JP5195226B2 - Fuel injection device - Google Patents

Fuel injection device Download PDF

Info

Publication number
JP5195226B2
JP5195226B2 JP2008246367A JP2008246367A JP5195226B2 JP 5195226 B2 JP5195226 B2 JP 5195226B2 JP 2008246367 A JP2008246367 A JP 2008246367A JP 2008246367 A JP2008246367 A JP 2008246367A JP 5195226 B2 JP5195226 B2 JP 5195226B2
Authority
JP
Japan
Prior art keywords
fuel injection
valve
intake
amount
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008246367A
Other languages
Japanese (ja)
Other versions
JP2010077874A (en
Inventor
洋志 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008246367A priority Critical patent/JP5195226B2/en
Publication of JP2010077874A publication Critical patent/JP2010077874A/en
Application granted granted Critical
Publication of JP5195226B2 publication Critical patent/JP5195226B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、1つの気筒に対して異なるリフト量で開閉可能な2つの吸気弁が設けられた内燃機関に適用される燃料噴射装置に関する。   The present invention relates to a fuel injection device applied to an internal combustion engine provided with two intake valves that can be opened and closed with different lift amounts for one cylinder.

燃焼室に連通する2つの吸気ポートのそれぞれに設けられ、吸気ポートを流れる吸気に燃料を噴射する燃料噴射弁と、吸気ポートを流れる吸気の流量に応じて燃料噴射弁毎に燃料の噴射量を制御する噴射量制御手段と、を備えた燃料噴射装置が知られている(特許文献1)。その他、本発明に関連する先行技術文献として特許文献2及び3が存在する。   A fuel injection valve that is provided in each of the two intake ports communicating with the combustion chamber and injects fuel into the intake air flowing through the intake port, and the fuel injection amount for each fuel injection valve according to the flow rate of the intake air flowing through the intake port. There is known a fuel injection device including an injection amount control means for controlling (Patent Document 1). In addition, Patent Documents 2 and 3 exist as prior art documents related to the present invention.

特開2007−292058号公報JP 2007-292058 A 実開2007−291978号公報Japanese Utility Model Publication No. 2007-291978 特開2008−111342号公報JP 2008-111342 A

1つの気筒に対して異なるリフト量で開閉可能な2つの吸気弁が設けられた内燃機関では、気筒内気流の乱れ促進を目的として一方の吸気弁のリフト量を他方に比べて小さくし、吸気ポート間で吸気の流量に差を生じさせることがある。この場合、吸気ポート毎に設けられた燃料噴射弁から各吸気ポートに同量の燃料を噴射すると吸気ポート毎に異なる燃料濃度となるため、気筒内の燃料濃度の均質度が低下して燃焼の悪化を招き炭化水素(HC)、一酸化炭素(CO)の発生量が増加することがある。   In an internal combustion engine provided with two intake valves that can be opened and closed with different lift amounts for one cylinder, the lift amount of one intake valve is made smaller than the other for the purpose of promoting turbulence in the air flow in the cylinder. It may cause a difference in intake airflow between ports. In this case, if the same amount of fuel is injected into each intake port from the fuel injection valve provided for each intake port, the fuel concentration differs for each intake port. Deterioration may be caused and the generation amount of hydrocarbon (HC) and carbon monoxide (CO) may increase.

そこで、本発明は、気筒内における燃料濃度の均質度を向上させることができる燃料噴射装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a fuel injection device that can improve the homogeneity of the fuel concentration in the cylinder.

本発明の第1の内燃機関の燃料噴射装置は、1つの気筒に対して2つの吸気ポートが設けられ、各吸気ポートの吸気弁を異なるリフト量で開閉可能な内燃機関に適用される燃料噴射装置において、前記吸気ポート毎に設けられた燃料噴射弁と、前記吸気弁間に生じるリフト量差が大きいほど、前記2つの吸気ポートのうち前記吸気弁のリフト量が大きい側の燃料噴射量比が大きくなるように前記燃料噴射弁毎の燃料噴射量を制御する燃料噴射制御手段と、を備え、前記吸気ポートの上流には、吸気量を調整可能なスロットル弁が設けられ、前記燃料噴射制御手段は、前記スロットル弁の開度に基づいて前記燃料噴射量比を補正し、前記スロットル弁の下流かつ前記吸気ポートの上流には前記吸気ポートを介して前記気筒に導かれる気流に偏りを付与する気流制御弁が設けられ、前記燃料噴射制御手段は、前記スロットル弁の開度に基づいて前記燃料噴射量比の補正をする際に前記気流制御弁の開度を考慮するものである(請求項1)。 The fuel injection device for a first internal combustion engine of the present invention is provided with a fuel injection applied to an internal combustion engine in which two intake ports are provided for one cylinder and the intake valve of each intake port can be opened and closed with different lift amounts. In the apparatus, the larger the lift amount difference between the fuel injection valve provided for each intake port and the intake valve, the larger the fuel injection amount ratio of the two intake ports on the side where the lift amount of the intake valve is larger Fuel injection control means for controlling the fuel injection amount for each fuel injection valve so as to increase, and a throttle valve capable of adjusting the intake air amount is provided upstream of the intake port, and the fuel injection control The means corrects the fuel injection amount ratio based on the opening degree of the throttle valve, and is biased toward the air flow guided to the cylinder via the intake port downstream of the throttle valve and upstream of the intake port. Airflow control valve is provided to impart, said fuel injection control means takes into account the degree of opening of the air flow control valve when the correction of the fuel injection amount ratio on the basis of the opening degree of the throttle valve ( Claim 1).

この燃料噴射装置によれば、2つの吸気ポートの吸気弁間のリフト量差が大きいほど、リフト量が大きい側の燃料噴射量比が大きくなるように燃料噴射弁毎の燃料噴射量が制御される。吸気弁のリフト量が大きくなれば吸気ポートを流れる吸気の流量が増える。このため、吸気弁間のリフト量差に応じてリフト量が大きい側の燃料噴射量比を大きくすることによって、各吸気ポートから気筒に流れる混合気の燃料濃度を均一にすることができる。これにより、気筒内には各吸気ポートから均一な燃料濃度の混合気が流入するので、気筒内における燃料濃度の均質度を向上させることができる。   According to this fuel injection device, the fuel injection amount for each fuel injection valve is controlled such that the larger the lift amount difference between the intake valves of the two intake ports, the larger the fuel injection amount ratio on the side where the lift amount is larger. The As the lift amount of the intake valve increases, the flow rate of the intake air flowing through the intake port increases. Therefore, the fuel concentration of the air-fuel mixture flowing from each intake port to the cylinder can be made uniform by increasing the fuel injection amount ratio on the side where the lift amount is large in accordance with the lift amount difference between the intake valves. Thereby, since the air-fuel mixture having a uniform fuel concentration flows from each intake port into the cylinder, the homogeneity of the fuel concentration in the cylinder can be improved.

また、吸気弁のリフト量が同じであっても、吸気量が変化すると2つの吸気ポート間の燃料濃度を均一とするために必要な燃料量は変化する。このため、リフト量差に応じてリフト量が大きい側の燃料噴射量比を大きくするだけでは、2つの吸気ポート間の燃料濃度が均一にならない場合がある。この燃料噴射装置によれば、スロットル弁の開度に基づいて燃料噴射量比が補正されるので、吸気量の変化に対応して各吸気ポート間の燃料濃度を均一にすることができる。 Further, even in the lift amount of the intake valves are the same, the amount of fuel required for the fuel density uniformity between the two intake ports when the amount of intake air is changed is changed. For this reason, the fuel concentration between the two intake ports may not be uniform only by increasing the fuel injection amount ratio on the side where the lift amount is large according to the lift amount difference. According to this fuel injection device , since the fuel injection amount ratio is corrected based on the opening degree of the throttle valve, the fuel concentration between the intake ports can be made uniform in accordance with the change in the intake amount.

さらに、この場合、燃料噴射量比を補正するにあたり、気流制御弁の開度に応じて変化する各吸気ポートの吸気の流量が考慮されるから、より正確に燃料噴射量比を補正することができる。 Furthermore, in the case of this, when correcting the fuel injection amount ratio, because the flow rate of intake air in each intake port which varies in accordance with the opening degree of the air flow control valve is taken into account, to correct the fuel injection amount ratio more accurately Can do.

本発明の第2の内燃機関の燃料噴射装置は、1つの気筒に対して2つの吸気ポートが設けられ、各吸気ポートの吸気弁を異なるリフト量で開閉可能な内燃機関に適用される燃料噴射装置において、前記吸気ポート毎に設けられた燃料噴射弁と、前記吸気弁間に生じるリフト量差が大きいほど、前記2つの吸気ポートのうち前記吸気弁のリフト量が大きい側の燃料噴射量比が大きくなるように前記燃料噴射弁毎の燃料噴射量を制御する燃料噴射制御手段と、を備え、前記吸気ポートの上流には、吸気量を調整可能なスロットル弁が設けられ、前記燃料噴射制御手段は、前記スロットル弁の開度に基づいて前記燃料噴射量比を補正し、前記内燃機関には、排気通路と前記吸気ポートの上流とを接続する排気還流通路と前記排気還流通路に設けられた排気還流弁とを有する排気還流装置が設けられており、前記燃料噴射制御手段は、前記スロットル弁の開度に基づいて前記燃料噴射量比の補正をする際に前記排気還流弁の開度を考慮して前記燃料噴射弁毎の燃料噴射量を制御してもよい(請求項)。本発明の第2の燃料噴射装置によれば、燃料噴射量比を補正するにあたり、吸気通路に還流される排気の量に応じて変化する各吸気ポートの吸気の流量が考慮されるから、より正確に燃料噴射量比を補正することができる。 The fuel injection device for a second internal combustion engine of the present invention is provided with a fuel injection applied to an internal combustion engine in which two intake ports are provided for one cylinder and the intake valve of each intake port can be opened and closed with different lift amounts. In the apparatus, the larger the lift amount difference between the fuel injection valve provided for each intake port and the intake valve, the larger the fuel injection amount ratio of the two intake ports on the side where the lift amount of the intake valve is larger Fuel injection control means for controlling the fuel injection amount for each fuel injection valve so as to increase, and a throttle valve capable of adjusting the intake air amount is provided upstream of the intake port, and the fuel injection control means, based on the opening degree of the throttle valve to correct the fuel injection amount ratio, said internal combustion engine is provided in the exhaust gas recirculation passage and exhaust gas recirculation passage connecting the exhaust passage and upstream of the intake port An exhaust gas recirculation device having an exhaust gas recirculation valve is provided, and the fuel injection control means adjusts the opening degree of the exhaust gas recirculation valve when correcting the fuel injection amount ratio based on the opening degree of the throttle valve. In consideration of this, the fuel injection amount for each fuel injection valve may be controlled (Claim 2 ). According to the second fuel injection device of the present invention, in correcting the fuel injection amount ratio, the flow rate of the intake air in each intake port that changes according to the amount of exhaust gas recirculated to the intake passage is considered. The fuel injection amount ratio can be corrected accurately.

本発明の第1及び第2の燃料噴射装置の一態様において、前記燃料噴射制御手段は、前記気筒内で成層燃焼させる場合には前記2つの吸気ポート間に所定の燃料濃度差が生じるように前記各燃料噴射弁の燃料噴射量を制御してもよい(請求項)。この場合、2つの吸気ポートから気筒に流入する燃料濃度間に所定の燃料濃度差を生じさせることができる。これにより、意図的に成層領域を作ることができるので、気筒内での成層燃焼を促進することができる。 In one aspect of the first and second fuel injection devices of the present invention, the fuel injection control means is configured to cause a predetermined fuel concentration difference between the two intake ports when stratified combustion is performed in the cylinder. the may control the fuel injection amount of each fuel injection valve (claim 3). In this case, a predetermined fuel concentration difference can be generated between the fuel concentrations flowing into the cylinder from the two intake ports. Thereby, since the stratified region can be intentionally created, stratified combustion in the cylinder can be promoted.

本発明の第1及び第2の燃料噴射装置の一態様において、前記燃料噴射制御手段は、前記燃料噴射弁毎の燃料噴射期間が等しくなるように前記燃料噴射弁毎の時間あたりの燃料噴射量を制御してもよい(請求項)。この態様によれば、燃料噴射量の多少にかかわらず各燃料噴射弁の燃料噴射期間を等しくすることができる。これにより、各吸気ポートにおける燃料と空気との混合期間が等しくなるので、この期間が吸気ポート間で異なる場合と比べて気筒内の燃料濃度の均質度を高めることができる。 In one aspect of the first and second fuel injection devices of the present invention, the fuel injection control means includes a fuel injection amount per time for each fuel injection valve so that a fuel injection period for each fuel injection valve becomes equal. May be controlled (claim 4 ). According to this aspect, the fuel injection period of each fuel injection valve can be made equal regardless of the amount of fuel injection. Thereby, since the mixing period of the fuel and air in each intake port becomes equal, compared with the case where this period differs between intake ports, the homogeneity of the fuel concentration in a cylinder can be raised.

以上説明したように、本発明によれば、2つの吸気ポートの吸気弁間のリフト量差が大きいほど、吸気弁のリフト量が大きい側の燃料噴射量比が大きくなるように燃料噴射弁毎の燃料噴射量が制御される。これにより、各吸気ポートから気筒に流れる混合気の燃料濃度を均一にできるので、気筒内における燃料濃度の均質度を向上させることができる。   As described above, according to the present invention, the larger the lift amount difference between the intake valves of the two intake ports, the larger the fuel injection amount ratio on the side where the lift amount of the intake valve is larger. The fuel injection amount is controlled. As a result, the fuel concentration of the air-fuel mixture flowing from each intake port to the cylinder can be made uniform, so that the homogeneity of the fuel concentration in the cylinder can be improved.

(第1の形態)
図1は本発明の第1の形態に係る燃料噴射装置が適用された内燃機関の要部を模式的に示した説明図である。内燃機関1Aは4つの気筒2(図1では1つのみ示している)が一方向に並べられた直列4気筒型内燃機関として構成されている。各気筒2には吸気通路3及び排気通路4がそれぞれ接続されている。吸気通路3は気筒2毎に分岐して各気筒2に2つずつ設けられた吸気ポート3a、3bを有している。各吸気ポート3a,3bの上流には吸気量を調整可能なスロットル弁6が設けられている。排気通路4は各気筒2に2つずつ設けられた排気ポート4a、4bを有している。各気筒2には不図示のピストンが往復運動可能な状態で挿入されている。また、各気筒2には、不図示の点火プラグがその電極部を気筒2内に突出させるようにして設けられている。
(First form)
FIG. 1 is an explanatory view schematically showing a main part of an internal combustion engine to which a fuel injection device according to a first embodiment of the present invention is applied. The internal combustion engine 1A is configured as an in-line four-cylinder internal combustion engine in which four cylinders 2 (only one is shown in FIG. 1) are arranged in one direction. An intake passage 3 and an exhaust passage 4 are connected to each cylinder 2. The intake passage 3 has intake ports 3 a and 3 b that are branched for each cylinder 2 and are provided for each cylinder 2. A throttle valve 6 capable of adjusting the intake air amount is provided upstream of each intake port 3a, 3b. The exhaust passage 4 has two exhaust ports 4 a and 4 b provided for each cylinder 2. A piston (not shown) is inserted into each cylinder 2 in a state where it can reciprocate. Each cylinder 2 is provided with a spark plug (not shown) so that its electrode portion protrudes into the cylinder 2.

各吸気ポート3a、3bには、吸気弁10が1つずつ設けられている。内燃機関1Aには各吸気弁10を開閉駆動するための電磁駆動装置11が設けられている。電磁駆動装置11は、各吸気弁10の作用角、リフト量及び位相等の動弁特性を自在に設定できる周知の装置であり、各吸気弁10を互いに異なるリフト量で開閉駆動できる。電磁駆動装置11の動作は内燃機関1Aの運転状態を適正に制御するためのコンピュータとして構成されたエンジンコントロールユニット(ECU)15によって制御される。また、図1の上側の吸気ポート3aには燃料噴射弁16aが、下側の吸気ポート3bには燃料噴射弁16bがそれぞれ設けられている。各燃料噴射弁16a、16bの燃料噴射動作はECU15によって制御される。   One intake valve 10 is provided in each intake port 3a, 3b. The internal combustion engine 1A is provided with an electromagnetic drive device 11 for opening and closing each intake valve 10. The electromagnetic drive device 11 is a known device that can freely set the valve operating characteristics such as the operating angle, lift amount, and phase of each intake valve 10, and can open and close each intake valve 10 with different lift amounts. The operation of the electromagnetic drive device 11 is controlled by an engine control unit (ECU) 15 configured as a computer for appropriately controlling the operating state of the internal combustion engine 1A. Further, a fuel injection valve 16a is provided in the upper intake port 3a in FIG. 1, and a fuel injection valve 16b is provided in the lower intake port 3b. The fuel injection operation of each fuel injection valve 16a, 16b is controlled by the ECU 15.

ECU15は、不図示の各種センサから出力された信号を参照しつつ所定のプログラムに従って電磁駆動装置11の動作及び燃料噴射弁16a、16bの動作の制御を実行する。一例として、ECU15は、内燃機関1Aが低速運転状態のとき等、気筒2内で気流の乱れを促進したい場合には、各吸気ポート3a、3bの吸気弁10間のリフト量を互いに相違させるように電磁駆動装置11の動作を制御する。これにより、気筒2内に取り込まれる気流の速度分布に偏りが生じ、気流の乱れが促される。一方、気筒2内で気流の乱れを促進する必要がないときには、ECU15は各吸気ポート3a、3bの吸気弁10間のリフト量が互いに等しくなるように電磁駆動装置11の動作を制御する。   The ECU 15 controls the operation of the electromagnetic drive device 11 and the operations of the fuel injection valves 16a and 16b according to a predetermined program while referring to signals output from various sensors (not shown). As an example, the ECU 15 makes the lift amount between the intake valves 10 of the intake ports 3a and 3b different from each other when it is desired to promote the turbulence of the air flow in the cylinder 2 such as when the internal combustion engine 1A is operating at a low speed. The operation of the electromagnetic drive device 11 is controlled. As a result, the velocity distribution of the airflow taken into the cylinder 2 is biased, and the turbulence of the airflow is promoted. On the other hand, when there is no need to promote airflow turbulence in the cylinder 2, the ECU 15 controls the operation of the electromagnetic drive device 11 so that the lift amounts between the intake valves 10 of the intake ports 3a and 3b are equal to each other.

図2は、ECU15が実行する燃料噴射量制御ルーチンの一例を示すフローチャートである。このルーチンのプログラムはECU15に記憶されており、適時に読み出されて所定間隔で繰り返し実行される。ECU15は、ステップS1において、内燃機関1Aの運転状態に応じて1サイクルあたりに噴射すべき目標燃料噴射量を算出する。目標燃料噴射量は、不図示のセンサに基づいて取得した内燃機関1Aの機関回転数及び吸入空気量に基づいて算出する。目標燃料噴射量の算出は、例えば機関回転数及び吸入空気量を変数として目標燃料噴射量を与えるマップを予め設定し、そのマップを参照することにより実現される。   FIG. 2 is a flowchart showing an example of a fuel injection amount control routine executed by the ECU 15. A program for this routine is stored in the ECU 15 and is read out in a timely manner and repeatedly executed at predetermined intervals. In step S1, the ECU 15 calculates a target fuel injection amount to be injected per cycle according to the operating state of the internal combustion engine 1A. The target fuel injection amount is calculated based on the engine speed and intake air amount of the internal combustion engine 1A acquired based on a sensor (not shown). The calculation of the target fuel injection amount is realized, for example, by presetting a map that gives the target fuel injection amount with the engine speed and the intake air amount as variables and referring to the map.

次にステップS2では、電磁駆動装置11に指示した各吸気弁10のリフト量情報に基づき吸気弁10間のリフト量差を算出し、そのリフト量差に基づいて目標燃料噴射量を各燃料噴射弁16a、16bで吹き分けるための燃料噴射量比を算出する。図3は、リフト量差と各燃料噴射弁16a、16bの燃料噴射量との関係を示している。図3に示すように、リフト量差が無い場合には両燃料噴射弁16a、16bの燃料噴射量が等しい。そして、リフト量差が小、大と変化するに従って、リフト量の大きい燃料噴射弁16bの燃料噴射量が増え、逆にリフト量の小さい燃料噴射弁16aの燃料噴射量が減っている。つまり、リフト量差が大きくなるほどリフト量の大きい燃料噴射弁16bの燃料噴射量比が大きくなり、逆にリフト量の小さい燃料噴射弁16aの燃料噴射量比は小さくなっている。ステップS2では、予め用意された図3のような関係を示すリフト量差を変数として各燃料噴射弁16a、16bの燃料噴射量比を与えるマップを参照することにより燃料噴射量比が算出される。   Next, in step S2, the lift amount difference between the intake valves 10 is calculated based on the lift amount information of each intake valve 10 instructed to the electromagnetic drive device 11, and the target fuel injection amount is calculated for each fuel injection based on the lift amount difference. A fuel injection amount ratio for separately blowing by the valves 16a and 16b is calculated. FIG. 3 shows the relationship between the lift amount difference and the fuel injection amounts of the fuel injection valves 16a and 16b. As shown in FIG. 3, when there is no difference in lift amount, the fuel injection amounts of both fuel injection valves 16a and 16b are equal. As the lift amount difference changes from small to large, the fuel injection amount of the fuel injection valve 16b with a large lift amount increases, and conversely, the fuel injection amount of the fuel injection valve 16a with a small lift amount decreases. In other words, the larger the lift amount difference, the larger the fuel injection amount ratio of the fuel injection valve 16b with the larger lift amount, and the smaller the fuel injection amount ratio of the fuel injection valve 16a with the smaller lift amount. In step S2, the fuel injection amount ratio is calculated by referring to a map that provides the fuel injection amount ratios of the fuel injection valves 16a and 16b with the lift amount difference indicating the relationship shown in FIG. .

ステップS3では、スロットル弁6に設けた不図示のセンサからスロットル弁6の開度情報を取得し、その取得したスロットル弁6の開度情報に基づいてステップS2で算出した各燃料噴射弁16a、16bの燃料噴射量比を補正する。ステップS3の補正は、スロットル弁6の開度を変数として補正係数を与えるマップを参照することによって補正係数を算出し、この補正係数をステップS2で算出した燃料噴射量比に乗じることで実現される。この補正係数が与えられるマップには、ステップS2で算出された燃料噴射量比をスロットル弁6の開度に対応して2つの吸気ポート3a、3b間の燃料濃度を均一にするような燃料噴射量比に補正する補正係数が設定されている。図4は、リフト量差を変数として燃料噴射弁16aの燃料噴射量比を与えるマップの一例を示す図である。図4はステップS2で算出した燃料噴射量比をステップS3で補正した後のリフト量差と燃料噴射弁16aの燃料噴射量比との関係を示している。図4に示すようにステップS2で算出された燃料噴射量比はステップS3が実行されることによって、スロットル弁6の開度が大きい場合には実線17のように補正され、スロットル弁6の開度が小さくなるに従って一点鎖線18、破線19のように補正される。   In step S3, the opening information of the throttle valve 6 is acquired from a sensor (not shown) provided in the throttle valve 6, and each fuel injection valve 16a calculated in step S2 based on the acquired opening information of the throttle valve 6; The fuel injection amount ratio of 16b is corrected. The correction in step S3 is realized by calculating a correction coefficient by referring to a map that gives a correction coefficient with the opening degree of the throttle valve 6 as a variable, and multiplying the fuel injection amount ratio calculated in step S2 by this correction coefficient. The In the map to which this correction coefficient is given, the fuel injection amount ratio calculated in step S2 is made to correspond to the opening of the throttle valve 6, and the fuel injection between the two intake ports 3a, 3b is made uniform. A correction coefficient for correcting the quantity ratio is set. FIG. 4 is a diagram showing an example of a map that gives the fuel injection amount ratio of the fuel injection valve 16a with the lift amount difference as a variable. FIG. 4 shows the relationship between the lift amount difference after the fuel injection amount ratio calculated in step S2 is corrected in step S3 and the fuel injection amount ratio of the fuel injection valve 16a. As shown in FIG. 4, the fuel injection amount ratio calculated in step S <b> 2 is corrected as indicated by a solid line 17 when the opening degree of the throttle valve 6 is large by executing step S <b> 3, and the throttle valve 6 is opened. As the degree decreases, correction is performed as indicated by a one-dot chain line 18 and a broken line 19.

ステップS4では、ステップS1で算出した目標燃料噴射量にステップS3で補正した燃料噴射量比を乗じることによって燃料噴射弁16a、16b毎の燃料噴射量を算出する。ステップS5では、ステップS4で算出した各燃料噴射弁16a、16bの燃料噴射量が噴射されるように各燃料噴射弁16a、16bの燃料噴射動作を制御して今回のルーチンを終了する。ステップS5における噴射率(時間あたりの燃料噴射量)は、各燃料噴射弁16a、16bの噴射期間が等しくなるように設定されている。   In step S4, the fuel injection amount for each of the fuel injection valves 16a and 16b is calculated by multiplying the target fuel injection amount calculated in step S1 by the fuel injection amount ratio corrected in step S3. In step S5, the fuel injection operation of each fuel injection valve 16a, 16b is controlled so that the fuel injection amount of each fuel injection valve 16a, 16b calculated in step S4 is injected, and the current routine ends. The injection rate (fuel injection amount per time) in step S5 is set so that the injection periods of the fuel injection valves 16a and 16b are equal.

ECU15が図2のルーチンを実行することによって、2つの吸気ポート3a、3bにそれぞれ設けられた吸気弁10間のリフト量差が大きいほど、リフト量が大きい側の燃料噴射量比が大きくなるように各燃料噴射弁16a、16bの燃料噴射量が制御される。吸気弁10のリフト量が大きくなれば各吸気ポート3a、3bを流れる吸気の流量が増える。このため、吸気弁10間のリフト量差に応じてリフト量が大きい側の燃料噴射量比を大きくすることによって、各吸気ポート3a、3bから気筒2に流れる混合気の燃料濃度を均一にすることができる。また、気筒2内には各吸気ポート3a、3bから均一な燃料濃度の混合気が流入するため、気筒2内における燃料濃度の均質度を向上させることができる。ECU15は図2のルーチンを実行することによって、本発明に係る燃料噴射制御手段として機能する。   The ECU 15 executes the routine of FIG. 2 so that the larger the lift amount difference between the intake valves 10 provided in the two intake ports 3a and 3b, the larger the fuel injection amount ratio on the side with the larger lift amount. The fuel injection amount of each fuel injection valve 16a, 16b is controlled. As the lift amount of the intake valve 10 increases, the flow rate of the intake air flowing through the intake ports 3a and 3b increases. Therefore, the fuel concentration of the air-fuel mixture flowing from the intake ports 3a and 3b to the cylinder 2 is made uniform by increasing the fuel injection amount ratio on the side where the lift amount is large according to the lift amount difference between the intake valves 10. be able to. In addition, since the air-fuel mixture having a uniform fuel concentration flows from the intake ports 3a and 3b into the cylinder 2, the homogeneity of the fuel concentration in the cylinder 2 can be improved. The ECU 15 functions as fuel injection control means according to the present invention by executing the routine of FIG.

また、図2のステップS3をECU15が実行することによって、スロットル弁6の開度に応じて燃料噴射弁16a、16b間の燃料噴射量比が補正される。スロットル弁6の開度に応じて吸気通路3を流れる吸気量は変化する。また、吸気弁10のリフト量が同じであっても、吸気通路3を流れる吸気量が変化すると2つの吸気ポート3a、3b間の燃料濃度を均一とするために必要な燃料量は変化する。このため、リフト量差に応じて燃料噴射量比を算出しただけでは各吸気ポート3a、3b間の燃料濃度が均一にならない場合がある。しかし、この形態によれば、図2のルーチンが実行されることによって、吸気量の変化に対応して各燃料噴射弁16a、16b間の燃料噴射量比を補正することができる。従って、スロットル弁6の開度に応じて吸気ポート3a、3bを流れる吸気の流量に変化が生じても、吸気ポート3a、3b間の燃料濃度を均一にすることができる。   2 is corrected by the ECU 15 according to the opening degree of the throttle valve 6, the fuel injection amount ratio between the fuel injection valves 16a and 16b is corrected. The amount of intake air flowing through the intake passage 3 changes according to the opening of the throttle valve 6. Even if the lift amount of the intake valve 10 is the same, if the intake amount flowing through the intake passage 3 changes, the fuel amount necessary to make the fuel concentration between the two intake ports 3a, 3b uniform will change. For this reason, the fuel concentration between the intake ports 3a and 3b may not be uniform only by calculating the fuel injection amount ratio according to the lift amount difference. However, according to this embodiment, by executing the routine of FIG. 2, it is possible to correct the fuel injection amount ratio between the fuel injection valves 16a and 16b corresponding to the change in the intake air amount. Accordingly, even if the flow rate of the intake air flowing through the intake ports 3a and 3b changes according to the opening of the throttle valve 6, the fuel concentration between the intake ports 3a and 3b can be made uniform.

図2のステップS4では、各燃料噴射弁16a、16bの噴射率は、各燃料噴射弁16a、16bの燃料噴射期間が等しくなるように設定されている。図5及び図6は噴射率と燃料噴射期間との関係を模式的に示しており、図5は各燃料噴射弁16a、16bで噴射率を等しくした場合を、図6は各燃料噴射弁16a、16bで燃料噴射期間を等しくした場合をそれぞれ示している。なお、各燃料噴射弁16a、16bの燃料噴射期間は各吸気ポート3a、3bが開かれる吸気期間内に設定されている。図5に示すように、燃料噴射量の異なる2つの燃料噴射弁16a、16bの噴射率U1、U2が等しいと燃料噴射量が少ない燃料噴射弁16aの噴射期間T1は燃料噴射量が多い燃料噴射弁16bの噴射期間T2に比べて短くなる。一方、図6では、各燃料噴射弁16a、16bの噴射率を燃料噴射量に応じて低下させている。つまり、噴射量の少ない燃料噴射弁16aの噴射率U1が噴射量の多い燃料噴射弁16bの噴射率U2より低くなっている。このように、噴射率を燃料噴射量に応じて設定することによって、燃料噴射量の多少にかかわらず各燃料噴射弁16a、16bの燃料噴射期間を等しくすることができる。これにより、各吸気ポート3a、3bにおける燃料と空気との混合期間が等しくなるので、この期間が吸気ポート3a、3b間で異なる図5の場合と比べて、気筒2内の燃料濃度の均質度を高めることができる。   In step S4 of FIG. 2, the injection rates of the fuel injection valves 16a and 16b are set so that the fuel injection periods of the fuel injection valves 16a and 16b are equal. 5 and 6 schematically show the relationship between the injection rate and the fuel injection period. FIG. 5 shows the case where the fuel injection valves 16a and 16b have the same injection rate, and FIG. 6 shows each fuel injection valve 16a. 16b show the cases where the fuel injection period is made equal. The fuel injection period of each fuel injection valve 16a, 16b is set within the intake period in which each intake port 3a, 3b is opened. As shown in FIG. 5, when the injection rates U1 and U2 of the two fuel injection valves 16a and 16b having different fuel injection amounts are equal, the fuel injection amount is small during the injection period T1 of the fuel injection valve 16a where the fuel injection amount is large. This is shorter than the injection period T2 of the valve 16b. On the other hand, in FIG. 6, the injection rate of each fuel injection valve 16a, 16b is lowered according to the fuel injection amount. That is, the injection rate U1 of the fuel injection valve 16a with a small injection amount is lower than the injection rate U2 of the fuel injection valve 16b with a large injection amount. Thus, by setting the injection rate according to the fuel injection amount, the fuel injection periods of the fuel injection valves 16a and 16b can be made equal regardless of the amount of fuel injection. As a result, the mixing period of the fuel and the air in each intake port 3a, 3b becomes equal, so the homogeneity of the fuel concentration in the cylinder 2 is different from the case of FIG. Can be increased.

(第2の形態)
次に、本発明の第2の形態を図7を参照して説明する。図7は、本発明の第2の形態に係る燃料噴射装置が適用された内燃機関1Bの要部を模式的に示した説明図である。以下では、第1の形態と共通の構成には図7に同一符号を付して説明を省略する。
(Second form)
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 7 is an explanatory view schematically showing a main part of the internal combustion engine 1B to which the fuel injection device according to the second embodiment of the present invention is applied. Below, the same code | symbol is attached | subjected to FIG. 7 for the structure common to a 1st form, and description is abbreviate | omitted.

図7に示すように、第2の形態では、吸気ポート3a、3bの上流に吸気ポート3a、3bを介して気筒2に導かれる気流にタンブル流を生じさせる気流制御弁としてのタンブルコントロールバルブ(TCV)20が設けられている。TCV20は、その開度を閉じ側にすることにより、各吸気ポート3a、3bの上側の流速が高くなるような偏りを気流に与えることができる。そのため、気筒2内を縦方向に旋回するタンブル流が形成される。タンブル流の強さは、この偏りに依存するので、TCV20を閉じ側にするほど偏りが大きくなり、タンブル流の強さは高まる。   As shown in FIG. 7, in the second embodiment, a tumble control valve (as an air flow control valve) that generates a tumble flow in the air flow guided to the cylinder 2 via the intake ports 3a and 3b upstream of the intake ports 3a and 3b. TCV) 20 is provided. The TCV 20 can impart a bias to the airflow such that the flow velocity on the upper side of each intake port 3a, 3b is increased by setting the opening degree to the closed side. Therefore, a tumble flow that turns in the longitudinal direction in the cylinder 2 is formed. Since the strength of the tumble flow depends on this bias, the bias increases as the TCV 20 is closed, and the strength of the tumble flow increases.

TCV20の開度は、ECU15によって制御される。ECU15は、内燃機関1Bの運転状態に応じて必要なタンブル流を発生させるようにTCV20の開度を制御する。この場合、ECU15はTCV10に設けられた不図示のセンサからTCV20の開度情報を取得し、その開度情報に基づいてステップS3で燃料噴射量比を補正する際にTCV20の開度を考慮する。TCV20は、その開度によって、各吸気ポート3a、3bの流量に影響を与えるため、その影響の度合いに応じて燃料噴射量比を補正することにより、TCV20の開度変化に伴う混合気の均質度の悪化を防止することができる。これにより、より正確な燃料噴射量比の補正を実現できる。こうした補正は、例えば、図2のステップS3で補正された燃料噴射量比にTCV20の開度に応じて算出された補正係数を乗じることにより実現することができる。   The opening degree of the TCV 20 is controlled by the ECU 15. The ECU 15 controls the opening degree of the TCV 20 so as to generate a necessary tumble flow according to the operating state of the internal combustion engine 1B. In this case, the ECU 15 acquires the opening information of the TCV 20 from a sensor (not shown) provided in the TCV 10, and considers the opening of the TCV 20 when correcting the fuel injection amount ratio in step S3 based on the opening information. . Since the TCV 20 affects the flow rate of each intake port 3a, 3b depending on the opening, the mixture of the air-fuel mixture accompanying the change in the opening of the TCV 20 is corrected by correcting the fuel injection amount ratio according to the degree of the influence. Deterioration of the degree can be prevented. Thereby, more accurate correction of the fuel injection amount ratio can be realized. Such correction can be realized, for example, by multiplying the fuel injection amount ratio corrected in step S3 of FIG. 2 by a correction coefficient calculated according to the opening of the TCV 20.

(第3の形態)
次に本発明の第3の形態を図8を参照して説明する。図8は、本発明の第3の形態に係る燃料噴射装置が適用された内燃機関1Cの要部を模式的に示した説明図である。以下では、第1の形態と共通の構成には図8に同一符号を付して説明を省略する。
(Third form)
Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 8 is an explanatory view schematically showing a main part of the internal combustion engine 1C to which the fuel injection device according to the third embodiment of the present invention is applied. Below, the same code | symbol is attached | subjected to FIG. 8 about the structure common to a 1st form, and description is abbreviate | omitted.

図8に示すように、第3の形態では、内燃機関1Cは排気還流装置30を備えている。排気還流装置30は、スロットル弁6の下流かつ吸気ポート3a、3bの上流に接続された排気還流通路31と、排気還流通路31に設けられ吸気通路3に還流される排気の量を調整可能な排気還流弁32とを有している。   As shown in FIG. 8, in the third embodiment, the internal combustion engine 1 </ b> C includes an exhaust gas recirculation device 30. The exhaust gas recirculation device 30 can adjust the exhaust gas recirculation passage 31 connected downstream of the throttle valve 6 and upstream of the intake ports 3a and 3b, and the amount of exhaust gas provided in the exhaust gas recirculation passage 31 and recirculated to the intake air passage 3. And an exhaust gas recirculation valve 32.

排気還流弁32は内燃機関1Cの運転状態に応じてECU15によって開度が制御される。この場合、ECU15は排気還流弁32に設けられた不図示のセンサから排気還流弁32の開度情報を取得し、その開度情報に基づいてステップS3で燃料噴射量比を補正する際に排気還流弁32の開度を考慮する。排気還流弁32は、その開度によって、各吸気ポート3a、3bの流量が変化するため、スロットル弁6の開度に応じて燃料噴射量比を補正しても排気還流弁32の開度が変化すると適正値からずれる可能性がある。従って、排気還流弁32の開度変化に伴う流量変化に応じて燃料噴射量比を補正することにより、排気還流弁32の開度変化に伴う混合気の均質度の悪化を防止することができる。これにより、より正確な燃料噴射量比の補正を実現できる。こうした補正は、例えば、図2のステップS3で補正された燃料噴射量比に排気還流弁32の開度に応じて算出された補正係数を乗じることにより実現することができる。   The opening degree of the exhaust gas recirculation valve 32 is controlled by the ECU 15 in accordance with the operating state of the internal combustion engine 1C. In this case, the ECU 15 acquires the opening degree information of the exhaust gas recirculation valve 32 from a sensor (not shown) provided in the exhaust gas recirculation valve 32, and performs exhaust when correcting the fuel injection amount ratio in step S3 based on the opening degree information. The opening degree of the recirculation valve 32 is taken into consideration. Since the exhaust recirculation valve 32 changes the flow rate of each intake port 3a, 3b depending on its opening, even if the fuel injection amount ratio is corrected according to the opening of the throttle valve 6, the opening of the exhaust recirculation valve 32 does not change. If it changes, it may deviate from the appropriate value. Therefore, by correcting the fuel injection amount ratio in accordance with the flow rate change accompanying the change in the opening degree of the exhaust gas recirculation valve 32, the deterioration of the homogeneity of the air-fuel mixture accompanying the change in the opening degree of the exhaust gas recirculation valve 32 can be prevented. . Thereby, more accurate correction of the fuel injection amount ratio can be realized. Such correction can be realized, for example, by multiplying the fuel injection amount ratio corrected in step S3 of FIG. 2 by a correction coefficient calculated in accordance with the opening degree of the exhaust gas recirculation valve 32.

但し、本発明は上述の各形態に限定されず、本発明の要旨の範囲内で種々の形態にて実施できる。上記各形態では各吸気ポートから気筒に流入する混合気の燃料濃度が均一になるように燃料噴射量、噴射率を制御しているが、気筒内での成層燃焼を促進する場合には、図2のルーチンを実行しなくてもよい。この場合、2つの吸気ポートから気筒に流入する燃料濃度間に所定の燃料濃度差を生じさせることができる。これにより、意図的に成層領域を作ることができるので、気筒内での成層燃焼を促進することができる。また、ECU15が実行する燃料噴射量制御ルーチンは図2のルーチンに限定されるものではない。例えば、図2のルーチンでは、ステップ3においてステップ2で算出した燃料噴射量比に補正係数を乗じて燃料噴射量比を補正しているが、このような補正方法に限るものではない。例えば、図4に示すようなリフト量差を変数としてスロットル弁6の開度に応じて補正した燃料噴射量比が与えられるマップを予め用意し、ステップS2でこのマップを参照して補正後の燃料噴射量比を求めてもよい。この場合、ステップS2においてスロットル弁6の開度に応じた燃料噴射量比を算出できるので、ステップS3を省略することができる。また、第3の形態では、吸気通路3に気流制御弁としてTCV20が設けられているが、これに限定されるものではなく、例えばスワールコントロールバルブ(SCV)が気流制御弁として設けられてもよい。   However, the present invention is not limited to the above-described embodiments, and can be implemented in various forms within the scope of the gist of the present invention. In each of the above embodiments, the fuel injection amount and the injection rate are controlled so that the fuel concentration of the air-fuel mixture flowing from each intake port into the cylinder becomes uniform. However, when stratified combustion is promoted in the cylinder, The routine 2 may not be executed. In this case, a predetermined fuel concentration difference can be generated between the fuel concentrations flowing into the cylinder from the two intake ports. Thereby, since the stratified region can be intentionally created, stratified combustion in the cylinder can be promoted. Further, the fuel injection amount control routine executed by the ECU 15 is not limited to the routine shown in FIG. For example, in the routine of FIG. 2, the fuel injection amount ratio is corrected by multiplying the fuel injection amount ratio calculated in step 2 by a correction coefficient in step 3, but the present invention is not limited to such a correction method. For example, as shown in FIG. 4, a map that provides a fuel injection amount ratio corrected according to the opening degree of the throttle valve 6 using a lift amount difference as a variable is prepared in advance, and the corrected map is referred to in step S2 with reference to this map. The fuel injection amount ratio may be obtained. In this case, since the fuel injection amount ratio corresponding to the opening of the throttle valve 6 can be calculated in step S2, step S3 can be omitted. In the third embodiment, the TCV 20 is provided in the intake passage 3 as an airflow control valve. However, the present invention is not limited to this. For example, a swirl control valve (SCV) may be provided as an airflow control valve. .

本発明の第1の形態に係る燃料噴射装置が適用された内燃機関の要部を模式的に示した説明図。BRIEF DESCRIPTION OF THE DRAWINGS Explanatory drawing which showed typically the principal part of the internal combustion engine to which the fuel-injection apparatus which concerns on the 1st form of this invention was applied. 本発明に係るECUが実行する燃料噴射量制御ルーチンの一例を示すフローチャート。The flowchart which shows an example of the fuel injection amount control routine which ECU which concerns on this invention performs. リフト量差と各燃料噴射弁の燃料噴射量との関係を示した図。The figure which showed the relationship between lift amount difference and the fuel injection amount of each fuel injection valve. リフト量差を変数としてスロットル開度に応じて補正した燃料噴射弁の燃料噴射量比を与えるマップの一例を示す図。The figure which shows an example of the map which gives the fuel injection amount ratio of the fuel injection valve correct | amended according to the throttle opening by making a lift amount difference into a variable. 各燃料噴射弁で噴射率を等しくした場合における噴射率と噴射期間との関係を模式的に示した図。The figure which showed typically the relationship between the injection rate and injection period when the injection rate is made equal for each fuel injection valve. 各燃料噴射弁の燃料噴射期間を等しくした場合における噴射率と噴射期間との関係を模式的に示した図。The figure which showed typically the relationship between the injection rate and injection period when the fuel injection period of each fuel injection valve is made equal. 本発明の第2の形態に係る燃料噴射装置が適用された内燃機関の要部を模式的に示した説明図。Explanatory drawing which showed typically the principal part of the internal combustion engine to which the fuel-injection apparatus which concerns on the 2nd form of this invention was applied. 本発明の第3の形態に係る燃料噴射装置が適用された内燃機関の要部を模式的に示した説明図。Explanatory drawing which showed typically the principal part of the internal combustion engine to which the fuel-injection apparatus which concerns on the 3rd form of this invention was applied.

符号の説明Explanation of symbols

1A 内燃機関
2 気筒
3a、3b 吸気ポート
10 吸気弁
15 ECU(燃料噴射制御手段)
16a、16b 燃料噴射弁
1A Internal combustion engine 2 Cylinders 3a, 3b Intake port 10 Intake valve 15 ECU (fuel injection control means)
16a, 16b Fuel injection valve

Claims (4)

1つの気筒に対して2つの吸気ポートが設けられ、各吸気ポートの吸気弁を異なるリフト量で開閉可能な内燃機関に適用される燃料噴射装置において、
前記吸気ポート毎に設けられた燃料噴射弁と、
前記吸気弁間に生じるリフト量差が大きいほど、前記2つの吸気ポートのうち前記吸気弁のリフト量が大きい側の燃料噴射量比が大きくなるように前記燃料噴射弁毎の燃料噴射量を制御する燃料噴射制御手段と、を備え、
前記吸気ポートの上流には、吸気量を調整可能なスロットル弁が設けられ、
前記燃料噴射制御手段は、前記スロットル弁の開度に基づいて前記燃料噴射量比を補正し、
前記スロットル弁の下流かつ前記吸気ポートの上流には前記吸気ポートを介して前記気筒に導かれる気流に偏りを付与する気流制御弁が設けられ、
前記燃料噴射制御手段は、前記スロットル弁の開度に基づいて前記燃料噴射量比の補正をする際に前記気流制御弁の開度を考慮する、燃料噴射装置。
In a fuel injection device applied to an internal combustion engine in which two intake ports are provided for one cylinder and an intake valve of each intake port can be opened and closed with different lift amounts,
A fuel injection valve provided for each intake port;
The fuel injection amount for each fuel injection valve is controlled such that the larger the lift amount difference between the intake valves, the larger the fuel injection amount ratio of the two intake ports on the side where the intake valve lift amount is larger. Fuel injection control means for
A throttle valve capable of adjusting the intake air amount is provided upstream of the intake port,
The fuel injection control means corrects the fuel injection amount ratio based on the opening of the throttle valve,
An airflow control valve is provided downstream of the throttle valve and upstream of the intake port to impart a bias to the airflow guided to the cylinder via the intake port,
The fuel injection control device takes into account the opening of the airflow control valve when correcting the fuel injection amount ratio based on the opening of the throttle valve .
1つの気筒に対して2つの吸気ポートが設けられ、各吸気ポートの吸気弁を異なるリフト量で開閉可能な内燃機関に適用される燃料噴射装置において、
前記吸気ポート毎に設けられた燃料噴射弁と、
前記吸気弁間に生じるリフト量差が大きいほど、前記2つの吸気ポートのうち前記吸気弁のリフト量が大きい側の燃料噴射量比が大きくなるように前記燃料噴射弁毎の燃料噴射量を制御する燃料噴射制御手段と、を備え、
前記吸気ポートの上流には、吸気量を調整可能なスロットル弁が設けられ、
前記燃料噴射制御手段は、前記スロットル弁の開度に基づいて前記燃料噴射量比を補正し、
前記内燃機関には、排気通路と前記吸気ポートの上流とを接続する排気還流通路と前記排気還流通路に設けられた排気還流弁とを有する排気還流装置が設けられており、
前記燃料噴射制御手段は、前記スロットル弁の開度に基づいて前記燃料噴射量比の補正をする際に前記排気還流弁の開度を考慮する、燃料噴射装置。
In a fuel injection device applied to an internal combustion engine in which two intake ports are provided for one cylinder and an intake valve of each intake port can be opened and closed with different lift amounts,
A fuel injection valve provided for each intake port;
The fuel injection amount for each fuel injection valve is controlled such that the larger the lift amount difference between the intake valves, the larger the fuel injection amount ratio of the two intake ports on the side where the intake valve lift amount is larger. Fuel injection control means for
A throttle valve capable of adjusting the intake air amount is provided upstream of the intake port,
The fuel injection control means corrects the fuel injection amount ratio based on the opening of the throttle valve,
The internal combustion engine is provided with an exhaust gas recirculation device having an exhaust gas recirculation passage connecting the exhaust passage and the upstream of the intake port, and an exhaust gas recirculation valve provided in the exhaust gas recirculation passage,
The fuel injection control device takes into account the opening of the exhaust gas recirculation valve when correcting the fuel injection amount ratio based on the opening of the throttle valve.
前記燃料噴射制御手段は、前記気筒内で成層燃焼させる場合には前記2つの吸気ポート間に所定の燃料濃度差が生じるように前記各燃料噴射弁の燃料噴射量を制御する請求項1又は2に記載の燃料噴射装置。 Said fuel injection control means, according to claim 1 or 2 for controlling the fuel injection amount of each fuel injection valve so that a predetermined fuel concentration difference occurs between the two intake ports in the case of stratified charge combustion within the cylinder The fuel injection device described in 1. 前記燃料噴射制御手段は、前記燃料噴射弁毎の燃料噴射期間が等しくなるように前記燃料噴射弁毎の時間あたりの燃料噴射量を制御する請求項1〜のいずれか一項に記載の燃料噴射装置。 The fuel according to any one of claims 1 to 3 , wherein the fuel injection control means controls a fuel injection amount per time for each fuel injection valve so that a fuel injection period for each fuel injection valve becomes equal. Injection device.
JP2008246367A 2008-09-25 2008-09-25 Fuel injection device Expired - Fee Related JP5195226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008246367A JP5195226B2 (en) 2008-09-25 2008-09-25 Fuel injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008246367A JP5195226B2 (en) 2008-09-25 2008-09-25 Fuel injection device

Publications (2)

Publication Number Publication Date
JP2010077874A JP2010077874A (en) 2010-04-08
JP5195226B2 true JP5195226B2 (en) 2013-05-08

Family

ID=42208583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008246367A Expired - Fee Related JP5195226B2 (en) 2008-09-25 2008-09-25 Fuel injection device

Country Status (1)

Country Link
JP (1) JP5195226B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5310951B2 (en) * 2010-07-27 2013-10-09 トヨタ自動車株式会社 Control device for internal combustion engine
JP5116872B1 (en) * 2011-11-18 2013-01-09 三菱電機株式会社 Control device for internal combustion engine
JP2015175249A (en) * 2014-03-13 2015-10-05 本田技研工業株式会社 Internal combustion engine combustion controller

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61250381A (en) * 1985-04-30 1986-11-07 Nissan Motor Co Ltd Intake device for internal combustion engine
JP2961779B2 (en) * 1989-12-14 1999-10-12 三菱自動車工業株式会社 Fuel supply device for stratified combustion internal combustion engine
JP3885614B2 (en) * 2002-03-07 2007-02-21 日産自動車株式会社 Internal combustion engine
JP4615535B2 (en) * 2006-03-29 2011-01-19 株式会社デンソー Fuel injection control device
JP2008111342A (en) * 2006-10-30 2008-05-15 Denso Corp Control device of internal combustion engine

Also Published As

Publication number Publication date
JP2010077874A (en) 2010-04-08

Similar Documents

Publication Publication Date Title
JP4301295B2 (en) EGR system for internal combustion engine
US20140251287A1 (en) Egr controller for internal combustion engine
US9267430B2 (en) Engine controlling emissions during transient operations
WO2011055431A1 (en) Apparatus for controlling internal combustion engine
JP5287529B2 (en) Engine intake control device
US10138831B2 (en) Controller and control method for internal combustion engine
JP3768780B2 (en) Air-fuel ratio control device for internal combustion engine
US7653475B2 (en) Fuel injection control apparatus and control method of internal combustion engine
US9103270B2 (en) Control apparatus for internal combustion engine
JP2008208740A (en) Air-fuel ratio control device for internal combustion engine with supercharger
EP2336530A1 (en) Control device for internal combustion
WO2014156208A1 (en) Control device for internal combustion engine
JP5195226B2 (en) Fuel injection device
US7769526B2 (en) Diesel transient combustion control based on intake carbon dioxide concentration
JP2006307668A (en) Egr flow rate estimating device of engine
US8532912B2 (en) Engine control system
US8201396B2 (en) Exhaust gas cleaning apparatus for internal combustion engine
JP2006329012A (en) Fuel injection control device of cylinder injection internal combustion engine
US11754016B2 (en) Fuel injection control device and fuel injection control method for internal combustion engine
JP6274401B2 (en) Engine fuel injection control device
JP2007303355A (en) Egr control device for internal combustion engine
JP2006220062A (en) Controller of hydrogen addition internal combustion engine
JP2005214015A (en) Fuel injection control device of internal combustion engine
JP7177385B2 (en) engine controller
JP2007023960A (en) Learning control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees