JP5069646B2 - 3-electrode electrochemical measurement system - Google Patents

3-electrode electrochemical measurement system Download PDF

Info

Publication number
JP5069646B2
JP5069646B2 JP2008224939A JP2008224939A JP5069646B2 JP 5069646 B2 JP5069646 B2 JP 5069646B2 JP 2008224939 A JP2008224939 A JP 2008224939A JP 2008224939 A JP2008224939 A JP 2008224939A JP 5069646 B2 JP5069646 B2 JP 5069646B2
Authority
JP
Japan
Prior art keywords
electrode
circuit
potential
measurement
ground potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008224939A
Other languages
Japanese (ja)
Other versions
JP2010060376A (en
Inventor
克泰 樽井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2008224939A priority Critical patent/JP5069646B2/en
Publication of JP2010060376A publication Critical patent/JP2010060376A/en
Application granted granted Critical
Publication of JP5069646B2 publication Critical patent/JP5069646B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、作用電極、対電極及び基準電極の3電極を用いて、測定対象液の組成や電極反応機構等を電気化学的に測定する3電極式電気化学測定装置に関し、特に前記3電極に接続されてそれらの電位を制御するポテンシオスタット回路に関するものである。   The present invention relates to a three-electrode electrochemical measurement apparatus that electrochemically measures the composition of the liquid to be measured, the electrode reaction mechanism, and the like using three electrodes, a working electrode, a counter electrode, and a reference electrode. The present invention relates to a potentiostat circuit that is connected to control the potentials thereof.

従来のポテンシオスタット回路は、図1に示すように、回路の接地電位よりも一定電圧だけ高い正電圧を発生する正電圧発生回路61’と、非反転入力端子In+、反転入力端子In−及び出力端子Outを有した演算増幅回路62とを具備している。   As shown in FIG. 1, the conventional potentiostat circuit includes a positive voltage generation circuit 61 ′ that generates a positive voltage higher than the circuit ground potential by a certain voltage, a non-inverting input terminal In +, an inverting input terminal In−, And an operational amplifier circuit 62 having an output terminal Out.

そして、前記演算増幅回路62の非反転入力端子In+を正電圧発生回路61’に、反転入力端子In−を基準電極4に、出力端子Outを対電極3にそれぞれ接続するとともに、作用電極2を接地するようにしてある。   The non-inverting input terminal In + of the operational amplifier circuit 62 is connected to the positive voltage generating circuit 61 ', the inverting input terminal In- is connected to the reference electrode 4, the output terminal Out is connected to the counter electrode 3, and the working electrode 2 is connected to the operational amplifier 2. It is supposed to be grounded.

しかして、いずれの文献をみても、周辺の回路工夫は多々あれども、作用電極2を回路の接地電位に保つという基本構成は変わらない(例えば特許文献1)。なお、前記特許文献1の図2には、作用電極2を接地させていない構成が記載されているが、これは、ガルバニスタットなど2電極式のもので、三電極式のものと全く構成が異なり比較の対象にはならない。
特表平09−502527号公報
In any literature, the basic configuration of maintaining the working electrode 2 at the ground potential of the circuit remains the same even though there are many peripheral circuit devices (for example, Patent Document 1). Note that FIG. 2 of Patent Document 1 describes a configuration in which the working electrode 2 is not grounded, but this is a two-electrode type such as a galvanistat, which is completely different from the three-electrode type. They are not subject to comparison.
JP-T 09-502527

ところで、このような電気化学測定装置を、例えば導電率計などの他の測定回路と接地電位を共通させて併用する場合には、当該電気化学測定装置の内部液が基準電極と同じ正電位に保たれていることから、仮に当該内部液がリークすると、その内部液を介して電流i’が測定対象液に流れ、そのことによって導電率計等に計測誤差が生じてしまう。   By the way, when such an electrochemical measurement device is used in combination with another measurement circuit such as a conductivity meter in common with the ground potential, the internal liquid of the electrochemical measurement device has the same positive potential as the reference electrode. Therefore, if the internal liquid leaks, the current i ′ flows to the measurement target liquid via the internal liquid, which causes a measurement error in the conductivity meter and the like.

そこで、従来は、内部液のリークを生じないような堅牢な電極構造にしたり、あるいは各測定装置における電気回路の接地電位を互いにフロートしたりして、他の測定装置へ及ぼす電気的な測定影響を排除するようにしている。   Therefore, in the past, the effect of electrical measurement on other measuring devices has been achieved by using a robust electrode structure that does not cause leakage of internal liquids, or by floating the ground potential of the electrical circuit in each measuring device. Is trying to eliminate.

しかしながら、そのために特殊な密閉構造や電気回路の工夫が必要となって、コストアップを招くという不具合が生じ得る。   However, for that purpose, a special sealing structure or a device for an electric circuit is required, which may cause a problem of increasing the cost.

本発明はかかる問題点を鑑みてなされたものであって、その主たる目的は、同一の測定対象液を他の測定装置と同時に測定する際に、該他の測定装置の測定に与える悪影響を、簡単な構成でしかも確実に防止できる3電極式電気化学測定装置を提供することにある   The present invention has been made in view of such problems, and its main purpose is to adversely affect the measurement of the other measurement device when measuring the same liquid to be measured simultaneously with the other measurement device. The object is to provide a three-electrode electrochemical measuring apparatus that can be reliably prevented with a simple configuration.

すなわち、本発明に係る3電極式電気化学測定装置は、作用電極、内部液に浸漬した対電極及び基準電極の3電極と、前記作用電極の基準電極に対する電位が一定に保たれるように前記対電極の電位を制御するポテンシオスタット回路とを具備し、作用電極と対電極との間に流れる電流量を測定することによって、測定対象液の性質を電気化学的に測定するものであって、前記ポテンシオスタット回路が、基準電極の電位を当該回路の接地電位に保つとともに、作用電極を前記接地電位よりも低い電位に保持するものであることを特徴とする。   That is, the three-electrode electrochemical measurement apparatus according to the present invention is configured so that the potential of the working electrode, the counter electrode immersed in the internal liquid and the reference electrode, and the potential of the working electrode with respect to the reference electrode is kept constant. A potentiostat circuit for controlling the potential of the counter electrode, and electrochemically measuring the property of the liquid to be measured by measuring the amount of current flowing between the working electrode and the counter electrode. The potentiostat circuit maintains the potential of the reference electrode at the ground potential of the circuit and holds the working electrode at a potential lower than the ground potential.

このような構成によれば、基準電極がポテンシオスタット回路の接地電位に保たれることから、内部液も接地電位に保たれる。したがって、仮に内部液が測定対象液にリークしたとしても、このポテンシオスタット回路と接地電位を共通にしている他の測定回路(例えば導電率計)への電流影響を可及的に低減でき、該他の測定回路の測定精度を維持できる。   According to such a configuration, since the reference electrode is kept at the ground potential of the potentiostat circuit, the internal liquid is also kept at the ground potential. Therefore, even if the internal liquid leaks into the liquid to be measured, the current influence on the other measurement circuit (for example, conductivity meter) that shares the ground potential with this potentiostat circuit can be reduced as much as possible. The measurement accuracy of the other measurement circuit can be maintained.

前記ポテンシオスタット回路の具体的構成としては、作用電極に接続されるW端子、対電極に接続されるC端子及び基準電極に接続されるR端子と、回路の接地電位よりも一定電圧だけ低い負電圧を発生するとともに、その負電圧出力端子を前記W端子に接続した負電圧発生回路と、非反転入力端子、反転入力端子及び出力端子を有し、前記非反転入力端子を接地させるとともに、前記反転入力端子をR端子に、前記出力端子をC端子にそれぞれ接続した演算増幅回路とを具備したものを挙げることができる。   A specific configuration of the potentiostat circuit includes a W terminal connected to the working electrode, a C terminal connected to the counter electrode, an R terminal connected to the reference electrode, and a constant voltage lower than the ground potential of the circuit. While generating a negative voltage, the negative voltage generation circuit having the negative voltage output terminal connected to the W terminal, and a non-inverting input terminal, an inverting input terminal and an output terminal, and grounding the non-inverting input terminal, And an operational amplifier circuit in which the inverting input terminal is connected to the R terminal and the output terminal is connected to the C terminal.

本発明の効果が特に顕著となるのは、酸素溶存計やアンモニア電極、二酸化炭素電極、シアン化水素電極などのように、筐体の内部を電気絶縁壁によって2つの空間に隔て、一方の空間には内部液を充填して対電極及び基準電極を浸漬するとともに、他方の空間には電気的絶縁膜であるガス透過膜(テフロン(登録商標)隔膜等)を介して筐体外部の測定対象液に臨ませた作用極を配置した構成のものを挙げることができる。
なお、電気的絶縁膜を利用せず、作用電極及び対電極の双方が測定対象液に電気的に導通するような構成のものでは、作用電極または対電極のいずれを接地電位にしても、他方が正電位又は負電位となり、測定対象液がその電位の影響を受けるため、本発明の効果が顕著にはなりにくい。
The effect of the present invention is particularly remarkable when the inside of the housing is separated into two spaces by an electrically insulating wall, such as an oxygen dissolver, an ammonia electrode, a carbon dioxide electrode, and a hydrogen cyanide electrode, Fill the internal liquid and immerse the counter electrode and the reference electrode. The other space is filled with the liquid to be measured outside the housing through a gas permeable film (such as a Teflon (registered trademark) diaphragm) that is an electrically insulating film. The thing of the structure which has arrange | positioned the working electrode which faced can be mentioned.
In the case of a configuration in which both the working electrode and the counter electrode are electrically connected to the liquid to be measured without using an electrical insulating film, either the working electrode or the counter electrode is set to the ground potential. Becomes a positive potential or a negative potential, and the liquid to be measured is affected by the potential, so that the effect of the present invention is not likely to be remarkable.

しかして、このように構成した本発明によれば、基準電極及び対電極がポテンシオスタット回路の接地電位に保たれ、内部液も接地電位に保たれることから、仮に内部液が測定対象液にリークしたとしても、このポテンシオスタット回路と接地電位を共通にしている他の測定回路(例えば導電率計)への電流影響を可及的に低減でき、該他の測定回路の測定精度を維持できる。
また、このように、内部液リークによる他の測定回路への影響が少ないことから、内部液を封入するための液密構造を簡易化したり、測定回路同士をフロートするといった工夫を省略したりできるので、全体としてのコスト削減を促進できる。
Thus, according to the present invention configured as described above, the reference electrode and the counter electrode are maintained at the ground potential of the potentiostat circuit, and the internal liquid is also maintained at the ground potential. Even if it leaks, the influence of current on other measurement circuits (for example, conductivity meter) that share the ground potential with this potentiostat circuit can be reduced as much as possible, and the measurement accuracy of the other measurement circuits can be reduced. Can be maintained.
In addition, since there is little influence on other measurement circuits due to internal liquid leakage in this way, it is possible to simplify the liquid-tight structure for enclosing the internal liquid, or to omit devices such as floating between the measurement circuits. Therefore, cost reduction as a whole can be promoted.

以下、本発明の一実施形態につき、図面を参照しながら説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

この実施形態での電気化学式測定装置である溶存酸素計X7は、図2に示すように、水質に係る種々の性質を測定することが可能な水質分析装置Xの構成要素として用いられるものである。   A dissolved oxygen meter X7, which is an electrochemical measurement device in this embodiment, is used as a constituent element of a water quality analyzer X capable of measuring various properties relating to water quality, as shown in FIG. .

そこで、前記溶存酸素計X7の詳細を説明する前に、まずはこの水質分析装置Xの概略について簡単に説明しておく。なお、図3は水質分析装置Xの保護カバーX13を取り外した状態の底面図である。   Therefore, before explaining the details of the dissolved oxygen meter X7, first, the outline of the water quality analyzer X will be briefly explained. FIG. 3 is a bottom view of the water quality analyzer X with the protective cover X13 removed.

この水質分析装置Xは、pH、導電率(Conductivity)、溶存酸素(Dissolved Oxygen)濃度、濁度(Turbidity)及び水温などの測定項目を同時に連続測定するものであり、図2、図3に示すように、水質測定用の複数の測定センサX3〜X8を備えた浸漬型のセンサ本体X1と、当該センサ本体X1に防水タイプの電気ケーブルCAを介して電気的に接続された計器本体X2と、を備えている。そして、例えば液体試料として海水の水質分析を行う場合には、電気ケーブルCAの部分を持ち、センサ本体X1を海水中に垂下し、海水中に浸漬した状態で行う。   This water quality analyzer X continuously measures measurement items such as pH, conductivity, dissolved oxygen concentration, turbidity, and water temperature, and is shown in FIGS. As described above, an immersion type sensor main body X1 provided with a plurality of measurement sensors X3 to X8 for water quality measurement, an instrument main body X2 electrically connected to the sensor main body X1 via a waterproof electric cable CA, It has. For example, when water quality analysis of seawater is performed as a liquid sample, the electric cable CA is held, and the sensor body X1 is suspended in seawater and immersed in seawater.

センサ本体X1は、図2に示すように、概略円柱形状をなすものであり、複数種類の測定センサX3〜X8と、それら測定センサX3〜X8が取り付けられる取付ブロック体X11と、電源、メモリ機能部を有する演算部や演算された水質の測定データ等を時系列的に記録するデータロガー等を内蔵する演算機器等収容体X12と、前記取付ブロック体X11の下端部(センサ取付側端部)に取り付けられて、測定センサを外部から保護するセンサ保護カバーX13と、を備えている。なお、取付ブロック体X11と演算機器等収容体X12とは水密ケースを構成する。また、センサ保護カバーX13は、外部からの光を遮光する遮光機能及び設置、測定の際に外部から受ける衝撃を吸収する衝撃吸収機能を有し、外部の液体試料(例えば海水等)をセンサ本体X1の内部に導きながらも、測定センサX3〜X8を外部から保護するものである。   As shown in FIG. 2, the sensor body X1 has a substantially cylindrical shape, a plurality of types of measurement sensors X3 to X8, a mounting block body X11 to which these measurement sensors X3 to X8 are attached, a power source, and a memory function. A calculation unit including a calculation unit, a data logger that records time-series measurement data of the calculated water quality, etc., and a storage unit X12, and a lower end portion of the mounting block body X11 (end portion on the sensor mounting side) And a sensor protection cover X13 that protects the measurement sensor from the outside. Note that the mounting block body X11 and the arithmetic device housing X12 constitute a watertight case. The sensor protective cover X13 has a light shielding function for shielding light from the outside and an impact absorbing function for absorbing an impact received from the outside during installation and measurement, and an external liquid sample (for example, seawater) is taken into the sensor body. While guiding inside X1, the measurement sensors X3 to X8 are protected from the outside.

具体的に取付ブロック体X11の下端部に形成された取付面X11Aには、図2に示すように、pH測定用のpHガラス電極X31及び高濃度(3.3mol/L)のKClの内部液を用いた比較電極X32で構成されるpHセンサX3、前記比較電極X32を用いて酸化還元電位を測定するための酸化還元電極X4、例えば交流4極法を用いた導電率センサX5、透過散乱法を用いた濁度センサX6、ポーラログラフ法を用いた溶存酸素計X7、及び温度センサX8等が同一方向を向くように設けられている。つまり各測定センサX3〜X8は、その中心軸方向が略一致する方向に取付面X11Aに設けられている。取付面X11Aは、同一平面により形成されても良いし、部分的に段部を有するようなものでも良い。   Specifically, on the mounting surface X11A formed at the lower end of the mounting block body X11, as shown in FIG. 2, a pH glass electrode X31 for pH measurement and an internal solution of KCl having a high concentration (3.3 mol / L). PH sensor X3 composed of a comparison electrode X32 using a redox electrode, a redox electrode X4 for measuring a redox potential using the comparison electrode X32, for example, a conductivity sensor X5 using an AC quadrupole method, a transmission scattering method A turbidity sensor X6 using a polarimeter, a dissolved oxygen meter X7 using a polarographic method, a temperature sensor X8, and the like are provided so as to face the same direction. That is, each of the measurement sensors X3 to X8 is provided on the attachment surface X11A in a direction in which the central axis directions substantially coincide. The attachment surface X11A may be formed on the same plane or may have a stepped portion.

計器本体X2は、前記センサ本体X1からの測定データ等を表示する表示部、電源キー、機能キー、測定の開始・終了キー、校正キー、セレクトキー、アップダウンキー等を備えている。そして、前記電気ケーブルCAを操ってセンサ本体X1を水没させると、各測定センサX3〜X8のからの出力に基づく測定データが前記メモリ機能部に記録され、且つ、その測定値が表示部に表示される。   The instrument main body X2 includes a display unit for displaying measurement data from the sensor main body X1, a power key, a function key, a measurement start / end key, a calibration key, a select key, an up / down key, and the like. When the sensor main body X1 is submerged by operating the electric cable CA, measurement data based on the output from each of the measurement sensors X3 to X8 is recorded in the memory function unit, and the measurement value is displayed on the display unit. Is done.

しかして、この実施形態に係る電気化学式測定装置である溶存酸素計X7は、図4に示すように、作用電極2、対電極3及び基準電極4の三電極からなる電極機構1と、前記作用電極2の基準電極4に対する電位が一定に保たれるように前記対電極3の電位を制御するポテンシオスタット回路6とを具備し、作用電極2と対電極3との間に流れる電流量を測定することによって、測定対象液の溶存酸素量を測定するものである。以下に各部を詳述する。   Therefore, as shown in FIG. 4, the dissolved oxygen meter X7, which is an electrochemical measurement device according to this embodiment, includes the electrode mechanism 1 including three electrodes, that is, the working electrode 2, the counter electrode 3, and the reference electrode 4, and the above-described action. A potentiostat circuit 6 for controlling the potential of the counter electrode 3 so that the potential of the electrode 2 with respect to the reference electrode 4 is kept constant, and the amount of current flowing between the working electrode 2 and the counter electrode 3 is By measuring, the amount of dissolved oxygen in the liquid to be measured is measured. Each part is described in detail below.

電極機構1は、測定対象液に浸漬されるもので、図5に示すように、内部空間に内部液Qが充填される中空の筐体5と、この筐体5に保持された前記三電極2、3、4とからなる。   The electrode mechanism 1 is immersed in the liquid to be measured. As shown in FIG. 5, as shown in FIG. 5, the hollow casing 5 in which the internal space Q is filled, and the three electrodes held in the casing 5. 2, 3, 4.

筐体5は、先端部開口に酸素透過膜7を張り設けた円筒状をなす筐体本体51と、この筐体本体51の基端部開口に螺合して該開口を液密に閉塞するベース部材52とから構成してある。   The casing 5 has a cylindrical casing main body 51 in which the oxygen permeable membrane 7 is stretched at the front end opening, and is screwed into the base end opening of the casing main body 51 to close the opening in a liquid-tight manner. And a base member 52.

このベース部材52は、筐体5の内部空間を作用電極2が挿入される第1空間と、対電極3及び基準電極4が挿入される第2空間との2つに仕切るための絶縁樹脂製のものであり、筐体本体51の内部に延びる円柱状部材521と、この円柱状部材521の基端部外周に設けた円盤状部材522とからなる。そして、前記円盤状部材522の外周面に設けられたねじ溝が、筐体本体51の基端部開口に螺合し、シール部材Oを押圧するように構成してある。前記円柱状部材521の中央には、円柱状の作用電極2が中心軸線を合致させて貫通させてあり、またこの円柱状部材521の外側には、円筒状の対電極3が嵌め込んである。さらに、円盤状部材522の周縁部には、基準電極4が貫通させてある。   The base member 52 is made of an insulating resin for partitioning the internal space of the housing 5 into two parts: a first space in which the working electrode 2 is inserted and a second space in which the counter electrode 3 and the reference electrode 4 are inserted. And includes a columnar member 521 extending inside the housing body 51 and a disk-shaped member 522 provided on the outer periphery of the base end portion of the columnar member 521. A screw groove provided on the outer peripheral surface of the disk-like member 522 is configured to be screwed into the base end opening of the housing body 51 and press the seal member O. A columnar working electrode 2 is passed through the center of the columnar member 521 so that the center axis coincides, and a cylindrical counter electrode 3 is fitted outside the columnar member 521. . Further, the reference electrode 4 is passed through the peripheral edge of the disk-shaped member 522.

ところで、前記三電極3、4、5は、シール部材等を介在させることなく、前記ベース部材52に液密に貫通させてある。そのためにこの実施形態では、予め型枠に三電極を配置して、その隙間に樹脂を射出し、ベース部材52を形成するというインジェクション成形法によって、ベース部材52及び三電極を一体的に形成している。   By the way, the three electrodes 3, 4, 5 are liquid-tightly penetrated through the base member 52 without interposing a seal member or the like. Therefore, in this embodiment, the base member 52 and the three electrodes are integrally formed by an injection molding method in which the three electrodes are arranged in advance in the mold, the resin is injected into the gap, and the base member 52 is formed. ing.

また、円柱状部材521及び作用電極2の先端面8を部分球状に形成するとともに、筐体本体51をベース部材52に螺着したときに、前記酸素透過膜7が前記先端面8に対してある程度のテンションで、張り付くように構成している。この構成によって、内部液Qが、酸素透過膜7と前記先端面8との間に毛細管現象等で浸入し、酸素透過膜7の内面と前記先端面8との隙間を約10μmまたはそれ以下の一定値に保つ作用を営む。なお、前記先端面8の周縁部にはR加工を施してエッジが形成されないようにし、酸素透過膜7との間で毛細管現象が円滑に営まれるようにしている。   In addition, the cylindrical member 521 and the distal end surface 8 of the working electrode 2 are formed in a partial spherical shape, and when the casing body 51 is screwed to the base member 52, the oxygen permeable membrane 7 is in contact with the distal end surface 8. It is configured to stick with a certain amount of tension. With this configuration, the internal liquid Q penetrates between the oxygen permeable membrane 7 and the tip surface 8 by capillary action or the like, and a gap between the inner surface of the oxygen permeable membrane 7 and the tip surface 8 is about 10 μm or less. Operates to maintain a constant value. The peripheral edge of the tip surface 8 is subjected to R processing so that no edge is formed, and the capillary phenomenon is smoothly performed between the oxygen permeable membrane 7 and the edge.

かかる構成によれば、酸素透過膜7を通過した溶存酸素は作用電極2で還元され、溶存酸素濃度(DO濃度)に比例する還元電流iが流れることから、この還元電流iを、例えばゼロシャント電流計で測定することにより、測定対象液の溶存酸素濃度を測定することができる。   According to such a configuration, the dissolved oxygen that has passed through the oxygen permeable membrane 7 is reduced by the working electrode 2 and a reduction current i proportional to the dissolved oxygen concentration (DO concentration) flows. By measuring with an ammeter, the dissolved oxygen concentration of the liquid to be measured can be measured.

しかしてこの実施形態では、前述したポテンシオスタット回路6に工夫を加えて、基準電極4の電位を当該ポテンシオスタット回路6の接地電位に保つとともに、作用電極2を前記接地電位よりも低い電位に保持するものにしている。   In this embodiment, however, the potentiostat circuit 6 is devised to keep the potential of the reference electrode 4 at the ground potential of the potentiostat circuit 6 and the working electrode 2 at a potential lower than the ground potential. To keep in.

具体的にこのポテンシオスタット回路6は、図2に示すように、作用電極2に接続されるW端子、対電極3に接続されるC端子及び基準電極4に接続されるR端子と、前記接地電位よりも一定電圧だけ低い負電圧を発生するとともに、その負電圧出力端子を前記W端子に接続した負電圧発生回路61と、非反転入力端子In+、反転入力端子In−及び出力端子Outを有し、前記非反転入力端子In+を接地させるとともに、前記反転入力端子In−をR端子に、前記出力端子OutをC端子にそれぞれ接続した演算増幅回路62とを具備したものである。   Specifically, as shown in FIG. 2, the potentiostat circuit 6 includes a W terminal connected to the working electrode 2, a C terminal connected to the counter electrode 3, and an R terminal connected to the reference electrode 4. A negative voltage generating circuit 61 that generates a negative voltage lower than the ground potential by a certain voltage and has the negative voltage output terminal connected to the W terminal, a non-inverting input terminal In +, an inverting input terminal In−, and an output terminal Out are provided. And an operational amplifier circuit 62 in which the non-inverting input terminal In + is grounded, the inverting input terminal In− is connected to the R terminal, and the output terminal Out is connected to the C terminal.

このような構成によれば、回路6の応答速度などによって過渡的な若干の変動はあるものの、基準電極4と対電極3とがこのポテンシオスタット回路6の接地電位に保たれることから、内部液Qも接地電位に保たれる。したがって、仮に内部液Qが測定対象液にリークしたとしても、このポテンシオスタット回路6と接地電位を共通にしている他の測定回路(この例では、pHセンサX3、酸化還元電極X4、導電率センサX5)への電流影響を可及的に低減でき、該他の測定回路の測定精度を維持できる。   According to such a configuration, the reference electrode 4 and the counter electrode 3 are maintained at the ground potential of the potentiostat circuit 6 although there are some transient fluctuations depending on the response speed of the circuit 6 and the like. The internal liquid Q is also kept at the ground potential. Therefore, even if the internal liquid Q leaks into the liquid to be measured, another measurement circuit (in this example, the pH sensor X3, the oxidation-reduction electrode X4, the conductivity) that shares the ground potential with the potentiostat circuit 6. The current influence on the sensor X5) can be reduced as much as possible, and the measurement accuracy of the other measurement circuit can be maintained.

また、このように、内部液Qのリークによる他の測定回路への影響が少ないことから、内部液Qを封入するための液密構造を簡易化したり、測定回路同士をフロートするといった工夫を省略したりできるので、全体としてのコスト削減を促進できる。   In addition, since there is little influence on other measurement circuits due to leakage of the internal liquid Q in this way, the device such as simplifying the liquid-tight structure for enclosing the internal liquid Q or floating the measurement circuits is omitted. As a result, cost reduction as a whole can be promoted.

なお、本発明は前記実施形態に限られるものではない。例えばポーラログラフィなど、三電極を利用して測定対象液の性質を電気化学的に測定するものであれば、本発明を適用して前記実施形態と同様の作用効果を奏するものである。また、負電位発生回路は、その負電位を自動又は外部操作によって可変に調整できるようにしたものでもよい。もちろん、前記実施形態ではポテンシオスタット回路の基本的な一例を挙げたに過ぎず、周辺部分での変更や追加をして構わない。   The present invention is not limited to the above embodiment. For example, if the property of the liquid to be measured is electrochemically measured using three electrodes, such as polarography, the present invention is applied and the same effects as those of the above-described embodiment can be obtained. Further, the negative potential generating circuit may be one in which the negative potential can be variably adjusted automatically or by an external operation. Of course, in the above-described embodiment, only a basic example of a potentiostat circuit is given, and changes and additions may be made in the peripheral portion.

その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能である。   In addition, the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

従来のポテンシオスタット回路の一例を示す電気回路図。The electric circuit diagram which shows an example of the conventional potentiostat circuit. 本発明の一実施形態に係る水質分析装置の全体図を示す全体斜視図。1 is an overall perspective view showing an overall view of a water quality analyzer according to an embodiment of the present invention. 同実施形態における水質分析装置の内部構造を示す底面図。The bottom view which shows the internal structure of the water quality analyzer in the same embodiment. 本発明の一実施形態に係る溶存酸素計の電極機構を示す部分縦断面図。The fragmentary longitudinal cross-section which shows the electrode mechanism of the dissolved oxygen meter which concerns on one Embodiment of this invention. 同実施形態におけるポテンシオスタット回路の一例を示す電気回路図。The electric circuit diagram which shows an example of the potentiostat circuit in the same embodiment.

符号の説明Explanation of symbols

X7・・・三電極式電気化学測定装置(溶存酸素計)
2・・・作用電極
3・・・対電極
4・・・基準電極
6・・・ポテンシオスタット回路
X7 ... Three-electrode electrochemical measuring device (dissolved oxygen meter)
2 ... Working electrode 3 ... Counter electrode 4 ... Reference electrode 6 ... Potentiostat circuit

Claims (2)

作用電極、内部液に浸漬した対電極及び基準電極の3電極と、前記作用電極の基準電極に対する電位が一定に保たれるように前記対電極の電位を制御するポテンシオスタット回路とを具備し、作用電極と対電極との間に流れる電流量を測定することによって測定対象液の性質を電気化学的に測定する3電極式電気化学測定装置と、
前記3電極式電気化学測定装置が測定している前記測定対象液を測定する別の測定センサと、を備えた分析装置であって、
前記3電極式電気化学測定装置の前記ポテンシオスタット回路と、前記測定センサの測定回路とが接地電位を共通にしているとともに、
前記ポテンシオスタット回路が、基準電極の電位を当該ポテンシオスタット回路の接地電位に保つとともに、作用電極を前記接地電位よりも低い電位に保持するものであることを特徴とする分析装置
A working electrode, a counter electrode immersed in an internal liquid, and a reference electrode; and a potentiostat circuit for controlling the potential of the counter electrode so that the potential of the working electrode with respect to the reference electrode is kept constant. A three-electrode electrochemical measurement device that electrochemically measures the property of the liquid to be measured by measuring the amount of current flowing between the working electrode and the counter electrode ;
Another measuring sensor for measuring the measurement target liquid being measured by the three-electrode electrochemical measuring device, and an analyzer comprising:
The potentiostat circuit of the three-electrode electrochemical measurement device and the measurement circuit of the measurement sensor share a ground potential,
Analyzer the potentiostat circuit, the potential of the reference electrode with keeping the ground potential of the potentiostat circuit is characterized in that for holding the working electrode at a lower potential than the ground potential.
前記ポテンシオスタット回路が、
前記接地電位よりも一定電圧だけ低い負電圧を発生するとともに、その負電圧出力端子を前記作用電極に接続した負電圧発生回路と、
非反転入力端子、反転入力端子及び出力端子を有し、前記非反転入力端子を接地させるとともに、前記反転入力端子を基準電極に、前記出力端子を対電極にそれぞれ接続した演算増幅回路とを具備したものである請求項1記載の分析装置
The potentiostat circuit is
A negative voltage generating circuit that generates a negative voltage lower than the ground potential by a constant voltage, and has a negative voltage output terminal connected to the working electrode;
An operational amplifier circuit having a non-inverting input terminal, an inverting input terminal, and an output terminal, wherein the non-inverting input terminal is grounded, and the inverting input terminal is connected to a reference electrode and the output terminal is connected to a counter electrode. The analyzer according to claim 1, wherein
JP2008224939A 2008-09-02 2008-09-02 3-electrode electrochemical measurement system Expired - Fee Related JP5069646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008224939A JP5069646B2 (en) 2008-09-02 2008-09-02 3-electrode electrochemical measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008224939A JP5069646B2 (en) 2008-09-02 2008-09-02 3-electrode electrochemical measurement system

Publications (2)

Publication Number Publication Date
JP2010060376A JP2010060376A (en) 2010-03-18
JP5069646B2 true JP5069646B2 (en) 2012-11-07

Family

ID=42187331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008224939A Expired - Fee Related JP5069646B2 (en) 2008-09-02 2008-09-02 3-electrode electrochemical measurement system

Country Status (1)

Country Link
JP (1) JP5069646B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101459595B1 (en) * 2013-09-25 2014-11-07 (주) 테크로스 Electrochemical Sensor and TRO sensor device
US9851337B2 (en) * 2013-12-06 2017-12-26 The University Of Akron Universal water condition monitoring device
JP6226324B2 (en) * 2014-01-14 2017-11-08 東亜ディーケーケー株式会社 Storage method of measuring instrument and sensor unit
CN105181774B (en) * 2015-10-15 2017-12-15 中国农业大学 A kind of dissolved oxygen concentration measurement apparatus and method
CN109001275B (en) * 2018-08-09 2022-04-19 北京化工大学 Three-electrode electrochemical dissolved oxygen sensor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05332988A (en) * 1992-03-31 1993-12-17 Tomohide Fujimaki Electrochemical gas sensor
JPH10311815A (en) * 1997-05-09 1998-11-24 Japan Storage Battery Co Ltd Method for judging deterioration of electrochemical carbon monoxide gas sensor and calibrating method
JP3797745B2 (en) * 1997-05-19 2006-07-19 東京瓦斯株式会社 Odorant concentration measuring device
JP4516195B2 (en) * 2000-08-25 2010-08-04 新コスモス電機株式会社 Constant potential electrolytic gas sensor
JP3962583B2 (en) * 2001-12-04 2007-08-22 光明理化学工業株式会社 Electrochemical gas sensor
JP4367904B2 (en) * 2003-07-08 2009-11-18 根本特殊化学株式会社 Electrochemical gas sensor device

Also Published As

Publication number Publication date
JP2010060376A (en) 2010-03-18

Similar Documents

Publication Publication Date Title
CN103119431B (en) Measurement arrangement and method for ascertaining an analyte concentration in a measurement medium
JP5069646B2 (en) 3-electrode electrochemical measurement system
EP0142226A2 (en) Ion measuring device with self-contained storage of standardization solution
CN109239163B (en) Sensor with a sensor element
JP4456303B2 (en) pH sensor
EP2610614A1 (en) Ion analyzer
CN112119300B (en) PH measurement of water samples
JP6275744B2 (en) Electrochemical sensor for detecting nitrous oxide
JP6875645B2 (en) Measuring device
CN109477811B (en) Chlorine, Oxidation Reduction Potential (ORP) and pH measurement probe
CN111108374A (en) PH sensor and calibration method for a PH sensor
JP5189934B2 (en) Dissolved oxygen sensor
JP2014021076A (en) Ion electrode
JP5075768B2 (en) Water quality analyzer
US20070227908A1 (en) Electrochemical cell sensor
JP6467146B2 (en) Diaphragm sensor, liquid analyzer
WO2016140354A1 (en) Electric potential control device, electric potential control method, measurement device, and measurement method
US8274293B2 (en) Apparatus and method for measurement of pH over a wide range of pressure
KR102088726B1 (en) Measuring device
JP5069647B2 (en) Dissolved oxygen sensor
JP6262080B2 (en) Peracetic acid concentration meter
JP2007047135A (en) Gel electrolyte of polarograph type electrode, and preparing method
KR102316693B1 (en) Sensor comprising tube type reference electrode and isfet
JP6245612B2 (en) Method for specifying pH, apparatus therefor, and method for specifying ion concentration
DE102011117115A1 (en) Electrochemical multi-sensor for electrochemical examination in liquid or viscous medium, has ceramic body, electric connection element, and sensor elements , which completely close plane with measurement side end surface of ceramic body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120817

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees