JP5194930B2 - High yield ratio high strength cold-rolled steel sheet - Google Patents

High yield ratio high strength cold-rolled steel sheet Download PDF

Info

Publication number
JP5194930B2
JP5194930B2 JP2008079709A JP2008079709A JP5194930B2 JP 5194930 B2 JP5194930 B2 JP 5194930B2 JP 2008079709 A JP2008079709 A JP 2008079709A JP 2008079709 A JP2008079709 A JP 2008079709A JP 5194930 B2 JP5194930 B2 JP 5194930B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
ferrite
yield ratio
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008079709A
Other languages
Japanese (ja)
Other versions
JP2009235440A (en
Inventor
玲子 水野
広志 松田
義正 船川
靖 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008079709A priority Critical patent/JP5194930B2/en
Publication of JP2009235440A publication Critical patent/JP2009235440A/en
Application granted granted Critical
Publication of JP5194930B2 publication Critical patent/JP5194930B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、自動車車体部品などに有用な加工性に優れた高降伏比高強度冷延鋼板、特に、引張強度TSが440MPa以上、降伏強度YSとTSの比である降伏比YRが0.8以上、伸びElとTSとの積であるTS×Elが12000MPa・%以上である高降伏比高強度冷延鋼板に関する。   The present invention is a high yield ratio high-strength cold-rolled steel sheet excellent in workability useful for automobile body parts and the like, in particular, the tensile strength TS is 440 MPa or more, and the yield ratio YR which is the ratio of the yield strength YS and TS is 0.8 or more, The present invention relates to a high yield ratio high-strength cold-rolled steel sheet in which TS × El, which is the product of elongation El and TS, is 12000 MPa ·% or more.

近年、地球環境保全の観点からCO2の排出量を抑制するための燃費改善に向けた自動車車体の軽量化や、衝突時に乗員の安全確保に向けた自動車車体の強化が積極的に進められている。こうした自動車車体の軽量化と強化とを同時に満たすには、車体部品の素材である鋼板をTSが440MPa以上となるように高強度化し、剛性の問題とならない範囲でその板厚を減ずることが効果的であり、最近では板厚の薄い高強度鋼板が車体部品に積極的に使用されている。また、こうした車体部品用の鋼板には、加工性の観点から12000MPa・%以上のTS×Elが必要であるとともに、衝突時の安全性の観点から衝突時の変形が少ない、すなわち高速変形量の小さいことも必要であることから、加工性に優れ、0.8以上のYRを有する高降伏比高強度鋼板への要求も高まっている。 In recent years, from the viewpoint of global environmental conservation, the weight reduction of automobile bodies to improve fuel efficiency to reduce CO 2 emissions and the strengthening of automobile bodies to ensure the safety of passengers in the event of a collision have been actively promoted. Yes. In order to satisfy such weight reduction and strengthening of the car body at the same time, it is effective to increase the strength of the steel plate, which is the material of the car body parts, so that the TS becomes 440 MPa or more and reduce the thickness of the steel plate so long as it does not cause a problem of rigidity. Recently, high-strength steel sheets with thin thickness have been actively used for body parts. In addition, steel sheets for car body parts require TS × El of 12000 MPa ·% or more from the viewpoint of workability, and from the viewpoint of safety at the time of collision, there is little deformation at the time of collision, that is, high-speed deformation amount. Since it is also necessary to be small, there is an increasing demand for high yield ratio high strength steel sheets having excellent workability and having a YR of 0.8 or more.

高降伏比高強度鋼板として、例えば、特許文献1には、質量%で、C:0.07〜0.25%、Si:0.1%以下、Mn:1.5〜2.5%、P:0.05%以下、S:0.01%以下、Al:0.010〜0.100%、N:0.01%以下、Nb:0.10%以下、Ti:0.3%以下、Cr:0.1%以下を含有し、残部がFeおよび不可避的不純物からなる鋼板上に、溶融亜鉛めっき皮膜または合金化溶融亜鉛めっき皮膜を形成してなる、45kg/mm2以上のTSと0.8以上のYRを有する高強度高降伏比型溶融亜鉛めっき鋼板が開示されている。また、特許文献2には、質量%で、C:0.028%超0.044%未満、Si:0.8%未満、Mn:1.9〜2.3%、P:0.001〜0.035%、S:0.0001〜0.013%、Al:0.1%以下、N:0.0001〜0.008%、Ti:0.012〜0.029%、Nb:0.029〜0.042%、Mo:0.05〜0.25%、B:0.0008〜0.0038%を含有し、残部がFeおよび不可避的不純物からなる高降伏比高強度冷延鋼板が開示されている。さらに、特許文献3には、質量%で、C:0.02%以下、Si:0.3%以下、Mn:0.5〜2.0%、P:0.06%以下、S:0.005%以下、Al:0.06%以下、N:0.006%以下、Ti:0.015〜0.40%、残部がFeおよび不可避的不純物からなる鋼スラブを1150℃以上に加熱後、880℃以上の仕上圧延出側温度で熱間圧延して熱延板とし、該熱延板を400〜700℃の巻取温度で巻取り後、酸洗、冷間圧延後、浸炭雰囲気中で600〜720℃で焼鈍を行う加工性に優れた高降伏比高張力冷延鋼板の製造方法が開示されている。
特開平10-273754号公報 特開2006-274378号公報 特開2007-9253号公報
As a high-yield ratio high-strength steel sheet, for example, in Patent Document 1, in mass%, C: 0.07 to 0.25%, Si: 0.1% or less, Mn: 1.5 to 2.5%, P: 0.05% or less, S: 0.01% Below, Al: 0.010 to 0.100%, N: 0.01% or less, Nb: 0.10% or less, Ti: 0.3% or less, Cr: 0.1% or less, the balance is molten on a steel plate made of Fe and inevitable impurities A high strength, high yield ratio hot dip galvanized steel sheet having a TS of 45 kg / mm 2 or more and a YR of 0.8 or more formed by forming a galvanized film or an alloyed hot dip galvanized film is disclosed. Further, in Patent Document 2, in mass%, C: more than 0.028% and less than 0.044%, Si: less than 0.8%, Mn: 1.9 to 2.3%, P: 0.001 to 0.035%, S: 0.0001 to 0.013%, Al: 0.1% or less, N: 0.0001 to 0.008%, Ti: 0.012 to 0.029%, Nb: 0.029 to 0.042%, Mo: 0.05 to 0.25%, B: 0.0008 to 0.0038%, the balance from Fe and inevitable impurities A high yield ratio high strength cold rolled steel sheet is disclosed. Furthermore, Patent Document 3 includes mass%, C: 0.02% or less, Si: 0.3% or less, Mn: 0.5 to 2.0%, P: 0.06% or less, S: 0.005% or less, Al: 0.06% or less, N : 0.006% or less, Ti: 0.015 to 0.40%, the remainder of the steel slab consisting of Fe and inevitable impurities is heated to 1150 ° C or higher, and then hot rolled at a finish rolling exit temperature of 880 ° C or higher to form a hot-rolled sheet The steel sheet is wound at a coiling temperature of 400 to 700 ° C, pickled, cold-rolled, and then annealed at 600 to 720 ° C in a carburizing atmosphere. A method for producing a rolled steel sheet is disclosed.
Japanese Patent Laid-Open No. 10-273754 JP 2006-274378 A Japanese Unexamined Patent Publication No. 2007-9253

しかしながら、特許文献1に記載の高強度高降伏比型溶融亜鉛めっき鋼板は、高強度で、0.8以上のYR、12000MPa・%以上のTS×Elを有しているが、フェライト相とパーライト相からなるミクロ組織を前提としており、マルテンサイト相やベイナイト相の生成を抑制するためにその製造方法を厳しく制御する必要があり、0.8以上のYRを安定して得ることが困難である。特許文献2に記載の高降伏比高強度冷延鋼板は、高強度ではあるが、0.8以上のYRを有していない。特許文献3に記載の高降伏比高張力冷延鋼板の製造方法では、高強度で、0.8以上のYR、12000MPa・%以上のTS×Elの高降伏比高張力冷延鋼板が得られるが、その製造には浸炭雰囲気下の焼鈍が必要であり、こうした特性を安定して得ることが困難である。   However, the high-strength, high-yield ratio hot-dip galvanized steel sheet described in Patent Document 1 has high strength, YR of 0.8 or higher, TS × El of 12000 MPa ·% or higher, but from the ferrite phase and the pearlite phase. Therefore, it is necessary to strictly control the production method in order to suppress the formation of martensite phase and bainite phase, and it is difficult to stably obtain YR of 0.8 or more. The high yield ratio high strength cold-rolled steel sheet described in Patent Document 2 has high strength but does not have a YR of 0.8 or more. In the manufacturing method of the high yield ratio high tensile cold-rolled steel sheet described in Patent Document 3, a high strength, YR of 0.8 or more, TS × El high yield ratio high-tensile cold-rolled steel sheet of 12000 MPa ·% or more can be obtained. The manufacture requires annealing in a carburizing atmosphere, and it is difficult to stably obtain such characteristics.

本発明は、このような問題を解決するためになされたもので、安定して製造でき、TSが440MPa以上、YRが0.8以上で、TS×Elが12000MPa・%以上である高降伏比高強度冷延鋼板を提供することを目的とする。   The present invention was made to solve such problems, and can be stably manufactured. TS is 440 MPa or higher, YR is 0.8 or higher, and TS × El is 12000 MPa ·% or higher. It aims at providing a cold-rolled steel plate.

本発明者らは、TSが440MPa以上、YRが0.8以上、TS×Elが12000MPa・%以上となる高降伏比高強度冷延鋼板について鋭意検討を行ったところ、以下のことを見出した。   The present inventors have conducted intensive studies on a high yield ratio high strength cold-rolled steel sheet having TS of 440 MPa or more, YR of 0.8 or more, and TS × El of 12000 MPa ·% or more, and found the following.

(i) (Ti/48)/(C/12)=0.1〜0.9で、かつ粒径20nm以下のTiを含む炭化物(以後、Ti系炭化物と呼ぶ)をフェライト中に1.0×104個/mm2以上析出させると、440MPa以上のTSが得られ、0.8以上のYRが安定して達成される。 (i) (Ti / 48) / (C / 12) = 0.1 to 0.9 and a carbide containing Ti having a particle size of 20 nm or less (hereinafter referred to as Ti-based carbide) is 1.0 × 10 4 pieces / mm in ferrite. When 2 or more are deposited, TS of 440 MPa or more is obtained, and YR of 0.8 or more is stably achieved.

(ii) アスペクト比が3未満のフェライト結晶粒のミクロ組織全体に占める面積率を80%以上とすると、12000MPa・%以上のTS×Elが得られる。   (ii) When the area ratio of ferrite grains having an aspect ratio of less than 3 in the entire microstructure is 80% or more, TS × El of 12000 MPa ·% or more can be obtained.

本発明は、このような知見に基づきなされたもので、質量%で、C:0.02〜0.10%、Si:1.5%以下、Mn:1.0〜2.0%、P:0.005〜0.1%、S:0.01%以下、Al:0.005〜0.1%、N:0.01%以下、Ti:0.05〜0.40%を含有し、下記の式(1)を満たし、残部がFeおよび不可避的不純物からなる成分組成を有し、かつミクロ組織がフェライトを有し、前記フェライトにおけるアスペクト比が3未満の結晶粒のミクロ組織全体に占める面積率が80%以上であり、前記フェライトには粒径20nm以下のTi系炭化物が1.0×104個/mm2以上析出していることを特徴とする高降伏比高強度冷延鋼板を提供する。
(Ti/48)/(C/12)=0.1〜0.9・・・(1)
ただし、式(1)中のTi、Cは、各々の元素の含有量(質量%)を表す。
The present invention was made based on such findings, and in mass%, C: 0.02 to 0.10%, Si: 1.5% or less, Mn: 1.0 to 2.0%, P: 0.005 to 0.1%, S: 0.01% Hereinafter, Al: 0.005 to 0.1%, N: 0.01% or less, Ti: 0.05 to 0.40%, satisfying the following formula (1), the remainder has a component composition consisting of Fe and inevitable impurities, and The microstructure has ferrite, and the area ratio of crystal grains having an aspect ratio of less than 3 in the ferrite is 80% or more, and the ferrite contains 1.0 × 10 5 Ti-based carbide having a grain size of 20 nm or less. A high yield ratio high strength cold-rolled steel sheet characterized by depositing 4 pieces / mm 2 or more is provided.
(Ti / 48) / (C / 12) = 0.1-0.9 ... (1)
However, Ti and C in the formula (1) represent the content (% by mass) of each element.

本発明により、TSが440MPa以上、YRが0.8以上、TS×Elが12000MPa・%以上である高降伏比高強度冷延鋼板を安定して製造できるようになった。本発明の高降伏比高強度冷延鋼板を自動車車体部品に適用すれば、自動車の軽量化のみならず、衝突時の安全性を飛躍的に向上できる。   According to the present invention, a high yield ratio high strength cold-rolled steel sheet having TS of 440 MPa or more, YR of 0.8 or more, and TS × El of 12000 MPa ·% or more can be stably produced. If the high yield ratio high-strength cold-rolled steel sheet of the present invention is applied to automobile body parts, not only the weight of the automobile can be reduced, but also safety at the time of collision can be dramatically improved.

以下に、本発明の詳細を説明する。なお、成分の量を表す%は、特に断らない限り質量%を意味する。   Details of the present invention will be described below. Note that% representing the amount of a component means mass% unless otherwise specified.

1) 成分組成
C:0.02〜0.10%
Cは、後述のTiとともに本願発明の重要な元素であり、強度確保のために必要不可欠な成分である。440MPa以上のTSを得るために必要な量のTiCを析出させるためには、C量を0.02%以上とする必要がある。しかしながら、C量が0.10%を超えると、粗大な析出物が生成し、目標とするTSが得られず、延性の低下も招く。したがって、C量は0.02〜0.10%とする。
1) Component composition
C: 0.02-0.10%
C is an important element of the present invention together with Ti described later, and is an essential component for securing the strength. In order to precipitate the amount of TiC necessary to obtain a TS of 440 MPa or more, the C amount needs to be 0.02% or more. However, if the amount of C exceeds 0.10%, coarse precipitates are generated, the target TS cannot be obtained, and ductility is reduced. Therefore, the C content is 0.02 to 0.10%.

Si:1.5%以下
Si量が1.5%を超えると、熱間圧延時に赤スケールと称される表面欠陥が発生する他、溶融亜鉛めっき(合金化を含む)を施す場合にめっきの濡れ性を悪くし、めっきむらの発生を招き、表面外観を悪くする。したがって、Si量は1.5%以下とする。なお、本発明において、Si量は0%であってもよいが、Siは固溶強化に有効な元素であるため、その量を0.01%以上とすることが好ましい。
Si: 1.5% or less
If the Si content exceeds 1.5%, surface defects called red scales will occur during hot rolling, and when wet galvanizing (including alloying) is applied, the wettability of the plating will be deteriorated and uneven plating will occur. It causes generation and deteriorates the surface appearance. Therefore, the Si content is 1.5% or less. In the present invention, the Si amount may be 0%, but since Si is an element effective for solid solution strengthening, the amount is preferably 0.01% or more.

Mn:1.0〜2.0%
Mn量は、固溶強化の観点から、1.0%以上とする。しかしながら、その量が2.0%を超えると偏析が生じ、加工性が低下する。したがって、Mn量は1.0〜2.0%とする。
Mn: 1.0-2.0%
The Mn content is 1.0% or more from the viewpoint of solid solution strengthening. However, when the amount exceeds 2.0%, segregation occurs and workability is deteriorated. Therefore, the Mn content is 1.0 to 2.0%.

P:0.005〜0.1%
Pは、固溶強化の効果がある元素である。しかしながら、P量が0.005%未満では、その効果が得られない。一方、P量が0.1%を超えると、Pが粒界に偏析して耐二次加工脆性や溶接性を劣化させる。また、溶融亜鉛めっき鋼板とする際には、溶融亜鉛めっき後の合金化処理時に鋼板からめっき層へのFeの拡散を抑制するため、合金化処理温度を高くする必要があり、めっき層にパウダリングやチッピングなどが生じやすくなる。したがって、P量は0.005〜0.1%、好ましくは0.01〜0.1%とする。
P: 0.005-0.1%
P is an element having a solid solution strengthening effect. However, if the amount of P is less than 0.005%, the effect cannot be obtained. On the other hand, if the amount of P exceeds 0.1%, P segregates at the grain boundaries and deteriorates the secondary work brittleness resistance and weldability. In addition, when using a hot dip galvanized steel sheet, it is necessary to increase the alloying temperature in order to suppress the diffusion of Fe from the steel sheet to the plating layer during the alloying process after hot dip galvanizing. Rings and chipping are likely to occur. Therefore, the P content is 0.005 to 0.1%, preferably 0.01 to 0.1%.

S:0.01%以下
Sは、熱間割れの原因になる他、鋼中で介在物として存在し延性を劣化させるので、S量は0.01%以下とするが、少ないほど好ましい。
S: 0.01% or less
In addition to causing hot cracking, S is present as an inclusion in the steel and deteriorates ductility. Therefore, the S content is 0.01% or less, but it is more preferable that S is smaller.

Al:0.005〜0.1%
Alは、固溶強化や固溶Nを固定して耐常温時効性を向上させる作用がある。また、Alはフェライト生成元素であり、フェライト+オーステナイトの二相域の温度調整にも有効な元素である。このような作用を発揮させるためには、Al量を0.005%以上とする必要がある。一方、Al量が0.1%を超えると、合金コスト高を招くとともに、表面欠陥を誘発する。したがって、Al量は0.005〜0.1%とする。
Al: 0.005-0.1%
Al has the effect of improving the normal temperature aging resistance by fixing solid solution strengthening or solid solution N. Al is a ferrite-forming element and is also an effective element for adjusting the temperature in the two-phase region of ferrite and austenite. In order to exert such an effect, the Al content needs to be 0.005% or more. On the other hand, if the Al content exceeds 0.1%, the alloy costs are increased and surface defects are induced. Therefore, the Al content is 0.005 to 0.1%.

N:0.01%以下
Nは、固溶Nとして存在すると耐常温時効性を劣化させる。そのため、その量が0.01%を超えると固溶Nを固定するために多量のAlやTiなどの添加が必要となり、合金コスト高を招く。したがって、N量は0.01%以下とする必要があるが、少ないほど好ましい。
N: 0.01% or less
When N is present as solute N, it degrades the room temperature aging resistance. Therefore, if the amount exceeds 0.01%, a large amount of Al, Ti, or the like must be added to fix the solid solution N, resulting in high alloy costs. Therefore, the N content needs to be 0.01% or less, but the smaller the amount, the better.

Ti:0.05〜0.40%
Tiは、本発明において重要な元素であり、Cと結合してTiCを形成し、鋼の強化に有効に働く。440MPa以上のTSを得るためには、Ti量を0.05%以上とする必要がある。一方、Ti量が0.40%を超えると、高強度で、高YRが得られない。したがって、Ti量は0.05〜0.40%とする。
Ti: 0.05-0.40%
Ti is an important element in the present invention, and combines with C to form TiC, which effectively works to strengthen steel. In order to obtain TS of 440 MPa or more, the Ti amount needs to be 0.05% or more. On the other hand, if the Ti content exceeds 0.40%, high strength and high YR cannot be obtained. Therefore, the Ti content is 0.05 to 0.40%.

残部は、Feおよび不可避的不純物である。   The balance is Fe and inevitable impurities.

2) (Ti/48)/(C/12):0.1〜0.9、かつ粒径20nm以下のTi系炭化物の個数:1.0×104個/mm2以上
C:0.04%、Si:tr.、Mn:1.1%、P:0.01%、S:0.001%、Al:0.04%、N:0.0020%で、Ti量を0.02〜0.6%に変えた鋼XとC:0.08%、Si:tr.、Mn:1.3%、P:0.01%、S:0.001%、Al:0.04%、N:0.0020%で、Ti量を0.05〜0.8%に変えた鋼Yとを、熱間圧延、冷間圧延し、連続焼鈍をシミュレートした熱サイクルで880℃で60s間保持後、620℃まで空冷し、620℃で240s間保持後空冷して鋼板試料を作製し、作製後の試料から圧延方向に対して90°方向にJIS 5号引張試験片を採取し、JIS Z 2241の規定に準拠して、クロスヘッド速度10mm/minで引張試験を行い、TSおよびYRを測定した。その結果、図1に示すように、TSおよびYRは、(Ti/48)/(C/12)が0.9前後で大きく変動し、YRを0.8以上とするには、(Ti/48)/(C/12)を0.9以下とする必要があることがわかる。また、この場合、TS≧440MPaが得られた。なお、Ti量の少ない場合(鋼X:Ti=0.02%)は、YRは0.8未満となり、TSも440MPa未満となった。
2) (Ti / 48) / (C / 12): 0.1-0.9 and the number of Ti carbides with a particle size of 20 nm or less: 1.0 × 10 4 / mm 2 or more
Steel X and C with C: 0.04%, Si: tr., Mn: 1.1%, P: 0.01%, S: 0.001%, Al: 0.04%, N: 0.0020%, Ti amount changed to 0.02-0.6% : Steel Y with 0.08%, Si: tr., Mn: 1.3%, P: 0.01%, S: 0.001%, Al: 0.04%, N: 0.0020% and Ti amount changed to 0.05-0.8%, After hot rolling, cold rolling, and heat cycle simulating continuous annealing, hold at 880 ° C for 60s, air cool to 620 ° C, hold at 620 ° C for 240s and air cool to make a steel sheet sample JIS No. 5 tensile test specimens were collected from the sample of 90 ° in the direction of 90 ° with respect to the rolling direction, and in accordance with the provisions of JIS Z 2241, a tensile test was performed at a crosshead speed of 10 mm / min, and TS and YR were measured. . As a result, as shown in FIG. 1, TS and YR vary greatly when (Ti / 48) / (C / 12) is around 0.9, and to make YR 0.8 or more, (Ti / 48) / ( It can be seen that C / 12) needs to be 0.9 or less. In this case, TS ≧ 440 MPa was obtained. When the amount of Ti was small (Steel X: Ti = 0.02%), YR was less than 0.8 and TS was also less than 440 MPa.

本発明者らは、上記したように(Ti/48)/(C/12)が0.9を超えると、TSとともにYRが低下する理由は、Ti系炭化物が粗大化するためと考えた。そこで、強度の向上には、析出物のうち特に微細な析出物、具体的には粒径が20nm以下の微細な析出物の寄与が大きいと考え、粒径20nm以下のTi系析出物の個数とYRとの関係を調べた。結果を図2に示す。図2に示すように粒径20nm以下のTi系炭化物の個数を1.0×104個/mm2以上にすれば、0.8以上のYRが得られることがわかる。以上のことから、440MPa以上のTSと0.8以上のYRを得るには、(Ti/48)/(C/12)が0.9以下で、かつ粒径20nm以下のTi系炭化物が1×104個/mm2以上析出していることが必要である。(Ti/48)/(C/12)が0.9を超えると、440MPa以上のTSと0.8以上のYRが得られない理由は、上記したようにTi系炭化物が粗大化するためと考えられる。なお、(Ti/48)/(C/12)が0.1未満では、十分な量のTi系炭化物が確保されず、440MPa以上のTSや0.8以上のYRが得られないので、(Ti/48)/(C/12)は0.1以上とする必要がある。 As described above, the present inventors considered that the reason why YR decreases with TS when (Ti / 48) / (C / 12) exceeds 0.9 is that Ti-based carbides become coarse. Therefore, in order to improve the strength, it is considered that the fine precipitates among the precipitates, specifically, the fine precipitates having a particle size of 20 nm or less are considered to contribute greatly, and the number of Ti-based precipitates having a particle size of 20 nm or less. And the relationship with YR was investigated. The result is shown in figure 2. As shown in FIG. 2, it can be seen that when the number of Ti carbides having a particle size of 20 nm or less is 1.0 × 10 4 pieces / mm 2 or more, a YR of 0.8 or more can be obtained. From the above, to obtain TS of 440 MPa or more and YR of 0.8 or more, 1 × 10 4 Ti-based carbides with (Ti / 48) / (C / 12) of 0.9 or less and a particle size of 20 nm or less / mm 2 or more must be deposited. If (Ti / 48) / (C / 12) exceeds 0.9, the reason why TS of 440 MPa or more and YR of 0.8 or more cannot be obtained is considered to be because the Ti-based carbides become coarse as described above. In addition, when (Ti / 48) / (C / 12) is less than 0.1, a sufficient amount of Ti-based carbide is not secured, and TS of 440 MPa or more and YR of 0.8 or more cannot be obtained, so (Ti / 48) / (C / 12) needs to be 0.1 or more.

本発明の鋼板では、このように粒径20nm以下の微細なTi系炭化物により0.8以上のYRを達成しているため、マルテンサイトやベイナイトが混入しても安定して高YRが得られる。   In the steel sheet of the present invention, a YR of 0.8 or more is achieved by the fine Ti-based carbide having a particle diameter of 20 nm or less as described above, so that a high YR can be stably obtained even when martensite or bainite is mixed.

ここで、Ti系炭化物の粒径と個数は、透過型電子顕微鏡により、薄膜試料を用いて50,000〜500,000倍で5視野以上観察して測定した。このとき、観察可能な炭化物の粒径は1nm程度であるため、実質的には粒径1〜20nmの炭化物の個数を測定したことになる。   Here, the particle size and the number of Ti-based carbides were measured by observing five or more visual fields with a transmission electron microscope at a magnification of 50,000 to 500,000 using a thin film sample. At this time, since the particle size of the observable carbide is about 1 nm, the number of carbides having a particle size of 1 to 20 nm is substantially measured.

また、上記粒径20nm以下の微細なTi系炭化物はフェライト中に析出していた。なお、ここで粒径は上記観察により認められた各析出物の最大径であり、またエネルギー分散型X線分光法(EDX)により析出物を定性分析し、粒径20nm以下の微細な析出物がTi系炭化物であることを確認した。   The fine Ti carbide having a particle size of 20 nm or less was precipitated in the ferrite. Here, the particle diameter is the maximum diameter of each precipitate observed by the above observation, and the precipitate is qualitatively analyzed by energy dispersive X-ray spectroscopy (EDX), and fine precipitates having a particle diameter of 20 nm or less are obtained. Was confirmed to be Ti-based carbide.

3) アスペクト比が3未満のフェライト粒の面積率:80%以上
上記の鋼Yを、熱間圧延、冷間圧延し、連続焼鈍をシミュレートした熱サイクルで840〜920℃で60s間保持後、620℃まで空冷し、620℃で240s間保持後空冷して鋼板試料を作製し、上記と同様な方法で引張試験を行い、TS×Elを測定した。良好な加工性を確保するためには、フェライトを含有させる必要があるが、図3に示すように、フェライトにおけるアスペクト比が3未満の結晶粒の組織全体に占める面積率を80%以上にすれば、12000MPa・%以上のTS×Elが得られる。
3) Area ratio of ferrite grains with an aspect ratio of less than 3: 80% or more After the above steel Y is hot-rolled and cold-rolled and kept at 840-920 ° C for 60 s in a thermal cycle simulating continuous annealing The steel plate was air-cooled to 620 ° C., held at 620 ° C. for 240 s and then air-cooled to produce a steel plate sample, a tensile test was performed in the same manner as described above, and TS × El was measured. In order to ensure good workability, it is necessary to contain ferrite, but as shown in Fig. 3, the area ratio of the crystal grains having an aspect ratio of less than 3 in the ferrite should be 80% or more. For example, TS × El of 12000 MPa ·% or more can be obtained.

ここで、フェライト結晶粒の面積率やアスペクト比は、圧延方向に平行な板厚断面をナイタールによりエッチングし、走査顕微鏡を用いて、1000倍で3視野以上観察し、画像解析法により測定した。このとき、アスペクト比は(圧延方向の最長粒径)/(板厚方向の最長粒径)で求めた。   Here, the area ratio and aspect ratio of the ferrite crystal grains were measured by an image analysis method by etching a plate thickness section parallel to the rolling direction with nital and observing three or more fields at 1000 times with a scanning microscope. At this time, the aspect ratio was obtained by (longest particle size in rolling direction) / (longest particle size in plate thickness direction).

なお、本発明において、上記したミクロ組織の条件を満足すれば、目的とする鋼板特性を確保でき、アスペクト比が3未満のフェライト結晶粒以外の組織については、特に規定する必要はなく、例えばマルテンサイトやアスペクト比が3以上のフェライト粒、あるいはパーライトなどであってもよい。   In the present invention, if the above-described microstructure conditions are satisfied, the objective steel sheet characteristics can be secured, and the structure other than ferrite crystal grains having an aspect ratio of less than 3 does not need to be specified. It may be ferrite grains having an aspect ratio of 3 or more, or pearlite.

上述したように、本発明の高降伏比高強度冷延鋼板では、粒径20nm以下の微細なTi系炭化物の個数とアスペクト比が3未満のフェライト粒の割合を適切に制御する必要がある。それには、本発明の成分組成を有する鋼スラブを、通常の方法で熱間圧延、冷間圧延して冷延板とした後、焼鈍するにあたり焼鈍温度と冷却条件を制御することが重要である。すなわち、アスペクト比が3以上のフェライト粒の生成を抑制するには、フェライト+オーステナイトの二相域で高温焼鈍することが有効である。また、二相域で高温焼鈍することは、熱間圧延後に析出している比較的大きなTi系炭化物を再溶解させ、その後の冷却で粒径20nm以下の微細なTi系炭化物の個数を必要なだけ析出させる上でも、極めて効果的である。二相域の高温焼鈍で再溶解したTi系炭化物は、空冷後CCT曲線のフェライト変態のノーズ付近の温度、すなわち本発明の成分系では600℃近辺で保持することにより粒径20nm以下の微細なTi系炭化物として再析出して、高強度、高YRに寄与する。また、フェライト変態のノーズ付近で保持するため、フェライト主体のミクロ組織が形成され、高延性化が達成される。   As described above, in the high yield ratio high strength cold-rolled steel sheet of the present invention, it is necessary to appropriately control the number of fine Ti-based carbides having a grain size of 20 nm or less and the proportion of ferrite grains having an aspect ratio of less than 3. For that purpose, it is important to control the annealing temperature and the cooling conditions when annealing the steel slab having the composition of the present invention after hot rolling and cold rolling to obtain a cold rolled sheet. . That is, in order to suppress the formation of ferrite grains having an aspect ratio of 3 or more, it is effective to perform high temperature annealing in the two-phase region of ferrite + austenite. In addition, high-temperature annealing in the two-phase region requires re-dissolution of relatively large Ti carbides precipitated after hot rolling, and subsequent cooling requires the number of fine Ti carbides having a particle size of 20 nm or less. It is also extremely effective for precipitation. Ti-type carbides re-dissolved by high-temperature annealing in the two-phase region are fine particles with a particle size of 20 nm or less by maintaining the temperature near the nose of the ferrite transformation of the CCT curve after air cooling, that is, around 600 ° C. in the component system of the present invention. Reprecipitates as Ti-based carbide, contributing to high strength and high YR. Further, since it is held near the nose of the ferrite transformation, a ferrite-based microstructure is formed, and high ductility is achieved.

表1に示す組成の鋼No.A〜Rを転炉で溶製し、連続鋳造法でスラブとした。これらのスラブを1250℃に加熱後、粗圧延してシートバーとし、仕上温度940℃で仕上圧延後、巻取温度550℃で巻取って熱延板とした。これらの熱延板を酸洗後、圧下率75%で冷間圧延を施し板厚1.0mmの冷延板とした。引き続き、これら冷延板を、連続焼鈍ラインにて、表2に示す焼鈍温度で焼鈍し、次いで焼鈍温度から620℃までを平均冷却速度15℃/sで冷却後、620℃で240s間保持して、鋼板No.1〜23を作製した。そして、焼鈍後の鋼板のフェライト粒の面積率、Ti系炭化物の個数および引張特性値を上記と同様な方法により調査した。   Steel Nos. A to R having the compositions shown in Table 1 were melted in a converter and made into slabs by a continuous casting method. These slabs were heated to 1250 ° C., roughly rolled into sheet bars, finished and rolled at a finishing temperature of 940 ° C., and then wound at a winding temperature of 550 ° C. to obtain hot rolled sheets. These hot-rolled sheets were pickled and cold-rolled at a reduction rate of 75% to obtain cold-rolled sheets having a thickness of 1.0 mm. Subsequently, these cold-rolled sheets were annealed at the annealing temperature shown in Table 2 in a continuous annealing line, then cooled from the annealing temperature to 620 ° C at an average cooling rate of 15 ° C / s, and then held at 620 ° C for 240s. Steel plates No. 1 to 23 were produced. And the area ratio of the ferrite grain of the steel plate after annealing, the number of Ti type carbides, and the tensile characteristic value were investigated by the method similar to the above.

結果を表2に示す。   The results are shown in Table 2.

本発明例では、いずれもTSが440MPa以上、YRが0.8以上であり、TS×Elも12000MPa・%以上あることがわかる。   In the examples of the present invention, TS is 440 MPa or more, YR is 0.8 or more, and TS × El is 12000 MPa ·% or more.

Figure 0005194930
Figure 0005194930

Figure 0005194930
Figure 0005194930

(Ti/48)/(C/12)とTSおよびYRとの関係を示す図である。It is a figure which shows the relationship between (Ti / 48) / (C / 12), TS, and YR. 粒径20nm以下のTi系炭化物の個数とYRとの関係を示す図である。It is a figure which shows the relationship between the number of Ti type carbide | carbonized_materials with a particle size of 20 nm or less, and YR. アスペクト比が3未満のフェライト粒の面積率とTS×Elとの関係を示す図である。FIG. 5 is a diagram showing the relationship between the area ratio of ferrite grains having an aspect ratio of less than 3 and TS × El.

Claims (1)

質量%で、C:0.02〜0.10%、Si:1.5%以下、Mn:1.0〜2.0%、P:0.005〜0.1%、S:0.01%以下、Al:0.005〜0.1%、N:0.01%以下、Ti:0.05〜0.40%を含有し、下記の式(1)を満たし、残部がFeおよび不可避的不純物からなる成分組成を有し、かつミクロ組織がフェライトを有し、前記フェライトにおけるアスペクト比が3未満の結晶粒のミクロ組織全体に占める面積率が80%以上であり、前記フェライトには粒径20nm以下のTiを含む炭化物(Ti系炭化物)が1.0×104個/mm2以上析出していることを特徴とする高降伏比高強度冷延鋼板;
(Ti/48)/(C/12)=0.1〜0.9・・・(1)
ただし、式(1)中のTi、Cは、各々の元素の含有量(質量%)を表す。
In mass%, C: 0.02 to 0.10%, Si: 1.5% or less, Mn: 1.0 to 2.0%, P: 0.005 to 0.1%, S: 0.01% or less, Al: 0.005 to 0.1%, N: 0.01% or less, Ti: 0.05 to 0.40%, satisfying the following formula (1), the balance has a component composition consisting of Fe and inevitable impurities, the microstructure has ferrite, the aspect ratio in the ferrite is 3 The area ratio of the crystal grains less than 80% or more of the entire microstructure is 80% or more, and the ferrite containing Ti with a grain size of 20 nm or less (Ti-based carbide) is precipitated 1.0 × 10 4 pieces / mm 2 or more. High yield ratio high strength cold-rolled steel sheet, characterized by:
(Ti / 48) / (C / 12) = 0.1-0.9 ... (1)
However, Ti and C in the formula (1) represent the content (% by mass) of each element.
JP2008079709A 2008-03-26 2008-03-26 High yield ratio high strength cold-rolled steel sheet Expired - Fee Related JP5194930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008079709A JP5194930B2 (en) 2008-03-26 2008-03-26 High yield ratio high strength cold-rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008079709A JP5194930B2 (en) 2008-03-26 2008-03-26 High yield ratio high strength cold-rolled steel sheet

Publications (2)

Publication Number Publication Date
JP2009235440A JP2009235440A (en) 2009-10-15
JP5194930B2 true JP5194930B2 (en) 2013-05-08

Family

ID=41249760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008079709A Expired - Fee Related JP5194930B2 (en) 2008-03-26 2008-03-26 High yield ratio high strength cold-rolled steel sheet

Country Status (1)

Country Link
JP (1) JP5194930B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9340649B2 (en) 2013-01-29 2016-05-17 Shin-Etsu Chemical Co., Ltd. Method for preparing a polyorganosiloxane and a polyorganosiloxane

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5354147B2 (en) * 2008-03-26 2013-11-27 Jfeスチール株式会社 High yield ratio high strength cold-rolled steel sheet with excellent stretch flangeability
BRPI0924410B1 (en) * 2009-05-11 2018-07-17 Nippon Steel & Sumitomo Metal Corp hot rolled steel sheet having excellent drilling work capacity and fatigue properties, hot dip galvanized steel sheet, and production methods thereof
JP5453973B2 (en) * 2009-07-15 2014-03-26 Jfeスチール株式会社 High-strength cold-rolled steel sheet and manufacturing method thereof
JP6224704B2 (en) * 2014-02-05 2017-11-01 Jfeスチール株式会社 Manufacturing method of high strength hot-rolled steel sheet
CN108699657B (en) 2016-03-11 2021-02-05 杰富意钢铁株式会社 High-strength thin steel sheet and method for producing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4196810B2 (en) * 2003-10-31 2008-12-17 住友金属工業株式会社 High-strength cold-rolled steel sheet and manufacturing method thereof
JP4428075B2 (en) * 2004-02-06 2010-03-10 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in stretch flangeability and method for producing the same
JP4843981B2 (en) * 2004-03-31 2011-12-21 Jfeスチール株式会社 High-rigidity and high-strength steel sheet and manufacturing method thereof
JP4506439B2 (en) * 2004-03-31 2010-07-21 Jfeスチール株式会社 High-rigidity and high-strength steel sheet and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9340649B2 (en) 2013-01-29 2016-05-17 Shin-Etsu Chemical Co., Ltd. Method for preparing a polyorganosiloxane and a polyorganosiloxane
US9751901B2 (en) 2013-01-29 2017-09-05 Shin-Etsu Chemical Co., Ltd. Method for preparing a polyorganosiloxane and a polyorganosiloxane

Also Published As

Publication number Publication date
JP2009235440A (en) 2009-10-15

Similar Documents

Publication Publication Date Title
JP5858199B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5858032B2 (en) High strength steel plate and manufacturing method thereof
JP5862651B2 (en) High-strength hot-dip galvanized steel sheet excellent in impact resistance and bending workability and manufacturing method thereof
KR101528080B1 (en) High-strength hot-dip-galvanized steel sheet having excellent moldability, and method for production thereof
EP2589677B1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing same
JP4072090B2 (en) High-strength steel sheet with excellent stretch flangeability and manufacturing method thereof
JP5408314B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and material uniformity in the coil and method for producing the same
JP5798740B2 (en) High-strength cold-rolled steel sheet with excellent formability and manufacturing method
JP4790639B2 (en) High-strength cold-rolled steel sheet excellent in stretch flange formability and impact absorption energy characteristics, and its manufacturing method
WO2013114850A1 (en) Hot-dip galvanized steel sheet and production method therefor
JP5316634B2 (en) High-strength steel sheet with excellent workability and method for producing the same
WO2013150669A1 (en) Galvannealed hot-rolled steel sheet and method for manufacturing same
JP5825082B2 (en) High yield ratio high strength cold-rolled steel sheet with excellent elongation and stretch flangeability and its manufacturing method
EP3757242B1 (en) High-strength steel sheet and manufacturing method therefor
JP5532088B2 (en) High-strength hot-dip galvanized steel sheet excellent in deep drawability and manufacturing method thereof
JP5278505B2 (en) Cold-rolled steel sheet for coating and plated steel sheet for coating
JP5194930B2 (en) High yield ratio high strength cold-rolled steel sheet
JP2019044269A (en) High intensity cold rolled thin steel sheet
JP5348071B2 (en) High strength hot rolled steel sheet and method for producing the same
JP2013049901A (en) Hot-rolled steel sheet for cold-rolled steel sheet and hot-rolled steel sheet for hot-dipped galvanized steel sheet superior in processability and material stability, and method for producing the same
JP2004250749A (en) High strength thin steel sheet having burring property, and production method therefor
JP5853884B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP5354147B2 (en) High yield ratio high strength cold-rolled steel sheet with excellent stretch flangeability
JP4736853B2 (en) Precipitation strengthened high strength steel sheet and method for producing the same
JP2009013488A (en) High strength cold-rolled steel and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110222

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5194930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees