JP5195524B2 - Vehicle travel control device - Google Patents

Vehicle travel control device Download PDF

Info

Publication number
JP5195524B2
JP5195524B2 JP2009048505A JP2009048505A JP5195524B2 JP 5195524 B2 JP5195524 B2 JP 5195524B2 JP 2009048505 A JP2009048505 A JP 2009048505A JP 2009048505 A JP2009048505 A JP 2009048505A JP 5195524 B2 JP5195524 B2 JP 5195524B2
Authority
JP
Japan
Prior art keywords
wheel speed
vehicle
correction coefficient
value
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009048505A
Other languages
Japanese (ja)
Other versions
JP2010202013A (en
Inventor
大悟 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009048505A priority Critical patent/JP5195524B2/en
Publication of JP2010202013A publication Critical patent/JP2010202013A/en
Application granted granted Critical
Publication of JP5195524B2 publication Critical patent/JP5195524B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Regulating Braking Force (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Description

本発明は、車両の車輪の左右それぞれの車輪速に基づき前記車両の横加速度を推定する横加速度推定手段を備え、その横加速度推定手段が推定した横加速度に基づき前記車両の走行状態を制御する車両用走行制御装置に関するものである。なお、この明細書では、特に断らない限り「回転数」とは「単位時間当たりの回転数」すなわち「回転速度」を意味する。   The present invention includes lateral acceleration estimating means for estimating the lateral acceleration of the vehicle based on the left and right wheel speeds of the vehicle wheels, and controls the running state of the vehicle based on the lateral acceleration estimated by the lateral acceleration estimating means. The present invention relates to a vehicle travel control device. In this specification, unless otherwise specified, “rotational speed” means “rotational speed per unit time”, that is, “rotational speed”.

従来、車両の走行状態を制御する車両用走行制御装置として特許文献1記載のものが知られており、この制御装置は、車両のブレーキのアンチロック制御等のために車両の横加速度を推定するに際し、左右それぞれの前後輪の速度比(後輪速/前輪速)RAl,RArを車輪速の積分値の比として算出し、さらに左右輪の速度比が1より大きくなるように速度比RAl,Rarのうち大きい方を小さい方で除算して補正比RAを算出する。そしてその補正比から1を減算し、それに車体速の2乗を掛け、さらに後輪トレッドTRと重力加速度gとで除算した値を、真の横加速度からのずれ量TKYGとして算出している。   2. Description of the Related Art Conventionally, a vehicle travel control device described in Patent Document 1 is known as a vehicle travel control device for controlling the travel state of a vehicle, and this control device estimates a lateral acceleration of a vehicle for anti-lock control of a vehicle brake or the like. In this case, the right / left front / rear wheel speed ratio (rear wheel speed / front wheel speed) RAl, RAr is calculated as the ratio of the integrated wheel speed, and the right / left wheel speed ratio RAl, The correction ratio RA is calculated by dividing the larger one of Rar by the smaller one. Then, 1 is subtracted from the correction ratio, multiplied by the square of the vehicle body speed, and further divided by the rear wheel tread TR and the gravitational acceleration g, is calculated as a deviation amount TKYG from the true lateral acceleration.

これを数式で表すと以下のようになる。
RA=max[RAl,RAr]/min[Ral,Rar]
TKYG=V×V×(RA−1)/(TR×g)
This is expressed by the following formula.
RA = max [RAl, RAr] / min [Ral, Rar]
TKYG = V × V × (RA-1) / (TR × g)

特開2007−030735号公報JP 2007-030735 A

しかしながら上記従来の制御装置では、4輪全ての車輪速を計算に含む構成となっていたため、フロントエンジン・前輪駆動(FF)やフロントエンジン・後輪駆動(FR)等の二輪駆動の車両では駆動輪のスリップによる誤差を補正値に反映してしまい、車両の横加速度の推定精度が低くなるという問題があった。   However, since the conventional control device is configured to include the wheel speeds of all four wheels, it is driven in a two-wheel drive vehicle such as front engine / front wheel drive (FF) or front engine / rear wheel drive (FR). There is a problem that the error due to wheel slip is reflected in the correction value, and the estimation accuracy of the lateral acceleration of the vehicle is lowered.

この発明の車両用走行制御装置は、車両の車輪のうち従動輪の左右の車輪速のうち一方の車輪速で他方の車輪速を除した値を補正係数として算出し、前記一方の車輪速に前記補正係数を乗じた値を一方の車輪速補正値として出力し、横加速度推定手段が、前記一方の車輪速補正値と前記他方の車輪速とに基づき横加速度を推定するようにしたものである。   The vehicle travel control device according to the present invention calculates, as a correction coefficient, a value obtained by dividing one wheel speed of the left and right wheel speeds of the driven wheel among the wheels of the vehicle by the other wheel speed. A value obtained by multiplying the correction coefficient is output as one wheel speed correction value, and the lateral acceleration estimation means estimates the lateral acceleration based on the one wheel speed correction value and the other wheel speed. is there.

この発明の車両用走行制御装置によれば、従動輪のみの左右の車輪速に基づく補正係数を用いて車両の横加速度を推定するので、フロントエンジン・前輪駆動(FF)やフロントエンジン・後輪駆動(FR)等の二輪駆動の車両でも駆動輪のスリップによる誤差を補正値に反映することがなく、それゆえ車両の横加速度の推定精度を高めることができる。   According to the vehicle travel control apparatus of the present invention, since the lateral acceleration of the vehicle is estimated using the correction coefficient based on the left and right wheel speeds of only the driven wheels, the front engine / front wheel drive (FF) and the front engine / rear wheels are estimated. Even in a two-wheel drive vehicle such as a drive (FR), an error due to slip of the drive wheel is not reflected in the correction value, and therefore the accuracy of estimating the lateral acceleration of the vehicle can be improved.

本発明の車両用走行制御装置の一実施形態を構成する変速機制御ユニットを搭載した自動車のシステム構成を示す説明図である。It is explanatory drawing which shows the system configuration | structure of the motor vehicle carrying the transmission control unit which comprises one Embodiment of the vehicle travel control apparatus of this invention. 上記実施形態の車両用走行制御装置の構成を機能的に示すブロック線図である。It is a block diagram which shows functionally the structure of the traveling control apparatus for vehicles of the said embodiment. 上記実施形態の車両用走行制御装置が実行する補正横加速度の算出処理の一例を示すブロック線図である。It is a block diagram which shows an example of the calculation process of the correction | amendment lateral acceleration which the vehicle travel control apparatus of the said embodiment performs. 上記実施形態の車両用走行制御装置が実行する補正横加速度の算出処理の他の一例を示すブロック線図である。It is a block diagram which shows another example of the calculation process of the correction | amendment lateral acceleration which the vehicle travel control apparatus of the said embodiment performs. 上記実施形態の車両用走行制御装置を用いた自動車と従来技術に係る制御装置を用いた自動車とのカーブ走行から直線走行に至る際の各因子の時間変化をそれぞれ示すグラフである。It is a graph which respectively shows the time change of each factor at the time of going from the curve driving | running | working of the motor vehicle using the driving control apparatus for vehicles of the said embodiment, and the motor vehicle using the control apparatus which concerns on a prior art from a curve driving | running | working. 上記実施形態の車両用走行制御装置を用いた自動車と従来技術に係る制御装置を用いた自動車との直線走行からカーブ走行を経て直線走行に戻る際の各因子の時間変化をそれぞれ示すグラフである。It is a graph which shows each time change of each factor at the time of returning from a straight run to a straight run through a curve run from a straight run of a car using a run control device for vehicles of the above-mentioned embodiment, and a control device concerning a prior art. . 上記実施形態の車両用走行制御装置を用いた自動車の直線走行とカーブ走行との繰返しの際の各因子の時間変化をそれぞれ示すグラフである。It is a graph which each shows the time change of each factor at the time of the repetition of the linear driving | running | working of a motor vehicle and the curve driving | running | working using the vehicle travel control apparatus of the said embodiment.

以下、本発明の車両用走行制御装置の実施形態を図面に基づき詳細に説明する。ここに図1は、本発明の車両用走行制御装置の一実施形態を構成する変速機制御ユニットを搭載した自動車のシステム構成を示す説明図、図2は、上記実施形態の車両用走行制御装置の構成を機能的に示すブロック線図であり、図1中、符号1は自動車を示す。   Embodiments of a vehicle travel control device of the present invention will be described below in detail with reference to the drawings. FIG. 1 is an explanatory diagram showing a system configuration of an automobile equipped with a transmission control unit that constitutes an embodiment of the vehicle travel control apparatus of the present invention, and FIG. 2 is a vehicle travel control apparatus of the above embodiment. FIG. 1 is a block diagram functionally showing the configuration of FIG.

図1に示す自動車1は、いわゆるフロントエンジン・前輪駆動(FF)型のもので、駆動源としてのエンジン・トランスアクスル2を備え、そのエンジン・トランスアクスル2はエンジンの出力回転を自動変速機で減速し、差動ギヤ機構を介して左右に出力する。エンジン・トランスアクスル2の自動変速機の作動は、通常のマイクロコンピュータを有する変速機制御ユニット3が制御する。自動車1の左右前輪4,5はエンジン・トランスアクスル2からの出力回転で駆動する一方、自動車1の左右後輪6,7は従動輪となる。   An automobile 1 shown in FIG. 1 is of a so-called front engine / front wheel drive (FF) type, and includes an engine / transaxle 2 as a drive source, and the engine / transaxle 2 uses an automatic transmission to rotate the output of the engine. Decelerate and output right and left via differential gear mechanism. The operation of the automatic transmission of the engine / transaxle 2 is controlled by a transmission control unit 3 having a normal microcomputer. The left and right front wheels 4 and 5 of the automobile 1 are driven by output rotation from the engine / transaxle 2, while the left and right rear wheels 6 and 7 of the automobile 1 are driven wheels.

左右後輪6,7には通常の回転数センサ8,9を設けてあり、これら回転数センサ8,9は左右後輪6,7の回転数を検出して変速機制御ユニット3に入力し、変速機制御ユニット3はそれら左右後輪6,7の回転数に基づき後述の如くして、自動車1に加わっている横加速度(横G)を推定し、その推定結果に基づき、カーブ走行中の横加速度が駆動輪である左右前輪4,5の摩擦力に対して過大であると判断した場合には、図示しないエンジン制御ユニットとの協調制御で、エンジン出力を低下させつつ変速比をハイ(変速比小)側に移行させて、左右前輪4,5のトラクションを摩擦力不足で滑らない程度に低下させ、カーブに沿ったニュートラルステア傾向での走行を可能にする。   The left and right rear wheels 6, 7 are provided with normal rotation speed sensors 8, 9. These rotation speed sensors 8, 9 detect the rotation speeds of the left and right rear wheels 6, 7 and input them to the transmission control unit 3. The transmission control unit 3 estimates the lateral acceleration (lateral G) applied to the automobile 1 based on the rotational speeds of the left and right rear wheels 6 and 7 as will be described later, and on the basis of the estimation result, the vehicle is running on a curve. Is determined to be excessive with respect to the frictional force of the left and right front wheels 4 and 5, which are driving wheels, the gear ratio is increased while reducing the engine output by cooperative control with an engine control unit (not shown). By shifting to the (small gear ratio) side, the traction of the left and right front wheels 4 and 5 is reduced to such an extent that it does not slip due to insufficient frictional force, and it is possible to travel with a neutral steer tendency along a curve.

変速機制御ユニット3は、自動車1に加わっている横加速度(横G)を推定するために、例えば図2にブロック線図で示す補正横G演算部の構成に相当する、図3に示す処理を実行する。図2の構成に対応する図3では、変速機制御ユニット3が、ステップS1で、あらかじめ回転数センサ8,9の出力する左右後輪6,7の回転数にそれぞれ基準車輪直径と円周率πとを乗じて右後輪速Vrrと左後輪速Vrlとを求め、ステップS2で、車輪速比演算部11として、それらを除算して車輪速比Vrl/Vrrを求め、ステップS3で、フィルター処理部12として、その車輪速比Vrl/Vrrを1次遅れフィルターを用いて平滑化処理(フィルター処理)したフィルター処理後車輪速比Filter(Vrl/Vrr)を、横G補正係数として求める。   The transmission control unit 3 estimates the lateral acceleration (lateral G) applied to the automobile 1, for example, the processing shown in FIG. 3 corresponding to the configuration of the corrected lateral G calculation unit shown in the block diagram of FIG. Execute. In FIG. 3 corresponding to the configuration of FIG. 2, the transmission control unit 3 determines the reference wheel diameter and the circularity ratio in step S <b> 1 according to the rotational speeds of the left and right rear wheels 6 and 7 output from the rotational speed sensors 8 and 9 in advance. Multiply π to obtain the right rear wheel speed Vrr and the left rear wheel speed Vrl. In step S2, the wheel speed ratio calculation unit 11 divides them to obtain the wheel speed ratio Vrl / Vrr. In step S3, As the filter processing unit 12, a post-filtering wheel speed ratio Filter (Vrl / Vrr) obtained by smoothing (filtering) the wheel speed ratio Vrl / Vrr using a first-order lag filter is obtained as a lateral G correction coefficient.

一方、変速機制御ユニット3は、ステップS4で、直線判定部14として、後述の如くして先に求めた横加速度(横G)を時間微分した横G微分値から、後述のように、その横G微分値がプラス・マイナスに細かく振れていれば直線走行中と判断し、横G微分値がプラスかマイナスに偏っているかまたはその横G微分値をフィルター処理した値の絶対値が所定値以上であればカーブ走行中と判断する。また、ステップS5で、右後輪速Vrrと左後輪速Vrlとの平均値として求めた車速Vspを時間微分して得た、自動車1に加わっている前後加速度(前後G)から、定常走行判定部15として、その前後Gが所定範囲内であれば自動車1が定常(定速)走行中であると判断し、前後Gが所定範囲から外れていれば加速中または減速中であると判断する。   On the other hand, in step S4, the transmission control unit 3 uses the lateral G differential value obtained by time-differentiating the lateral acceleration (lateral G) previously obtained as described later as the straight line determination unit 14, as described later. If the lateral G differential value fluctuates in a plus or minus direction, it is judged that the vehicle is running straight, and the absolute value of the value obtained by filtering the lateral G differential value is a predetermined value. If it is above, it is determined that the vehicle is running on a curve. In step S5, the vehicle speed Vsp obtained as an average value of the right rear wheel speed Vrr and the left rear wheel speed Vrl is time-differentiated, and the vehicle travels from the longitudinal acceleration (longitudinal G) applied to the vehicle 1 in a steady running. The determination unit 15 determines that the vehicle 1 is traveling in a steady state (constant speed) if the longitudinal G is within a predetermined range, and determines that the vehicle is accelerating or decelerating if the longitudinal G is out of the predetermined range. To do.

しかして変速機制御ユニット3は、Map格納&算出部13として、ステップS4,S5で、自動車1が直線走行中かつ定常走行中であると判断した場合に、ステップS6で、上述したフィルター処理後車輪速比Filter(Vrl/Vrr)を、図3中左側に示すように、上記車速と対応させた値としてマップに記憶する。また、ステップS4で自動車1が直線走行中でないと判断した場合、またはステップS5で自動車1が定常(定速)走行中でないと判断した場合には、ステップS6はスキップする。   Therefore, if the transmission control unit 3 determines that the map storage & calculation unit 13 determines that the vehicle 1 is running straight and running in steps S4 and S5, the transmission control unit 3 performs the above-described filtering process in step S6. The wheel speed ratio Filter (Vrl / Vrr) is stored in the map as a value corresponding to the vehicle speed as shown on the left side in FIG. If it is determined in step S4 that the vehicle 1 is not traveling in a straight line, or if it is determined in step S5 that the vehicle 1 is not traveling in a steady state (constant speed), step S6 is skipped.

そして変速機制御ユニット3は、補正後車輪速演算部16として、ステップS7で、横G補正係数としての、現在の車速に対応するフィルター処理後車輪速比Filter(Vrl/Vrr)をMap格納&算出部13のマップから読み出して、ステップS8で、右後輪速Vrrにそのフィルター処理後車輪速比Filter(Vrl/Vrr)を乗ずることで補正後右後輪速FVrrを求めて出力し、その後、ステップS9で、横G演算部17として、その補正後右後輪速FVrrと、左後輪速Vrlとから、次式により横加速度(横G)の推定値を算出する。但し、TRは左右後輪6,7間のトレッドである。
横G=(Vrl−FVrr)×(Vrl+FVrr)/(2×TR)
Then, the transmission control unit 3 stores the post-filter wheel speed ratio Filter (Vrl / Vrr) corresponding to the current vehicle speed as the lateral G correction coefficient in step S7 as the post-correction wheel speed calculation unit 16 in the map. The calculated right rear wheel speed FVrr is calculated and output by multiplying the right rear wheel speed Vrr by the filtered wheel speed ratio Filter (Vrl / Vrr) in step S8, after reading from the map of the calculation unit 13. In step S9, the lateral G calculation unit 17 calculates an estimated value of the lateral acceleration (lateral G) from the corrected right rear wheel speed FVrr and the left rear wheel speed Vrl by the following equation. However, TR is a tread between the left and right rear wheels 6 and 7.
Horizontal G = (Vrl−FVrr) × (Vrl + FVrr) / (2 × TR)

変速機制御ユニット3は、異径タイヤ等による横G誤差を補正したこの横加速度の推定値を用いて、前述の如く変速比を制御することで、自動車1の操舵特性をニュートラルステア傾向に維持することができる。   The transmission control unit 3 uses the estimated value of the lateral acceleration corrected for the lateral G error caused by different diameter tires or the like to control the gear ratio as described above, thereby maintaining the steering characteristics of the automobile 1 in a neutral steering tendency. can do.

変速機制御ユニット3は、図3に示すフローチャートに代えて、図4に示すフローチャートを実行しても良く、この図4では、変速機制御ユニット3が、ステップS11で、あらかじめ回転数センサ8,9の出力する左右後輪6,7の回転数にそれぞれ基準車輪直径と円周率πとを乗じて右後輪速Vrrと左後輪速Vrlとを求め、ステップS12で、それらを除算して車輪速比Vrr/Vrlを求め、ステップS13で、その車輪速比Vrr/Vrlを1次遅れフィルターを用いて平滑化処理したフィルター処理後車輪速比Filter(Vrr/Vrl)を、横G補正係数として求める。   The transmission control unit 3 may execute the flowchart shown in FIG. 4 instead of the flowchart shown in FIG. 3. In FIG. 4, the transmission control unit 3 pre- The right and left rear wheel speeds Vrr and Vrl are obtained by multiplying the rotation speeds of the left and right rear wheels 6 and 7 output by 9 by the reference wheel diameter and the circumference ratio π, respectively. In step S12, these are divided. The wheel speed ratio Vrr / Vrl is obtained, and in step S13, the filtered wheel speed ratio Filter (Vrr / Vrl) obtained by smoothing the wheel speed ratio Vrr / Vrl using a first-order lag filter is corrected to lateral G. Calculated as a coefficient.

一方、変速機制御ユニット3は、ステップS14で、先に求めた横加速度(横G)を時間微分した横G微分値から、その横G微分値がプラス・マイナスに振れていれば直線走行中と判断し、横G微分値がプラスかマイナスに偏っていればカーブ走行中と判断する。また、ステップS15で、右後輪速Vrrと左後輪速Vrlとの平均値として求めた車速を時間微分して得た、自動車1に加わっている前後加速度(前後G)から、その前後Gが所定範囲内であれば自動車1が定常走行中であると判断し、前後Gが所定範囲から外れていれば加減速中であると判断する。   On the other hand, in step S14, the transmission control unit 3 is running straight if the lateral G differential value swings positively or negatively from the lateral G differential value obtained by time-differentiating the previously obtained lateral acceleration (lateral G). If the lateral G differential value is biased to positive or negative, it is determined that the vehicle is running on a curve. Further, in step S15, from the longitudinal acceleration (longitudinal G) applied to the vehicle 1 obtained by time differentiation of the vehicle speed obtained as an average value of the right rear wheel speed Vrr and the left rear wheel speed Vrl, the longitudinal G Is within the predetermined range, it is determined that the vehicle 1 is in steady running, and if the front-rear G is out of the predetermined range, it is determined that acceleration / deceleration is in progress.

しかして、変速機制御ユニット3は、ステップS14,S15で、自動車1が直線走行中かつ定常走行中であると判断した場合に、ステップS16で、上述したフィルター処理後車輪速比Filter(Vrr/Vrl)を、図3中左側に示すように、上記車速と対応させた値としてマップに記憶する。また、ステップS14,S15で、自動車1が直線走行でないかまたは定常走行中でないと判断した場合には、ステップS16はスキップする。   Thus, when the transmission control unit 3 determines in steps S14 and S15 that the vehicle 1 is running straight and is steady running, in step S16, the wheel speed ratio Filter (Vrr / Vrl) is stored in the map as a value corresponding to the vehicle speed, as shown on the left side of FIG. If it is determined in steps S14 and S15 that the vehicle 1 is not running straight or is not running steady, step S16 is skipped.

そして変速機制御ユニット3は、ステップS17で、横G補正係数としての、現在の車速に対応するフィルター処理後車輪速比Filter(Vrr/Vrl)をMap格納&算出部13のマップから読み出して、ステップS18で、左後輪速Vrlにそのフィルター処理後車輪速比Filter(Vrr/Vrl)を乗ずることで補正後左後輪速FVrlを求めて出力し、その後、ステップS19で、その補正後左後輪速FVrlと、右後輪速Vrrとから、次式により横加速度(横G)の推定値を算出する。但し、TRは左右後輪6,7間のトレッドである。
横G=(Vrr−FVrl)×(Vrr+FVrl)/(2×TR)
In step S17, the transmission control unit 3 reads the post-filter wheel speed ratio Filter (Vrr / Vrl) corresponding to the current vehicle speed as the lateral G correction coefficient from the map storage & calculation unit 13 map, In step S18, the corrected left rear wheel speed FVrl is obtained by multiplying the left rear wheel speed Vrl by the filtered wheel speed ratio Filter (Vrr / Vrl), and then in step S19, the corrected left From the rear wheel speed FVrl and the right rear wheel speed Vrr, an estimated value of the lateral acceleration (lateral G) is calculated by the following equation. However, TR is a tread between the left and right rear wheels 6 and 7.
Horizontal G = (Vrr−FVrl) × (Vrr + FVrl) / (2 × TR)

図5は、上記実施形態の車両用走行制御装置を用いた自動車1と従来技術に係る制御装置を用いた自動車1とのカーブ走行から直線走行に至る際の各因子の時間変化をそれぞれ示しており、図示のように、自動車1のカーブ走行中は、従動輪としての左右後輪6,7の車輪速Vrl,Vrr間にカーブの旋回半径に応じた内外輪差が生じるとともに、その旋回半径と車速とに応じた実横Gが発生し、その一方で、車輪速Vrl,Vrrから横G補正係数(本実施形態ではフィルター処理後車輪速比)が求まり、さらにその横G補正係数を用いて車輪速から計算した横Gが求まっている。その後、直線走行に移ると、本実施形態では直線判定中かつ定常走行中は常時横G補正係数の更新を行うため、時刻t1で直線判定がされると、その直後から横G補正係数の修正を開始し、横Gも直ぐに修正方向に補正される。一方、従来の制御装置では、車輪速の積分を一定時間行うため、横G補正係数の修正が直ぐにはなされず時刻t2以降に遅くなり、横Gの補正も時刻t2以降に遅れる。また横G補正係数が積分中の走行状態の影響を受け、横Gの収束量が変わってしまう。   FIG. 5 shows the time change of each factor when the vehicle 1 using the vehicle travel control device of the above embodiment and the vehicle 1 using the control device according to the prior art travel from the curve travel to the straight travel. As shown in the figure, while the vehicle 1 is running on a curve, there is a difference between the inner and outer wheels corresponding to the turning radius of the curve between the wheel speeds Vrl and Vrr of the left and right rear wheels 6 and 7 as driven wheels, and the turning radius. The actual lateral G corresponding to the vehicle speed is generated. On the other hand, the lateral G correction coefficient (the wheel speed ratio after filtering in this embodiment) is obtained from the wheel speeds Vrl and Vrr, and the lateral G correction coefficient is further used. The lateral G calculated from the wheel speed is obtained. Thereafter, when the vehicle moves to straight running, the lateral G correction coefficient is constantly updated during straight line determination and steady running in this embodiment. Therefore, when straight line judgment is made at time t1, the lateral G correction coefficient is corrected immediately thereafter. The lateral G is immediately corrected in the correction direction. On the other hand, in the conventional control device, since the wheel speed is integrated for a certain period of time, the correction of the lateral G correction coefficient is not performed immediately but is delayed after time t2, and the correction of lateral G is also delayed after time t2. Further, the lateral G correction coefficient is affected by the running state during integration, and the convergence amount of the lateral G changes.

図6は、上記実施形態の車両用走行制御装置を用いた自動車1と従来技術に係る制御装置を用いた自動車1との直線走行からカーブ走行を経て直線走行に戻る際の各因子の時間変化をそれぞれ示しており、図示のように、自動車1の直線走行中は、従動輪としての左右後輪6,7の車輪速Vrl,Vrr間に内外輪差が生じていず、実横Gも車輪速計算横Gも発生していない。そしてカーブ走行に移ると、図5のカーブ走行中と同様、左右後輪6,7の車輪速Vrl,Vrr間にカーブの旋回半径に応じた内外輪差が生じるとともに、その旋回半径と車速とに応じた実横Gが発生し、その一方で、車輪速Vrl,Vrrから横G補正係数(本実施形態ではフィルター処理後車輪速比)が求まり、さらにその横G補正係数を用いて車輪速から計算した横Gが求まる。その際、本実施形態では直線走行中かつ定常走行中のみ横G補正係数の更新を行うため、カーブ走行中は補正係数が変化しないが、従来の制御装置では、カーブ走行中の車輪速も補正計算に含めているため、直線走行に戻ると、カーブ走行中の車輪速の積分結果も含めて時刻t3で補正係数の修正を行ってしまう。従ってその後の直線走行中、本実施形態では、横Gを意図通りゼロとして算出しているが、従来の制御装置ではカーブ走行時の外乱により、横Gをゼロでない値に算出してしまう。   FIG. 6 shows the change over time of each factor when the vehicle 1 using the vehicle travel control device of the above embodiment and the vehicle 1 using the control device according to the prior art return from the straight travel to the straight travel through the curve travel. As shown in the figure, during the straight traveling of the automobile 1, there is no difference between the inner and outer wheels between the wheel speeds Vrl and Vrr of the left and right rear wheels 6 and 7 as driven wheels, and the actual lateral G is also a wheel. No speed calculation lateral G occurs. When the vehicle moves to a curve, the inner and outer wheel difference corresponding to the turning radius of the curve is generated between the wheel speeds Vrl and Vrr of the left and right rear wheels 6 and 7, as in the curve driving of FIG. On the other hand, the lateral G correction coefficient (filtered wheel speed ratio in this embodiment) is obtained from the wheel speeds Vrl and Vrr, and the wheel speed is calculated using the lateral G correction coefficient. The lateral G calculated from the above is obtained. At this time, in this embodiment, the lateral G correction coefficient is updated only during straight running and steady running, so the correction coefficient does not change during curve running, but the conventional control device also corrects the wheel speed during curve running. Since it is included in the calculation, the correction coefficient is corrected at time t3 including the integration result of the wheel speed during curve traveling when returning to straight traveling. Accordingly, during the subsequent straight running, in this embodiment, the lateral G is calculated as zero as intended, but the conventional control device calculates the lateral G to a non-zero value due to disturbance during curve traveling.

図7は、上記実施形態の車両用走行制御装置を用いた自動車1の直線走行とカーブ走行との繰返しの際の各因子の時間変化をそれぞれ示しており、図示のように、実横Gは、直線走行中はゼロであり、カーブ走行中は上昇および下降する。そして時刻t4,t5間のカーブ定常(定速)走行中はほぼ一定になる。これに対し、車輪速計算横Gを時間微分した微分値は、直線走行中はプラス(+)とマイナス(−)とに細かく振動的に振れ、カーブ走行中の最初および最後はプラス(+)およびマイナス(−)に偏る。そして中間の時刻t4,t5間のカーブ定常(定速)走行中は、直線走行中と同様にプラス(+)とマイナス(−)に振動的に振れるため、そのままでは直線走行中と紛らわしい。そこで本実施形態では、カーブの始まりと終わりとを、上記横G微分値の所定時間以上の偏りから判断し、その始まりと終わりとの中間でのカーブ定常走行については、横G微分値を一次遅れフィルターを用いて平滑化処理(フィルター処理)し、そのフィルター処理後の横G微分値の絶対値を正の所定の閾値Sと比較して、横G微分値が閾値S以上のときはカーブ定常走行中であり、横G微分値が閾値S未満のときは直線走行中であると判断している。   FIG. 7 shows the time change of each factor at the time of repeating the straight traveling and the curved traveling of the automobile 1 using the vehicle travel control device of the above embodiment, and the actual lateral G is as shown in the figure. It is zero during straight running and ascends and descends during curved running. And it becomes almost constant during the curve steady (constant speed) traveling between times t4 and t5. On the other hand, the differential value obtained by differentiating the wheel speed calculation lateral G with respect to time fluctuates finely between plus (+) and minus (−) during straight running, and plus (+) at the beginning and end during curve running. And biased to minus (-). Then, during the steady curve (constant speed) running between the time points t4 and t5, as in the straight running, the vibration swings positively (+) and minus (−), so it is confusing as it is during the straight running. Therefore, in the present embodiment, the start and end of the curve are determined from the deviation of the lateral G differential value for a predetermined time or more, and the lateral G differential value is used as the primary for the steady curve running between the start and end. A smoothing process (filter process) is performed using a delay filter, the absolute value of the lateral G differential value after the filter process is compared with a predetermined positive threshold value S, and a curve is obtained when the lateral G differential value is equal to or greater than the threshold value S. When the vehicle is in steady running and the lateral G differential value is less than the threshold value S, it is determined that the vehicle is running straight.

なお、フィルター処理部12およびステップS3,S13における平滑化処理(フィルター処理)は、一次遅れフィルターを用いる代わりにPID(比例積分微分)制御等の目標値追従制御を用いて行うこともでき、そのようにすれば、自動車1の仕様等に応じて最適な制御を選択することができる。また、横G補正係数は、車輪速比をフィルター処理するのに代えて、例えば(1−(Vrr-Vrl)/Vsp)等の車輪速差を一次遅れフィルター等でフィルター処理して求めることもでき、そのようにすれば、自動車1の仕様等に応じて最適な演算方法を選択することができる。   In addition, the smoothing process (filter process) in the filter processing unit 12 and steps S3 and S13 can be performed using target value tracking control such as PID (proportional integral derivative) control instead of using a first-order lag filter, If it does in this way, optimal control can be selected according to the specification etc. of car 1. Further, the lateral G correction coefficient may be obtained by filtering a wheel speed difference such as (1- (Vrr-Vrl) / Vsp) with a first-order lag filter or the like instead of filtering the wheel speed ratio. In this way, an optimal calculation method can be selected according to the specifications of the automobile 1 and the like.

従って、横G演算部17は横加速度推定手段に相当し、車輪速比演算部11は補正係数算出手段に相当し、補正後車輪速演算部16は車輪速補正手段に相当する。そして、上述した本実施形態の車両用走行制御装置によれば、従動輪6,7のみの左右の車輪速Vrl,Vrrに基づく補正係数Filter(Vrl/Vrr)またはFilter(Vrr/Vrl)を用いて自動車1の横加速度を推定するので、フロントエンジン・前輪駆動(FF)の自動車1でも駆動輪4,5のスリップによる誤差を補正値に反映することがなく、それゆえ自動車1の横加速度の推定精度を高めることができる。   Accordingly, the lateral G calculation unit 17 corresponds to a lateral acceleration estimation unit, the wheel speed ratio calculation unit 11 corresponds to a correction coefficient calculation unit, and the corrected wheel speed calculation unit 16 corresponds to a wheel speed correction unit. According to the vehicle travel control apparatus of the present embodiment described above, the correction coefficient Filter (Vrl / Vrr) or Filter (Vrr / Vrl) based on the left and right wheel speeds Vrl and Vrr of only the driven wheels 6 and 7 is used. Thus, the lateral acceleration of the vehicle 1 is estimated, so even the front engine / front-wheel drive (FF) vehicle 1 does not reflect the error caused by the slip of the drive wheels 4 and 5 in the correction value. The estimation accuracy can be increased.

しかも本実施形態の車両用走行制御装置によれば、補正係数記憶手段に相当するMap格納&算出部13が、補正係数を車速に対応させて記憶し、車輪速補正手段に相当する補正後車輪速演算部16は、そのMap格納&算出部13に記憶された、車速に対応する補正係数に基づき車輪速補正値を算出するので、タイヤ剛性やタイヤ空気圧に起因する左右後輪6,7の動半径変化に対応して、低車速から高車速まで安定して横加速度の補正を行うことができる。   Moreover, according to the vehicle travel control apparatus of the present embodiment, the Map storage & calculation unit 13 corresponding to the correction coefficient storage means stores the correction coefficient corresponding to the vehicle speed, and the corrected wheel corresponding to the wheel speed correction means. The speed calculation unit 16 calculates the wheel speed correction value based on the correction coefficient corresponding to the vehicle speed stored in the Map storage & calculation unit 13, so that the left and right rear wheels 6, 7 caused by tire rigidity and tire pressure are calculated. Corresponding to the change in the moving radius, the lateral acceleration can be corrected stably from a low vehicle speed to a high vehicle speed.

さらに本実施形態の車両用走行制御装置によれば、補正係数記憶手段に相当するMap格納&算出部13は、図6に示すように、自動車1が直進走行しているときの補正係数の記憶を行ない、カーブ(旋回)走行しているときの補正係数の記憶は行わないので、カーブ走行中の横加速度による左右後輪6,7の動半径変化や外乱等による横加速度の誤った補正を回避することができる。また、Map格納&算出部13は、自動車1が定常走行しているときの補正係数の記憶を行ない、加減速中の補正係数の記憶は行わないので、加減速中の前後加速度による左右後輪6,7の動半径変化や外乱等による横加速度の誤った補正を回避することができる。   Furthermore, according to the vehicle travel control apparatus of the present embodiment, the Map storage & calculation unit 13 corresponding to the correction coefficient storage means stores the correction coefficient when the automobile 1 is traveling straight as shown in FIG. The correction coefficient is not stored when running on a curve (turning), so incorrect correction of lateral acceleration due to changes in the radius of the left and right rear wheels 6 and 7 due to lateral acceleration while driving on a curve, disturbances, etc. It can be avoided. In addition, the Map storage & calculation unit 13 stores the correction coefficient when the automobile 1 is running steadily, and does not store the correction coefficient during acceleration / deceleration. Therefore, the left and right rear wheels due to the longitudinal acceleration during acceleration / deceleration are stored. It is possible to avoid erroneous correction of lateral acceleration due to a change in the moving radius of 6, 7 or disturbance.

さらに本実施形態の車両用走行制御装置によれば、直進走行判断手段に相当する直進判定部14が、図7に示すように、推定した横加速度の微分値と、その微分値に対して一次遅れ処理を施した値の絶対値とに基づき直進走行か否かを判断するので、左右後輪6,7の直径差が発生した場合に直ちに収束方向へ横加速度を補正することができる。   Furthermore, according to the vehicle travel control apparatus of the present embodiment, the straight travel determination unit 14 corresponding to the straight travel determination means performs a primary operation with respect to the estimated differential value of the lateral acceleration and the differential value as shown in FIG. Since it is determined whether or not the vehicle travels straight based on the absolute value of the value subjected to the delay process, the lateral acceleration can be immediately corrected in the convergence direction when the diameter difference between the left and right rear wheels 6 and 7 occurs.

さらに本実施形態の車両用走行制御装置によれば、変速機制御ユニット3が補正係数算出手段として、車輪速比をフィルター処理するのに代えて例えば(1−(Vrr-Vrl)/Vsp)等の車輪速差をフィルター処理して横G補正係数を求めるようにすることで、自動車1の仕様等に応じて最適な演算方法を選択することができる。   Furthermore, according to the vehicle travel control apparatus of the present embodiment, instead of the transmission speed control unit 3 filtering the wheel speed ratio as the correction coefficient calculation means, for example, (1- (Vrr-Vrl) / Vsp), etc. By filtering the wheel speed difference and obtaining the lateral G correction coefficient, an optimal calculation method can be selected according to the specifications of the automobile 1 and the like.

そして本実施形態の車両用走行制御装置によれば、補正係数算出手段に相当するフィルター処理部12が、一方の車輪速で他方の車輪速を除した値、または上記のように一方の車輪速と他方の車輪速との差の値に対して、一次遅れフィルターや目標値追従制御等で平滑化処理を施し、その平滑化処理後の値を補正係数として算出するので、推定した横加速度が外乱等の影響を受けてばたつくのを抑制することができる。   According to the vehicle travel control apparatus of the present embodiment, the filter processing unit 12 corresponding to the correction coefficient calculation means obtains a value obtained by dividing one wheel speed by the other wheel speed, or one wheel speed as described above. The difference between the wheel speed and the other wheel speed is smoothed by a first-order lag filter, target value tracking control, etc., and the value after the smoothing process is calculated as a correction coefficient. Fluttering under the influence of disturbance and the like can be suppressed.

以上、図示例に基づき説明したが、この発明は上述の例に限定されるものでなく、特許請求の範囲の記載範囲内で適宜変更することができ、例えば、上記実施形態は自動車1が直線走行中でも定常走行中の補正係数でなければ記憶を行わないが、この発明は直線走行中であれば加減速走行中の補正係数でも記憶を行うようにすることもできる。そして、上記実施形態はフロントエンジン・前輪駆動(FF)型の車両に適用したが、この発明はフロントエンジン・後輪駆動(FR)型の車両にも適用でき、また上記実施形態は変速機制御ユニットに適用したが、この発明はアンチロックブレーキシステムや駆動力配分制御システムの如き他の種類の車両用走行制御装置にも適用することができる。   Although the present invention has been described based on the illustrated examples, the present invention is not limited to the above-described examples, and can be appropriately changed within the scope of the claims. For example, in the above embodiment, the automobile 1 is a straight line. Even if the vehicle is running, it is not stored unless it is a correction coefficient during steady running. However, the present invention can also store the correction coefficient during acceleration / deceleration running if running straight. The above embodiment is applied to a front engine / front wheel drive (FF) type vehicle, but the present invention can also be applied to a front engine / rear wheel drive (FR) type vehicle, and the above embodiment is a transmission control. Although applied to a unit, the present invention can also be applied to other types of vehicle travel control devices such as an antilock brake system and a driving force distribution control system.

かくしてこの発明の車両用走行制御装置によれば、従動輪のみの左右の車輪速に基づく補正係数を用いて車両の横加速度を推定するので、フロントエンジン・前輪駆動(FF)やフロントエンジン・後輪駆動(FR)等の二輪駆動の車両でも駆動輪のスリップによる誤差を補正値に反映することがなく、それゆえ車両の横加速度の推定精度を高めることができる。   Thus, according to the vehicle travel control device of the present invention, since the lateral acceleration of the vehicle is estimated using the correction coefficient based on the left and right wheel speeds of only the driven wheels, the front engine / front wheel drive (FF) and the front engine / rear Even in a two-wheel drive vehicle such as a wheel drive (FR), an error due to slip of the drive wheel is not reflected in the correction value, and therefore the accuracy of estimating the lateral acceleration of the vehicle can be improved.

1 自動車
2 エンジン・トランスアクスル
3 変速機制御ユニット(横加速度推定手段、補正係数算出手段、車輪速補正手段、補正係数記憶手段、直進走行判断手段)
4 左前輪
5 右前輪
6 左後輪(従動輪)
7 右後輪(従動輪)
8 回転数センサ
9 回転数センサ
11 車輪速比演算部(補正係数算出手段)
12 フィルター処理部(補正係数算出手段)
13 Map格納&算出部(補正係数記憶手段)
14 直線判定部(直線走行判断手段)
15 定常走行判定部
16 補正後車輪速演算部(車輪速補正手段)
17 横G演算部(横加速度推定手段)
DESCRIPTION OF SYMBOLS 1 Automobile 2 Engine transaxle 3 Transmission control unit (lateral acceleration estimation means, correction coefficient calculation means, wheel speed correction means, correction coefficient storage means, straight travel determination means)
4 Left front wheel 5 Right front wheel 6 Left rear wheel (driven wheel)
7 Right rear wheel (driven wheel)
8 Rotational speed sensor 9 Rotational speed sensor 11 Wheel speed ratio calculation unit (correction coefficient calculation means)
12 Filter processing unit (correction coefficient calculation means)
13 Map storage & calculation unit (correction coefficient storage means)
14 Straight line determination unit (straight line traveling determination means)
15 Steady Travel Determination Unit 16 Corrected Wheel Speed Calculation Unit (Wheel Speed Correction Unit)
17 Lateral G calculation part (lateral acceleration estimation means)

Claims (6)

車両の車輪の左右それぞれの車輪速に基づき前記車両の横加速度を推定する横加速度推定手段を備え、その横加速度推定手段が推定した横加速度に基づき前記車両の走行状態を制御する車両用走行制御装置において、
前記車輪のうち従動輪の左右の車輪速のうち一方の車輪速で他方の車輪速を除した値を補正係数として算出する補正係数算出手段と、
前記一方の車輪速に前記補正係数を乗じた値を一方の車輪速補正値として出力する車輪速補正手段と、
を備え、
前記横加速度推定手段は、前記一方の車輪速補正値と前記他方の車輪速とに基づき前記横加速度を推定することを特徴とする、車両用走行制御装置。
Vehicle travel control comprising lateral acceleration estimation means for estimating the lateral acceleration of the vehicle based on the left and right wheel speeds of the vehicle wheel, and controlling the running state of the vehicle based on the lateral acceleration estimated by the lateral acceleration estimation means In the device
Correction coefficient calculation means for calculating a value obtained by dividing one wheel speed of the left and right wheel speeds of the driven wheel among the wheels as a correction coefficient;
Wheel speed correction means for outputting a value obtained by multiplying the one wheel speed by the correction coefficient as one wheel speed correction value;
With
The lateral acceleration estimating means estimates the lateral acceleration based on the one wheel speed correction value and the other wheel speed correction device, and is a vehicle travel control device.
前記補正係数を車速に対応させて記憶する補正係数記憶手段を備え、
前記車輪速補正手段は、前記補正係数記憶手段に記憶された補正係数に基づき前記一方の車輪速補正値を算出することを特徴とする、請求項1記載の車両用走行制御装置。
Correction coefficient storage means for storing the correction coefficient corresponding to the vehicle speed;
2. The vehicle travel control apparatus according to claim 1, wherein the wheel speed correction means calculates the one wheel speed correction value based on a correction coefficient stored in the correction coefficient storage means.
前記補正係数記憶手段は、前記車両が直進走行しているときの前記補正係数について前記記憶を行ない、旋回走行しているときの前記補正係数については前記記憶を行わないことを特徴とする、請求項2記載の車両用走行制御装置。   The correction coefficient storage means stores the correction coefficient when the vehicle is traveling straight, and does not store the correction coefficient when the vehicle is turning. Item 3. The vehicle travel control device according to Item 2. 前記推定した横加速度の微分値と、前記横加速度の微分値に対して遅れ処理を施した値の絶対値とに基づき直進走行か否かを判断する直進走行判断手段を備えることを特徴とする、請求項3記載の車両用走行制御装置。   The vehicle further comprises a straight travel determination unit that determines whether or not the vehicle travels straight based on the estimated differential value of the lateral acceleration and an absolute value of a value obtained by performing a delay process on the differential value of the lateral acceleration. The vehicle travel control device according to claim 3. 前記補正係数算出手段は、前記一方の車輪速で他方の車輪速を除した値に代えて、前記一方の車輪速と前記他方の車輪速との差の値を前記補正係数として算出することを特徴とする、請求項1から4までの何れか1項記載の車両用走行制御装置。   The correction coefficient calculating means calculates the value of the difference between the one wheel speed and the other wheel speed as the correction coefficient instead of the value obtained by dividing the other wheel speed by the one wheel speed. The vehicle travel control device according to any one of claims 1 to 4, wherein the vehicle travel control device is characterized by the following. 前記補正係数算出手段は、前記一方の車輪速で他方の車輪速を除した値、または前記一方の車輪速と前記他方の車輪速との差の値に対して平滑化処理を施し、その平滑化処理を施した値を前記補正係数として算出することを特徴とする、請求項1から5までの何れか1項記載の車両用走行制御装置。   The correction coefficient calculation means performs a smoothing process on a value obtained by dividing the other wheel speed by the one wheel speed, or a value of a difference between the one wheel speed and the other wheel speed. 6. The vehicular travel control apparatus according to claim 1, wherein a value obtained by performing a conversion process is calculated as the correction coefficient.
JP2009048505A 2009-03-02 2009-03-02 Vehicle travel control device Expired - Fee Related JP5195524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009048505A JP5195524B2 (en) 2009-03-02 2009-03-02 Vehicle travel control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009048505A JP5195524B2 (en) 2009-03-02 2009-03-02 Vehicle travel control device

Publications (2)

Publication Number Publication Date
JP2010202013A JP2010202013A (en) 2010-09-16
JP5195524B2 true JP5195524B2 (en) 2013-05-08

Family

ID=42963937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009048505A Expired - Fee Related JP5195524B2 (en) 2009-03-02 2009-03-02 Vehicle travel control device

Country Status (1)

Country Link
JP (1) JP5195524B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5229338B2 (en) 2011-02-17 2013-07-03 トヨタ自動車株式会社 Vehicle state quantity estimation device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3190001B2 (en) * 1994-12-14 2001-07-16 本田技研工業株式会社 Vehicle body speed estimation device and traction control device
JP4580301B2 (en) * 2005-07-28 2010-11-10 日信工業株式会社 Estimated lateral acceleration calculation method and estimated lateral acceleration calculation device

Also Published As

Publication number Publication date
JP2010202013A (en) 2010-09-16

Similar Documents

Publication Publication Date Title
JP5146608B2 (en) Apparatus and method for determining abnormality of longitudinal acceleration sensor
JP5177286B2 (en) Vehicle weight-related physical quantity estimation device and control device
JP4867369B2 (en) Driving force control device for electric vehicle, automobile and driving force control method for electric vehicle
JP5800092B2 (en) Braking / driving force control device
JPH072081A (en) Prime mover-equipped vehicle with anti-skid controller
JP3424192B2 (en) Automotive control method and device
CN105774458A (en) Method For Controlling Suspension System
JPH09249010A (en) Initial correction coefficient arithmetic unit and device using the unit
JP4626550B2 (en) Vehicle turning behavior control device
US8219296B1 (en) Control device for controlling drive force that operates on vehicle
JP5316071B2 (en) Vehicle steering control device and vehicle steering control method
JP6577850B2 (en) Vehicle control apparatus and vehicle control method
JP5263068B2 (en) Vehicle slip determination device
JP5195524B2 (en) Vehicle travel control device
JP5154397B2 (en) Vehicle motion control device
JP4443582B2 (en) Understeer suppression device
JP2017206161A (en) Vehicular damping force control apparatus
WO2019054188A1 (en) Vehicle movement state estimating device, vehicle movement state estimating system, vehicle movement controller, and method for estimating vehicle movement state
US8682556B2 (en) Control device for controlling drive force that operates on vehicle
US20120253622A1 (en) Control device for controlling drive force that operates on vehicle
JP6376477B2 (en) Driving force control method
JP5332700B2 (en) Steering control device for vehicle
JP2010111246A (en) Road surface friction coefficient estimation device
KR20070064633A (en) Method and device for controlling the degree of locking of an electronically controllable differential lock
WO2018235929A1 (en) Travel control device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120131

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees