80mm、胴部の外径が約60mmに形成されている。また、容器本体17は、筒部21と、漏斗部23とを上下方向に接合することによって構成されている。筒部21は、円筒形に形成されており、上端外周部に径方向外方に突出するフランジ部15を備えている。   The container body 17 is made of a metal such as stainless steel and has an overall height of about 80 mm and an outer diameter of the body portion of about 60 mm. Moreover, the container main body 17 is comprised by joining the cylinder part 21 and the funnel part 23 to an up-down direction. The cylindrical portion 21 is formed in a cylindrical shape, and includes a flange portion 15 that protrudes radially outward at the upper end outer peripheral portion.

漏斗部23は、上部内面23aが、下方に向けて内径が小さくなるように傾斜する円錐状とされ、下部内面23bが、上部内面の最小内径よりも大径の円筒状に形成され、上部内面23aと下部内面23bとの間には段部23cが形成されている。上部内面23aの傾斜角度は約45°とされている。漏斗部23の下端外周部には、径方向外方に突出するフランジ部16が形成されている。フランジ部16は、振動機構13の基板27上に載せられた状態で、該基板27にボルト固定されている。   The funnel portion 23 has a conical shape in which the upper inner surface 23a is inclined so that the inner diameter decreases downward, and the lower inner surface 23b is formed in a cylindrical shape having a diameter larger than the minimum inner diameter of the upper inner surface. A step portion 23c is formed between 23a and the lower inner surface 23b. The inclination angle of the upper inner surface 23a is about 45 °. A flange portion 16 that protrudes outward in the radial direction is formed on the outer periphery of the lower end of the funnel portion 23. The flange portion 16 is bolted to the substrate 27 while being mounted on the substrate 27 of the vibration mechanism 13.

覆板19は、平面視円形状の板材であり、その外周部がボルト28を介して漏斗部23の下面に固定されている。この覆板19を取り付けた部分には、基板27に開口27aが形成されている。覆板19には、容器本体17の中心線上に、後述する第1空気流動管31が接続されている。   The cover plate 19 is a plate material having a circular shape in plan view, and an outer peripheral portion thereof is fixed to the lower surface of the funnel portion 23 via bolts 28. An opening 27 a is formed in the substrate 27 at a portion where the cover plate 19 is attached. A first air flow pipe 31 to be described later is connected to the cover plate 19 on the center line of the container body 17.

通気部材20は、リング状の支持枠33の内側に設けられ、空気の通過は許容するが、容器本体17内の粉体Pの通過を阻止するものとなっている。そして、通気部材20は、容器本体17内の粉体Pを下側から受けている。支持枠33は、覆板19と段部23cとの間にOリング34を介して挟持されている。この通気部材20としては、例えば、複数の焼結金網を重ね合わせて結合したものを用いることができる。   The ventilation member 20 is provided inside the ring-shaped support frame 33 and allows passage of air, but prevents passage of the powder P in the container body 17. The ventilation member 20 receives the powder P in the container body 17 from below. The support frame 33 is sandwiched between the cover plate 19 and the step portion 23 c via an O-ring 34. As this ventilation member 20, what laminated | stacked and couple | bonded the some sintered metal mesh can be used, for example.

蓋体18は、容器本体17の上端部のフランジ部15と略同じ外径を有する平面視円盤状に形成されている。そして、蓋体18は、容器本体17の上面との間にシール部材35を介在させた状態で、クランプ具36によって容器本体17に固定され、該容器本体17を密閉するようになっている。   The lid 18 is formed in a disc shape in plan view having an outer diameter substantially the same as the flange portion 15 at the upper end of the container body 17. The lid 18 is fixed to the container main body 17 by the clamp tool 36 with the seal member 35 interposed between the lid 18 and the upper surface of the container main body 17 so as to seal the container main body 17.

蓋体18には、粉体送給管40が一体的に固着されている。粉体送給管40は、ステンレス等の直線状のパイプ材により形成され、上下方向に向けて配置されるとともに、蓋体18の中心を上下方向に貫通している。粉体送給管40の下端部は、容器本体17内の上部、具体的には、蓋体18のやや下側に配置されており、容器本体17内に貯留した粉体Pの上面よりも上方に配置されている。また、粉体送給管40の下端部は、第1空気流動管31に対向している。   A powder feeding tube 40 is integrally fixed to the lid 18. The powder feed pipe 40 is formed of a straight pipe material such as stainless steel, and is arranged in the vertical direction, and penetrates the center of the lid 18 in the vertical direction. The lower end portion of the powder feed pipe 40 is arranged at the upper part in the container body 17, specifically, slightly below the lid body 18, and more than the upper surface of the powder P stored in the container body 17. It is arranged above. Further, the lower end portion of the powder feeding pipe 40 faces the first air flow pipe 31.

粉体送給管40の上部側は、蓋体18から上方に突出している。粉体送給管40は、例えば内径が約2mmとされている。粉体送給管40の途中にはT字状の継手管41を介して第2空気流動管42が接続されている。   The upper side of the powder feed tube 40 protrudes upward from the lid 18. The powder feed tube 40 has an inner diameter of about 2 mm, for example. A second air flow pipe 42 is connected to the powder feed pipe 40 via a T-shaped joint pipe 41.

図1に示すように、搬送機構14は、圧縮空気を生成するブロワやコンプレッサ等の圧縮空気供給源44を備えている。圧縮空気供給源44には、主空気流動管45が接続され、主空気流動管45には、エアチャンバー46を介して第1,第2空気流動管31,42と圧力計47とが接続されている。第1,第2空気流動管31,42には、それぞれフローメータ48,48と流量調整弁49,49が設けられており、各管31,42を流れる空気流量が調整可能とされている。また、第2空気流動管42には圧力計50が設けられ、貯留容器12の蓋体18には、貯留容器12内の圧力を計測する圧力計51が設けられている。   As shown in FIG. 1, the transport mechanism 14 includes a compressed air supply source 44 such as a blower or a compressor that generates compressed air. A main air flow pipe 45 is connected to the compressed air supply source 44, and the first and second air flow pipes 31 and 42 and a pressure gauge 47 are connected to the main air flow pipe 45 through an air chamber 46. ing. The first and second air flow pipes 31 and 42 are respectively provided with flow meters 48 and 48 and flow rate adjusting valves 49 and 49 so that the flow rate of air flowing through the pipes 31 and 42 can be adjusted. The second air flow pipe 42 is provided with a pressure gauge 50, and the lid 18 of the storage container 12 is provided with a pressure gauge 51 that measures the pressure in the storage container 12.

ここで、圧縮空気供給源44、主空気流動管45、エアチャンバー46、第1空気流動管31等により第1圧縮空気供給手段52が構成され、圧縮空気供給源44、主空気流動管45、エアチャンバー46、第2空気流動管42等により第2圧縮空気供給手段53が構成されている。   Here, the compressed air supply source 44, the main air flow pipe 45, the air chamber 46, the first air flow pipe 31 and the like constitute the first compressed air supply means 52, and the compressed air supply source 44, the main air flow pipe 45, A second compressed air supply means 53 is configured by the air chamber 46, the second air flow pipe 42, and the like.

第1,第2空気流動管31,42には、略同じ流量、例えば、約0.3〜3L/minの圧縮空気が流動するようになっている。また、第1,第2空気流動管31,42は、略同じ内径(例えば、約2mm)のものが用いられ、該内径は、粉体送給管40の内径より大きくなっている。   In the first and second air flow pipes 31 and 42, compressed air having substantially the same flow rate, for example, about 0.3 to 3 L / min flows. The first and second air flow pipes 31 and 42 have substantially the same inner diameter (for example, about 2 mm), and the inner diameter is larger than the inner diameter of the powder feed pipe 40.

振動機構13は、本体部55と、該本体部55を下側から弾性的に支持する弾性支持部56と、基板27と、該基板27を振動させる振動発生部57とを有する。弾性支持部56は、本体部55の底面から下方に延びる複数本の脚部58によって構成され、該脚部58は、圧縮コイルバネによって構成されている。基板27は、水平方向に延びる上部と、上部から斜め下方に傾斜して延びる下部とによって、略への字形状に形成されている。基板27の上部には、貯留容器12が連結され、基板27の下端は、本体部55の一側部にボルト等によって固定されている。   The vibration mechanism 13 includes a main body portion 55, an elastic support portion 56 that elastically supports the main body portion 55 from below, a substrate 27, and a vibration generating portion 57 that vibrates the substrate 27. The elastic support portion 56 is constituted by a plurality of leg portions 58 extending downward from the bottom surface of the main body portion 55, and the leg portions 58 are constituted by compression coil springs. The board | substrate 27 is formed in the substantially square shape by the upper part extended in a horizontal direction, and the lower part which inclines inclining downward from the upper part. The storage container 12 is connected to the upper portion of the substrate 27, and the lower end of the substrate 27 is fixed to one side portion of the main body portion 55 with a bolt or the like.

振動発生部57は、電磁石59のコイルに間欠的に(例えば、1秒間に数回〜数十回)電流を流すことによって、基板27を間欠的に吸着し、矢印aで示すように振動させる。これによって、該基板27に取り付けた貯留容器12を共に振動させるようになっている。   The vibration generating unit 57 intermittently attracts the substrate 27 by causing a current to flow intermittently (for example, several to several tens of times per second) through the coil of the electromagnet 59, and vibrates as indicated by an arrow a. . As a result, the storage container 12 attached to the substrate 27 is vibrated together.

<本実施形態の作用効果>
次に、上記構成を有する供給装置の作用効果について説明する。
<Operational effects of this embodiment>
Next, the effect of the supply apparatus having the above configuration will be described.

図1に示すように、貯留容器12には、粉体Pが通気部材20の上に載った状態で貯留されている。粉体送給管40の下端部は、粉体Pの上方に配置され、下向きに開口している。圧縮空気供給源44を作動すると、圧縮空気がエアチャンバー46を介して第1,2空気流動管31,42に流れ、各流量調整弁49,49によって流量が調整される。   As shown in FIG. 1, the powder P is stored in the storage container 12 in a state of being placed on the ventilation member 20. The lower end portion of the powder feeding tube 40 is disposed above the powder P and opens downward. When the compressed air supply source 44 is operated, the compressed air flows to the first and second air flow pipes 31 and 42 through the air chamber 46, and the flow rate is adjusted by the flow rate adjusting valves 49 and 49.

第1空気流動管31を流れる圧縮空気は、通気部材20を通過して貯留容器12内に一定流量で連続的に流入し、通気部材20上の粉体Pを流動化(浮遊懸濁化)させる。この際、粉体Pの上側に形成された空間部Sには粉体P’が煙状に浮遊し、浮遊した粉体P’は、粉体送給管40内に下端から流入する。   The compressed air flowing through the first air flow pipe 31 passes through the ventilation member 20 and continuously flows into the storage container 12 at a constant flow rate to fluidize the powder P on the ventilation member 20 (floating suspension). Let At this time, the powder P ′ floats like smoke in the space S formed on the upper side of the powder P, and the suspended powder P ′ flows into the powder feed pipe 40 from the lower end.

第2空気流動管42を流れる圧縮空気は、粉体送給管40の途中に一定流量で連続的に流入し、矢印bで示すような上向きの搬送流を生成する。粉体送給管40内に流入した粉体Pは搬送流に乗って上方に流れ、粉体送給管40の終端(粉体送給管40にホース等が接続されている場合にはその終端)から極めて薄い煙状となって排出される。従って、粉体Pを極微量ずつ被供給箇所に供給できることになる。上記供給装置11の供給量は、粉体Pの種類にもよるが、例えば、1時間あたり数μg〜数gとすることが可能である。   The compressed air flowing through the second air flow pipe 42 continuously flows into the powder feed pipe 40 at a constant flow rate and generates an upward conveying flow as indicated by an arrow b. The powder P that has flowed into the powder feed pipe 40 rides on the transport flow and flows upward, and the end of the powder feed pipe 40 (if a hose or the like is connected to the powder feed pipe 40, It is discharged as a very thin smoke from the end). Accordingly, it is possible to supply the powder P to the supply location in minute amounts. Although the supply amount of the supply device 11 depends on the type of the powder P, it can be, for example, several μg to several g per hour.

上記のように、第1空気流動管31(第1圧縮空気供給手段52)から通気部材20を介して貯留容器12の下方から圧縮空気を供給し、貯留容器12内の空間部Sに粉体P’を浮遊させることで、極微量の粉体Pを粉体送給管40内に流入させることができる。また、第1空気流動管31を介して連続的に一定流量の空気を流すことによって、空間部Sに略均一な濃度で粉体P’を浮遊させることができ、これによって粉体送給管40内に一定量ずつ粉体Pを流入させることができる。   As described above, compressed air is supplied from the lower side of the storage container 12 through the ventilation member 20 from the first air flow pipe 31 (first compressed air supply means 52), and the powder is supplied to the space S in the storage container 12. By suspending P ′, a very small amount of powder P can be caused to flow into the powder feed tube 40. In addition, by flowing a constant flow of air continuously through the first air flow pipe 31, the powder P ′ can be suspended in the space S with a substantially uniform concentration, whereby the powder feed pipe The powder P can be allowed to flow into the 40 by a certain amount.

さらに、第2空気流動管42(第2圧縮空気供給手段53)を介して粉体送給管40の途中から圧縮空気を供給することで、粉体Pをスムーズに搬送することができるとともに、粉体Pの濃度をより希薄化、均一化することができる。したがって、粉体送給管40内で粉体Pが詰まったり、滞留してしまったりすることはほとんどない。   Furthermore, by supplying compressed air from the middle of the powder feed pipe 40 via the second air flow pipe 42 (second compressed air supply means 53), the powder P can be smoothly conveyed, The concentration of the powder P can be further diluted and made uniform. Therefore, the powder P hardly clogs or stays in the powder feed pipe 40.

また、粉体送給管40の途中に連続的に一定流量の圧縮空気を供給することで、排出される粉体Pに濃淡が生じないようにすることができる。   Further, by supplying a constant flow rate of compressed air continuously in the middle of the powder feed pipe 40, it is possible to prevent density from being generated in the discharged powder P.

粉体Pが粉体送給管40を経て排出されていくと、貯留容器12内の粉体Pは徐々に減少する。この際、貯留容器12内の粉体Pの流動化が十分になされていない場合、例えば、粉体Pを極微量ずつ排出するために、第1空気流動管31から供給する圧縮空気の流量を小さくしている場合等には、粉体Pが貯留容器12内の中央側から減少し、内壁近傍に偏った状態で残り、完全に排出できなくなってしまうことがある。そのため、本実施形態では、粉体の搬送を行っている間、振動機構13を作動することによって、貯留容器12を振動させ、該容器12内の粉体Pにも振動を与えて、粉体Pを偏りがないように均平化し、貯留容器12内の粉体Pを完全に排出できるようにしている。   As the powder P is discharged through the powder feed pipe 40, the powder P in the storage container 12 gradually decreases. At this time, if the powder P in the storage container 12 is not sufficiently fluidized, for example, the flow rate of the compressed air supplied from the first air flow pipe 31 in order to discharge the powder P minutely is changed. When it is made smaller, the powder P may decrease from the central side in the storage container 12, remain in a state of being biased near the inner wall, and may not be completely discharged. Therefore, in the present embodiment, the powder storage container 12 is vibrated by operating the vibration mechanism 13 while the powder is being conveyed, and the powder P in the container 12 is also vibrated, so that the powder P is leveled so as not to be biased so that the powder P in the storage container 12 can be completely discharged.

換言すると、本実施形態のような振動機構13を備えることで、第1空気流動管31を介して供給する圧縮空気の流量をより少なくして空間部Sにおける粉体Pの浮遊をより少なくし、より微量の粉体P’を粉体送給管40に流入させるようにしたとしても、貯留容器12内の粉体Pの偏りを防止することができる。   In other words, by providing the vibration mechanism 13 as in the present embodiment, the flow rate of the compressed air supplied through the first air flow pipe 31 is reduced, and the floating of the powder P in the space S is further reduced. Even if a smaller amount of the powder P ′ is allowed to flow into the powder feeding pipe 40, the unevenness of the powder P in the storage container 12 can be prevented.

<その他の作用効果>
(1)図2に示すように、粉体送給管40は、蓋体18に一体的に固着されているので、容器本体17に蓋体18を取り付けるだけで、粉体送給管40の下端を適切な高さ(すなわち、粉体Pの上方)に配置することができる。また、容器本体17から蓋体18を取り外すことで、同時に粉体送給管40を容器本体17から抜き取ることができる。したがって、容器本体17への粉体Pの補充作業等を簡単且つ迅速に行うことができる。
<Other effects>
(1) As shown in FIG. 2, the powder feed tube 40 is integrally fixed to the lid 18, so that the powder feed tube 40 can be simply attached to the container body 17 by attaching the lid 18. The lower end can be arranged at an appropriate height (that is, above the powder P). Further, by removing the lid 18 from the container body 17, the powder feeding tube 40 can be removed from the container body 17 at the same time. Therefore, the replenishment operation of the powder P to the container body 17 can be performed easily and quickly.

(2)粉体送給管40は、貯留容器12の蓋体18から上方に突出しているので、粉体送給管40に対する第2空気流動管42やその他のホース等の接続等を容易に行うことができる。   (2) Since the powder feeding pipe 40 protrudes upward from the lid 18 of the storage container 12, the second air flow pipe 42 and other hoses can be easily connected to the powder feeding pipe 40. It can be carried out.

(3)図1に示すように、第1,第2空気流動管31,42への圧縮空気は、共通の圧縮空気供給源44よって生成されるので、空気流動管31,42ごとに、個別に圧縮空気供給源44を備える場合に比べて装置の簡素化及びコスト減を図ることができる。   (3) As shown in FIG. 1, since the compressed air to the 1st, 2nd air flow pipes 31 and 42 is produced | generated by the common compressed air supply source 44, for every air flow pipes 31 and 42, individually Compared with the case where the compressed air supply source 44 is provided, the apparatus can be simplified and the cost can be reduced.

(4)供給装置11は、貯留容器12から下方に粉体Pを排出するのではなく、貯留容器12から粉体送給管40を介して上方に粉体Pを排出するものであるので、貯留容器12内の下部で粉体Pの詰まりが生じたり、ブリッジ減少が生じたりすることを防止することができる。   (4) The supply device 11 does not discharge the powder P downward from the storage container 12, but discharges the powder P upward from the storage container 12 via the powder feed pipe 40. It is possible to prevent the powder P from being clogged in the lower part of the storage container 12 and the bridge from being reduced.

本発明は、上記実施形態に限定されるものではなく、適宜設計変更可能である。例えば、空気流動管31,42を流れる空気流量、貯留容器12や粉体送給管40、空気流動管31,42の寸法等は、単なる1例を示すものであって、本発明を限定するものではない。   The present invention is not limited to the above-described embodiment, and the design can be changed as appropriate. For example, the flow rate of air flowing through the air flow pipes 31 and 42, the dimensions of the storage container 12, the powder feed pipe 40, and the air flow pipes 31 and 42 are merely examples, and the present invention is limited. It is not a thing.

本発明の供給装置は、例えば、塗装やデザイン画の作成のため、粉末顔料(塗料)を噴射供給するために用いたり、薬剤等を化学反応させるため、微粉状の添加剤や触媒を噴射供給するのに用いたりすることができる。また、他の用途として、溶融金属シリコンを滴下して球状シリコンを生成する装置で、球状シリコンの固化を促進するため、装置内に粉末状シリコンを吹き込むのに用いることができる。   The supply device of the present invention is used for spraying and supplying powder pigments (paints), for example, for painting and creating design images, or for spraying and supplying fine powder additives and catalysts for chemical reaction of chemicals. It can be used to do. Further, as another application, a device for dropping molten metal silicon to produce spherical silicon can be used to blow powdered silicon into the device in order to promote solidification of the spherical silicon.

本発明の実施形態に係る粉体微量供給装置の概略的な全体構成図である。It is a schematic whole block diagram of the powder trace amount supply apparatus which concerns on embodiment of this invention. 貯留容器の縦断面図である。It is a longitudinal cross-sectional view of a storage container.

符号の説明Explanation of symbols

11 粉体微量供給装置
12 貯留容器
13 振動機構
14 搬送機構
44 圧縮空気供給源
52 第1圧縮空気供給手段
53 第2圧縮空気供給手段
DESCRIPTION OF SYMBOLS 11 Fine powder supply apparatus 12 Storage container 13 Vibration mechanism 14 Conveyance mechanism 44 Compressed air supply source 52 1st compressed air supply means 53 2nd compressed air supply means

Claims (5)

粉体を貯留する貯留容器と、
一端が前記貯留容器内で粉体の上面よりも上方に配置され、且つ、他端側が前記貯留容器外に配置された粉体送給管と、
前記貯留容器内に下方から圧縮空気を供給する第1圧縮空気供給手段と、
前記粉体送給管の途中に圧縮空気を供給する第2圧縮空気供給手段と、を備えており、
前記貯留容器は、前記粉体送給管を除いて前記粉体を密閉しており、
前記第1圧縮空気供給手段、前記貯留容器内の空間部分に粉体を浮遊させるとともに、浮遊させた粉体を前記粉体送給管内に流入させており
前記第2圧縮空気供給手段前記粉体送給管内に流入した前記粉体を希薄化させるとともに、空気搬送することを特徴とする、粉体微量供給装置。
A storage container for storing powder;
One end is disposed above the upper surface of the powder in the storage container, and the other end side is disposed outside the storage container;
First compressed air supply means for supplying compressed air from below into the storage container;
Second compressed air supply means for supplying compressed air in the middle of the powder feed pipe,
The storage container seals the powder except for the powder feeding pipe,
The first compressed air supply means may be suspended powder in the space portion of the storage container, which was suspended powder to flow into the powder feed tube,
The second compressed air supply means may be dilute the powder that has flowed into the powder feed pipe, air transport, characterized in that, the powder trace supply.
前記貯留容器を振動させる振動機構を、更に備えており、
前記振動機構は、前記貯留容器に連結されている基板と、前記基板の一端部を固定する本体部と、前記基板を振動させる振動発生部と、前記本体部を下側から弾性的に支持する弾性支持部とを備えており、
前記振動発生部は、電磁石を備えており、且つ前記本体部に固定されており、前記電磁石に電流を流すことによって間欠的に前記基板を吸着する、ことを特徴とする、請求項1記載の粉体微量供給装置。
A vibration mechanism for vibrating the storage container ,
The vibration mechanism elastically supports the main body from below, a substrate connected to the storage container, a main body that fixes one end of the substrate, a vibration generating unit that vibrates the substrate, and An elastic support part,
The said vibration generation part is equipped with the electromagnet, and is being fixed to the said main-body part, The said board | substrate is adsorb | sucked intermittently by sending an electric current through the said electromagnet, It is characterized by the above-mentioned. Powder trace supply device.
前記第1圧縮空気供給手段が、前記貯留容器内に一定流量で連続的に圧縮空気を供給するように構成されていることを特徴とする、請求項1記載の粉体微量供給装置。   The fine powder supply device according to claim 1, wherein the first compressed air supply means is configured to continuously supply compressed air at a constant flow rate into the storage container. 前記第2圧縮空気供給手段が、前記粉体送給管に一定流量で連続的に圧縮空気を供給するように構成されていることを特徴とする、請求項1記載の粉体微量供給装置。   The fine powder supply apparatus according to claim 1, wherein the second compressed air supply means is configured to continuously supply compressed air at a constant flow rate to the powder feed pipe. 前記貯留容器は、空気の通過を許容するとともに粉体の通過を阻止する通気部材を内部に備え、該通気部材は、前記貯留容器内の粉体を下側から受けており、
前記第1圧縮空気供給手段が、通気部材の下側から圧縮空気を供給するように構成されていることを特徴とする、請求項1記載の粉体微量供給装置。
The storage container includes a ventilation member that allows passage of air and prevents passage of powder therein, and the ventilation member receives the powder in the storage container from below,
The fine powder supply device according to claim 1, wherein the first compressed air supply means is configured to supply compressed air from below the ventilation member.
JP2006186573A 2006-07-06 2006-07-06 Powder microfeeder Expired - Fee Related JP5197932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006186573A JP5197932B2 (en) 2006-07-06 2006-07-06 Powder microfeeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006186573A JP5197932B2 (en) 2006-07-06 2006-07-06 Powder microfeeder

Publications (2)

Publication Number Publication Date
JP2008013319A JP2008013319A (en) 2008-01-24
JP5197932B2 true JP5197932B2 (en) 2013-05-15

Family

ID=39070739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006186573A Expired - Fee Related JP5197932B2 (en) 2006-07-06 2006-07-06 Powder microfeeder

Country Status (1)

Country Link
JP (1) JP5197932B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5640585B2 (en) * 2010-09-07 2014-12-17 株式会社Ihi Powder supply method and powder supply apparatus
KR102133025B1 (en) * 2018-05-31 2020-07-10 김기만 Resin powder coating agent
JP7256803B2 (en) * 2018-07-25 2023-04-12 ダウ・東レ株式会社 Method for producing laminate of fluorosilicone rubber and silicone rubber
CN115261077A (en) * 2021-04-30 2022-11-01 国家能源投资集团有限责任公司 Powder feeder and coal gasification equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4823634B1 (en) * 1968-10-15 1973-07-14
JPS63272719A (en) * 1987-04-27 1988-11-10 Aprica Kassai Inc Powdery material feeding device
JP2557695Y2 (en) * 1991-01-31 1997-12-10 神鋼電機株式会社 Electromagnetic vibration feeder for pharmaceutical powder supply
JP2893988B2 (en) * 1991-03-12 1999-05-24 神鋼電機株式会社 Vibration supply device
JPH04358617A (en) * 1991-06-05 1992-12-11 Shinko Electric Co Ltd Electromagnet for electromagnetic vibrator
JP4014414B2 (en) * 2002-02-01 2007-11-28 電気化学工業株式会社 Quick setting agent supply device, quick setting agent supply method, and spraying method using the same

Also Published As

Publication number Publication date
JP2008013319A (en) 2008-01-24

Similar Documents

Publication Publication Date Title
JP5197932B2 (en) Powder microfeeder
US20170297060A1 (en) Screening system with feeding system, conveying system and conveying method
EP0962258B1 (en) Powder transfer apparatus having powder fluidizing tube
JPH06246196A (en) Powder supplying device, electrostatic powder coating device and powder flow rate measuring instrument
CN1375426A (en) Power filling method and apparatus
US20070235558A1 (en) System for continuously metering and transporting a powder, the use of the system, and a coating powder sprayer installation including the system
ES2884264T3 (en) Dust hopper for difficult-to-flow powders for use in thermal spraying and procedure for its manufacture and use
JP2008541736A5 (en)
JP2011032100A (en) Method for conveying granular silicon
JPH0696137B2 (en) Pneumatic transportation device for powder in tank
JP4268868B2 (en) Apparatus and method for transporting material transported in the form of fine particles, powder, granules or granules from a storage container into a work container or transport container, or an equivalent storage space
JP2007261807A (en) Device for supplying minute amount of powder
US6986625B2 (en) Maintaining fluidized beds of cohesive particles using vibrating fluids
JP2007246218A (en) Air transport device for powder and granule
CN1939819B (en) Method and apparatus for transferring powder toner and for filling with powder toner.
US2715551A (en) Apparatus for dispensing powdered materials at superatmospheric pressure
JP5640585B2 (en) Powder supply method and powder supply apparatus
CN109415806A (en) For handling the device and method of particulate matter
US20170057758A1 (en) Pneumatic conveying vessel
JP2007291503A (en) Aerosol generating apparatus, method for generating aerosol and film forming apparatus
KR20200053853A (en) Hopper and device for transferring of powder having the same
GB2130906A (en) Improvements in or relating to apparatus for dispensing a dust suspension
JP2005067651A (en) Apparatus for filling with powder and method for filling with powder
CN106867591B (en) Fluidizing plate, pressure vessel with fluidizing plate and method for fluidizing bulk material
JP4670036B2 (en) Coupler for portable powder container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090529

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees