WO2018235929A1 - Travel control device - Google Patents

Travel control device Download PDF

Info

Publication number
WO2018235929A1
WO2018235929A1 PCT/JP2018/023748 JP2018023748W WO2018235929A1 WO 2018235929 A1 WO2018235929 A1 WO 2018235929A1 JP 2018023748 W JP2018023748 W JP 2018023748W WO 2018235929 A1 WO2018235929 A1 WO 2018235929A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
vehicle
drive wheel
control device
wheel
Prior art date
Application number
PCT/JP2018/023748
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 橋本
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Publication of WO2018235929A1 publication Critical patent/WO2018235929A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/06Automatic manoeuvring for parking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/023Avoiding failures by using redundant parts

Definitions

  • the present invention relates to a travel control device for a vehicle.
  • a travel control device that executes travel control that assists part or all of a driver's operation in a vehicle.
  • the travel control device for example, when the friction coefficient of the road surface is small due to the road surface condition and the wheels slip during execution of the travel control, the travel control is canceled. However, even if the wheels slip like that, it is preferable to continue stable travel control from the viewpoint of the driver.
  • one of the problems of the present invention is, for example, to obtain a traveling control device capable of continuing stable traveling control even when the wheels slip during execution of traveling control.
  • the travel control device is, for example, a travel control device that controls the travel of a vehicle in which at least the rear wheels are drive wheels, and the drive mechanism of the vehicle reduces the deviation between the target position and the actual position of the vehicle.
  • the drive wheel calculates the actual position based on a detection value from an operation amount calculation unit for calculating an operation amount for controlling at least one of the braking mechanism and a sensor, and a sensor for detecting the rotation of the drive wheel.
  • the determination unit determines whether the vehicle has slipped, the target position is set while changing with the passage of time, and the determination unit determines that the drive wheel has slipped, the determination unit determines the drive. And a target position setting unit that stops updating of the target position until it is determined that the wheel slip has been eliminated.
  • the determination unit after determining that the drive wheel has slipped, calculates the actual position based on data other than the detection value from a sensor that detects the rotation of the drive wheel.
  • the front wheel is a rolling wheel (non-driving wheel)
  • the determination unit determines that the driving wheel has slipped, and then the rolling wheel (non-driving wheel)
  • the actual position is calculated based on a detection value from a sensor that detects the rotation of the sensor.
  • the travel control device for example, after the determination unit determines that the driving wheel has slipped, at least one of peripheral image data of the vehicle captured by the on-vehicle camera and a detection value from an acceleration sensor. The actual position is calculated based on
  • the operation amount calculation unit may determine that the operation amount exceeds the operation amount when the drive wheel slips after the determination unit determines that the drive wheel has slipped. Calculate with no value.
  • FIG. 1 is a block diagram showing an example of a schematic configuration of a travel control device of the embodiment.
  • Drawing 2 is a flow chart which shows an example of a procedure of control by a run control device of an embodiment.
  • FIG. 3 is a diagram showing an example of change over time of parameters in the travel control device of the embodiment.
  • FIG. 4 is a graph showing an example of the relationship between the slip amount and the driving force reduction amount in the travel control device of the embodiment.
  • FIG. 1 is a block diagram showing an example of a schematic configuration of a travel control device 100 of the embodiment.
  • the travel control device 100 executes travel control that assists part or all of the operation by the driver in the vehicle 1 (FR vehicle) in which the rear wheels are drive wheels and the front wheels are rolling wheels (non-drive wheels).
  • the travel control device 100 is stable even when the wheels have slipped due to the small coefficient of friction of the road surface due to the road surface condition (for example, the condition that there is water or snow on the road surface) during travel control. It is possible to continue traveling control (details will be described later).
  • the travel control device 100 controls at least one of the drive mechanism 201 and the braking mechanism 202 at the end point position, that is, in the control section to the final target position, whereby the acceleration and deceleration of the vehicle 1 are performed. Control at least one of them.
  • the travel control device 100 can be configured, for example, as part of a parking assistance device, an automatic travel system, an automatic steering system, and the like.
  • the drive mechanism 201 is, for example, an internal combustion engine or a motor, and includes an ECU (Electronic Control Unit) thereof.
  • the braking mechanism 202 is, for example, a hydraulic braking system, and includes its ECU.
  • the travel control device 100 does not control steering, but may control steering.
  • at least one of the drive mechanism 201 and the braking mechanism 202 may be simply referred to as a control target.
  • the traveling control device 100 controls the control target by control including feedback control.
  • Feedback control is control that reduces the deviation between a target value and an actual value.
  • the traveling control device 100 includes a target value setting unit 10, a control unit 20, a determination unit 30, an actual value acquisition unit 40, and the like.
  • the control unit 20 includes an operation amount calculation unit 21, a command value calculation unit 22, and the like.
  • the target value setting unit 10 sets the target position while changing with the passage of time, and when the judgment unit 30 judges that the drive wheel has slipped, the judgment unit 30 judges that the slip of the drive wheel has been eliminated. Stop updating the target position until it is done. This makes it possible to prevent the amount of control by feedback control or the like from becoming excessive.
  • parking assistance the traveling control device 100 controls traveling from the start position of the vehicle 1 to the end position.
  • the target value setting unit 10 acquires data of the end point position.
  • the data of the end point position is, for example, the moving distance of the vehicle 1 from the start point position to the end point position.
  • the temporal change of the position of the vehicle 1 is set so that the vehicle 1 moves from the start position to the end position of the control section.
  • the target value setting unit 10 sets the target value of each parameter at each control timing, that is, each time, so that the change of the set position of the vehicle 1 over time is obtained in the control section from the start position to the end position.
  • the parameters are, for example, the position and speed of the vehicle 1.
  • the distance from at least one of the start position and the end position of the control section may be set as the position of the vehicle 1.
  • the target value setting unit 10 may calculate the target value at each control timing, or may acquire the target value calculated and stored in advance at each control timing.
  • the actual value acquisition unit 40 acquires an actual value of the same parameter as the target value. That is, in the present embodiment, the actual value acquisition unit 40 acquires (estimates), for example, the actual value of the position of the vehicle 1 and the actual value of the speed of the vehicle 1.
  • the actual value is a value obtained according to the operation of the control target, and is a detected value or a value derived from the detected value.
  • the actual value of the position and the actual value of the speed can be calculated from the detection values of the wheel speed sensor as the sensor 203.
  • the vehicle 1 includes four wheels, of which two wheels on the rear wheel are drive wheels and two wheels on the front wheel are rolling wheels (non-drive wheels).
  • the actual value of the position and the actual value of the speed are detected values of the wheel speed sensor of the driving wheel (hereinafter, also referred to as “wheel speed sensor value of the driving wheel”) and detected values of the wheel speed sensor of the rolling wheel It can be calculated from any of (hereinafter, also referred to as “wheel speed sensor value of rolling wheels”).
  • the sensor 203 is, for example, a sensor that detects or acquires data such as a position, an attitude, a state, and a surrounding image when the vehicle 1 stops or travels, and may be other than the wheel speed sensor.
  • the sensor 203 may be an acceleration sensor or a device that outputs data such as a detection value based on peripheral image data of the vehicle 1 captured by an onboard camera.
  • the actual value acquisition unit 40 can acquire the detection results from the plurality of sensors 203.
  • the operation amount calculation unit 21 of the control unit 20 calculates an operation amount for the control target.
  • the operation amount calculation unit 21 calculates an operation amount for controlling at least one of the drive mechanism 201 and the braking mechanism 202 of the vehicle 1 so as to reduce the deviation between the target position of the vehicle 1 and the actual position (actual value of position). Do.
  • the operation amount calculation unit 21 calculates the operation amount at a value that does not exceed the operation amount (drive force upper limit value) when the drive wheel slips. (Details will be described later).
  • the command value calculation unit 22 of the control unit 20 calculates a command value to the control target corresponding to the operation amount calculated by the operation amount calculation unit 21. For example, when the operation amount is a positive value, the command value calculation unit 22 sets a drive command value (control command value) to the drive mechanism 201 such that an acceleration corresponding to the magnitude of the operation amount is obtained. Calculate the rotational torque command value as In addition, for example, when the operation amount is a negative value, the command value calculation unit 22 gives a braking command value to the braking mechanism 202 so that deceleration corresponding to the magnitude of the operation amount, that is, negative acceleration can be obtained. A braking torque command value as a (control command value) is calculated.
  • the command value calculation unit 22 accelerates the drive mechanism 201 while the vehicle 1 is braked by the braking mechanism 202, or while the vehicle 1 is propelled by the drive mechanism 201.
  • the torque distribution between the drive mechanism 201 and the brake mechanism 202 can be determined so that a state of deceleration by the brake mechanism 202 can be obtained.
  • the command value calculation unit 22 calculates command values to both the drive mechanism 201 and the braking mechanism 202 according to the distribution of the driving torque and the braking torque.
  • the command value calculation unit 22 transmits a control command value to the control target, and the control target that has received the control command value executes control based on the control command value.
  • the determination unit 30 calculates the actual position based on the detection value (wheel speed sensor value of the drive wheel) from the sensor that detects the rotation of the drive wheel, and determines whether the drive wheel has slipped. Specifically, when determining whether or not the drive wheel slips, the determination unit 30 specifically includes the wheel speed sensor value of the rolling wheel and the value detected by the acceleration sensor in addition to the wheel speed sensor value of the drive wheel. When at least one of the slip rates exceeds a predetermined threshold, it is determined that the drive wheel has slipped. Further, after determining that the drive wheel has slipped, the determination unit 30 calculates the actual position based on data other than the detection value from the sensor that detects the rotation of the drive wheel. Specifically, after determining that the drive wheel has slipped, the determination unit 30 calculates the actual position based on a detection value (wheel speed sensor value of the rolling wheel) from a sensor that detects the rotation of the rolling wheel. .
  • the determination unit 30 determines whether the actual value follows the target value. In the traveling control device 100, conditions for determining whether to follow or not are set. The determination unit 30 determines whether the actual value follows the target value by comparing the value of the predetermined parameter with the condition set for the parameter.
  • the traveling control device 100 is, for example, an ECU.
  • the travel control device 100 may be incorporated in an ECU (for example, a brake ECU) of any system mounted on the vehicle 1 or may be an independent ECU.
  • the travel control device 100 can have a central processing unit (CPU), a controller, a random access memory (RAM), a read only memory (ROM), a flash memory, and the like (not shown).
  • the traveling control device 100 can execute processing according to the installed and loaded program to realize each function. In other words, the travel control device 100 executes the processing according to the program, and the travel control device 100 performs the target value setting unit 10, the control unit 20, the operation amount calculation unit 21, the command value calculation unit 22, the judgment unit 30, and the actual value acquisition unit 40. Etc can function.
  • the storage unit stores data used in the arithmetic processing of each unit, data of the result of the arithmetic processing, and the like. Note that at least a part of the functions of the above-described units may be realized by hardware. In addition to feedback control, feedforward control or other control such as a so-called disturbance observer may be incorporated into the control by the traveling control device 100.
  • FIG. 2 is a flowchart showing an example of the procedure of control by the traveling control device 100 of the embodiment.
  • the traveling control device 100 the main subject of operation will be expressed as "the traveling control device 100."
  • the travel control device 100 ends the process when the driver performs an operation to end the parking assistance control, but the explanation thereof will be described below. I omit it.
  • step S1 the traveling control apparatus 100 determines whether to start parking assistance control, and proceeds to step S2 in the case of Yes, and returns to step S1 in the case of No. For example, when there is an operation to start parking assistance control by the driver, the traveling control apparatus 100 determines Yes in step S1.
  • step S2 the traveling control device 100 executes parking assistance control.
  • the actual value acquisition unit 40 acquires the actual value of the position (distance) of the vehicle 1 and the actual value of the speed of the vehicle 1 based on the wheel speed sensor value of the drive wheel as the sensor 203 ( presume.
  • the target value setting unit 10 sets (updates) the target value of the position of the vehicle 1 and the target value of the speed of the vehicle 1 over time.
  • the operation amount calculation unit 21 calculates an operation amount for the control target.
  • the command value calculation unit 22 calculates a control command value to the control target corresponding to the operation amount calculated by the operation amount calculation unit 21, and transmits the control command value to the control target.
  • the control target that has received the control command value executes control based on the control command value.
  • step S3 the determination unit 30 determines whether or not the drive wheel has slipped (acceleration slip) using, for example, the wheel speed sensor value of the drive wheel and the wheel speed sensor value of the rolling wheel It is determined whether or not the predetermined threshold value is exceeded. If the determination is Yes, the process proceeds to step S4, and if the determination is No, the process returns to step S2.
  • FIG. 3 is a figure which shows the example of a time-dependent change of the parameter in the traveling control apparatus 100 of embodiment.
  • FIG. 3 schematically shows how parameters change with time, and is not a strict graph.
  • the target value of the distance increases with the passage of time, and the actual value of the distance (the estimated distance based on the wheel speed sensor value of the driving wheel) is also It increases with the passage of time. Further, since the drive wheel of the vehicle 1 is not slipping from time 0 to time t1, the actual value of the distance and the true value (actual value) of the distance are substantially equal. Then, slippage of the drive wheels starts at time t1 (rolling wheels do not slip), and at time t2 the slip ratio of the drive wheels exceeds a predetermined threshold (“ ⁇ ” in the third graph from the top of FIG. 3) (Yes at step S3 in FIG. 2). Therefore, from time t1 to time t2, the actual value of the distance gradually deviates from the true value of the distance.
  • the target value of the speed increases with the passage of time
  • the actual value of the speed (estimated speed based on the wheel speed sensor value of the driving wheel ) Also increases with the passage of time.
  • the actual value of the speed and the true value (actual value) of the speed are substantially equal.
  • the actual value of the velocity gradually deviates from the true value of the velocity.
  • the wheel speed sensor value of the drive wheel and the wheel speed sensor value of the rolling wheel are substantially equal.
  • the wheel speed sensor value of the drive wheel gradually deviates from the wheel speed sensor value of the rolling wheel.
  • the rolling wheels are front wheels that are steered wheels, estimation accuracy is reduced due to the influence of steering. Therefore, it is better to use the wheel speed sensor value of the drive wheel (rear wheel, non-steered wheel) in that the error at the time of turning operation of the vehicle 1 is small. And estimate the speed.
  • the driving force generated by the control target is increasing from time 0 to time t2.
  • step S4 the operation amount calculation unit 21 stores the driving force at time t2 in FIG. 3 as the driving force upper limit value D in the storage unit.
  • step S5 the target value setting unit 10 stops the calculation (update) of the target value of the distance and the target value of the speed. As a result, it is possible to prevent an excessive amount of control by subsequent feedback control or the like.
  • step S6 the traveling control device 100 executes the parking assistance control while reducing the driving force.
  • the actual value acquisition unit 40 acquires the actual value of the position (distance) of the vehicle 1 and the actual value of the velocity of the vehicle 1 based on the wheel speed sensor values of the rolling wheels, not the drive wheels ( presume.
  • the operation amount calculation unit 21 calculates the amount of operation on the control target so that the driving force is reduced.
  • FIG. 4 is a graph showing an example of the relationship between the slip amount and the driving force reduction amount in the travel control device 100 of the embodiment.
  • the operation amount calculation unit 21 calculates the next driving force (operation amount) by subtracting the driving force reduction amount proportional to the slip amount as shown in FIG. 4 from the previous driving force at each control timing.
  • the command value calculation unit 22 calculates a control command value to the control target corresponding to the operation amount calculated by the operation amount calculation unit 21, and transmits the control command value to the control target.
  • the control target that has received the control command value executes control based on the control command value.
  • step S7 the determination unit 30 slips (acceleration slip) of the drive wheel using, for example, the wheel speed sensor value of the drive wheel and the wheel speed sensor value of the rolling wheel If the answer is yes, the process proceeds to step S8, and if the answer is no, the process returns to step S6.
  • the target value of the distance is constant from time t2 to time t3, and the actual value of the distance (estimated distance based on the wheel speed sensor value of the rolling wheels ) Increases with the passage of time as a value not affected by slip (a value close to the true value).
  • the target value of the speed is constant from time t2 to time t3, and the actual value of the speed (estimated speed based on the wheel speed sensor value of the rolling wheel) Increases over time as a value that is not affected by slip (a value close to the true value).
  • the wheel speed sensor value of the drive wheel temporarily deviates from the wheel speed sensor value of the rolling wheel from time t2 to time t3. But then get close.
  • step S8 the target value setting unit 10 resumes the calculation (update) of the target value of the distance and the target value of the speed.
  • step S9 the traveling control device 100 executes the parking assistance control while making the driving force not exceed the driving force upper limit value (the driving force upper limit value D in FIG. 3).
  • the actual value acquisition unit 40 acquires the actual value of the position (distance) of the vehicle 1 and the actual value of the velocity of the vehicle 1 based on the wheel speed sensor values of the drive wheels, not the rolling wheels ( presume.
  • the target value setting unit 10 sets (updates) the target value of the position of the vehicle 1 and the target value of the speed of the vehicle 1 over time.
  • the operation amount calculation unit 21 calculates the operation amount with respect to the control target so that the driving force does not exceed the driving force upper limit value (the driving force upper limit value D in FIG. 3).
  • the command value calculation unit 22 calculates a control command value to the control target corresponding to the operation amount calculated by the operation amount calculation unit 21, and transmits the control command value to the control target.
  • the control target that has received the control command value executes control based on the control command value. Thereafter, the traveling control device 100 repeats the process of step S9.
  • stable travel control can be continued even when the wheels slip during execution of travel control. . That is, when the drive wheel of the vehicle 1 slips, the actual value of the distance or speed is estimated based on the wheel speed sensor value of the drive wheel so far, based on the wheel speed sensor value of the rolling wheel By switching so as to estimate, the error can be reduced.
  • the vehicle 1 slips again by executing the parking assist control while preventing the driving force from exceeding the driving force upper limit value (the driving force upper limit value D in FIG. 3). The possibility of doing so can be reduced.
  • the traveling control may not be stabilized, acceleration and deceleration may be repeated, and the riding comfort may deteriorate.
  • the travel control is stable and unnecessary acceleration and deceleration are not repeated, so a comfortable ride condition is obtained. Can be maintained.
  • the actual value of the distance and speed is estimated based on the wheel speed sensor value of the drive wheel so far, so the wheel speed sensor of the rolling wheel It switched to estimate based on the value, but instead, it switched to estimate based on at least one of the peripheral image data of the vehicle 1 captured by the on-vehicle camera and the detection value from the acceleration sensor Good. By doing so, the error of the actual value of the distance or speed can be suppressed to be small as well.
  • the vehicle 1 may be a vehicle in which at least the rear wheels (non-steered wheels) are drive wheels, and may be a 4WD vehicle as well as an FR vehicle.
  • a 4WD car there is no rolling wheel (non-driving wheel), so when the driving wheel of the vehicle 1 slips, the actual values of distance and speed are estimated based on the wheel speed sensor value of the driving wheel From this, it can not be switched to estimate based on the wheel speed sensor value of the rolling wheel. Therefore, switching may be performed so as to estimate based on at least one of peripheral image data of the vehicle 1 captured by the on-vehicle camera and a detection value from the acceleration sensor.
  • run control device 100 of an embodiment is applicable also when a slope and a level difference exist on a road surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

A travel control device that controls, for example, the travel of a vehicle for which at least a rear wheel is a drive wheel. The travel control device comprises: an operation amount calculation unit that calculates an operation amount for controlling a drive mechanism and/or a braking mechanism for the vehicle to reduce the deviation between a target location for the vehicle and the actual location of the vehicle; a determination unit that, on the basis of a detected value from a sensor that detects the rotation of the drive wheel, calculates the actual location and determines whether the drive wheel has slipped; and a target location setting unit that sets and resets the target location as time passes and, when the determination unit has determined that the drive wheel has slipped, does not update the target location until the determination unit has determined that the drive wheel is no longer slipping.

Description

走行制御装置Traveling control device
 本発明は、車両の走行制御装置に関する。 The present invention relates to a travel control device for a vehicle.
 従来から、車両において運転者による操作の一部または全部を支援する走行制御を実行する走行制御装置が知られている。 2. Description of the Related Art A travel control device is known that executes travel control that assists part or all of a driver's operation in a vehicle.
特開2003-206780号公報JP 2003-206780 A
 従来の走行制御装置では、走行制御の実行中に、例えば、路面状況によって路面の摩擦係数が小さくて車輪がスリップしてしまった場合、走行制御を中止するようにしている。しかし、そのように車輪がスリップしてしまった場合でも、運転者の観点から見ると、安定した走行制御を続行することが好ましい。 In the conventional travel control device, for example, when the friction coefficient of the road surface is small due to the road surface condition and the wheels slip during execution of the travel control, the travel control is canceled. However, even if the wheels slip like that, it is preferable to continue stable travel control from the viewpoint of the driver.
 そこで、本発明の課題の一つは、例えば、走行制御の実行中に、車輪がスリップしてしまった場合でも、安定した走行制御を続行することが可能な走行制御装置を得ることである。 Therefore, one of the problems of the present invention is, for example, to obtain a traveling control device capable of continuing stable traveling control even when the wheels slip during execution of traveling control.
 本発明の走行制御装置は、例えば、少なくとも後輪が駆動輪である車両の走行を制御する走行制御装置であって、車両の目標位置と実位置との偏差を小さくするように車両の駆動機構および制動機構のうち少なくとも一方を制御する操作量を算出する操作量算出部と、前記駆動輪の回転を検出するセンサからの検出値に基づいて、前記実位置を算出するとともに、前記駆動輪がスリップしたか否かを判断する判断部と、前記目標位置を時間の経過とともに変化させながら設定し、前記判断部によって前記駆動輪がスリップしたと判断された場合には、前記判断部によって前記駆動輪のスリップが解消されたと判断されるまで、前記目標位置の更新を停止する目標位置設定部と、を備える。前記判断部は、前記駆動輪がスリップしたと判断した後、前記駆動輪の回転を検出するセンサからの検出値以外のデータに基づいて、前記実位置を算出する。 The travel control device according to the present invention is, for example, a travel control device that controls the travel of a vehicle in which at least the rear wheels are drive wheels, and the drive mechanism of the vehicle reduces the deviation between the target position and the actual position of the vehicle. The drive wheel calculates the actual position based on a detection value from an operation amount calculation unit for calculating an operation amount for controlling at least one of the braking mechanism and a sensor, and a sensor for detecting the rotation of the drive wheel. The determination unit determines whether the vehicle has slipped, the target position is set while changing with the passage of time, and the determination unit determines that the drive wheel has slipped, the determination unit determines the drive. And a target position setting unit that stops updating of the target position until it is determined that the wheel slip has been eliminated. The determination unit, after determining that the drive wheel has slipped, calculates the actual position based on data other than the detection value from a sensor that detects the rotation of the drive wheel.
 また、上記走行制御装置では、例えば、前記車両は、前輪が転動輪(非駆動輪)であり、前記判断部は、前記駆動輪がスリップしたと判断した後、前記転動輪(非駆動輪)の回転を検出するセンサからの検出値に基づいて、前記実位置を算出する。 Further, in the travel control device, for example, in the vehicle, the front wheel is a rolling wheel (non-driving wheel), and the determination unit determines that the driving wheel has slipped, and then the rolling wheel (non-driving wheel) The actual position is calculated based on a detection value from a sensor that detects the rotation of the sensor.
 また、上記走行制御装置では、例えば、前記判断部は、前記駆動輪がスリップしたと判断した後、車載カメラにより撮影された前記車両の周辺画像データ、および、加速度センサからの検出値の少なくとも一方に基づいて、前記実位置を算出する。 Further, in the travel control device, for example, after the determination unit determines that the driving wheel has slipped, at least one of peripheral image data of the vehicle captured by the on-vehicle camera and a detection value from an acceleration sensor. The actual position is calculated based on
 また、上記走行制御装置では、例えば、前記操作量算出部は、前記判断部によって前記駆動輪がスリップしたと判断された後、前記操作量を、前記駆動輪がスリップしたときの操作量を超えない値で算出する。 Further, in the travel control device, for example, the operation amount calculation unit may determine that the operation amount exceeds the operation amount when the drive wheel slips after the determination unit determines that the drive wheel has slipped. Calculate with no value.
図1は、実施形態の走行制御装置の概略構成の例を示すブロック図である。FIG. 1 is a block diagram showing an example of a schematic configuration of a travel control device of the embodiment. 図2は、実施形態の走行制御装置による制御の手順の例を示すフローチャートである。Drawing 2 is a flow chart which shows an example of a procedure of control by a run control device of an embodiment. 図3は、実施形態の走行制御装置におけるパラメータの経時変化の例を示す図である。FIG. 3 is a diagram showing an example of change over time of parameters in the travel control device of the embodiment. 図4は、実施形態の走行制御装置におけるスリップ量と駆動力減少量との関係の例を示すグラフである。FIG. 4 is a graph showing an example of the relationship between the slip amount and the driving force reduction amount in the travel control device of the embodiment.
 以下、本発明の例示的な実施形態が開示される。以下に示される実施形態の構成、ならびに当該構成によってもたらされる作用および結果(効果)は、例である。本発明は、以下の実施形態に開示される構成以外によっても実現可能である。また、本発明によれば、以下の構成によって得られる種々の効果(派生的な効果も含む)のうち少なくとも一つを得ることが可能である。 In the following, exemplary embodiments of the present invention are disclosed. The configurations of the embodiments shown below, and the operations and results (effects) provided by the configurations are examples. The present invention can also be realized with configurations other than the configurations disclosed in the following embodiments. Further, according to the present invention, it is possible to obtain at least one of various effects (including derivative effects) obtained by the following configuration.
 まず、図1を参照して、実施形態の走行制御装置100の概略構成の例について説明する。図1は、実施形態の走行制御装置100の概略構成の例を示すブロック図である。走行制御装置100は、後輪が駆動輪で、前輪が転動輪(非駆動輪)である車両1(FR車)において運転者による操作の一部または全部を支援する走行制御を実行する。また、走行制御装置100は、走行制御の実行中に、路面状況(例えば、路面に水や雪等がある状況)によって路面の摩擦係数が小さくて車輪がスリップしてしまった場合でも、安定した走行制御を続行することが可能である(詳細は後述)。 First, an example of a schematic configuration of a travel control device 100 according to an embodiment will be described with reference to FIG. FIG. 1 is a block diagram showing an example of a schematic configuration of a travel control device 100 of the embodiment. The travel control device 100 executes travel control that assists part or all of the operation by the driver in the vehicle 1 (FR vehicle) in which the rear wheels are drive wheels and the front wheels are rolling wheels (non-drive wheels). In addition, the travel control device 100 is stable even when the wheels have slipped due to the small coefficient of friction of the road surface due to the road surface condition (for example, the condition that there is water or snow on the road surface) during travel control. It is possible to continue traveling control (details will be described later).
 走行制御装置100は、終点位置、すなわち、最終的な目標位置までの制御区間において、駆動機構201および制動機構202のうち少なくともいずれか一方を制御し、これにより、車両1の加速および減速のうち少なくともいずれか一方を制御する。走行制御装置100は、例えば、駐車支援装置、自動走行システム、自動操縦システム等の一部として構成されうる。駆動機構201は、例えば、内燃機関やモータ等であり、それらのECU(Electronic Control Unit)を含む。また、制動機構202は、例えば、液圧ブレーキシステムであり、そのECUを含む。なお、以下の例では、走行制御装置100は、操舵を制御しないが、操舵を制御してもよい。また、以下では、駆動機構201および制動機構202のうち少なくともいずれか一方を、単に制御対象と称することがある。 The travel control device 100 controls at least one of the drive mechanism 201 and the braking mechanism 202 at the end point position, that is, in the control section to the final target position, whereby the acceleration and deceleration of the vehicle 1 are performed. Control at least one of them. The travel control device 100 can be configured, for example, as part of a parking assistance device, an automatic travel system, an automatic steering system, and the like. The drive mechanism 201 is, for example, an internal combustion engine or a motor, and includes an ECU (Electronic Control Unit) thereof. The braking mechanism 202 is, for example, a hydraulic braking system, and includes its ECU. In the following example, the travel control device 100 does not control steering, but may control steering. In the following, at least one of the drive mechanism 201 and the braking mechanism 202 may be simply referred to as a control target.
 走行制御装置100は、フィードバック制御を含む制御によって、制御対象を制御する。フィードバック制御は、目標値と実値との偏差を小さくする制御である。 The traveling control device 100 controls the control target by control including feedback control. Feedback control is control that reduces the deviation between a target value and an actual value.
 走行制御装置100は、目標値設定部10、制御部20、判断部30、実値取得部40等を有する。制御部20には、操作量算出部21、指令値算出部22等が含まれる。 The traveling control device 100 includes a target value setting unit 10, a control unit 20, a determination unit 30, an actual value acquisition unit 40, and the like. The control unit 20 includes an operation amount calculation unit 21, a command value calculation unit 22, and the like.
 目標値設定部10は、目標位置を時間の経過とともに変化させながら設定し、判断部30によって駆動輪がスリップしたと判断された場合には、判断部30によって駆動輪のスリップが解消されたと判断されるまで、目標位置の更新を停止する。これにより、フィードバック制御等による制御量が過大になることを防ぐことができる。以下、駐車支援の場合を例にとって、具体的に説明する。駐車支援の場合、走行制御装置100は、車両1の始点位置から終点位置までの走行を制御する。 The target value setting unit 10 sets the target position while changing with the passage of time, and when the judgment unit 30 judges that the drive wheel has slipped, the judgment unit 30 judges that the slip of the drive wheel has been eliminated. Stop updating the target position until it is done. This makes it possible to prevent the amount of control by feedback control or the like from becoming excessive. The following specifically describes the case of parking assistance as an example. In the case of parking assistance, the traveling control device 100 controls traveling from the start position of the vehicle 1 to the end position.
 目標値設定部10は、終点位置のデータを取得する。終点位置のデータは、例えば、始点位置から終点位置までの車両1の移動距離である。走行制御装置100では、車両1が制御区間の始点位置から終点位置まで移動するように、車両1の経時的な位置の変化が設定される。目標値設定部10は、始点位置から終点位置までの制御区間において、設定された車両1の経時的な位置の変化が得られるよう、各制御タイミングすなわち各時刻での各パラメータの目標値を設定する。パラメータは、例えば、車両1の位置および速度である。なお、走行制御装置100では、制御区間の始点位置および終点位置のうち少なくとも一方からの距離が、車両1の位置として設定されうる。また、目標値設定部10は、各制御タイミングで目標値を算出してもよいし、予め算出され記憶されている目標値を各制御タイミングで取得してもよい。 The target value setting unit 10 acquires data of the end point position. The data of the end point position is, for example, the moving distance of the vehicle 1 from the start point position to the end point position. In the travel control device 100, the temporal change of the position of the vehicle 1 is set so that the vehicle 1 moves from the start position to the end position of the control section. The target value setting unit 10 sets the target value of each parameter at each control timing, that is, each time, so that the change of the set position of the vehicle 1 over time is obtained in the control section from the start position to the end position. Do. The parameters are, for example, the position and speed of the vehicle 1. In the traveling control device 100, the distance from at least one of the start position and the end position of the control section may be set as the position of the vehicle 1. Further, the target value setting unit 10 may calculate the target value at each control timing, or may acquire the target value calculated and stored in advance at each control timing.
 実値取得部40は、目標値と同じパラメータの実値を取得する。すなわち、本実施形態では、実値取得部40は、例えば、車両1の位置の実値、および、車両1の速度の実値を取得(推定)する。実値は、制御対象の動作に応じて得られた値であって、検出値、または当該検出値から導かれた値である。例えば、位置の実値および速度の実値は、センサ203としての車輪速センサの検出値から算出されうる。本実施形態では、例えば、車両1は、四輪を備え、そのうち、後輪の二輪が駆動輪で、前輪の二輪が転動輪(非駆動輪)であるものとする。そして、位置の実値および速度の実値は、駆動輪の車輪速センサの検出値(以下、「駆動輪の車輪速センサ値」ともいう。)、および、転動輪の車輪速センサの検出値(以下、「転動輪の車輪速センサ値」ともいう。)のいずれからも算出可能である。 The actual value acquisition unit 40 acquires an actual value of the same parameter as the target value. That is, in the present embodiment, the actual value acquisition unit 40 acquires (estimates), for example, the actual value of the position of the vehicle 1 and the actual value of the speed of the vehicle 1. The actual value is a value obtained according to the operation of the control target, and is a detected value or a value derived from the detected value. For example, the actual value of the position and the actual value of the speed can be calculated from the detection values of the wheel speed sensor as the sensor 203. In the present embodiment, for example, it is assumed that the vehicle 1 includes four wheels, of which two wheels on the rear wheel are drive wheels and two wheels on the front wheel are rolling wheels (non-drive wheels). And the actual value of the position and the actual value of the speed are detected values of the wheel speed sensor of the driving wheel (hereinafter, also referred to as "wheel speed sensor value of the driving wheel") and detected values of the wheel speed sensor of the rolling wheel It can be calculated from any of (hereinafter, also referred to as “wheel speed sensor value of rolling wheels”).
 なお、センサ203は、例えば、車両1の停止時や走行時における、位置、姿勢、状態、周辺画像等のデータを検出または取得するセンサ等であって、車輪速センサ以外であってもよい。例えば、センサ203は、加速度センサや、車載カメラにより撮影された車両1の周辺画像データに基づいて検出値等のデータを出力する装置であってもよい。また、実値取得部40は、複数のセンサ203から検出結果を取得することができる。 The sensor 203 is, for example, a sensor that detects or acquires data such as a position, an attitude, a state, and a surrounding image when the vehicle 1 stops or travels, and may be other than the wheel speed sensor. For example, the sensor 203 may be an acceleration sensor or a device that outputs data such as a detection value based on peripheral image data of the vehicle 1 captured by an onboard camera. Further, the actual value acquisition unit 40 can acquire the detection results from the plurality of sensors 203.
 制御部20の操作量算出部21は、制御対象に対する操作量を算出する。操作量算出部21は、車両1の目標位置と実位置(位置の実値)との偏差を小さくするように車両1の駆動機構201および制動機構202のうち少なくとも一方を制御する操作量を算出する。また、操作量算出部21は、判断部30によって駆動輪がスリップしたと判断された後、前記操作量を、駆動輪がスリップしたときの操作量(駆動力上限値)を超えない値で算出する(詳細は後述)。 The operation amount calculation unit 21 of the control unit 20 calculates an operation amount for the control target. The operation amount calculation unit 21 calculates an operation amount for controlling at least one of the drive mechanism 201 and the braking mechanism 202 of the vehicle 1 so as to reduce the deviation between the target position of the vehicle 1 and the actual position (actual value of position). Do. In addition, after the determination unit 30 determines that the drive wheel has slipped, the operation amount calculation unit 21 calculates the operation amount at a value that does not exceed the operation amount (drive force upper limit value) when the drive wheel slips. (Details will be described later).
 制御部20の指令値算出部22は、操作量算出部21で算出された操作量に対応した制御対象への指令値を算出する。指令値算出部22は、例えば、操作量が正の値であった場合には、当該操作量の大きさに対応した加速が得られるよう、駆動機構201への駆動指令値(制御指令値)としての回転トルク指令値を算出する。また、指令値算出部22は、例えば、操作量が負の値であった場合には、操作量の大きさに対応した減速すなわち負の加速が得られるよう、制動機構202への制動指令値(制御指令値)としての制動トルク指令値を算出する。また、指令値算出部22は、車両1の走行状況等に応じて、例えば、車両1が制動機構202によって制動されながら駆動機構201によって加速する状態や、車両1が駆動機構201によって推進されながら制動機構202によって減速する状態等が得られるよう、駆動機構201と制動機構202とのトルク配分を決定することができる。その場合、指令値算出部22は、駆動トルクと制動トルクとの配分に応じた駆動機構201および制動機構202の双方への指令値を算出する。指令値算出部22は制御対象へ制御指令値を送信し、制御指令値を受信した制御対象はその制御指令値に基づいて制御を実行する。 The command value calculation unit 22 of the control unit 20 calculates a command value to the control target corresponding to the operation amount calculated by the operation amount calculation unit 21. For example, when the operation amount is a positive value, the command value calculation unit 22 sets a drive command value (control command value) to the drive mechanism 201 such that an acceleration corresponding to the magnitude of the operation amount is obtained. Calculate the rotational torque command value as In addition, for example, when the operation amount is a negative value, the command value calculation unit 22 gives a braking command value to the braking mechanism 202 so that deceleration corresponding to the magnitude of the operation amount, that is, negative acceleration can be obtained. A braking torque command value as a (control command value) is calculated. In addition, according to the traveling condition of the vehicle 1, for example, the command value calculation unit 22 accelerates the drive mechanism 201 while the vehicle 1 is braked by the braking mechanism 202, or while the vehicle 1 is propelled by the drive mechanism 201. The torque distribution between the drive mechanism 201 and the brake mechanism 202 can be determined so that a state of deceleration by the brake mechanism 202 can be obtained. In that case, the command value calculation unit 22 calculates command values to both the drive mechanism 201 and the braking mechanism 202 according to the distribution of the driving torque and the braking torque. The command value calculation unit 22 transmits a control command value to the control target, and the control target that has received the control command value executes control based on the control command value.
 判断部30は、駆動輪の回転を検出するセンサからの検出値(駆動輪の車輪速センサ値)に基づいて、実位置を算出するとともに、駆動輪がスリップしたか否かを判断する。判断部30は、駆動輪がスリップしたか否かを判断する場合、具体的には、例えば、駆動輪の車輪速センサ値のほかに、転動輪の車輪速センサ値および加速度センサによる検出値の少なくとも一方を用いて、スリップ率が所定の閾値を超えたときに、駆動輪がスリップしたと判断する。また、判断部30は、駆動輪がスリップしたと判断した後、駆動輪の回転を検出するセンサからの検出値以外のデータに基づいて、実位置を算出する。具体的には、判断部30は、駆動輪がスリップしたと判断した後、転動輪の回転を検出するセンサからの検出値(転動輪の車輪速センサ値)に基づいて、実位置を算出する。 The determination unit 30 calculates the actual position based on the detection value (wheel speed sensor value of the drive wheel) from the sensor that detects the rotation of the drive wheel, and determines whether the drive wheel has slipped. Specifically, when determining whether or not the drive wheel slips, the determination unit 30 specifically includes the wheel speed sensor value of the rolling wheel and the value detected by the acceleration sensor in addition to the wheel speed sensor value of the drive wheel. When at least one of the slip rates exceeds a predetermined threshold, it is determined that the drive wheel has slipped. Further, after determining that the drive wheel has slipped, the determination unit 30 calculates the actual position based on data other than the detection value from the sensor that detects the rotation of the drive wheel. Specifically, after determining that the drive wheel has slipped, the determination unit 30 calculates the actual position based on a detection value (wheel speed sensor value of the rolling wheel) from a sensor that detects the rotation of the rolling wheel. .
 また、判断部30は、実値が目標値に追従しているか否かを判断する。走行制御装置100では、追従の可否を判断する条件が設定されている。判断部30は、所定のパラメータの値と当該パラメータについて設定された条件とを比較することにより、実値が目標値に追従しているか否かを判断する。 Further, the determination unit 30 determines whether the actual value follows the target value. In the traveling control device 100, conditions for determining whether to follow or not are set. The determination unit 30 determines whether the actual value follows the target value by comparing the value of the predetermined parameter with the condition set for the parameter.
 走行制御装置100は、例えばECUである。走行制御装置100は、車両1に搭載されたいずれかのシステムのECU(例えば、ブレーキECU)に組み込まれてもよいし、独立したECUであってもよい。走行制御装置100は、不図示のCPU(Central Processing Unit)、コントローラ、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ等を有することができる。走行制御装置100は、インストールされ、ロードされたプログラムにしたがって処理を実行し、各機能を実現することができる。すなわち、プログラムにしたがって処理が実行されることにより、走行制御装置100は、目標値設定部10、制御部20、操作量算出部21、指令値算出部22、判断部30、実値取得部40等として機能することができる。また、記憶部には、各部の演算処理で用いられるデータや、演算処理の結果のデータ等が記憶される。なお、上記各部の機能の少なくとも一部は、ハードウエアによって実現されてもよい。また、走行制御装置100による制御には、フィードバック制御の他に、フィードフォワード制御や、いわゆる外乱オブザーバ等の他の制御が組み込まれてもよい。 The traveling control device 100 is, for example, an ECU. The travel control device 100 may be incorporated in an ECU (for example, a brake ECU) of any system mounted on the vehicle 1 or may be an independent ECU. The travel control device 100 can have a central processing unit (CPU), a controller, a random access memory (RAM), a read only memory (ROM), a flash memory, and the like (not shown). The traveling control device 100 can execute processing according to the installed and loaded program to realize each function. In other words, the travel control device 100 executes the processing according to the program, and the travel control device 100 performs the target value setting unit 10, the control unit 20, the operation amount calculation unit 21, the command value calculation unit 22, the judgment unit 30, and the actual value acquisition unit 40. Etc can function. The storage unit stores data used in the arithmetic processing of each unit, data of the result of the arithmetic processing, and the like. Note that at least a part of the functions of the above-described units may be realized by hardware. In addition to feedback control, feedforward control or other control such as a so-called disturbance observer may be incorporated into the control by the traveling control device 100.
 次に、図2を参照して、走行制御装置100による制御の手順の例について説明する。図2は、実施形態の走行制御装置100による制御の手順の例を示すフローチャートである。なお、以下において、走行制御装置100における各部10~40の特徴的な処理以外の処理については、動作主体を「走行制御装置100」と表現する。また、図2の制御中における任意のタイミングで、走行制御装置100は、運転者によって駐車支援制御を終了する旨の操作があった場合は処理を終了するが、その点については以下では説明を省略する。 Next, with reference to FIG. 2, an example of a procedure of control by the traveling control device 100 will be described. FIG. 2 is a flowchart showing an example of the procedure of control by the traveling control device 100 of the embodiment. In the following, regarding the processing other than the characteristic processing of each of the units 10 to 40 in the traveling control device 100, the main subject of operation will be expressed as "the traveling control device 100." Further, at an arbitrary timing during the control of FIG. 2, the travel control device 100 ends the process when the driver performs an operation to end the parking assistance control, but the explanation thereof will be described below. I omit it.
 ステップS1において、走行制御装置100は、駐車支援制御を開始するか否かを判定し、Yesの場合はステップS2に進み、Noの場合はステップS1に戻る。例えば、走行制御装置100は、運転者によって駐車支援制御を開始する旨の操作があった場合は、ステップS1でYesと判定する。 In step S1, the traveling control apparatus 100 determines whether to start parking assistance control, and proceeds to step S2 in the case of Yes, and returns to step S1 in the case of No. For example, when there is an operation to start parking assistance control by the driver, the traveling control apparatus 100 determines Yes in step S1.
 次に、ステップS2において、走行制御装置100は、駐車支援制御を実行する。具体的には、実値取得部40は、センサ203としての駆動輪の車輪速センサ値に基づいて、車両1の位置(距離)の実値、および、車両1の速度の実値を取得(推定)する。また、目標値設定部10は、車両1の位置の目標値、および、車両1の速度の目標値を経時的に設定(更新)する。そして、操作量算出部21は、制御対象に対する操作量を算出する。指令値算出部22は、操作量算出部21で算出された操作量に対応した制御対象への制御指令値を算出し、制御対象へ制御指令値を送信する。制御指令値を受信した制御対象は、その制御指令値に基づいて制御を実行する。 Next, in step S2, the traveling control device 100 executes parking assistance control. Specifically, the actual value acquisition unit 40 acquires the actual value of the position (distance) of the vehicle 1 and the actual value of the speed of the vehicle 1 based on the wheel speed sensor value of the drive wheel as the sensor 203 ( presume. Further, the target value setting unit 10 sets (updates) the target value of the position of the vehicle 1 and the target value of the speed of the vehicle 1 over time. Then, the operation amount calculation unit 21 calculates an operation amount for the control target. The command value calculation unit 22 calculates a control command value to the control target corresponding to the operation amount calculated by the operation amount calculation unit 21, and transmits the control command value to the control target. The control target that has received the control command value executes control based on the control command value.
 次に、ステップS3において、判断部30は、例えば、駆動輪の車輪速センサ値と、転動輪の車輪速センサ値を用いて、駆動輪がスリップ(加速スリップ)したか否か(スリップ率が所定の閾値を超えたか否か)を判断し、Yesの場合はステップS4に進み、Noの場合はステップS2に戻る。 Next, in step S3, the determination unit 30 determines whether or not the drive wheel has slipped (acceleration slip) using, for example, the wheel speed sensor value of the drive wheel and the wheel speed sensor value of the rolling wheel It is determined whether or not the predetermined threshold value is exceeded. If the determination is Yes, the process proceeds to step S4, and if the determination is No, the process returns to step S2.
 ここで、図3は、実施形態の走行制御装置100におけるパラメータの経時変化の例を示す図である。図3において、時刻0で駐車支援制御が開始されたものとする。なお、図3は、パラメータの経時変化の様子を大まかに示したものであり、厳密なグラフではない。 Here, FIG. 3 is a figure which shows the example of a time-dependent change of the parameter in the traveling control apparatus 100 of embodiment. In FIG. 3, it is assumed that parking assistance control is started at time 0. FIG. 3 schematically shows how parameters change with time, and is not a strict graph.
 図3の上から1段目のグラフに示すように、時刻0から、距離の目標値は時間経過にともなって増加し、距離の実値(駆動輪の車輪速センサ値に基づく推定距離)も時間経過にともなって増加する。また、時刻0から時刻t1まで、車両1の駆動輪がスリップしていないので、距離の実値と距離の真値(実際の値)はほぼ等しい。そして、時刻t1で駆動輪のスリップが開始し(転動輪はスリップしない)、時刻t2で駆動輪のスリップ率が所定の閾値(図3の上から3段目のグラフの「α」)を超えた(図2のステップS3でYes)ものとする。したがって、時刻t1から時刻t2まで、距離の実値は距離の真値から次第に乖離する。 As shown in the first graph from the top of FIG. 3, from time 0, the target value of the distance increases with the passage of time, and the actual value of the distance (the estimated distance based on the wheel speed sensor value of the driving wheel) is also It increases with the passage of time. Further, since the drive wheel of the vehicle 1 is not slipping from time 0 to time t1, the actual value of the distance and the true value (actual value) of the distance are substantially equal. Then, slippage of the drive wheels starts at time t1 (rolling wheels do not slip), and at time t2 the slip ratio of the drive wheels exceeds a predetermined threshold (“α” in the third graph from the top of FIG. 3) (Yes at step S3 in FIG. 2). Therefore, from time t1 to time t2, the actual value of the distance gradually deviates from the true value of the distance.
 また、図3の上から2段目のグラフに示すように、時刻0から、速度の目標値は時間経過にともなって増加し、速度の実値(駆動輪の車輪速センサ値に基づく推定速度)も時間経過にともなって増加する。また、時刻0から時刻t1まで、車両1の駆動輪がスリップしていないので、速度の実値と速度の真値(実際の値)はほぼ等しい。そして、時刻t1から時刻t2まで、速度の実値は速度の真値から次第に乖離する。 Also, as shown in the second graph from the top of FIG. 3, from time 0, the target value of the speed increases with the passage of time, and the actual value of the speed (estimated speed based on the wheel speed sensor value of the driving wheel ) Also increases with the passage of time. Further, since the drive wheel of the vehicle 1 is not slipping from time 0 to time t1, the actual value of the speed and the true value (actual value) of the speed are substantially equal. Then, from time t1 to time t2, the actual value of the velocity gradually deviates from the true value of the velocity.
 また、図3の上から3段目のグラフに示すように、時刻0から時刻t1まで、駆動輪の車輪速センサ値と転動輪の車輪速センサ値はほぼ等しい。しかし、時刻t1から時刻t2まで、駆動輪の車輪速センサ値は転動輪の車輪速センサ値から次第に乖離する。なお、転動輪はスリップしない(しにくい)という点では距離や速度の推定に転動輪の車輪速センサ値を用いるのがよい。しかし、FR車の場合、転動輪が操舵輪である前輪となるため、転舵の影響で推定精度が落ちる。そのため、車両1の旋回動作時の誤差が小さいという点では駆動輪(後輪、非操舵輪)の車輪速センサ値を用いるのがよいので、通常は駆動輪の車輪速センサ値を用いて距離や速度を推定している。 Further, as shown in the third graph from the top of FIG. 3, from time 0 to time t1, the wheel speed sensor value of the drive wheel and the wheel speed sensor value of the rolling wheel are substantially equal. However, from time t1 to time t2, the wheel speed sensor value of the drive wheel gradually deviates from the wheel speed sensor value of the rolling wheel. In addition, it is preferable to use the wheel speed sensor value of the rolling wheel for estimation of the distance and the speed in that the rolling wheel does not slip (it is difficult to slip). However, in the case of an FR car, since the rolling wheels are front wheels that are steered wheels, estimation accuracy is reduced due to the influence of steering. Therefore, it is better to use the wheel speed sensor value of the drive wheel (rear wheel, non-steered wheel) in that the error at the time of turning operation of the vehicle 1 is small. And estimate the speed.
 また、図3の上から4段目のグラフに示すように、時刻0から時刻t2まで、制御対象により発生する駆動力は増加している。 Also, as shown in the fourth graph from the top of FIG. 3, the driving force generated by the control target is increasing from time 0 to time t2.
 図2に戻って、ステップS4において、操作量算出部21は、図3の時刻t2における駆動力を駆動力上限値Dとして記憶部に記憶する。 Returning to FIG. 2, in step S4, the operation amount calculation unit 21 stores the driving force at time t2 in FIG. 3 as the driving force upper limit value D in the storage unit.
 次に、ステップS5において、目標値設定部10は、距離の目標値と速度の目標値の演算(更新)を停止する。これにより、以降のフィードバック制御等による制御量が過大になることを防ぐことができる。 Next, in step S5, the target value setting unit 10 stops the calculation (update) of the target value of the distance and the target value of the speed. As a result, it is possible to prevent an excessive amount of control by subsequent feedback control or the like.
 次に、ステップS6において、走行制御装置100は、駆動力を低減しながら駐車支援制御を実行する。具体的には、実値取得部40は、駆動輪ではなく転動輪の車輪速センサ値に基づいて、車両1の位置(距離)の実値、および、車両1の速度の実値を取得(推定)する。そして、操作量算出部21は、駆動力が低減するように制御対象に対する操作量を算出する。 Next, in step S6, the traveling control device 100 executes the parking assistance control while reducing the driving force. Specifically, the actual value acquisition unit 40 acquires the actual value of the position (distance) of the vehicle 1 and the actual value of the velocity of the vehicle 1 based on the wheel speed sensor values of the rolling wheels, not the drive wheels ( presume. Then, the operation amount calculation unit 21 calculates the amount of operation on the control target so that the driving force is reduced.
 ここで、図4は、実施形態の走行制御装置100におけるスリップ量と駆動力減少量との関係の例を示すグラフである。図4に示すように、スリップ量が大きいほど駆動力減少量も大きくなっている。このような関係情報が記憶部に記憶されている。操作量算出部21は、制御タイミングごとに、前回の駆動力から、この図4に示すようなスリップ量に比例した駆動力減少量を減算することで次回の駆動力(操作量)を算出する。そして、指令値算出部22は、操作量算出部21で算出された操作量に対応した制御対象への制御指令値を算出し、制御対象へ制御指令値を送信する。制御指令値を受信した制御対象は、その制御指令値に基づいて制御を実行する。 Here, FIG. 4 is a graph showing an example of the relationship between the slip amount and the driving force reduction amount in the travel control device 100 of the embodiment. As shown in FIG. 4, the larger the slip amount, the larger the amount of decrease in the driving force. Such related information is stored in the storage unit. The operation amount calculation unit 21 calculates the next driving force (operation amount) by subtracting the driving force reduction amount proportional to the slip amount as shown in FIG. 4 from the previous driving force at each control timing. . Then, the command value calculation unit 22 calculates a control command value to the control target corresponding to the operation amount calculated by the operation amount calculation unit 21, and transmits the control command value to the control target. The control target that has received the control command value executes control based on the control command value.
 図2に戻って、ステップS6の後、ステップS7において、判断部30は、例えば、駆動輪の車輪速センサ値と、転動輪の車輪速センサ値を用いて、駆動輪のスリップ(加速スリップ)が解消されたか否かを判断し、Yesの場合はステップS8に進み、Noの場合はステップS6に戻る。 Returning to FIG. 2, after step S6, in step S7, the determination unit 30 slips (acceleration slip) of the drive wheel using, for example, the wheel speed sensor value of the drive wheel and the wheel speed sensor value of the rolling wheel If the answer is yes, the process proceeds to step S8, and if the answer is no, the process returns to step S6.
 ここで、図3の上から1段目のグラフに示すように、時刻t2から時刻t3まで、距離の目標値は一定であり、距離の実値(転動輪の車輪速センサ値に基づく推定距離)はスリップの影響を受けない値(真値に近い値)として時間経過にともなって増加する。 Here, as shown in the first graph from the top of FIG. 3, the target value of the distance is constant from time t2 to time t3, and the actual value of the distance (estimated distance based on the wheel speed sensor value of the rolling wheels ) Increases with the passage of time as a value not affected by slip (a value close to the true value).
 また、図3の上から2段目のグラフに示すように、時刻t2から時刻t3まで、速度の目標値は一定であり、速度の実値(転動輪の車輪速センサ値に基づく推定速度)はスリップの影響を受けない値(真値に近い値)として時間経過にともなって増加する。 Also, as shown in the second graph from the top of FIG. 3, the target value of the speed is constant from time t2 to time t3, and the actual value of the speed (estimated speed based on the wheel speed sensor value of the rolling wheel) Increases over time as a value that is not affected by slip (a value close to the true value).
 また、図3の上から3段目のグラフに示すように、時刻t2から時刻t3まで、駆動輪の車輪速センサ値は、転動輪の車輪速センサ値と比べて、一時的に乖離が進むが、その後、近付く。 In addition, as shown in the third graph from the top of FIG. 3, the wheel speed sensor value of the drive wheel temporarily deviates from the wheel speed sensor value of the rolling wheel from time t2 to time t3. But then get close.
 また、図3の上から4段目のグラフに示すように、時刻t2から時刻t3まで、制御対象により発生する駆動力は減少(減少量β)している。 Further, as shown in the fourth graph from the top of FIG. 3, from time t2 to time t3, the driving force generated by the control target is reduced (decreased amount β).
 次に、ステップS8において、目標値設定部10は、距離の目標値と速度の目標値の演算(更新)を再開する。 Next, in step S8, the target value setting unit 10 resumes the calculation (update) of the target value of the distance and the target value of the speed.
 次に、ステップS9において、走行制御装置100は、駆動力が駆動力上限値(図3の駆動力上限値D)を超えないようにしながら駐車支援制御を実行する。具体的には、実値取得部40は、転動輪ではなく駆動輪の車輪速センサ値に基づいて、車両1の位置(距離)の実値、および、車両1の速度の実値を取得(推定)する。また、目標値設定部10は、車両1の位置の目標値、および、車両1の速度の目標値を経時的に設定(更新)する。そして、操作量算出部21は、駆動力が駆動力上限値(図3の駆動力上限値D)を超えないよう制御対象に対する操作量を算出する。指令値算出部22は、操作量算出部21で算出された操作量に対応した制御対象への制御指令値を算出し、制御対象へ制御指令値を送信する。制御指令値を受信した制御対象は、その制御指令値に基づいて制御を実行する。その後、走行制御装置100は、ステップS9の処理を繰り返す。 Next, in step S9, the traveling control device 100 executes the parking assistance control while making the driving force not exceed the driving force upper limit value (the driving force upper limit value D in FIG. 3). Specifically, the actual value acquisition unit 40 acquires the actual value of the position (distance) of the vehicle 1 and the actual value of the velocity of the vehicle 1 based on the wheel speed sensor values of the drive wheels, not the rolling wheels ( presume. Further, the target value setting unit 10 sets (updates) the target value of the position of the vehicle 1 and the target value of the speed of the vehicle 1 over time. Then, the operation amount calculation unit 21 calculates the operation amount with respect to the control target so that the driving force does not exceed the driving force upper limit value (the driving force upper limit value D in FIG. 3). The command value calculation unit 22 calculates a control command value to the control target corresponding to the operation amount calculated by the operation amount calculation unit 21, and transmits the control command value to the control target. The control target that has received the control command value executes control based on the control command value. Thereafter, the traveling control device 100 repeats the process of step S9.
 以上、説明したように、本実施形態の走行制御装置100によれば、例えば、走行制御の実行中に、車輪がスリップしてしまった場合でも、安定した走行制御を続行することが可能となる。つまり、車両1の駆動輪がスリップした場合に、距離や速度の実値を、それまで駆動輪の車輪速センサ値に基づいて推定していたものから、転動輪の車輪速センサ値に基づいて推定するように切り替えることにより、誤差を小さく抑えることができる。 As described above, according to the travel control device 100 of the present embodiment, for example, stable travel control can be continued even when the wheels slip during execution of travel control. . That is, when the drive wheel of the vehicle 1 slips, the actual value of the distance or speed is estimated based on the wheel speed sensor value of the drive wheel so far, based on the wheel speed sensor value of the rolling wheel By switching so as to estimate, the error can be reduced.
 また、車両1の駆動輪がスリップしてから解消するまで、目標値設定部10による距離や速度の目標値の更新を停止することにより、フィードバック制御等による制御量が過大になることを防ぐことができる。 Further, by stopping the updating of the target value of the distance and speed by the target value setting unit 10 until the driving wheel of the vehicle 1 slips and then cancels it, it is prevented that the control amount by feedback control etc. becomes excessive. Can.
 また、車両1の駆動輪がスリップした後は、駆動力が駆動力上限値(図3の駆動力上限値D)を超えないようにしながら駐車支援制御を実行することで、車両1が再びスリップする可能性を低減することができる。 In addition, after the driving wheels of the vehicle 1 slip, the vehicle 1 slips again by executing the parking assist control while preventing the driving force from exceeding the driving force upper limit value (the driving force upper limit value D in FIG. 3). The possibility of doing so can be reduced.
 また、路面の摩擦係数が低くて車両がスリップしてしまった場合に、その後、従来技術では、走行制御が安定せず、加速と減速を繰り返してしまい、乗り心地が悪くなってしまうことがあった。一方、本実施形態によれば、路面の摩擦係数が低くて車両がスリップしてしまった場合でも、走行制御が安定し、余計な加速と減速を繰り返すことがないので、乗り心地の良い状態を維持することができる。 In addition, when the friction coefficient of the road surface is low and the vehicle slips, thereafter, in the prior art, the traveling control may not be stabilized, acceleration and deceleration may be repeated, and the riding comfort may deteriorate. The On the other hand, according to the present embodiment, even when the vehicle has slipped due to the low coefficient of friction of the road surface, the travel control is stable and unnecessary acceleration and deceleration are not repeated, so a comfortable ride condition is obtained. Can be maintained.
 次に、実施形態の走行制御装置100の変形例について説明する。上述の実施形態では、車両1の駆動輪がスリップした場合に、距離や速度の実値を、それまで駆動輪の車輪速センサ値に基づいて推定していたものから、転動輪の車輪速センサ値に基づいて推定するように切り替えていたが、代わりに、車載カメラにより撮影された車両1の周辺画像データ、および、加速度センサからの検出値の少なくとも一方に基づいて推定するように切り替えてもよい。そうすることで、同様に、距離や速度の実値の誤差を小さく抑えることができる。 Next, a modification of the travel control device 100 according to the embodiment will be described. In the above embodiment, when the drive wheel of the vehicle 1 slips, the actual value of the distance and speed is estimated based on the wheel speed sensor value of the drive wheel so far, so the wheel speed sensor of the rolling wheel It switched to estimate based on the value, but instead, it switched to estimate based on at least one of the peripheral image data of the vehicle 1 captured by the on-vehicle camera and the detection value from the acceleration sensor Good. By doing so, the error of the actual value of the distance or speed can be suppressed to be small as well.
 車両1は少なくとも後輪(非操舵輪)が駆動輪である車両であればよく、FR車に限らず4WD車でもよい。4WD車の場合、転動輪(非駆動輪)がないため、車両1の駆動輪がスリップした場合に、距離や速度の実値を、それまで駆動輪の車輪速センサ値に基づいて推定していたものから、転動輪の車輪速センサ値に基づいて推定するように切り替えることはできない。そのため、車載カメラにより撮影された車両1の周辺画像データ、および、加速度センサからの検出値の少なくとも一方に基づいて推定するように切り替えればよい。 The vehicle 1 may be a vehicle in which at least the rear wheels (non-steered wheels) are drive wheels, and may be a 4WD vehicle as well as an FR vehicle. In the case of a 4WD car, there is no rolling wheel (non-driving wheel), so when the driving wheel of the vehicle 1 slips, the actual values of distance and speed are estimated based on the wheel speed sensor value of the driving wheel From this, it can not be switched to estimate based on the wheel speed sensor value of the rolling wheel. Therefore, switching may be performed so as to estimate based on at least one of peripheral image data of the vehicle 1 captured by the on-vehicle camera and a detection value from the acceleration sensor.
 以上、本発明の実施形態が例示されたが、上記実施形態はあくまで例であって、発明の範囲を限定することは意図していない。上記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、組み合わせ、変更を行うことができる。また、各構成や、形状、等のスペック(構造や、種類、数等)は、適宜に変更して実施することができる。 As mentioned above, although the embodiment of the present invention was illustrated, the above-mentioned embodiment is an example to the last, and limiting the scope of the present invention is not intended. The above embodiment can be implemented in other various forms, and various omissions, replacements, combinations, and changes can be made without departing from the scope of the invention. In addition, the specifications (structure, type, number, etc.) of each configuration, shape, etc. can be appropriately changed and implemented.
 例えば、上述の実施形態では、路面の摩擦係数が低い場合について説明したが、路面に勾配や段差がある場合にも実施形態の走行制御装置100を適用することができる。 For example, although the above-mentioned embodiment explained a case where a coefficient of friction of a road surface was low, run control device 100 of an embodiment is applicable also when a slope and a level difference exist on a road surface.

Claims (4)

  1.  少なくとも後輪が駆動輪である車両の走行を制御する走行制御装置であって、
     車両の目標位置と実位置との偏差を小さくするように車両の駆動機構および制動機構のうち少なくとも一方を制御する操作量を算出する操作量算出部と、
     前記駆動輪の回転を検出するセンサからの検出値に基づいて、前記実位置を算出するとともに、前記駆動輪がスリップしたか否かを判断する判断部と、
     前記目標位置を時間の経過とともに変化させながら設定し、前記判断部によって前記駆動輪がスリップしたと判断された場合には、前記判断部によって前記駆動輪のスリップが解消されたと判断されるまで、前記目標位置の更新を停止する目標位置設定部と、を備え、
     前記判断部は、前記駆動輪がスリップしたと判断した後、前記駆動輪の回転を検出するセンサからの検出値以外のデータに基づいて、前記実位置を算出する、走行制御装置。
    A travel control device for controlling the travel of a vehicle in which at least the rear wheels are drive wheels,
    An operation amount calculation unit that calculates an operation amount for controlling at least one of the drive mechanism and the braking mechanism of the vehicle so as to reduce the deviation between the target position and the actual position of the vehicle
    A determination unit that calculates the actual position based on a detection value from a sensor that detects the rotation of the drive wheel, and determines whether the drive wheel has slipped;
    The target position is set while changing with the passage of time, and when it is determined by the determination unit that the drive wheel has slipped, the determination unit determines that the slip of the drive wheel has been eliminated. A target position setting unit for stopping the update of the target position;
    The travel control device, wherein the determination unit calculates the actual position based on data other than a detection value from a sensor that detects the rotation of the drive wheel after determining that the drive wheel has slipped.
  2.  前記車両は、前輪が転動輪であり、
     前記判断部は、前記駆動輪がスリップしたと判断した後、前記転動輪の回転を検出するセンサからの検出値に基づいて、前記実位置を算出する、請求項1に記載の走行制御装置。
    In the vehicle, the front wheels are rolling wheels,
    The travel control device according to claim 1, wherein the determination unit calculates the actual position based on a detection value from a sensor that detects rotation of the rolling wheel after determining that the driving wheel has slipped.
  3.  前記判断部は、前記駆動輪がスリップしたと判断した後、車載カメラにより撮影された前記車両の周辺画像データ、および、加速度センサからの検出値の少なくとも一方に基づいて、前記実位置を算出する、請求項1に記載の走行制御装置。 The determination unit calculates the actual position based on at least one of peripheral image data of the vehicle captured by the on-vehicle camera and a detection value from an acceleration sensor after determining that the drive wheel has slipped. The travel control device according to claim 1.
  4.  前記操作量算出部は、前記判断部によって前記駆動輪がスリップしたと判断された後、前記操作量を、前記駆動輪がスリップしたときの操作量を超えない値で算出する、請求項1から請求項3のいずれか一項に記載の走行制御装置。 The operation amount calculation unit is configured to calculate the operation amount not to exceed the operation amount when the drive wheel slips after it is determined by the determination unit that the drive wheel has slipped. The travel control device according to any one of claims 3 to 10.
PCT/JP2018/023748 2017-06-23 2018-06-22 Travel control device WO2018235929A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-123680 2017-06-23
JP2017123680A JP2019006253A (en) 2017-06-23 2017-06-23 Travel control device

Publications (1)

Publication Number Publication Date
WO2018235929A1 true WO2018235929A1 (en) 2018-12-27

Family

ID=64736005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023748 WO2018235929A1 (en) 2017-06-23 2018-06-22 Travel control device

Country Status (2)

Country Link
JP (1) JP2019006253A (en)
WO (1) WO2018235929A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7264036B2 (en) * 2019-12-13 2023-04-25 トヨタ自動車株式会社 vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138252A (en) * 1984-07-30 1986-02-24 Isuzu Motors Ltd Automatic speed change control method of car
JPH03130614A (en) * 1989-10-17 1991-06-04 Pioneer Electron Corp Running-distance calculating apparatus for vehicle
JPH11236967A (en) * 1998-02-23 1999-08-31 Honda Motor Co Ltd Automatic steering device for vehicle
JP2008074191A (en) * 2006-09-20 2008-04-03 Nissan Motor Co Ltd Driving force distribution controller for vehicle
JP2012128781A (en) * 2010-12-17 2012-07-05 Toyota Motor Corp Moving body
JP2016078744A (en) * 2014-10-20 2016-05-16 株式会社アドヴィックス Vehicle travelling control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138252A (en) * 1984-07-30 1986-02-24 Isuzu Motors Ltd Automatic speed change control method of car
JPH03130614A (en) * 1989-10-17 1991-06-04 Pioneer Electron Corp Running-distance calculating apparatus for vehicle
JPH11236967A (en) * 1998-02-23 1999-08-31 Honda Motor Co Ltd Automatic steering device for vehicle
JP2008074191A (en) * 2006-09-20 2008-04-03 Nissan Motor Co Ltd Driving force distribution controller for vehicle
JP2012128781A (en) * 2010-12-17 2012-07-05 Toyota Motor Corp Moving body
JP2016078744A (en) * 2014-10-20 2016-05-16 株式会社アドヴィックス Vehicle travelling control device

Also Published As

Publication number Publication date
JP2019006253A (en) 2019-01-17

Similar Documents

Publication Publication Date Title
JP4853123B2 (en) Electric steering control device
US8781686B2 (en) Device/method for controlling turning behavior of vehicle
CN111332276B (en) Vehicle interference detection device
JP4867369B2 (en) Driving force control device for electric vehicle, automobile and driving force control method for electric vehicle
JP2001171504A (en) Road surface friction coefficient estimating device
JP5341469B2 (en) Vehicle control device
JP2007515347A (en) Brake pressure control method for roads with non-uniform friction values
US11325599B2 (en) Vehicle control system for adjusting longtitudinal motion to reduce deviation of lateral motion
CN109969168B (en) Vehicle stability control device
JP6577850B2 (en) Vehicle control apparatus and vehicle control method
JP4207698B2 (en) Vehicle rollover prevention device
WO2018235929A1 (en) Travel control device
JP2009061905A5 (en)
US20170349024A1 (en) Stabilizer control device
JP2006298094A (en) Vehicle stopping and holding apparatus
JP5180610B2 (en) Vehicle driving force control device
JP2015003686A (en) Vehicle stabilizer
JP2013075632A (en) Traveling state estimating device
JP2016094112A (en) Vehicular travel controller
KR100991435B1 (en) Vehicle Rollover Preventin Method
JP4968097B2 (en) Abnormality determination apparatus and abnormality determination method
JP2007278982A (en) Vehicle behavior controller
JP4358070B2 (en) Body slip angle estimation method
JP4719130B2 (en) Vehicle behavior control device
JP6056240B2 (en) Vehicle behavior control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18820916

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18820916

Country of ref document: EP

Kind code of ref document: A1