JP5189934B2 - Dissolved oxygen sensor - Google Patents

Dissolved oxygen sensor Download PDF

Info

Publication number
JP5189934B2
JP5189934B2 JP2008225333A JP2008225333A JP5189934B2 JP 5189934 B2 JP5189934 B2 JP 5189934B2 JP 2008225333 A JP2008225333 A JP 2008225333A JP 2008225333 A JP2008225333 A JP 2008225333A JP 5189934 B2 JP5189934 B2 JP 5189934B2
Authority
JP
Japan
Prior art keywords
dissolved oxygen
sensor
internal liquid
electrode
counter electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008225333A
Other languages
Japanese (ja)
Other versions
JP2010060391A (en
Inventor
恵和 岩本
佑一朗 小松
克昭 小椋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2008225333A priority Critical patent/JP5189934B2/en
Publication of JP2010060391A publication Critical patent/JP2010060391A/en
Application granted granted Critical
Publication of JP5189934B2 publication Critical patent/JP5189934B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は、内部液のpH変化を抑制し、試料溶液中の溶存酸素濃度を高い精度で測定することができる溶存酸素センサに関するものである。   The present invention relates to a dissolved oxygen sensor that can suppress a change in pH of an internal solution and can measure a dissolved oxygen concentration in a sample solution with high accuracy.

一般に清浄な河川の溶存酸素濃度は、ほぼ飽和値に達しているが、水中に過剰な有機物が排出されると、好気性微生物が有機物を酸化分解するのに伴い、水中の酸素が多量に消費され、溶存酸素濃度が低下する。そして、溶存酸素濃度が低下すると、好気性微生物による有機物の酸化分解が抑制されて水域の浄化作用が低下して水質汚濁が引き起こる。このため、一般的に水質の悪化した湖沼・河川等の溶存酸素濃度は低い。したがって、溶存酸素濃度は水質を評価する重要な指標とされている。このような溶存酸素濃度を測定するためには、ポーラログラフ方式の溶存酸素センサが、広く使用されている。   In general, the dissolved oxygen concentration in clean rivers has almost reached saturation, but when excess organic matter is discharged into water, a large amount of oxygen in the water is consumed as aerobic microorganisms oxidize and decompose organic matter. As a result, the dissolved oxygen concentration decreases. And when dissolved oxygen concentration falls, the oxidative decomposition | disassembly of the organic substance by an aerobic microorganism will be suppressed, the purification effect of a water area will fall, and water pollution will be caused. For this reason, the dissolved oxygen concentration is generally low in lakes and rivers where water quality has deteriorated. Therefore, dissolved oxygen concentration is regarded as an important index for evaluating water quality. In order to measure such a dissolved oxygen concentration, a polarographic type dissolved oxygen sensor is widely used.

ポーラログラフ方式の溶存酸素センサは、一般的に、酸素透過膜によって外部と隔てられた室内に充填された内部液と、当該内部液に浸漬した作用極及び対極等とから構成されるが、内部液としてKCl溶液を使用し、対極として銀又は銀/塩化銀からなるものを使用し、作用極−対極間に電圧を印加すると、それぞれの電極では以下のような反応が起こる。   A polarographic-type dissolved oxygen sensor is generally composed of an internal liquid filled in a chamber separated from the outside by an oxygen permeable membrane, and a working electrode and a counter electrode immersed in the internal liquid. When a KCl solution is used as the counter electrode, silver or silver / silver chloride is used as the counter electrode, and a voltage is applied between the working electrode and the counter electrode, the following reactions occur at each electrode.

作用極(カソード):O+2HO+4e→4OH
対極(アノード):4Ag+4Cl→4AgCl+4e
Working electrode (cathode): O 2 + 2H 2 O + 4e → 4OH
Counter electrode (anode): 4Ag + 4Cl → 4AgCl + 4e

そして、溶存酸素濃度に比例したポーラログラフ的限界電流が外部回路に流れ、この電流値から溶存酸素濃度を測定することができる。当該電流値Ilimは下記式で表される。
lim=−n×F×A×Do×Co×(1/√πDot+1/r)
ここで、式中の各項は以下のとおりである。
n:電極反応の電子数
F:ファラデー定数
A:電極面積
Do:拡散係数
Co:バルクでの酸化体濃度
πDot:拡散層の厚さ
r:電極半径
A polarographic limit current proportional to the dissolved oxygen concentration flows to the external circuit, and the dissolved oxygen concentration can be measured from this current value. The current value I lim is expressed by the following equation.
I lim = −n × F × A × Do × Co × (1 / √πDot + 1 / r)
Here, each term in the formula is as follows.
n: number of electrons in electrode reaction F: Faraday constant A: electrode area Do: diffusion coefficient Co: oxidant concentration in bulk π Dot: diffusion layer thickness r: electrode radius

このように、電流値は拡散層の厚さに依存して変化するので、拡散層の厚さや電極面積を一定に保つことは精度の高い測定を行うために重要である。なお、当該拡散層は、一般的に、酸素透過膜と作用極との間隙と、酸素透過膜と、から構成される。   As described above, since the current value changes depending on the thickness of the diffusion layer, keeping the thickness of the diffusion layer and the electrode area constant is important for performing highly accurate measurement. The diffusion layer is generally composed of a gap between the oxygen permeable membrane and the working electrode, and an oxygen permeable membrane.

ポーラログラフ方式の溶存酸素センサを用いた測定では、基準電極の電位に対する印加電圧が多少変動しても試料溶液の溶存酸素濃度に依存した電流値が得られる所謂プラトー領域が存在し、このプラトー領域内において溶存酸素濃度の測定が行われる。   In the measurement using a polarographic type dissolved oxygen sensor, there is a so-called plateau region in which a current value depending on the dissolved oxygen concentration of the sample solution can be obtained even if the applied voltage with respect to the potential of the reference electrode varies somewhat. The dissolved oxygen concentration is measured at.

しかし、対極での反応が進むと内部液のClの濃度が低下して内部液の抵抗が上昇し、これに伴い基準電極の電位が変化しプラトー領域も変動して、プラトー領域内において溶存酸素濃度を測定することができなくなるので、プラトー領域の変動を抑制するために、内部液の抵抗を下げる目的で、内部液にはKClが添加されている。 However, as the reaction at the counter electrode proceeds, the concentration of Cl in the internal liquid decreases and the resistance of the internal liquid increases, and the potential of the reference electrode changes accordingly, the plateau region also fluctuates and dissolves in the plateau region. Since the oxygen concentration cannot be measured, KCl is added to the internal liquid for the purpose of reducing the resistance of the internal liquid in order to suppress fluctuations in the plateau region.

しかし、内部液として高濃度のKCl溶液を使用し、対極として銀又は銀/塩化銀からなるものを使用したポーラログラフ方式の溶存酸素センサでは、KClが電離して生じたClが対極で生じたAgClと反応し、AgCl 等の錯体を形成して対極から溶出し、内部液中に溶解し、作用極に銀が付着するという問題があり、そして、作用極に銀が付着すると、酸素透過膜と作用極の間の距離が変動し、この結果、拡散層の厚さが変化して、測定精度が低下するという問題がある。また、銀の付着により作用極の表面積が変動することによっても、測定誤差が生じる。このため、内部液のKCl濃度を高くすることはできない。 However, in a polarographic-type dissolved oxygen sensor using a high-concentration KCl solution as an internal solution and using a silver or silver / silver chloride as a counter electrode, Cl generated by ionization of KCl was generated at the counter electrode. There is a problem that it reacts with AgCl, forms a complex such as AgCl 2 and is eluted from the counter electrode, dissolves in the internal solution, and silver adheres to the working electrode. There is a problem in that the distance between the permeable membrane and the working electrode varies, and as a result, the thickness of the diffusion layer changes and the measurement accuracy decreases. In addition, a measurement error is caused by a change in the surface area of the working electrode due to the adhesion of silver. For this reason, the KCl concentration of the internal liquid cannot be increased.

これに対して、特許文献1には、その水溶液が優れたイオン導電体である硫酸塩をCl濃度が低い内部液に添加して、Cl濃度が高い内部液と同等なイオン導電性を有する電解液を調製することにより、作用極と対極との反応に必要な電流を維持し、かつ、対極での酸化反応には充分なCl濃度を保ちつつも、内部液のCl濃度を下げて対極からの塩化銀の溶出を抑制する方法が開示されている。 In contrast, Patent Document 1, the sulfate is an ion conductor which the aqueous solution is excellent Cl - concentration was added to the low internal fluid, Cl - concentration is high internal fluid equivalent ionic conductivity by preparing an electrolytic solution having, to maintain the current required for the reaction between the working electrode and the counter electrode, and sufficient Cl to oxidation reaction at the counter electrode - also while maintaining the concentration, Cl internal solution - the concentration A method of lowering and suppressing elution of silver chloride from the counter electrode is disclosed.

しかしながら、内部液に硫酸ナトリウム等の硫酸塩を添加したとしても、作用極で発生するOHによって内部液がアルカリ性になり、水酸化銀(酸化銀)が発生すると酸素透過膜と作用極との間に入り込み、拡散層の厚さが変化するという問題が生じる。 However, even if a sulfate such as sodium sulfate is added to the internal liquid, the OH generated at the working electrode makes the internal liquid alkaline, and when silver hydroxide (silver oxide) is generated, the oxygen permeable membrane and the working electrode There arises a problem that the thickness of the diffusion layer changes due to penetration.

また、内部液がアルカリ性になると、内部液交換時の安全性が確保できず、交換した廃棄内部液を中和処理する必要も生じるという問題も生じる。   Further, when the internal liquid becomes alkaline, there is a problem that safety at the time of exchanging the internal liquid cannot be ensured, and it is necessary to neutralize the replaced discarded internal liquid.

更に、上記のとおり、ポーラログラフ方式の溶存酸素センサを用いた測定では、基準電極の電位に対する印加電圧が多少変動しても試料溶液の溶存酸素濃度に依存した電流値が得られる所謂プラトー領域が存在し、このプラトー領域内において溶存酸素濃度の測定が行われるが、この際、基準電極においては以下の反応が起こる。
AgCl+e−⇔Ag+Cl−
Furthermore, as described above, in the measurement using a polarographic type dissolved oxygen sensor, there is a so-called plateau region in which a current value depending on the dissolved oxygen concentration of the sample solution can be obtained even if the applied voltage with respect to the potential of the reference electrode varies slightly. In this plateau region, the dissolved oxygen concentration is measured. At this time, the following reaction occurs at the reference electrode.
AgCl + e−⇔Ag + Cl−

そして、基準電極の電位は下記のネルンストの式より求められる。
E=E+(RT/F)(lnaCl−
ここで式中の各項は以下のとおりである。
E:基準電極電位
R:気体定数
T:温度
a:活量
F:ファラデー定数
このように基準電極の電位はClの濃度に依存する。
The potential of the reference electrode is obtained from the following Nernst equation.
E = E 0 + (RT / F) (lna Cl− )
Here, each term in the formula is as follows.
E: Reference electrode potential R: Gas constant T: Temperature a: Activity F: Faraday constant Thus, the potential of the reference electrode depends on the concentration of Cl .

一方、作用極では上記のとおり、OHが発生し、これに伴い内部液のOHの濃度が増加し、かつ、対極での反応に伴いClの濃度が低下すると、対極では、以下に示すような競争反応が起こる。
4Ag+4Cl→4AgCl+4e
4Ag+4OH→4AgOH+4e
On the other hand, as described above, OH is generated at the working electrode, and as a result, the concentration of OH − in the internal liquid increases, and when the concentration of Cl decreases along with the reaction at the counter electrode, A competitive reaction occurs as shown.
4Ag + 4Cl → 4AgCl + 4e
4Ag + 4OH → 4AgOH + 4e

しかし、上記のような競争反応が起こるとニコルスキーの式から明らかになるように基準電極の電位が変化して、プラトー領域も変動するので、プラトー領域内での測定を行うことができなくなる。
米国特許5632882号公報
However, when a competitive reaction as described above occurs, the potential of the reference electrode changes and the plateau region also fluctuates as is apparent from the Nicholsky equation, so that measurement within the plateau region cannot be performed.
US Pat. No. 5,632,882

そこで本発明は、内部液のpH変化を抑制し、試料溶液中の溶存酸素濃度を高い精度で測定することができる溶存酸素センサを提供すべく図ったものである。   Therefore, the present invention aims to provide a dissolved oxygen sensor capable of suppressing the pH change of the internal solution and measuring the dissolved oxygen concentration in the sample solution with high accuracy.

すなわち本発明に係る溶存酸素センサは、酸素透過膜と、前記酸素透過膜によって外部と隔てられた室内に、Clを含有する内部液と、前記内部液に浸漬した作用極及び対極と、を備え、前記対極は、銀を含有しており、前記内部液は、25℃におけるpKaが4.5≦pKa≦9.5である緩衝剤を添加してなることを特徴とする。ここで、緩衝剤とは、所定のpH領域を緩衝する試薬をいい、一般に制御可能なpH領域は緩衝剤のpKa±1程度の範囲となる。 That is, the dissolved oxygen sensor according to the present invention comprises an oxygen permeable membrane, an internal liquid containing Cl in a chamber separated from the outside by the oxygen permeable film, and a working electrode and a counter electrode immersed in the internal liquid. The counter electrode contains silver, and the internal solution is characterized by adding a buffer having a pKa at 25 ° C. of 4.5 ≦ pKa ≦ 9.5. Here, the buffering agent refers to a reagent that buffers a predetermined pH region, and the generally controllable pH region is in the range of about pKa ± 1 of the buffering agent.

このようなものであれば、25℃におけるpKaが4.5≦pKa≦9.5である緩衝剤は、中性付近のpH領域において緩衝作用を発現するので、内部液がアルカリ性になり水酸化銀が作用極に付着して拡散層の厚さが変化する事態が抑制され、拡散層の厚さが一定に保たれて精度の高い溶存酸素濃度の測定が可能となる。また、内部液を中性に保つことにより、対極における競争反応が抑制されるので、プラトー領域が一定に保たれ、プラトー領域内での測定を確保することができる。更に、前記緩衝剤は内部液中で電離してイオン導電体としても機能するので、対極からの銀の溶出を抑制するために内部液のCl濃度を下げても、内部液の抵抗を低く保つのに充分なイオン導電性を確保することができ、この点からも、プラトー領域が一定に保たれ、プラトー領域での測定を確保することができる。 In such a case, a buffer having a pKa at 25 ° C. of 4.5 ≦ pKa ≦ 9.5 exhibits a buffering action in a pH range near neutrality, so that the internal solution becomes alkaline and hydroxylated. The situation in which the thickness of the diffusion layer changes due to the adhesion of silver to the working electrode is suppressed, and the thickness of the diffusion layer is kept constant and the dissolved oxygen concentration can be measured with high accuracy. Moreover, since the competitive reaction at the counter electrode is suppressed by keeping the internal liquid neutral, the plateau region can be kept constant, and measurement within the plateau region can be ensured. Further, since the buffer agent is ionized in the internal liquid and functions as an ionic conductor, the resistance of the internal liquid is reduced even if the Cl concentration of the internal liquid is lowered in order to suppress elution of silver from the counter electrode. Sufficient ionic conductivity to be maintained can be ensured, and also from this point, the plateau region is kept constant, and measurement in the plateau region can be ensured.

また、本発明によれば、内部液が中性に保たれるので、内部液交換時の安全性が確保でき、また、交換した廃棄内部液を中和処理する必要も生じない。   Further, according to the present invention, since the internal liquid is kept neutral, safety at the time of replacement of the internal liquid can be secured, and there is no need to neutralize the replaced waste internal liquid.

更に、内部液のCl濃度を下げることにより、対極から銀が溶出して内部液中に溶解し、作用極に銀が付着することを防ぐことができるので、作用極の表面積及び拡散層の厚さを一定に保つことができ、この点からも、精度の高い溶存酸素濃度の測定が可能となる。 Furthermore, by reducing the Cl concentration of the internal liquid, it is possible to prevent silver from eluting from the counter electrode and dissolved in the internal liquid and adhere to the working electrode, so that the surface area of the working electrode and the diffusion layer The thickness can be kept constant, and from this point, the dissolved oxygen concentration can be measured with high accuracy.

前記緩衝剤としては、例えば、MHPOとMHPO(Mは1族の元素である。それぞれのMは同一であってもよく、また異なっていてもよい。)が好適に用いられる。MHPOは水中で解離し下記式に示すような平衡状態をとる。
MHPO→HPO +M
PO ⇔HPO 2−+H
HPO 2−⇔PO 3−+H
As the buffer, for example, MH 2 PO 4 and M 2 HPO 4 (M is a group 1 element. Each M may be the same or different) are preferably used. It is done. MH 2 PO 4 dissociates in water and takes an equilibrium state as shown in the following formula.
MH 2 PO 4 → H 2 PO 4 + M +
H 2 PO 4 - ⇔HPO 4 2- + H +
HPO 4 2− ⇔PO 4 3− + H +

一方、MHPOは水中では下記式に示すように完全に電離し平衡状態をとる。
MHPO→HPO 2−+2M
HPO 2−⇔PO 3−+H
On the other hand, M 2 HPO 4 is completely ionized in water and takes an equilibrium state as shown in the following formula.
M 2 HPO 4 → HPO 4 2− + 2M +
HPO 4 2− ⇔PO 4 3− + H +

このため、内部液中にHPO 、HPO 2−、PO 3−等のイオン種が発生し、内部液の抵抗が低く抑えられる。また、2価の陰イオンであるHPO 2−はイオン強度が高いので、優れた緩衝作用を発揮する。 For this reason, ionic species such as H 2 PO 4 , HPO 4 2− , and PO 4 3− are generated in the internal liquid, and the resistance of the internal liquid is kept low. Moreover, since HPO 4 2- which is a divalent anion has high ionic strength, it exhibits an excellent buffering action.

なお、Mとしては1族の元素であれば特に限定されないが、例えば、NaやK等が挙げられる。また、MHPOとMHPOのMは、同一であってもよいが、異なっていてもよい。 M is not particularly limited as long as it is a Group 1 element, and examples thereof include Na and K. In addition, M of MH 2 PO 4 and M 2 HPO 4 may be the same or different.

本発明に係る溶存酸素センサは、より精度及び感度の高い測定を要求される場合は、参照極を備えていることが好ましい。対電極、作用極及び参照極の三電極を用いて測定を行うほうが、作用極と対極との間に印加する電圧の絶対値を制御することができるので、より精度及び感度の高い測定を行うことが可能である。   The dissolved oxygen sensor according to the present invention preferably includes a reference electrode when measurement with higher accuracy and sensitivity is required. Measuring with three electrodes, counter electrode, working electrode, and reference electrode, can control the absolute value of the voltage applied between the working electrode and the counter electrode, so that more accurate and sensitive measurement is performed. It is possible.

水質に関する様々な指標について多面的に測定する場合は、本発明に係る溶存酸素センサに加えて、他の種類のセンサも備わった複合タイプの水質分析装置を使用することが好ましい。このような水質分析装置もまた、本発明の1つである。   When measuring various indicators regarding water quality in a multifaceted manner, it is preferable to use a composite type water quality analyzer equipped with other types of sensors in addition to the dissolved oxygen sensor according to the present invention. Such a water quality analyzer is also one aspect of the present invention.

このように本発明によれば、拡散層の厚さを一定に保ち、作用極表面積の変動を防ぎ、かつ、プラトー領域内での測定を確保して、試料溶液中の溶存酸素濃度を高い精度で測定することができる。   As described above, according to the present invention, the thickness of the diffusion layer is kept constant, the fluctuation of the working electrode surface area is prevented, and the measurement within the plateau region is ensured, so that the dissolved oxygen concentration in the sample solution is highly accurate. Can be measured.

以下に、本発明の一実施形態について、図面を参照して説明する。   An embodiment of the present invention will be described below with reference to the drawings.

本実施形態に係る水質分析装置1は、pH、導電率(Conductivity)、溶存酸素(Dissolved Oxygen)濃度、濁度(Turbidity)及び水温等の測定項目を同時に連続測定するものであり、図1に示すように、水質測定用の複数の測定センサを備えた浸漬型のセンサ部2と、当該センサ部2に防水タイプの電気ケーブルCAを介して電気的に接続された計器本体3と、を備えている。そして、例えば海水の水質分析を行う場合には、電気ケーブルCAの部分を持ち、センサ部2を海水中に垂下し、海水中にセンサ部2を浸漬した状態で測定を行う。   The water quality analyzer 1 according to the present embodiment continuously measures measurement items such as pH, conductivity, dissolved oxygen concentration, turbidity, water temperature, etc., as shown in FIG. As shown in the figure, an immersion type sensor unit 2 having a plurality of measurement sensors for measuring water quality, and an instrument body 3 electrically connected to the sensor unit 2 via a waterproof electric cable CA are provided. ing. For example, when water quality analysis of seawater is performed, the measurement is performed with the electric cable CA, the sensor unit 2 suspended in the seawater, and the sensor unit 2 immersed in the seawater.

センサ部2は、複数種類の測定センサ4を有する浸漬型のセンサ部本体21と、当該センサ部本体21に取り付けられて、測定センサ4を外部から保護するセンサ保護部22と、を備えている。   The sensor unit 2 includes an immersion type sensor unit main body 21 having a plurality of types of measurement sensors 4 and a sensor protection unit 22 attached to the sensor unit main body 21 to protect the measurement sensor 4 from the outside. .

センサ部本体21は、図2に示すように、電源、メモリ機能部を有する演算部、演算された水質の測定データ等を時系列的に記録するデータロガーを内蔵する耐圧構造の水密ケース211と、その水密ケース211の下端部211Aに取り付けられた、例えばpH測定用のガラスpH電極及び比較電極で構成されるpHセンサ、導電率センサ、濁度センサ、溶存酸素センサ(以下DOセンサという。)41、温度センサ等の複数試料の測定センサ4と、を備えているものである。なお、ガラスpH電極、比較電極及びDOセンサ41は、一般に使用に連れて劣化又は不測の破損を伴うことを考慮して、カートリッジ式になっており、交換が容易である。DOセンサ41については、追って詳述する。   As shown in FIG. 2, the sensor unit main body 21 includes a power unit, a calculation unit having a memory function unit, a watertight case 211 having a pressure-resistant structure including a data logger for recording time-series measurement data of the calculated water quality, and the like. A pH sensor, a conductivity sensor, a turbidity sensor, a dissolved oxygen sensor (hereinafter referred to as a DO sensor) composed of, for example, a glass pH electrode for pH measurement and a comparative electrode attached to the lower end portion 211A of the watertight case 211. 41, and a plurality of sample measurement sensors 4 such as temperature sensors. The glass pH electrode, the comparison electrode, and the DO sensor 41 are of a cartridge type considering that they are generally deteriorated or unexpectedly damaged with use, and can be easily replaced. The DO sensor 41 will be described in detail later.

センサ保護部22は、センサ部本体21に取り付けられて、外部の測定対象である液体(例えば、海水)等をセンサ部2内部に導きながらも、測定センサ4を外部から保護するものである。   The sensor protection unit 22 is attached to the sensor unit main body 21 and protects the measurement sensor 4 from the outside while guiding a liquid (for example, seawater) that is an external measurement target to the inside of the sensor unit 2.

計器本体3は、前記センサ部2からの測定データ等を表示する表示部、電源キー、機能キー、測定の開始・終了キー、校正キー、セレクトキー、アップダウンキー等を備えている。そして、前記電気ケーブルCAを操ってセンサ部2を水没させると、各測定センサ4からの出力に基づく測定データが前記メモリ機能部に記録され、且つ、その測定値が表示部に表示される。   The meter body 3 includes a display unit for displaying measurement data from the sensor unit 2, a power key, a function key, a measurement start / end key, a calibration key, a select key, an up / down key, and the like. When the sensor unit 2 is submerged by operating the electric cable CA, measurement data based on the output from each measurement sensor 4 is recorded in the memory function unit, and the measurement value is displayed on the display unit.

DOセンサ41は、図3に示すように、中空の筐体42と、筐体の上端開口部に設けられた酸素透過膜43と、酸素透過膜43によって筐体42内に形成された室内に充填された内部液44と、内部液44に浸漬した作用極45、対極46及び参照極47と、を備えているものであり、三電極方式により溶存酸素濃度を測定するものである。作用極45、対極46及び参照極47にはそれぞれリード線Lが接続されており、これらリード線は電圧印加装置(直流電源)PS及び電流計AMに接続されている。   As shown in FIG. 3, the DO sensor 41 includes a hollow casing 42, an oxygen permeable film 43 provided at the upper end opening of the casing, and a room formed in the casing 42 by the oxygen permeable film 43. A filled internal liquid 44, a working electrode 45 immersed in the internal liquid 44, a counter electrode 46, and a reference electrode 47 are provided, and the dissolved oxygen concentration is measured by a three-electrode system. Lead wires L are connected to the working electrode 45, the counter electrode 46, and the reference electrode 47, respectively, and these lead wires are connected to a voltage application device (DC power supply) PS and an ammeter AM.

筐体42は、先端部開口に酸素透過膜43を張り設けた円筒状をなす筐体本体421と、この筐体本体421の基端部開口に螺合して該開口を液密に閉塞するベース部材422とから構成してある。   The casing 42 is screwed into a base end opening of the casing main body 421 having a cylindrical shape in which an oxygen permeable film 43 is stretched at a front end opening, and the opening is liquid-tightly closed. And a base member 422.

ベース部材422は、ポリフェニレンサルファイド(PPS)等の絶縁性に優れた樹脂からなるものであり、作用極45、対極46及び参照極47と一体的に形成されている。   The base member 422 is made of a resin having excellent insulating properties such as polyphenylene sulfide (PPS), and is formed integrally with the working electrode 45, the counter electrode 46, and the reference electrode 47.

このベース部材422は、筐体本体421の内部に延びる円柱状部材422aと、この円柱状部材422aの基端部外周に設けた円柱状部材422bとからなり、円柱状部材422bの外周面に設けられたねじ溝が、筐体本体421の基端部開口に螺合し、シール部材Oを押圧するように構成してある。円柱状部材422aの中央には、円柱状の作用極45が中心軸線を合致させて貫通しており、またこの円柱状部材422aの外側には、円筒状の対極46が嵌め込んである。更に、円柱状部材422bの周縁部には、参照極47が貫通している。   The base member 422 includes a columnar member 422a extending inside the housing body 421 and a columnar member 422b provided on the outer periphery of the base end portion of the columnar member 422a. The base member 422 is provided on the outer peripheral surface of the columnar member 422b. The formed screw groove is configured to be screwed into the base end opening of the housing body 421 and press the seal member O. A columnar working electrode 45 passes through the center of the columnar member 422a so as to match the central axis, and a cylindrical counter electrode 46 is fitted outside the columnar member 422a. Further, the reference electrode 47 passes through the peripheral edge of the cylindrical member 422b.

これら三電極45、46、47のうち、作用極45は、金、白金、銀等からなるものであり、酸素透過膜43に対向して設けられている。対極46は、銀、銀/塩化銀等からなるものであり、参照極47は、銀/塩化銀からなるものである。これら三電極の組み合わせとしては、例えば、金からなる作用極45と、銀からなる対極46と、銀/塩化銀からなる参照極47と、の組み合わせが挙げられる。   Of these three electrodes 45, 46, 47, the working electrode 45 is made of gold, platinum, silver, or the like, and is provided to face the oxygen permeable film 43. The counter electrode 46 is made of silver, silver / silver chloride or the like, and the reference electrode 47 is made of silver / silver chloride. Examples of the combination of these three electrodes include a combination of a working electrode 45 made of gold, a counter electrode 46 made of silver, and a reference electrode 47 made of silver / silver chloride.

ところで、三電極45、46、47は、シール部材や接着剤等を介在させることなく、ベース部材422に液密に貫通している。そのため、予め型枠に三電極45、46、47を配置して、その隙間に樹脂を射出し、ベース部材422を形成するというインジェクション成形法によって、ベース部材422及び三電極45、46、47が一体的に形成されている。   By the way, the three electrodes 45, 46 and 47 penetrate the base member 422 in a liquid-tight manner without interposing a seal member or an adhesive. Therefore, the base member 422 and the three electrodes 45, 46, 47 are formed by an injection molding method in which the three electrodes 45, 46, 47 are arranged in the mold in advance and the resin is injected into the gap to form the base member 422. It is integrally formed.

また、円柱状部材422a及び作用極45の先端面451を部分球状に形成するとともに、筐体本体421をベース部材422に螺着したときに、酸素透過膜43が先端面451に対してある程度のテンションで、張り付くように構成している。この構成によって、内部液44が酸素透過膜43と先端面451との間に毛細管現象等で浸入し、酸素透過膜43の内面と先端面451との隙間が約10μm又はそれ以下の一定値に保たれる作用が生じる。なお、先端面451の周縁部にはR加工を施してエッジが形成されないようにし、酸素透過膜43との間で毛細管現象が円滑に起こるようにしている。   In addition, the cylindrical member 422a and the tip surface 451 of the working electrode 45 are formed in a partial spherical shape, and when the housing body 421 is screwed to the base member 422, the oxygen permeable membrane 43 has a certain degree of contact with the tip surface 451. It is configured to stick with tension. With this configuration, the internal liquid 44 penetrates between the oxygen permeable membrane 43 and the tip surface 451 by capillary action or the like, and the gap between the inner surface of the oxygen permeable membrane 43 and the tip surface 451 becomes a constant value of about 10 μm or less. The effect is maintained. The peripheral edge of the tip surface 451 is subjected to R processing so that no edge is formed, so that a capillary phenomenon occurs smoothly with the oxygen permeable film 43.

なお、酸素透過膜43は、酸素を透過して液体を透過しない膜であって、例えば、ポリエチレン膜や、四フッ化エチレン−六フッ化プロピレン共重合体(FEP)等のフッ素樹脂膜からなるものであり、膜厚は25〜50μm程度である。   The oxygen permeable film 43 is a film that transmits oxygen but does not transmit liquid. For example, the oxygen permeable film 43 includes a polyethylene film or a fluororesin film such as a tetrafluoroethylene-hexafluoropropylene copolymer (FEP). The film thickness is about 25 to 50 μm.

内部液44は、Clを含有し、かつ、25℃におけるpKaが4.5≦pKa≦9.5である緩衝剤が添加されているものであり、酸素透過膜43によって筐体42内に形成された室内に充填されている。 The internal liquid 44 contains Cl and is added with a buffer having a pKa at 25 ° C. of 4.5 ≦ pKa ≦ 9.5. The formed chamber is filled.

前記Clとしては、例えば、KClやNaCl等の塩化物塩に由来するものが挙げられるが、このようなClを含有する内部液としては、例えば、KCl溶液が好適に用いられる。本実施形態においては、対極46から塩化銀が溶出して作用極45に銀が付着することを抑制するために内部液のCl濃度は低いことが好ましい。このため、内部液におけるKCl等の塩化物塩の濃度は、0.1〜1Mであることが好ましい。0.1M未満であると、内部液44の抵抗を低く保つのに充分なイオン導電性を確保することが困難になる。一方、1Mを越えると、対極46から塩化銀が溶出して作用極45に銀が付着し、作用極45の表面積が増加するとともに拡散層の厚さも変動し、精度の高い溶存酸素濃度の測定が困難になる。 Examples of the Cl include those derived from chloride salts such as KCl and NaCl. As such an internal solution containing Cl , for example, a KCl solution is preferably used. In the present embodiment, it is preferable that the Cl concentration of the internal solution is low in order to prevent silver chloride from eluting from the counter electrode 46 and adhering to the working electrode 45. For this reason, it is preferable that the density | concentration of chloride salts, such as KCl, in an internal liquid is 0.1-1M. If it is less than 0.1M, it will be difficult to ensure sufficient ionic conductivity to keep the resistance of the internal liquid 44 low. On the other hand, when it exceeds 1M, silver chloride elutes from the counter electrode 46 and adheres to the working electrode 45, the surface area of the working electrode 45 increases, and the thickness of the diffusion layer also fluctuates. Becomes difficult.

前記25℃におけるpKaが4.5≦pKa≦9.5である緩衝剤としては、例えば、クエン酸(pKa2=4.76、pKa3=6.40)、リン酸(pKa2=7.20)、トリス(ヒドロキシメチル)アミノメタン(トリス)(トリスの共役酸のpKa=8.06)、ホウ酸(pKa=9.23)等が挙げられる。なお、これらの緩衝剤は複数種類のものが併用されてもよい。   Examples of the buffer having a pKa at 25 ° C. of 4.5 ≦ pKa ≦ 9.5 include, for example, citric acid (pKa2 = 4.76, pKa3 = 6.40), phosphoric acid (pKa2 = 7.20), Tris (hydroxymethyl) aminomethane (Tris) (tris conjugate acid pKa = 8.06), boric acid (pKa = 9.23) and the like. Note that a plurality of types of these buffering agents may be used in combination.

これら各種緩衝剤のなかでも、MHPOとMHPO(Mは1族の元素を表す。それぞれのMは同一であってもよく、また異なっていてもよい。)が好適に用いられる。MHPOとMHPOは、内部液中において、電離してイオン強度が高い2価の陰イオンであるHPO 2−を生じるので、優れた緩衝作用を示し、内部液のpHを安定的に中性付近に保つことができる。また、MHPOとMHPOは、内部液中において電離してHPO 、HPO 2−、PO 3−等のイオン種を生じイオン導電体としても機能するので、内部液中のCl濃度が低い場合であっても、内部液の抵抗を低く抑えて、プラトー領域を一定に保ち、プラトー領域での測定を確保することができる。 Among these various buffering agents, MH 2 PO 4 and M 2 HPO 4 (M represents a group 1 element. Each M may be the same or different) are preferably used. It is done. MH 2 PO 4 and M 2 HPO 4 are ionized in the internal solution to produce a divalent anion having a high ionic strength, HPO 4 2− , thus exhibiting excellent buffering action, and controlling the pH of the internal solution. It can be stably kept near neutrality. Moreover, since MH 2 PO 4 and M 2 HPO 4 are ionized in the internal liquid to generate ionic species such as H 2 PO 4 , HPO 4 2− , PO 4 3− , and also function as an ionic conductor, Even when the Cl concentration in the internal liquid is low, the resistance of the internal liquid can be kept low, the plateau region can be kept constant, and the measurement in the plateau region can be ensured.

また、緩衝剤としてMHPOとMHPOとを使用することにより、温度変化に対するpH変化を低く抑えることができ、かつ、MHPOとMHPOとは溶解度が高いので、緩衝能を高くすることができる。 Further, by using MH 2 PO 4 and M 2 HPO 4 as buffers, it is possible to suppress a pH change with respect to a temperature change, and MH 2 PO 4 and M 2 HPO 4 have high solubility. , The buffer capacity can be increased.

内部液44における、MHPOとMHPOの濃度(合計)は、0.1〜1M程度が好ましい。0.1M未満であると、緩衝作用が充分でなく、また、Cl濃度が低い内部液44の抵抗を低く保つのに充分なイオン導電性を付与することができない。一方、1Mを越えると、低温時に析出し、析出物により拡散層の厚さが変化することがある。 The concentration (total) of MH 2 PO 4 and M 2 HPO 4 in the internal liquid 44 is preferably about 0.1 to 1M. If it is less than 0.1 M, the buffering action is not sufficient, and sufficient ionic conductivity cannot be imparted to keep the resistance of the internal solution 44 having a low Cl concentration low. On the other hand, when it exceeds 1M, it precipitates at a low temperature, and the thickness of the diffusion layer may change due to the precipitate.

内部液44がKCl溶液である場合、MHPOとMHPOとしては特に限定されないが、例えば、NaHPO及びKHPOと、NaHPO及びKHPOとを、適宜組み合わせて用いることができる。 When the internal solution 44 is a KCl solution, MH 2 PO 4 and M 2 HPO 4 are not particularly limited. For example, NaH 2 PO 4 and KH 2 PO 4 , Na 2 HPO 4 and K 2 HPO 4 Can be used in appropriate combinations.

DOセンサ41を用いて試料溶液中の溶存酸素濃度を測定するには、まず、DOセンサ41が試料溶液に浸漬すると、試料溶液に溶存した酸素が酸素透過膜43を透過して、作用極45と酸素透過膜43との間隙に存在する内部液44中に溶解する。そして、作用極45−対極46間に電圧を印加すると、それぞれの電極で以下のような反応が起こる。   In order to measure the dissolved oxygen concentration in the sample solution using the DO sensor 41, first, when the DO sensor 41 is immersed in the sample solution, the oxygen dissolved in the sample solution permeates the oxygen permeable film 43 and the working electrode 45. Dissolved in the internal liquid 44 existing in the gap between the oxygen permeable membrane 43 and the oxygen permeable membrane 43. When a voltage is applied between the working electrode 45 and the counter electrode 46, the following reaction occurs at each electrode.

作用極45(カソード):O+2HO+4e→4OH
対極46(アノード):4Ag+4Cl→4AgCl+4e
Working electrode 45 (cathode): O 2 + 2H 2 O + 4e → 4OH
Counter electrode 46 (anode): 4Ag + 4Cl → 4AgCl + 4e

そして、酸素が作用極45の表面で還元されたときに流れた電流の電流値が、電流計AMで測定され、当該電流値を示す出力信号を受信した演算部が所定の演算処理を行うことにより、試料溶液中の溶存酸素濃度が算出される。   The current value of the current that flows when oxygen is reduced on the surface of the working electrode 45 is measured by the ammeter AM, and the calculation unit that receives the output signal indicating the current value performs a predetermined calculation process. Thus, the dissolved oxygen concentration in the sample solution is calculated.

したがって、このように構成した本実施形態に係る水質分析装置1によれば、DOセンサ41の内部液44に添加されている、25℃におけるpKaが4.5≦pKa≦9.5である緩衝剤は、中性付近のpH領域において緩衝作用を発現するので、内部液44がアルカリ性になり水酸化銀が作用極45に付着して拡散層の厚さが変化する事態が抑制され、拡散層の厚さが一定に保たれて精度の高い溶存酸素濃度の測定が可能となる。また、内部液44を中性に保つことにより、対極46における競争反応が抑制されるので、プラトー領域が一定に保たれ、プラトー領域内での測定を確保することができる。更に、前記緩衝剤は内部液44中で電離してイオン導電体としても機能するので、対極46からの塩化銀の溶出を抑制するために内部液44のCl濃度を下げても、内部液の抵抗を低く保つのに充分なイオン導電性を確保することができ、この点からも、プラトー領域が一定に保たれ、プラトー領域での測定を確保することができる。 Therefore, according to the water quality analyzer 1 according to the present embodiment configured as described above, the buffer added to the internal liquid 44 of the DO sensor 41 has a pKa at 25 ° C. of 4.5 ≦ pKa ≦ 9.5. Since the agent exhibits a buffering action in a pH range near neutrality, the situation in which the internal liquid 44 becomes alkaline and silver hydroxide adheres to the working electrode 45 and the thickness of the diffusion layer changes is suppressed. Therefore, it is possible to measure the dissolved oxygen concentration with high accuracy. Moreover, since the competitive reaction in the counter electrode 46 is suppressed by keeping the internal liquid 44 neutral, the plateau region is kept constant, and measurement within the plateau region can be ensured. Further, since the buffering agent is ionized in the internal liquid 44 and functions as an ionic conductor, even if the Cl concentration of the internal liquid 44 is lowered to suppress elution of silver chloride from the counter electrode 46, the internal liquid The ion conductivity sufficient to keep the resistance low can be ensured. Also from this point, the plateau region is kept constant, and the measurement in the plateau region can be ensured.

また、本実施形態によれば、内部液44が中性に保たれるので、内部液44交換時の安全性が確保でき、また、交換した廃棄内部液44を中和処理する必要も生じない。   Further, according to this embodiment, since the internal liquid 44 is kept neutral, it is possible to ensure safety when replacing the internal liquid 44, and there is no need to neutralize the replaced internal waste liquid 44. .

更に、内部液44のCl濃度を下げることにより、対極46から塩化銀が溶出して内部液44中に溶解し、作用極45に銀が付着することを防ぐことができるので、作用極45の表面積及び拡散層の厚さを一定に保つことができ、この点からも、精度の高い溶存酸素濃度の測定が可能となる。 Further, by lowering the Cl concentration of the internal liquid 44, it is possible to prevent silver chloride from eluting from the counter electrode 46 and dissolved in the internal liquid 44, thereby preventing silver from adhering to the working electrode 45. The surface area and the thickness of the diffusion layer can be kept constant, and from this point, the dissolved oxygen concentration can be measured with high accuracy.

なお、本発明は前記実施形態に限られるものではない。   The present invention is not limited to the above embodiment.

例えば、前記実施形態おけるDOセンサ41は、作用極45、対極46及び参照極47が備わった三電極法による測定を行うものであるが、本発明に係るDOセンサは、作用極45及び対電極のみを備えた二電極法によるものであってもよい。三電極法の方が、作用極45と対極46との間に印加する電圧の絶対値を制御することができるので、精度及び感度の高い測定を行うことが可能であるが、二電極法によれば、用いる電極が作用極45及び対極46の2電極ですむので、DOセンサ41の構造を単純化、小型化することができる。   For example, the DO sensor 41 in the embodiment performs measurement by the three-electrode method including the working electrode 45, the counter electrode 46, and the reference electrode 47, but the DO sensor according to the present invention includes the working electrode 45 and the counter electrode. It may be based on the two-electrode method provided with only. In the three-electrode method, the absolute value of the voltage applied between the working electrode 45 and the counter electrode 46 can be controlled, so that measurement with higher accuracy and sensitivity can be performed. According to this, since the electrodes to be used are two electrodes of the working electrode 45 and the counter electrode 46, the structure of the DO sensor 41 can be simplified and miniaturized.

その他、前述した実施形態や変形実施形態の一部又は全部を適宜組み合わせてもよく、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。   In addition, it is needless to say that some or all of the above-described embodiments and modified embodiments may be appropriately combined, and various modifications can be made without departing from the scope of the invention.

以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれら実施例に何ら限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

以下のような構成を有するDOセンサを複数体用いて、作用極−対極間に650mVの電圧を印加して種々の試験を行った。
内部液(組成):0.8M KCl、0.5M リン酸緩衝液(KHPO,NaHPO)(pH6.5)
酸素透過膜:FEP膜(厚さ25μm)
作用極:金
対極:銀
参照極:銀/塩化銀
ベース部材:PPS
拡散層の厚さ:約10μm
Using a plurality of DO sensors having the following configuration, various tests were performed by applying a voltage of 650 mV between the working electrode and the counter electrode.
Internal solution (composition): 0.8 M KCl, 0.5 M phosphate buffer (KH 2 PO 4 , Na 2 HPO 4 ) (pH 6.5)
Oxygen permeable membrane: FEP membrane (thickness 25 μm)
Working electrode: Gold Counter electrode: Silver Reference electrode: Silver / silver chloride Base member: PPS
Diffusion layer thickness: about 10 μm

比較対象としては、従来のポーラログラフ式DOセンサを使用した。   As a comparison object, a conventional polarographic DO sensor was used.

<直線性>
溶存酸素濃度の異なる複数の試料溶液(それぞれの溶存酸素濃度は0、20、40、60、80、100%)を用いて、各DOセンサを用いて溶存酸素濃度を測定し、測定値(表示部に表示された指示値)との相関性を評価した。結果を図4のグラフに示した。
<Linearity>
Using a plurality of sample solutions having different dissolved oxygen concentrations (each dissolved oxygen concentration is 0, 20, 40, 60, 80, 100%), the dissolved oxygen concentration is measured using each DO sensor, and the measured value (display) And the correlation with the indicated value displayed in the part). The results are shown in the graph of FIG.

図4のグラフより、それぞれのDOセンサに対し得られた測定結果について回帰分析を行うと、本発明品の決定係数R2は0.9992であり、測定精度が高いことが確認された。   From the graph of FIG. 4, when regression analysis was performed on the measurement results obtained for each DO sensor, the determination coefficient R2 of the product of the present invention was 0.9992, and it was confirmed that the measurement accuracy was high.

<再現性>
各DOセンサに対し、飽和溶存酸素水に浸漬してから、亜硫酸ソーダ水に浸漬することを繰り返して、溶存酸素濃度を測定し、結果のバラツキを評価した。結果を図5のグラフに示した。
<Reproducibility>
Each DO sensor was immersed in saturated dissolved oxygen water and then immersed in sodium sulfite water, and the dissolved oxygen concentration was measured to evaluate the variation in results. The results are shown in the graph of FIG.

図5のグラフより、測定を3回繰り返した結果、本発明品の変動係数CVは1.2%であり、測定結果のバラツキが少なく測定精度が高いことが確認された。   From the graph of FIG. 5, as a result of repeating the measurement three times, it was confirmed that the coefficient of variation CV of the product of the present invention was 1.2%, and there was little variation in the measurement result and the measurement accuracy was high.

<応答性>
各DOセンサを、飽和溶存酸素水に浸漬してから、亜硫酸ソーダ水に浸漬し、応答速度を評価した。結果を図6のグラフに示した。
<Response>
Each DO sensor was immersed in saturated dissolved oxygen water and then immersed in sodium sulfite water, and the response speed was evaluated. The results are shown in the graph of FIG.

図6のグラフより、本発明品は、90%応答時間が15秒で、95%応答時間が18秒であるのに対して、従来品は、90%応答時間が16秒で、95%応答時間が20秒であり、本発明品のほうが応答速度が速いことが確認された。   From the graph of FIG. 6, the product of the present invention has a 90% response time of 15 seconds and a 95% response time of 18 seconds, whereas the conventional product has a 90% response time of 16 seconds and a 95% response. The time was 20 seconds, and it was confirmed that the product of the present invention had a faster response speed.

<内部液のpH変化>
各DOセンサを用いて常時測定を30日間続行し、その間の内部液のpH変化を記録した。結果を図7のグラフに示した。
<PH change of internal liquid>
Continuous measurement was continued for 30 days using each DO sensor, and the pH change of the internal liquid during that period was recorded. The results are shown in the graph of FIG.

図7のグラフより、本発明品では、内部液のpHが僅かしか変化せず液性が中性に保たれたのに対して、従来品では、内部液のpHが大きく変化して液性がアルカリ性になった。   From the graph of FIG. 7, in the product of the present invention, the pH of the internal liquid changed only slightly and the liquidity was kept neutral, whereas in the conventional product, the pH of the internal liquid changed greatly and the liquidity Became alkaline.

本発明の一実施形態に係る水質分析装置の斜視図。The perspective view of the water quality analyzer concerning one embodiment of the present invention. 同実施形態におけるセンサ部本体の断面図。Sectional drawing of the sensor part main body in the embodiment. 同実施形態におけるDOセンサの端面図。The end view of the DO sensor in the same embodiment. 本発明に係るDOセンサの測定値の直線性を調べた結果を示すグラフ。The graph which shows the result of having investigated the linearity of the measured value of DO sensor which concerns on this invention. 本発明に係るDOセンサの再現性を調べた結果を示すグラフ。The graph which shows the result of having investigated the reproducibility of DO sensor concerning the present invention. 本発明に係るDOセンサの応答速度を調べた結果を示すグラフ。The graph which shows the result of having investigated the response speed of the DO sensor which concerns on this invention. 本発明に係るDOセンサの内部液のpH変化を調べた結果を示すグラフ。The graph which shows the result of having investigated the pH change of the internal liquid of the DO sensor which concerns on this invention.

符号の説明Explanation of symbols

1・・・水質分析装置
2・・・センサ部
21・・・センサ部本体
22・・・センサ保護部
3・・・計器本体
4・・・測定センサ
41・・・溶存酸素センサ
43・・・酸素透過膜
44・・・内部液
45・・・作用極
46・・・対極
DESCRIPTION OF SYMBOLS 1 ... Water quality analyzer 2 ... Sensor part 21 ... Sensor part main body 22 ... Sensor protection part 3 ... Instrument main body 4 ... Measurement sensor 41 ... Dissolved oxygen sensor 43 ... Oxygen permeable membrane 44 ... inner liquid 45 ... working electrode 46 ... counter electrode

Claims (4)

中空の筐体(ステンレス鋼からなるものを除く)と、前記筐体の一端開口部に設けられた酸素透過膜と、前記酸素透過膜によって外部と隔てられ前記筐体内に形成された室内に、塩化物塩を含有する内部液と、前記内部液に浸漬した作用極及び対極と、を備えた水質分析用溶存酸素センサであって、
前記対極は、銀を含有しており、
前記内部液は、水を溶媒とし、25℃におけるpKaが4.5≦pKa≦9.5である緩衝剤を添加してなり、前記塩化物塩の濃度が0.1〜1Mで、前記緩衝剤の濃度が0.1〜1Mであることを特徴とする水質分析用溶存酸素センサ。
A hollow housing (except for stainless steel), an oxygen permeable membrane provided at one end opening of the housing, and a chamber formed in the housing separated from the outside by the oxygen permeable membrane, an internal solution and the dissolved oxygen sensor for water quality analysis and a working electrode and a counter electrode were immersed in the internal solution containing chloride salts,
The counter electrode contains silver;
The internal liquid contains water as a solvent and a buffer having a pKa at 25 ° C. of 4.5 ≦ pKa ≦ 9.5, and the chloride salt concentration is 0.1 to 1 M, and the buffer A dissolved oxygen sensor for water quality analysis, wherein the concentration of the agent is 0.1 to 1M.
前記内部液は、MHPOとMHPO(Mは1族の元素を表す。それぞれのMは同一であってもよく、また異なっていてもよい。)を添加してなる請求項1記載の水質分析用溶存酸素センサ。 The internal liquid is formed by adding MH 2 PO 4 and M 2 HPO 4 (M represents an element of Group 1; each M may be the same or different). The dissolved oxygen sensor for water quality analysis according to 1. 前記内部液に浸漬した参照極を備えている請求項1又は2記載の水質分析用溶存酸素センサ。 The dissolved oxygen sensor for water quality analysis according to claim 1 or 2, further comprising a reference electrode immersed in the internal liquid. 請求項1、2又は3記載の水質分析用溶存酸素センサと、少なくとも1種の他のセンサと、を備えた水質分析装置。 A water quality analyzer comprising the dissolved oxygen sensor for water quality analysis according to claim 1, and at least one other sensor.
JP2008225333A 2008-09-02 2008-09-02 Dissolved oxygen sensor Active JP5189934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008225333A JP5189934B2 (en) 2008-09-02 2008-09-02 Dissolved oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008225333A JP5189934B2 (en) 2008-09-02 2008-09-02 Dissolved oxygen sensor

Publications (2)

Publication Number Publication Date
JP2010060391A JP2010060391A (en) 2010-03-18
JP5189934B2 true JP5189934B2 (en) 2013-04-24

Family

ID=42187344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008225333A Active JP5189934B2 (en) 2008-09-02 2008-09-02 Dissolved oxygen sensor

Country Status (1)

Country Link
JP (1) JP5189934B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048830A (en) * 2016-09-20 2018-03-29 株式会社日立パワーソリューションズ Corrosion influence level determination device, probe device, and method for determining corrosion influence level

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6262080B2 (en) * 2014-06-03 2018-01-17 株式会社 堀場アドバンスドテクノ Peracetic acid concentration meter
DE102015108747A1 (en) * 2014-06-03 2015-12-03 Horiba Advanced Techno, Co., Ltd. Peressigsäurekonzentrationsmessgerät
JP6899751B2 (en) * 2017-09-29 2021-07-07 マクセル株式会社 Electrochemical oxygen sensor
JP6955950B2 (en) * 2017-09-29 2021-10-27 マクセル株式会社 Electrochemical oxygen sensor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389143A (en) * 1986-10-01 1988-04-20 住友電気工業株式会社 Electrolyte for oxygen measuring electrode
JPH0257960A (en) * 1988-08-23 1990-02-27 Tokuyama Soda Co Ltd Oxygen electrode
JP2767868B2 (en) * 1989-03-20 1998-06-18 富士通株式会社 Small oxygen electrode
JP2561971Y2 (en) * 1991-01-16 1998-02-04 株式会社 堀場製作所 Water quality checker
JPH04340455A (en) * 1991-05-17 1992-11-26 Hitachi Ltd Electrochemical sensor and analyser using the same
JPH04346063A (en) * 1991-05-24 1992-12-01 Hitachi Ltd Oxygen sensor and analysis device using it
JP3175024B2 (en) * 1992-02-20 2001-06-11 東亜ディーケーケー株式会社 Method and apparatus for measuring dissolved gas
US5354448A (en) * 1992-05-22 1994-10-11 Biomedical Sensors Ltd. Electrochemical sensor
JP3967808B2 (en) * 1997-11-08 2007-08-29 株式会社堀場製作所 Water quality measuring device
JP4671565B2 (en) * 2001-09-05 2011-04-20 東亜ディーケーケー株式会社 Diaphragm electrode
JP4732406B2 (en) * 2007-08-03 2011-07-27 株式会社堀場製作所 Water quality measuring device
JP5145916B2 (en) * 2007-12-18 2013-02-20 東亜ディーケーケー株式会社 Electrolyte for polarographic diaphragm electrode and polarographic diaphragm electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048830A (en) * 2016-09-20 2018-03-29 株式会社日立パワーソリューションズ Corrosion influence level determination device, probe device, and method for determining corrosion influence level

Also Published As

Publication number Publication date
JP2010060391A (en) 2010-03-18

Similar Documents

Publication Publication Date Title
US5030334A (en) Ozone measuring method
US4049382A (en) Total residual chlorine
JP5189934B2 (en) Dissolved oxygen sensor
JP6275744B2 (en) Electrochemical sensor for detecting nitrous oxide
EP1593962B1 (en) Eletrochemical oxygen sensor
Dahmen Electroanalysis: theory and applications in aqueous and non-aqueous media and in automated chemical control
UA95634C2 (en) Lithium ion-selective membrane, method of producing membrane, lithium ion-selective electrode, device for measurement of lithium ion concentration in liquid and method for determination of lithium ion concentration in liquid
GB2520753A (en) Electrochemical sensor apparatus and electrochemical sensing method
WO2019073396A1 (en) Calibration electrode
CN109477811B (en) Chlorine, Oxidation Reduction Potential (ORP) and pH measurement probe
US5720870A (en) Determining gas concentration
JP5069646B2 (en) 3-electrode electrochemical measurement system
US3960673A (en) Technique for continuously analyzing the concentration of ozone dissolved in water
JP6534264B2 (en) Measurement method of dissolved hydrogen concentration
JP4205725B2 (en) Gas sensor
US3830709A (en) Method and cell for sensing nitrogen oxides
RU2442976C2 (en) Method for production of highly stable sensitive element of hydrogen peroxide sensor
JP5069647B2 (en) Dissolved oxygen sensor
GB2291504A (en) Amperometric gas sensor
JP4166104B2 (en) Constant potential electrolytic acid gas detector
JP2007047135A (en) Gel electrolyte of polarograph type electrode, and preparing method
Naik Principle and applications of ion selective electrodes-an overview
KR102316693B1 (en) Sensor comprising tube type reference electrode and isfet
Cummings et al. Chemical analysis: electrochemical techniques
Stoica et al. Research regarding the adaptation of a metalic sensor from antimony, used for soils pH monitoring in the biological depollutions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5189934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250