JP3967808B2 - Water quality measuring device - Google Patents

Water quality measuring device Download PDF

Info

Publication number
JP3967808B2
JP3967808B2 JP32245797A JP32245797A JP3967808B2 JP 3967808 B2 JP3967808 B2 JP 3967808B2 JP 32245797 A JP32245797 A JP 32245797A JP 32245797 A JP32245797 A JP 32245797A JP 3967808 B2 JP3967808 B2 JP 3967808B2
Authority
JP
Japan
Prior art keywords
connector
pin
chip
water quality
sensor body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32245797A
Other languages
Japanese (ja)
Other versions
JPH11142397A (en
Inventor
剛士 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP32245797A priority Critical patent/JP3967808B2/en
Publication of JPH11142397A publication Critical patent/JPH11142397A/en
Application granted granted Critical
Publication of JP3967808B2 publication Critical patent/JP3967808B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、河川や湖沼、海などの水質調査や、養殖や液耕栽培における水質管理などに用いて好適な水質測定装置に関するものである。
【0002】
【従来の技術】
水質の測定対象としては、溶存酸素、導電率、酸化還元電位、水素イオン(以下、pH)、pH以外の各種イオン(塩化物イオンやフッ化物イオンなど)、濁度など多項目があり、併せて、測定時の水温や水深、更には、導電率を基にして演算される塩分濃度や密度の測定も行われる。
【0003】
これらの測定を個々に専用の測定装置で行うことは、コスト的な問題に加えて作業が煩雑になることから、本出願人は既に、水質の基本的な指標である導電率と、この導電率を基にして演算される塩分濃度と、pHと、濁度と、溶存酸素と、水温との合計六項目を同時に測定し、かつ、その測定値をメモリーできる水質測定装置を提案している。
【0004】
この場合、pH以外の各種イオンと酸化還元電位との測定に際しては、それ専用の装置を用意し、密度の測定に際しては密度計を用意して、それぞれの測定を行う必要があった。
【0005】
また、所定の水深での水質測定のためには、水質測定装置の吊り下げ保持ケーブルに目盛りを付して、または、沈降用の錘を備えたメジャーを用意して、目視によって水深を確認した上で、各種の水質測定を行わねばならず、測定操作が煩雑なものになっていたのである。
【0006】
そこで今般、上記した六項目の測定に加えて、酸化還元電位とpH以外の各種イオンと水深の測定、更に、密度の測定を、1台で行える水質測定装置を開発したのである。
【0007】
この際、水深測定チップとして圧力計をセンサ本体に設ける一方、導電率の測定チップに温度計を一体に備えさせて、この導電率の測定チップと、pHの測定チップと、pH以外の各種イオンの測定チップと、酸化還元電位の測定チップと、溶存酸素の測定チップと、濁度の測定チップのそれぞれを、コネクタを介して取り外し可能にセンサ本体に接続して、各種チップのメンテナンスを容易に行えるようにしたのである。
【0008】
更に、チップ接続用のコネクタ数を少なくして、pHと酸化還元電位ならびにpH以外の各種イオンの三種類の測定チップを、センサ本体に択一的に交換可能に接続するようにしたコンパクトな水質測定装置も開発しており、いずれの水質測定装置においても、上記三種類の測定チップのどれがセンサ本体に接続されているのかを識別させるために、この測定チップのコネクタとして、信号回路用の2極にチップ識別用の2極を加えた4極タイプのコネクタを用いるようにしている。
【0009】
導電率の測定チップについては、その導電率を四電極法によって測定するようにし、かつ、この測定チップには温度計を一体に備えさせているので、この測定チップの接続には6極タイプのコネクタを用いている。
【0010】
一方、溶存酸素の測定チップに用いるコネクタとしては、アノード用とカソード用の2極タイプのコネクタを用いればよいのであるが、例えば炭酸ガスや残留塩素などの測定に備えて、3極タイプのコネクタを用いている。
【0011】
【発明が解決しようとする課題】
ここで、上記の各種コネクタを、所定の極数のコネクタピンを備えたコネクタ部分と、この極数に対応するピン受けを備えたコネクタ部分とから構成したのであるが、溶存酸素の測定チップに用いる3極タイプのコネクタ部分を、導電率の測定チップに用いる6極タイプのコネクタ部分に誤接続することがあり、溶存酸素の測定チップに用いるコネクタを2極タイプにした場合は、これをpHなどの測定チップに用いる4極タイプのコネクタ部分に誤接続することがあった。
【0012】
【課題を解決するための手段】
かかる実情に鑑みて本発明は、簡単な改良によって異なる極数のコネクタどうしの誤接続を確実に回避できるようにした水質測定装置を提供することを目的としており、そのために本発明が講じた技術的手段は、次の通りである。
【0013】
即ち、本発明の水質測定装置にあっては、温度計を一体に備えた導電率の測定チップと、酸化還元電位または各種イオンの測定チップと、溶存酸素の測定チップとを、互いに異なる極数のコネクタを介して、センサ本体に取り外し可能に接続してなる水質測定装置において、前記各コネクタは、当該コネクタ極の半数のピン受けを埋設し平坦面を有するピン受け埋設部分及び残り半数のコネクタピンを前記ピン受け埋設部分の平坦面に沿わせて突出させるピン突出部分をセツトにして形成されるセンサ本体側のコネクタ部分と、このセンサ本体側のコネクタ部分におけるコネクタピン及びピン受けに位相を合わせるようにして当該コネクタ極の半数のピン受けを埋設するピン受け埋設部分及び残り半数のコネクタピンを前記ピン埋設部分の平坦面に沿わせて突出させるピン突出部分をセットにして前記センサ本体側のコネクタ部分と同一形状に形成される測定チップ側のコネクタ部分とからなり、これら両コネクタ部分におけるピン受け埋設部分の平坦面どうしを接触させて両コネクタ部分を接続方向に相対的に移動させたとき、一方のコネクタ部分のピン受け埋設部分の先端面と他方のコネクタ部分のコネクタピン先端と当接して相互に移動牽制されるように構成した点に特徴がある。
また、前記各コネクタは、それの信号回路用の1極とチップ識別回路に接続されている他のチップ識別用の極との電気的な非接続または接続の接続態様の選択により複数種類の 測定チップのいずれがセンサ本体に接続されたのかを識別させるように構成されていることが望ましい(請求項2)。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。図1は本発明の一実施の形態による水質測定装置の斜視図を示し、図2は水質測定装置のブロック構成図を示している。
【0015】
これらの図において、図中の1はセンサ本体で、電源2と、メモリー機能部3aを有する演算部3と、演算された測定データを時系列的に記録するデータロガー4とを、耐圧構造の水密ケース5に内蔵して成る。
【0016】
6Aは水圧の検知に基づいて水深を測定する例えば圧力計による水深測定チップで、センサ本体1に埋設されている。6Bは導電率の測定チップで、その導電率に基づいて塩分濃度と密度とを演算するものであり、温度計7を一体に備えている。
【0017】
6Cは濁度の測定チップ、6Dは溶存酸素の測定チップで、このうちの導電率測定チップ6Bと濁度測定チップ6Cとについては、6極タイプのコネクタ8Aを介して、かつ、溶存酸素の測定チップ6Dについては、これを3極タイプのコネクタ8Bを介して、それぞれ取り外し可能にセンサ本体1に接続している。
【0018】
6Eは比較電極とガラス電極とを複合させたpHの測定チップ、6Fは酸化還元電位の測定チップ、6GはpH以外の例えば塩化物イオンの測定チップで、pH以外のイオン測定チップには、上記の塩化物イオンの測定チップ6Gの外に、フッ化物イオンの測定チップ6Hと、硝酸イオンの測定チップ6Iと、カルシウムイオンの測定チップ6Jと、シアンイオンの測定チップ6Kと、硫化物イオンの測定チップ6Lと、ヨウ素イオンの測定チップ6Mと、臭素イオンの測定チップ6Nと、銅イオンの測定チップ6Pと、カドミウムイオンの測定チップ6Qと、鉛イオンの測定チップ6Rと、チオシアンイオンの測定チップ6Sと、銀イオンの測定チップ6Tとがある。
【0019】
これらの測定チップ6G〜6Tと、pH測定チップ6Eと、酸化還元電位の測定チップ6Fとは、信号回路用の2極にチップ識別用の2極を加えた4極タイプのコネクタ8Cを介して、互換性を持たせてセンサ本体1側のコネクタ部分に取り外し可能に接続しており、測定チップ6A〜6Tのいずれもが、水没状態で応答部が接水するようにセンサ本体1に接続される。
【0020】
9はディスプレイ装置で、水質の測定データなどを表示するディスプレイ10の他に、電源キー11、機能キー12、測定の開始・終了キー13、校正キー14、セレクトキー15、アップダウンキー16,17などを備えており、このディスプレイ装置9とセンサ本体1とを、センサ本体1の吊り下げ保持を兼ねる防水タイプの通信ケーブル18によって連結している。
【0021】
上記構成の水質測定装置において、通信ケーブル18を操ってセンサ本体1を水没させると、各種測定チップからの出力に基づく測定データがメモリー機能部3aにメモリーされ、かつ、その測定値がディスプレイ10に表示される。
【0022】
更に、任意に機能キー12によってデータロガー4のデータの取り込みスイッチSを操作することで、測定データがデータロガー4にロギングされるもので、溶存酸素、導電率、酸化還元電位、pH、pH以外の各種イオン、濁度、測定時の水温、水深、更に、導電率を基にして演算される塩分濃度と密度の合計十項目の水質測定を、高精度で行うことができる。
【0023】
そして、各種の水質測定データと、その水質測定時の水深測定データとを、正確に関連させてメモリー機能部3aから呼び出せることは勿論、データロガー4の情報をプリンターに入力させることで、その測定データをプリントすることもできる。
【0024】
ここで、チップ接続用のコネクタ8A〜8Cは、それらに備えられるコネクタ極数が互いに異なるものの、構成的には同じものであって、例えばチップ識別用の2極を加えた4極タイプのコネクタ8Cは、図3に示すように構成されている。
【0025】
即ち、コネクタピン20とピン受け21とによる4極のコネクタ極のうち、半数2極のコネクタピン20と残り2極のピン受け21とをセットにして、これをセンサ本体側のコネクタ部分22にモールドし、測定チップ側のコネクタ部分23には、上記センサ本体側のコネクタ部分22におけるコネクタピン20とピン受け21とに位相を合わせるようにして、半数2極のピン受け21と残り2極のコネクタピン20とをセットにしてモールドさせているのである。
【0026】
より具体的には、コネクタ部分22,23のそれぞれを、ピン受け21を埋設し平坦面22c,23cを有するピン受け埋設部分22a,23aと、このピン受け埋設部分22a,23aの平坦面22c,23cに沿わせてコネクタピン20を突出させるピン突出部分22b,23bとから同一形状に形成されているとともに、このコネクタ部分22,23は、それぞれのピン受け21とコネクタピン20との位相が互いに合うようにモールドされているのである。
【0027】
6極タイプのコネクタ8Aは、図4に示すように、例えば半数3極のコネクタピン20と残り3極のピン受け21とをセットにして、これらをコネクタ部分22,23にモールドさせており、3極タイプのコネクタ8Bは、図5に示すように、例えば半数2極のコネクタピン20と残り1極のピン受け21とをセットにして、これらをコネクタ部分22,23にモールドさせている。
【0028】
従って、上記の構成によれば、両コネクタ部分22,23におけるピン受け埋設部分22a,23aの平坦面22c,23c同士を接触させて接続方向に相対的に移動させたとき、一方のコネクタ部分22(または23)のピン受け埋設部分22a(または23a)の先端面22d(または23d)と、他方のコネクタ部分23(又は22)のコネクタピン20の先端との当接によって両コネクタ部分22,23の移動が相互に牽制されることになり、これによって、異なる極数のコネクタ部分22,23どうしの誤接続確実に防止されるのである。
【0029】
図6(A)〜(C)に示すように、4極タイプのコネクタ8Cのそれぞれにおいて、それの信号回路用の2極a,bを、演算部3に電気的に接続し、チップ識別用の2極c,dについては、これら2極c,dと信号回路用の1極(例えばグランド極)bとを、チップ側のコネクタ部分23において、チップ識別回路Aに電気的に非接続または接続して、pHと酸化還元電位ならびにpH以外の各種イオンのどの測定チップ(6Eか6Fまたは6G〜6T)が、センサ本体1のどのコネクタ部分22…に接続されたかを、演算部3のメモリー機能部3aに記憶させるようにし、接続されたチップによる水質測定データをディスプレイ10に表示させるようにしている。
【0030】
具体的には、上記の3極b,c,dを電気的に非接続または接続することで、四つの接続態様がとられるが、このうち任意の三つの接続態様を任意に選択するのであって、例えばpHの測定チップ6E側に設けるコネクタ部分23にあっては、信号回路用の1極bに対してチップ識別用の2極c,dをオープンにし、かつ、チップ識別用の2極c,dをショートさせる接続態様〔図6(A)を参照〕を選択している。
【0031】
酸化還元電位の測定チップ6F側に設けるコネクタ部分23にあっては、信号回路用の1極bとチップ識別用の2極c,dとを全てショートさせる接続態様〔図6(B)を参照〕を選択している。
【0032】
pH以外の各種イオンの測定チップ6G〜6T側に設けるコネクタ部分23にあっては、信号回路用の1極bとチップ識別用の2極c,dとを全てオープンにする接続態様〔図6(C)を参照〕を選択して、接続対象の三種類の測定チップ6E,6F,6G〜6Tを、チップ識別回路Aによって識別させるようにしている。
【0033】
そして、このチップ識別情報に基づいて、センサ本体1のどのコネクタ部分22…にどの測定チップ(6Eか6Fまたは6G〜6T)が接続されたかを、演算部3のメモリー機能部3aにメモリーさせ、それぞれの測定チップによる水質測定データをディスプレイ10に表示させるようにしているのである。
【0034】
図7に示すように、上記三種類の測定チップ6E,6F,6G〜6Tを、1個の4極タイプコネクタ8Cに択一的に接続するようにして、水質測定装置のコンパクト化を図る場合は、上記した四つの接続態様のうち三つの接続態様を選択して、接続対象の三種類の測定チップ6E,6F,6G〜6Tを識別させるようにし、その識別情報に基づいて、センサ本体1に択一的に接続されたチップが上記三種類の測定チップ(6Eか6Fまたは6G〜6T)のどれであるかを、演算部3のメモリー機能部3aに記憶させるようにし、それぞれの測定チップによる水質測定データをディスプレイ10に表示させればよいのである。
【0035】
【発明の効果】
以上説明したように本発明は、水質測定に用いる複数種類の測定チップをセンサ本体に接続するための互いに異なる極数のコネクタとして、当該コネクタ極の半数のピン受けを埋設し平坦面を有するピン受け埋設部分及び残り半数のコネクタピンを前記ピン受け埋設部分の平坦面に沿わせて突出させるピン突出部分をセツトにして形成されるセンサ本体側のコネクタ部分と、このセンサ本体側のコネクタ部分におけるコネクタピン及びピン受けに位相を合わせるようにして当該コネクタ極の半数のピン受けを埋設するピン受け埋設部分及び残り半数のコネクタピンを前記ピン埋設部分の平坦面に沿わせて突出させるピン突出部分をセットにして前記センサ本体側のコネクタ部分と同一形状に形成される測定チップ側のコネクタ部分とからなり、これら両コネクタ部分におけるピン受け埋設部分の平坦面どうしを接触させて両コネクタ部分を接続方向に相対的に移動させたとき、一方のコネクタ部分のピン受け埋設部分の先端面と他方のコネクタ部分のコネクタピン先端と当接して相互に移動牽制されるように構成されたものを用いることにより異なる極数のコネクタ部分どうしの誤接続が防止され極数が互いに異なるコネクタ同士の誤接続確実に回避することができる。
【図面の簡単な説明】
【図1】 水質測定装置の斜視図である。
【図2】 水質測定装置のブロック構成図である。
【図3】 4極タイプのコネクタの分離状態を示す斜視図である。
【図4】 6極タイプのコネクタの分離状態を示す斜視図である。
【図5】 3極タイプのコネクタの分離状態を示す斜視図である。
【図6】 (A)〜(C)は四つの接続態様から任意に選択した三つの接続態様を示す説明図である。
【図7】 他の実施の形態による水質測定装置のブロック構成図である。
【符号の説明】
1…センサ本体、6B…導電率の測定チップ、6D…溶存酸素の測定チップ、6E,6G〜6T…各種イオンの測定チップ、6F…酸化還元電位の測定チップ、7…温度計、8A〜8C…コネクタ、20…コネクタピン、21…ピン受け、22,23…コネクタ部分、22a,23a…ピン受け埋設部分、22b,23b…ピン突出部分。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water quality measuring device suitable for use in water quality surveys of rivers, lakes, and the sea, and in water quality management in aquaculture and liquid culture.
[0002]
[Prior art]
There are many items to measure water quality, such as dissolved oxygen, conductivity, redox potential, hydrogen ions (hereinafter referred to as pH), various ions other than pH (such as chloride ions and fluoride ions), and turbidity. Thus, the water temperature and water depth at the time of measurement, and also the salinity concentration and density calculated based on the conductivity are measured.
[0003]
Performing these measurements individually with a dedicated measuring device complicates the work in addition to the cost problem. Therefore, the present applicant has already determined the conductivity, which is a basic indicator of water quality, and this conductivity. We propose a water quality measurement device that can measure the total of six items of salinity, pH, turbidity, dissolved oxygen, and water temperature calculated based on the rate, and memorize the measured values. .
[0004]
In this case, when measuring various ions other than pH and the oxidation-reduction potential, it is necessary to prepare a dedicated device for the measurement and to prepare a density meter for measuring the density, and to perform each measurement.
[0005]
In addition, for measuring water quality at a predetermined water depth, a scale with a suspended holding cable of a water quality measuring device or a measure equipped with a sinking weight was prepared, and the water depth was confirmed visually. Above, various water quality measurements had to be performed, and the measurement operation was complicated.
[0006]
Therefore, in addition to the above six measurements, we have developed a water quality measuring device that can measure various ions other than the oxidation-reduction potential and pH, water depth, and density.
[0007]
At this time, a pressure gauge is provided in the sensor body as a water depth measuring chip, and a thermometer is integrally provided in the conductivity measuring chip, and the conductivity measuring chip, pH measuring chip, and various ions other than pH are provided. Each of the measurement chip, oxidation-reduction potential measurement chip, dissolved oxygen measurement chip, and turbidity measurement chip can be detachably connected to the sensor body via a connector to facilitate maintenance of various chips. I was able to do it.
[0008]
In addition, the number of connectors for chip connection is reduced, and the three types of measurement chips for pH, oxidation-reduction potential, and various ions other than pH are connected to the sensor body in an interchangeable manner. In order to identify which of the three types of measurement chips is connected to the sensor body in any of the water quality measurement devices, a measurement circuit connector is used as a connector for the signal circuit. A 4-pole type connector in which 2 poles for chip identification are added to 2 poles is used.
[0009]
For the conductivity measuring chip, the conductivity is measured by the four-electrode method, and the measuring chip is integrally provided with a thermometer. A connector is used.
[0010]
On the other hand, as a connector used for a dissolved oxygen measuring chip, a two-pole type connector for anode and cathode may be used. For example, a three-pole type connector is prepared for measurement of carbon dioxide gas or residual chlorine. Is used.
[0011]
[Problems to be solved by the invention]
Here, the various connectors described above are composed of a connector portion having connector pins having a predetermined number of poles and a connector portion having pin receptacles corresponding to the number of poles. The 3-pole type connector part used may be erroneously connected to the 6-pole type connector part used for the conductivity measuring chip. In some cases, connection to a 4-pole type connector portion used in a measurement chip such as the above is erroneously connected.
[0012]
[Means for Solving the Problems]
In view of such circumstances, the present invention has an object to provide a water quality measuring device that can reliably avoid erroneous connection between connectors having different numbers of poles by simple improvement, and the technology taken by the present invention for that purpose. The target means are as follows.
[0013]
That is, in the water quality measuring device of the present invention, the conductivity measuring chip integrally provided with the thermometer, the oxidation-reduction potential or various ions measuring chip, and the dissolved oxygen measuring chip have different numbers of poles. In the water quality measuring device detachably connected to the sensor body via the connector, each connector has a pin receiving embedded portion having a flat surface and a pin receiving embedded portion having a flat surface and the remaining half of the connectors. The sensor body side connector part formed by setting the pin protruding part that protrudes along the flat surface of the pin receiving embedded part, and the connector pin and the pin holder in the sensor body side connector part are phased. The pin receiving embedded portion for embedding half the pin receivers of the connector poles and the remaining half of the connector pins in the flat portion of the pin embedded portion. It consists of a connector part on the measuring chip side that is formed in the same shape as the connector part on the sensor body side, with a set of pin protruding parts that protrude along the surface, and a flat surface of the pin receiving embedded part in both these connector parts when what is moved relatively both connector portion in contact with the connecting direction, movement to and from the connector pin tip of the distal end surface and the other connector portion of the pin receiving embedded portion of the one connector part with contact It is characterized in that it is configured to be restrained.
In addition, each connector has a plurality of types of measurement by selecting a connection mode of electrical non-connection or connection between one pole for its signal circuit and another pole for chip identification connected to the chip identification circuit. It is desirable to be configured to identify which chip is connected to the sensor body.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of a water quality measuring device according to an embodiment of the present invention, and FIG. 2 is a block diagram of the water quality measuring device.
[0015]
In these figures, reference numeral 1 in the figure denotes a sensor body, which includes a power source 2, a calculation unit 3 having a memory function unit 3a, and a data logger 4 for recording the calculated measurement data in time series. It is built in the watertight case 5.
[0016]
6A is a water depth measuring chip that measures the water depth based on detection of water pressure, for example, a pressure gauge, and is embedded in the sensor body 1. 6B is a conductivity measuring chip, which calculates a salinity concentration and a density based on the conductivity, and is integrally provided with a thermometer 7.
[0017]
6C is a turbidity measuring chip, 6D is a dissolved oxygen measuring chip, and the conductivity measuring chip 6B and the turbidity measuring chip 6C are connected via a 6-pole type connector 8A and the dissolved oxygen The measurement chip 6D is detachably connected to the sensor body 1 via a three-pole type connector 8B.
[0018]
6E is a pH measuring chip in which a comparative electrode and a glass electrode are combined, 6F is a redox potential measuring chip, 6G is a measuring chip for chloride ions other than pH, for example, and the ion measuring chip other than pH includes the above-mentioned In addition to the chloride ion measurement chip 6G, the fluoride ion measurement chip 6H, the nitrate ion measurement chip 6I, the calcium ion measurement chip 6J, the cyan ion measurement chip 6K, and the sulfide ion measurement Chip 6L, iodine ion measurement chip 6M, bromine ion measurement chip 6N, copper ion measurement chip 6P, cadmium ion measurement chip 6Q, lead ion measurement chip 6R, and thiocyan ion measurement chip 6S And a silver ion measuring chip 6T.
[0019]
The measurement chips 6G to 6T, the pH measurement chip 6E, and the oxidation-reduction potential measurement chip 6F are connected via a four-pole type connector 8C in which two poles for chip identification are added to two poles for a signal circuit. Are connected to the connector portion on the sensor body 1 side so as to be interchangeable, and all of the measurement chips 6A to 6T are connected to the sensor body 1 so that the response portion contacts the water in a submerged state. The
[0020]
Reference numeral 9 denotes a display device, in addition to the display 10 for displaying water quality measurement data and the like, a power key 11, a function key 12, a measurement start / end key 13, a calibration key 14, a select key 15, and up / down keys 16, 17 The display device 9 and the sensor body 1 are connected by a waterproof communication cable 18 that also serves to suspend and hold the sensor body 1.
[0021]
In the water quality measuring apparatus having the above configuration, when the sensor main body 1 is submerged by operating the communication cable 18, measurement data based on outputs from various measurement chips is stored in the memory function unit 3 a and the measurement value is stored in the display 10. Is displayed.
[0022]
Further, by arbitrarily operating the data acquisition switch S of the data logger 4 with the function key 12, the measurement data is logged in the data logger 4, except for dissolved oxygen, conductivity, redox potential, pH, pH It is possible to measure the water quality of the total 10 items of the various ions, turbidity, water temperature, water depth at the time of measurement, and salinity concentration and density calculated based on the conductivity with high accuracy.
[0023]
And various water quality measurement data and the water depth measurement data at the time of the water quality measurement can be accurately related to each other and called from the memory function unit 3a. Data can also be printed.
[0024]
Here, the connectors 8A to 8C for chip connection are different in the number of connector poles provided in them, but are structurally the same, for example, a four-pole type connector including two poles for chip identification. 8C is configured as shown in FIG.
[0025]
That is, of the four connector poles by the connector pin 20 and the pin receiver 21, a half of the two connector pins 20 and the remaining two pole connector 21 are set as a set, and this is connected to the connector portion 22 on the sensor body side. The connector part 23 on the measurement chip side is phase-matched with the connector pin 20 and the pin receiver 21 in the connector part 22 on the sensor body side, so that the pin receiver 21 with half two poles and the remaining two poles are formed. The connector pins 20 are molded as a set .
[0026]
More specifically, each of the connector portions 22 and 23 includes a pin receiving embedded portion 22a and 23a having a flat surface 22c and 23c embedded in the pin receiver 21, and the flat surfaces 22c and 23a of the pin receiving embedded portions 22a and 23a. The protrusions 22b and 23b projecting the connector pin 20 along the line 23c are formed in the same shape, and the connector parts 22 and 23 are in phase with each other in the pin receiver 21 and the connector pin 20. It is molded to fit .
[0027]
As shown in FIG. 4, the 6-pole type connector 8A has, for example, a half 3 pole connector pin 20 and the remaining 3 pole pin receiver 21 as a set, and these are molded into the connector portions 22 and 23. As shown in FIG. 5, the three-pole type connector 8 </ b> B has, for example, a half-pole connector pin 20 and a remaining one-pole pin receiver 21 as a set, and these are molded in the connector portions 22 and 23.
[0028]
Therefore, according to the above configuration, when the flat surfaces 22c and 23c of the pin receiving embedded portions 22a and 23a in both the connector portions 22 and 23 are brought into contact with each other and moved relatively in the connecting direction , one connector portion 22 Both connector portions 22 and 23 are brought into contact with the tip end surface 22d (or 23d ) of the pin receiving embedded portion 22a (or 23a) of (or 23) and the tip of the connector pin 20 of the other connector portion 23 (or 22). movement would be restrain mutually, thereby, it is of misconnection and the connector portion 22, 23 having different numbers of poles can be reliably prevented.
[0029]
As shown in FIGS. 6A to 6C, in each of the four-pole type connectors 8C, the two poles a and b for the signal circuit are electrically connected to the arithmetic unit 3 for chip identification. The two poles c and d are not electrically connected to the chip identification circuit A at the connector portion 23 on the chip side, or the two poles c and d and one pole (for example, the ground pole) b for the signal circuit. The memory of the calculation unit 3 indicates which measurement chip (6E or 6F or 6G to 6T) of various ions other than the pH, the oxidation-reduction potential, and the pH is connected to which connector portion 22. It is made to memorize | store in the function part 3a, and the water quality measurement data by the connected chip | tip is displayed on the display 10. FIG.
[0030]
Specifically, four connection modes can be taken by electrically disconnecting or connecting the above three poles b, c, and d. Of these, any three connection modes are arbitrarily selected. For example, in the connector portion 23 provided on the pH measurement chip 6E side, the two poles c and d for chip identification are opened with respect to one pole b for signal circuits, and two poles for chip identification are used. The connection mode (see FIG. 6A) in which c and d are short-circuited is selected.
[0031]
In the connector portion 23 provided on the oxidation-reduction potential measuring chip 6F side, a connection mode in which all of the signal circuit 1 pole b and the chip identification 2 poles c and d are short-circuited (see FIG. 6B). ] Is selected.
[0032]
In the connector portion 23 provided on the measurement chips 6G to 6T side of various ions other than pH, a connection mode in which all of the signal circuit 1 pole b and chip identification 2 poles c and d are opened [FIG. (See (C)) is selected, and the three types of measurement chips 6E, 6F, 6G to 6T to be connected are identified by the chip identification circuit A.
[0033]
Based on this chip identification information, which measurement chip (6E or 6F or 6G to 6T) is connected to which connector portion 22 of the sensor body 1 is stored in the memory function unit 3a of the calculation unit 3, The water quality measurement data by each measurement chip is displayed on the display 10.
[0034]
As shown in FIG. 7, when the three types of measuring chips 6E, 6F, 6G to 6T are selectively connected to one 4-pole type connector 8C, the water quality measuring device is made compact. Selects three connection modes from among the four connection modes described above to identify the three types of measurement chips 6E, 6F, 6G to 6T to be connected, and based on the identification information, the sensor body 1 Each of the three measurement chips (6E, 6F, or 6G to 6T) is alternatively stored in the memory function unit 3a of the calculation unit 3, and each of the measurement chips is connected. It is only necessary to display the water quality measurement data by the display 10.
[0035]
【The invention's effect】
As described above, the present invention is a pin having a flat surface in which half of the pin holders of the connector poles are embedded as connectors with different numbers of poles for connecting a plurality of types of measuring chips used for water quality measurement to the sensor body. A connector part on the sensor body side formed by setting a pin protruding part that protrudes the receiving embedded part and the remaining half of the connector pins along the flat surface of the pin receiving embedded part, and a connector part on the sensor body side A pin receiving embedded portion in which half of the connector pins of the connector pole are embedded so as to be in phase with the connector pin and the pin receiving portion, and a pin protruding portion that protrudes the remaining half of the connector pins along the flat surface of the pin embedded portion. A connector part on the measuring chip side that is formed in the same shape as the connector part on the sensor body side. When moved relatively both connector portion by contacting the flat surface each other of the pin receiving buried portion in these two connector portions in the connection direction, of the distal end surface and the other connector portion of the pin receiving embedded portion of the first connector portion connector pin and the tip is prevented abutment and configured misconnection each other connector part of the different number of poles by the use of those to be moved check to each other is, a misconnection of different connectors number of poles from each other It can be avoided reliably .
[Brief description of the drawings]
FIG. 1 is a perspective view of a water quality measuring device.
FIG. 2 is a block diagram of a water quality measuring device.
FIG. 3 is a perspective view showing a separated state of a 4-pole type connector.
FIG. 4 is a perspective view showing a separated state of a 6-pole type connector.
FIG. 5 is a perspective view showing a separated state of a three-pole type connector.
6A to 6C are explanatory diagrams showing three connection modes arbitrarily selected from four connection modes. FIG.
FIG. 7 is a block configuration diagram of a water quality measuring apparatus according to another embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Sensor main body, 6B ... Conductivity measuring chip, 6D ... Dissolved oxygen measuring chip, 6E, 6G-6T ... Various ion measuring chip, 6F ... Redox potential measuring chip, 7 ... Thermometer, 8A-8C ... Connector, 20... Connector pin, 21.

Claims (2)

温度計を一体に備えた導電率の測定チップと、酸化還元電位または各種イオンの測定チップと、溶存酸素の測定チップとを、互いに異なる極数のコネクタを介して、センサ本体に取り外し可能に接続してなる水質測定装置において、前記各コネクタは、当該コネクタ極の一部のピン受けを埋設し平坦面を有するピン受け埋設部分及び残部のコネクタピンを前記ピン受け埋設部分の平坦面に沿わせて突出させるピン突出部分をセツトにして形成されるセンサ本体側のコネクタ部分と、このセンサ本体側のコネクタ部分におけるコネクタピン及びピン受けに位相を合わせるようにして当該コネクタ極の一部のピン受けを埋設するピン受け埋設部分及び残部のコネクタピンを前記ピン埋設部分の平坦面に沿わせて突出させるピン突出部分をセットにして前記センサ本体側のコネクタ部分と同一形状に形成される測定チップ側のコネクタ部分とからなり、これら両コネクタ部分におけるピン受け埋設部分の平坦面どうしを接触させて両コネクタ部分を接続方向に相対的に移動させたとき、一方のコネクタ部分のピン受け埋設部分の先端面と他方のコネクタ部分のコネクタピン先端と当接して相互に移動牽制されるように構成していることを特徴とする水質測定装置。A conductivity measurement chip with an integrated thermometer, a redox potential or various ion measurement chip, and a dissolved oxygen measurement chip can be connected to the sensor body via connectors with different numbers of poles. In the water quality measuring apparatus, the connector includes a pin receiving portion having a flat surface and a pin receiving portion having a flat surface and a remaining connector pin along the flat surface of the pin receiving portion. The connector part on the sensor body side, which is formed by setting the protruding part of the pin to be projected, and the pin receiving part of the connector pole in phase with the connector pin and pin receiver in the connector part on the sensor body side Set the pin receiving part that embeds the pin and the protruding part that protrudes the remaining connector pin along the flat surface of the pin burying part. The connector part on the measuring chip side is formed in the same shape as the connector part on the sensor body side, and the flat surfaces of the pin receiving embedded parts in these connector parts are brought into contact with each other so that the two connector parts are relative to each other in the connecting direction. when to move, and characterized in that the connector pin tip of the distal end surface and the other connector portion of the pin receiving embedded portion of one connector portion is configured to be moved restraint with each other abut Water quality measuring device. 前記各コネクタは、それの信号回路用の1極とチップ識別回路に接続されている他のチップ識別用の極との電気的な非接続または接続の接続態様の選択により複数種類の測定チップのいずれがセンサ本体に接続されたのかを識別させるように構成されている請求項1に記載の水質測定装置。Each of the connectors has a plurality of types of measurement chips by selecting a connection mode of electrical non-connection or connection between one pole for its signal circuit and another pole for chip identification connected to the chip identification circuit. The water quality measuring apparatus according to claim 1, wherein the water quality measuring apparatus is configured to identify which one is connected to the sensor body.
JP32245797A 1997-11-08 1997-11-08 Water quality measuring device Expired - Fee Related JP3967808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32245797A JP3967808B2 (en) 1997-11-08 1997-11-08 Water quality measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32245797A JP3967808B2 (en) 1997-11-08 1997-11-08 Water quality measuring device

Publications (2)

Publication Number Publication Date
JPH11142397A JPH11142397A (en) 1999-05-28
JP3967808B2 true JP3967808B2 (en) 2007-08-29

Family

ID=18143878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32245797A Expired - Fee Related JP3967808B2 (en) 1997-11-08 1997-11-08 Water quality measuring device

Country Status (1)

Country Link
JP (1) JP3967808B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048753A (en) * 2000-08-03 2002-02-15 Aqua Science:Kk Aging evaluation method for organism, food items or various kinds of water and its device
JP5189934B2 (en) * 2008-09-02 2013-04-24 株式会社堀場製作所 Dissolved oxygen sensor
JP5069647B2 (en) * 2008-09-02 2012-11-07 株式会社堀場製作所 Dissolved oxygen sensor
JP5075768B2 (en) * 2008-09-02 2012-11-21 株式会社堀場製作所 Water quality analyzer
FR2947634B1 (en) * 2009-07-06 2012-07-27 Otv Sa DEVICE FOR MEASURING AT LEAST ONE PROPERTY OF WATER
CN102818882A (en) * 2012-08-31 2012-12-12 无锡同春新能源科技有限公司 Portable diseased meat detector powered by solar cell
ITBO20130317A1 (en) * 2013-06-21 2014-12-22 Techimp Technologies Srl DEVICE AND METHOD OF ANALYSIS OF THE CORROSIVITY OF OIL.
KR101630142B1 (en) * 2016-03-11 2016-06-13 대윤계기산업 주식회사 Sensor module, Connecter module and Apparatus for measuring quality of water

Also Published As

Publication number Publication date
JPH11142397A (en) 1999-05-28

Similar Documents

Publication Publication Date Title
JP3967808B2 (en) Water quality measuring device
US4069716A (en) Apparatus and method for use in determining conditions related to a plant
US7632384B1 (en) Multi-functional sensor system for molten salt technologies
JP2000019147A (en) Reaction product measuring device
JP4068700B2 (en) Water quality measuring device
JPH11153594A (en) Water quality measuring apparatus
US4942361A (en) Method and apparatus for determining earth resistivities in the presence of extraneous earth currents
JP3808995B2 (en) Water quality measuring device
US3060374A (en) Battery testers
SE448356B (en) PORTABLE METHOD INSTRUMENT FOR CONTROL OF PLANT TIME IN POINT WELDING
KR102437532B1 (en) CTD-based salt concentration monitoring system
Armstrong et al. A polarographic assembly for multiple sampling of soil oxygen flux in the field
JP5278067B2 (en) Desktop measuring device
CN211042397U (en) Two-wire system water level and water temperature and water pumping test detecting instrument
CN216167408U (en) Invasive blood pressure monitor detection equipment and system
JP3959166B2 (en) Water quality measuring device
CN210742516U (en) Array induced polarization exploration device
WO1996030741A1 (en) Measurement of environmental parameters in concrete
JPH11148928A (en) Water quality measuring apparatus
JP3138972U (en) ITC tester (ITTRACE contact tester)
JPH11142396A (en) Water quality-measuring apparatus
CN1053956A (en) Detect the whether damaged method and apparatus of potential of hydrogen [pH] detector
WO2014174253A1 (en) Method and apparatus for evaluating cathodic protection
US7736478B2 (en) Ion solution concentration-detecting device
CN212111604U (en) Simple cable sequencing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees